1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/scs.h>
35 #include <linux/percpu-rwsem.h>
36 #include <linux/cpuset.h>
37 #include <linux/random.h>
38 #include <uapi/linux/sched/types.h>
39
40 #include <trace/events/power.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/cpuhp.h>
43
44 #undef CREATE_TRACE_POINTS
45 #include <trace/hooks/sched.h>
46 #include <trace/hooks/cpu.h>
47
48 #include "smpboot.h"
49 #include "sched/sched.h"
50
51 /**
52 * cpuhp_cpu_state - Per cpu hotplug state storage
53 * @state: The current cpu state
54 * @target: The target state
55 * @thread: Pointer to the hotplug thread
56 * @should_run: Thread should execute
57 * @rollback: Perform a rollback
58 * @single: Single callback invocation
59 * @bringup: Single callback bringup or teardown selector
60 * @cb_state: The state for a single callback (install/uninstall)
61 * @result: Result of the operation
62 * @done_up: Signal completion to the issuer of the task for cpu-up
63 * @done_down: Signal completion to the issuer of the task for cpu-down
64 */
65 struct cpuhp_cpu_state {
66 enum cpuhp_state state;
67 enum cpuhp_state target;
68 enum cpuhp_state fail;
69 #ifdef CONFIG_SMP
70 struct task_struct *thread;
71 bool should_run;
72 bool rollback;
73 bool single;
74 bool bringup;
75 struct hlist_node *node;
76 struct hlist_node *last;
77 enum cpuhp_state cb_state;
78 int result;
79 struct completion done_up;
80 struct completion done_down;
81 #endif
82 };
83
84 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
85 .fail = CPUHP_INVALID,
86 };
87
88 #ifdef CONFIG_SMP
89 cpumask_t cpus_booted_once_mask;
90 #endif
91
92 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
93 static struct lockdep_map cpuhp_state_up_map =
94 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
95 static struct lockdep_map cpuhp_state_down_map =
96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
97
98
cpuhp_lock_acquire(bool bringup)99 static inline void cpuhp_lock_acquire(bool bringup)
100 {
101 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
102 }
103
cpuhp_lock_release(bool bringup)104 static inline void cpuhp_lock_release(bool bringup)
105 {
106 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
107 }
108 #else
109
cpuhp_lock_acquire(bool bringup)110 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)111 static inline void cpuhp_lock_release(bool bringup) { }
112
113 #endif
114
115 /**
116 * cpuhp_step - Hotplug state machine step
117 * @name: Name of the step
118 * @startup: Startup function of the step
119 * @teardown: Teardown function of the step
120 * @cant_stop: Bringup/teardown can't be stopped at this step
121 */
122 struct cpuhp_step {
123 const char *name;
124 union {
125 int (*single)(unsigned int cpu);
126 int (*multi)(unsigned int cpu,
127 struct hlist_node *node);
128 } startup;
129 union {
130 int (*single)(unsigned int cpu);
131 int (*multi)(unsigned int cpu,
132 struct hlist_node *node);
133 } teardown;
134 struct hlist_head list;
135 bool cant_stop;
136 bool multi_instance;
137 };
138
139 static DEFINE_MUTEX(cpuhp_state_mutex);
140 static struct cpuhp_step cpuhp_hp_states[];
141
cpuhp_get_step(enum cpuhp_state state)142 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
143 {
144 return cpuhp_hp_states + state;
145 }
146
147 /**
148 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
149 * @cpu: The cpu for which the callback should be invoked
150 * @state: The state to do callbacks for
151 * @bringup: True if the bringup callback should be invoked
152 * @node: For multi-instance, do a single entry callback for install/remove
153 * @lastp: For multi-instance rollback, remember how far we got
154 *
155 * Called from cpu hotplug and from the state register machinery.
156 */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)157 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
158 bool bringup, struct hlist_node *node,
159 struct hlist_node **lastp)
160 {
161 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
162 struct cpuhp_step *step = cpuhp_get_step(state);
163 int (*cbm)(unsigned int cpu, struct hlist_node *node);
164 int (*cb)(unsigned int cpu);
165 int ret, cnt;
166
167 if (st->fail == state) {
168 st->fail = CPUHP_INVALID;
169
170 if (!(bringup ? step->startup.single : step->teardown.single))
171 return 0;
172
173 return -EAGAIN;
174 }
175
176 if (!step->multi_instance) {
177 WARN_ON_ONCE(lastp && *lastp);
178 cb = bringup ? step->startup.single : step->teardown.single;
179 if (!cb)
180 return 0;
181 trace_cpuhp_enter(cpu, st->target, state, cb);
182 ret = cb(cpu);
183 trace_cpuhp_exit(cpu, st->state, state, ret);
184 return ret;
185 }
186 cbm = bringup ? step->startup.multi : step->teardown.multi;
187 if (!cbm)
188 return 0;
189
190 /* Single invocation for instance add/remove */
191 if (node) {
192 WARN_ON_ONCE(lastp && *lastp);
193 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
194 ret = cbm(cpu, node);
195 trace_cpuhp_exit(cpu, st->state, state, ret);
196 return ret;
197 }
198
199 /* State transition. Invoke on all instances */
200 cnt = 0;
201 hlist_for_each(node, &step->list) {
202 if (lastp && node == *lastp)
203 break;
204
205 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
206 ret = cbm(cpu, node);
207 trace_cpuhp_exit(cpu, st->state, state, ret);
208 if (ret) {
209 if (!lastp)
210 goto err;
211
212 *lastp = node;
213 return ret;
214 }
215 cnt++;
216 }
217 if (lastp)
218 *lastp = NULL;
219 return 0;
220 err:
221 /* Rollback the instances if one failed */
222 cbm = !bringup ? step->startup.multi : step->teardown.multi;
223 if (!cbm)
224 return ret;
225
226 hlist_for_each(node, &step->list) {
227 if (!cnt--)
228 break;
229
230 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
231 ret = cbm(cpu, node);
232 trace_cpuhp_exit(cpu, st->state, state, ret);
233 /*
234 * Rollback must not fail,
235 */
236 WARN_ON_ONCE(ret);
237 }
238 return ret;
239 }
240
241 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)242 static bool cpuhp_is_ap_state(enum cpuhp_state state)
243 {
244 /*
245 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
246 * purposes as that state is handled explicitly in cpu_down.
247 */
248 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
249 }
250
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)251 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
252 {
253 struct completion *done = bringup ? &st->done_up : &st->done_down;
254 wait_for_completion(done);
255 }
256
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)257 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
258 {
259 struct completion *done = bringup ? &st->done_up : &st->done_down;
260 complete(done);
261 }
262
263 /*
264 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
265 */
cpuhp_is_atomic_state(enum cpuhp_state state)266 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
267 {
268 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
269 }
270
271 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
272 static DEFINE_MUTEX(cpu_add_remove_lock);
273 bool cpuhp_tasks_frozen;
274 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
275
276 /*
277 * The following two APIs (cpu_maps_update_begin/done) must be used when
278 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
279 */
cpu_maps_update_begin(void)280 void cpu_maps_update_begin(void)
281 {
282 mutex_lock(&cpu_add_remove_lock);
283 }
284 EXPORT_SYMBOL_GPL(cpu_maps_update_begin);
285
cpu_maps_update_done(void)286 void cpu_maps_update_done(void)
287 {
288 mutex_unlock(&cpu_add_remove_lock);
289 }
290 EXPORT_SYMBOL_GPL(cpu_maps_update_done);
291
292 /*
293 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
294 * Should always be manipulated under cpu_add_remove_lock
295 */
296 static int cpu_hotplug_disabled;
297
298 #ifdef CONFIG_HOTPLUG_CPU
299
300 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
301
cpus_read_lock(void)302 void cpus_read_lock(void)
303 {
304 percpu_down_read(&cpu_hotplug_lock);
305 }
306 EXPORT_SYMBOL_GPL(cpus_read_lock);
307
cpus_read_trylock(void)308 int cpus_read_trylock(void)
309 {
310 return percpu_down_read_trylock(&cpu_hotplug_lock);
311 }
312 EXPORT_SYMBOL_GPL(cpus_read_trylock);
313
cpus_read_unlock(void)314 void cpus_read_unlock(void)
315 {
316 percpu_up_read(&cpu_hotplug_lock);
317 }
318 EXPORT_SYMBOL_GPL(cpus_read_unlock);
319
cpus_write_lock(void)320 void cpus_write_lock(void)
321 {
322 percpu_down_write(&cpu_hotplug_lock);
323 }
324
cpus_write_unlock(void)325 void cpus_write_unlock(void)
326 {
327 percpu_up_write(&cpu_hotplug_lock);
328 }
329
lockdep_assert_cpus_held(void)330 void lockdep_assert_cpus_held(void)
331 {
332 /*
333 * We can't have hotplug operations before userspace starts running,
334 * and some init codepaths will knowingly not take the hotplug lock.
335 * This is all valid, so mute lockdep until it makes sense to report
336 * unheld locks.
337 */
338 if (system_state < SYSTEM_RUNNING)
339 return;
340
341 percpu_rwsem_assert_held(&cpu_hotplug_lock);
342 }
343
lockdep_acquire_cpus_lock(void)344 static void lockdep_acquire_cpus_lock(void)
345 {
346 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
347 }
348
lockdep_release_cpus_lock(void)349 static void lockdep_release_cpus_lock(void)
350 {
351 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
352 }
353
354 /*
355 * Wait for currently running CPU hotplug operations to complete (if any) and
356 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
357 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
358 * hotplug path before performing hotplug operations. So acquiring that lock
359 * guarantees mutual exclusion from any currently running hotplug operations.
360 */
cpu_hotplug_disable(void)361 void cpu_hotplug_disable(void)
362 {
363 cpu_maps_update_begin();
364 cpu_hotplug_disabled++;
365 cpu_maps_update_done();
366 }
367 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
368
__cpu_hotplug_enable(void)369 static void __cpu_hotplug_enable(void)
370 {
371 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
372 return;
373 cpu_hotplug_disabled--;
374 }
375
cpu_hotplug_enable(void)376 void cpu_hotplug_enable(void)
377 {
378 cpu_maps_update_begin();
379 __cpu_hotplug_enable();
380 cpu_maps_update_done();
381 }
382 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
383
384 #else
385
lockdep_acquire_cpus_lock(void)386 static void lockdep_acquire_cpus_lock(void)
387 {
388 }
389
lockdep_release_cpus_lock(void)390 static void lockdep_release_cpus_lock(void)
391 {
392 }
393
394 #endif /* CONFIG_HOTPLUG_CPU */
395
396 /*
397 * Architectures that need SMT-specific errata handling during SMT hotplug
398 * should override this.
399 */
arch_smt_update(void)400 void __weak arch_smt_update(void) { }
401
402 #ifdef CONFIG_HOTPLUG_SMT
403 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
404
cpu_smt_disable(bool force)405 void __init cpu_smt_disable(bool force)
406 {
407 if (!cpu_smt_possible())
408 return;
409
410 if (force) {
411 pr_info("SMT: Force disabled\n");
412 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
413 } else {
414 pr_info("SMT: disabled\n");
415 cpu_smt_control = CPU_SMT_DISABLED;
416 }
417 }
418
419 /*
420 * The decision whether SMT is supported can only be done after the full
421 * CPU identification. Called from architecture code.
422 */
cpu_smt_check_topology(void)423 void __init cpu_smt_check_topology(void)
424 {
425 if (!topology_smt_supported())
426 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
427 }
428
smt_cmdline_disable(char * str)429 static int __init smt_cmdline_disable(char *str)
430 {
431 cpu_smt_disable(str && !strcmp(str, "force"));
432 return 0;
433 }
434 early_param("nosmt", smt_cmdline_disable);
435
cpu_smt_allowed(unsigned int cpu)436 static inline bool cpu_smt_allowed(unsigned int cpu)
437 {
438 if (cpu_smt_control == CPU_SMT_ENABLED)
439 return true;
440
441 if (topology_is_primary_thread(cpu))
442 return true;
443
444 /*
445 * On x86 it's required to boot all logical CPUs at least once so
446 * that the init code can get a chance to set CR4.MCE on each
447 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
448 * core will shutdown the machine.
449 */
450 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
451 }
452
453 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
cpu_smt_possible(void)454 bool cpu_smt_possible(void)
455 {
456 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
457 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
458 }
459 EXPORT_SYMBOL_GPL(cpu_smt_possible);
460 #else
cpu_smt_allowed(unsigned int cpu)461 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
462 #endif
463
464 static inline enum cpuhp_state
cpuhp_set_state(struct cpuhp_cpu_state * st,enum cpuhp_state target)465 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
466 {
467 enum cpuhp_state prev_state = st->state;
468
469 st->rollback = false;
470 st->last = NULL;
471
472 st->target = target;
473 st->single = false;
474 st->bringup = st->state < target;
475
476 return prev_state;
477 }
478
479 static inline void
cpuhp_reset_state(struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)480 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
481 {
482 st->rollback = true;
483
484 /*
485 * If we have st->last we need to undo partial multi_instance of this
486 * state first. Otherwise start undo at the previous state.
487 */
488 if (!st->last) {
489 if (st->bringup)
490 st->state--;
491 else
492 st->state++;
493 }
494
495 st->target = prev_state;
496 st->bringup = !st->bringup;
497 }
498
499 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)500 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
501 {
502 if (!st->single && st->state == st->target)
503 return;
504
505 st->result = 0;
506 /*
507 * Make sure the above stores are visible before should_run becomes
508 * true. Paired with the mb() above in cpuhp_thread_fun()
509 */
510 smp_mb();
511 st->should_run = true;
512 wake_up_process(st->thread);
513 wait_for_ap_thread(st, st->bringup);
514 }
515
cpuhp_kick_ap(struct cpuhp_cpu_state * st,enum cpuhp_state target)516 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
517 {
518 enum cpuhp_state prev_state;
519 int ret;
520
521 prev_state = cpuhp_set_state(st, target);
522 __cpuhp_kick_ap(st);
523 if ((ret = st->result)) {
524 cpuhp_reset_state(st, prev_state);
525 __cpuhp_kick_ap(st);
526 }
527
528 return ret;
529 }
530
bringup_wait_for_ap(unsigned int cpu)531 static int bringup_wait_for_ap(unsigned int cpu)
532 {
533 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
534
535 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
536 wait_for_ap_thread(st, true);
537 if (WARN_ON_ONCE((!cpu_online(cpu))))
538 return -ECANCELED;
539
540 /* Unpark the hotplug thread of the target cpu */
541 kthread_unpark(st->thread);
542
543 /*
544 * SMT soft disabling on X86 requires to bring the CPU out of the
545 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
546 * CPU marked itself as booted_once in notify_cpu_starting() so the
547 * cpu_smt_allowed() check will now return false if this is not the
548 * primary sibling.
549 */
550 if (!cpu_smt_allowed(cpu))
551 return -ECANCELED;
552
553 if (st->target <= CPUHP_AP_ONLINE_IDLE)
554 return 0;
555
556 return cpuhp_kick_ap(st, st->target);
557 }
558
bringup_cpu(unsigned int cpu)559 static int bringup_cpu(unsigned int cpu)
560 {
561 struct task_struct *idle = idle_thread_get(cpu);
562 int ret;
563
564 /*
565 * Reset stale stack state from the last time this CPU was online.
566 */
567 scs_task_reset(idle);
568 kasan_unpoison_task_stack(idle);
569
570 /*
571 * Some architectures have to walk the irq descriptors to
572 * setup the vector space for the cpu which comes online.
573 * Prevent irq alloc/free across the bringup.
574 */
575 irq_lock_sparse();
576
577 /* Arch-specific enabling code. */
578 ret = __cpu_up(cpu, idle);
579 irq_unlock_sparse();
580 if (ret)
581 return ret;
582 return bringup_wait_for_ap(cpu);
583 }
584
finish_cpu(unsigned int cpu)585 static int finish_cpu(unsigned int cpu)
586 {
587 struct task_struct *idle = idle_thread_get(cpu);
588 struct mm_struct *mm = idle->active_mm;
589
590 /*
591 * idle_task_exit() will have switched to &init_mm, now
592 * clean up any remaining active_mm state.
593 */
594 if (mm != &init_mm)
595 idle->active_mm = &init_mm;
596 mmdrop(mm);
597 return 0;
598 }
599
600 /*
601 * Hotplug state machine related functions
602 */
603
undo_cpu_up(unsigned int cpu,struct cpuhp_cpu_state * st)604 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
605 {
606 for (st->state--; st->state > st->target; st->state--)
607 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
608 }
609
can_rollback_cpu(struct cpuhp_cpu_state * st)610 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
611 {
612 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
613 return true;
614 /*
615 * When CPU hotplug is disabled, then taking the CPU down is not
616 * possible because takedown_cpu() and the architecture and
617 * subsystem specific mechanisms are not available. So the CPU
618 * which would be completely unplugged again needs to stay around
619 * in the current state.
620 */
621 return st->state <= CPUHP_BRINGUP_CPU;
622 }
623
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)624 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
625 enum cpuhp_state target)
626 {
627 enum cpuhp_state prev_state = st->state;
628 int ret = 0;
629
630 while (st->state < target) {
631 st->state++;
632 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
633 if (ret) {
634 if (can_rollback_cpu(st)) {
635 st->target = prev_state;
636 undo_cpu_up(cpu, st);
637 }
638 break;
639 }
640 }
641 return ret;
642 }
643
644 /*
645 * The cpu hotplug threads manage the bringup and teardown of the cpus
646 */
cpuhp_create(unsigned int cpu)647 static void cpuhp_create(unsigned int cpu)
648 {
649 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
650
651 init_completion(&st->done_up);
652 init_completion(&st->done_down);
653 }
654
cpuhp_should_run(unsigned int cpu)655 static int cpuhp_should_run(unsigned int cpu)
656 {
657 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
658
659 return st->should_run;
660 }
661
662 /*
663 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
664 * callbacks when a state gets [un]installed at runtime.
665 *
666 * Each invocation of this function by the smpboot thread does a single AP
667 * state callback.
668 *
669 * It has 3 modes of operation:
670 * - single: runs st->cb_state
671 * - up: runs ++st->state, while st->state < st->target
672 * - down: runs st->state--, while st->state > st->target
673 *
674 * When complete or on error, should_run is cleared and the completion is fired.
675 */
cpuhp_thread_fun(unsigned int cpu)676 static void cpuhp_thread_fun(unsigned int cpu)
677 {
678 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
679 bool bringup = st->bringup;
680 enum cpuhp_state state;
681
682 if (WARN_ON_ONCE(!st->should_run))
683 return;
684
685 /*
686 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
687 * that if we see ->should_run we also see the rest of the state.
688 */
689 smp_mb();
690
691 /*
692 * The BP holds the hotplug lock, but we're now running on the AP,
693 * ensure that anybody asserting the lock is held, will actually find
694 * it so.
695 */
696 lockdep_acquire_cpus_lock();
697 cpuhp_lock_acquire(bringup);
698
699 if (st->single) {
700 state = st->cb_state;
701 st->should_run = false;
702 } else {
703 if (bringup) {
704 st->state++;
705 state = st->state;
706 st->should_run = (st->state < st->target);
707 WARN_ON_ONCE(st->state > st->target);
708 } else {
709 state = st->state;
710 st->state--;
711 st->should_run = (st->state > st->target);
712 WARN_ON_ONCE(st->state < st->target);
713 }
714 }
715
716 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
717
718 if (cpuhp_is_atomic_state(state)) {
719 local_irq_disable();
720 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
721 local_irq_enable();
722
723 /*
724 * STARTING/DYING must not fail!
725 */
726 WARN_ON_ONCE(st->result);
727 } else {
728 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
729 }
730
731 if (st->result) {
732 /*
733 * If we fail on a rollback, we're up a creek without no
734 * paddle, no way forward, no way back. We loose, thanks for
735 * playing.
736 */
737 WARN_ON_ONCE(st->rollback);
738 st->should_run = false;
739 }
740
741 cpuhp_lock_release(bringup);
742 lockdep_release_cpus_lock();
743
744 if (!st->should_run)
745 complete_ap_thread(st, bringup);
746 }
747
748 /* Invoke a single callback on a remote cpu */
749 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)750 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
751 struct hlist_node *node)
752 {
753 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
754 int ret;
755
756 if (!cpu_online(cpu))
757 return 0;
758
759 cpuhp_lock_acquire(false);
760 cpuhp_lock_release(false);
761
762 cpuhp_lock_acquire(true);
763 cpuhp_lock_release(true);
764
765 /*
766 * If we are up and running, use the hotplug thread. For early calls
767 * we invoke the thread function directly.
768 */
769 if (!st->thread)
770 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
771
772 st->rollback = false;
773 st->last = NULL;
774
775 st->node = node;
776 st->bringup = bringup;
777 st->cb_state = state;
778 st->single = true;
779
780 __cpuhp_kick_ap(st);
781
782 /*
783 * If we failed and did a partial, do a rollback.
784 */
785 if ((ret = st->result) && st->last) {
786 st->rollback = true;
787 st->bringup = !bringup;
788
789 __cpuhp_kick_ap(st);
790 }
791
792 /*
793 * Clean up the leftovers so the next hotplug operation wont use stale
794 * data.
795 */
796 st->node = st->last = NULL;
797 return ret;
798 }
799
cpuhp_kick_ap_work(unsigned int cpu)800 static int cpuhp_kick_ap_work(unsigned int cpu)
801 {
802 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
803 enum cpuhp_state prev_state = st->state;
804 int ret;
805
806 cpuhp_lock_acquire(false);
807 cpuhp_lock_release(false);
808
809 cpuhp_lock_acquire(true);
810 cpuhp_lock_release(true);
811
812 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
813 ret = cpuhp_kick_ap(st, st->target);
814 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
815
816 return ret;
817 }
818
819 static struct smp_hotplug_thread cpuhp_threads = {
820 .store = &cpuhp_state.thread,
821 .create = &cpuhp_create,
822 .thread_should_run = cpuhp_should_run,
823 .thread_fn = cpuhp_thread_fun,
824 .thread_comm = "cpuhp/%u",
825 .selfparking = true,
826 };
827
cpuhp_threads_init(void)828 void __init cpuhp_threads_init(void)
829 {
830 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
831 kthread_unpark(this_cpu_read(cpuhp_state.thread));
832 }
833
834 /*
835 *
836 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
837 * protected region.
838 *
839 * The operation is still serialized against concurrent CPU hotplug via
840 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_
841 * serialized against other hotplug related activity like adding or
842 * removing of state callbacks and state instances, which invoke either the
843 * startup or the teardown callback of the affected state.
844 *
845 * This is required for subsystems which are unfixable vs. CPU hotplug and
846 * evade lock inversion problems by scheduling work which has to be
847 * completed _before_ cpu_up()/_cpu_down() returns.
848 *
849 * Don't even think about adding anything to this for any new code or even
850 * drivers. It's only purpose is to keep existing lock order trainwrecks
851 * working.
852 *
853 * For cpu_down() there might be valid reasons to finish cleanups which are
854 * not required to be done under cpu_hotplug_lock, but that's a different
855 * story and would be not invoked via this.
856 */
cpu_up_down_serialize_trainwrecks(bool tasks_frozen)857 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
858 {
859 /*
860 * cpusets delegate hotplug operations to a worker to "solve" the
861 * lock order problems. Wait for the worker, but only if tasks are
862 * _not_ frozen (suspend, hibernate) as that would wait forever.
863 *
864 * The wait is required because otherwise the hotplug operation
865 * returns with inconsistent state, which could even be observed in
866 * user space when a new CPU is brought up. The CPU plug uevent
867 * would be delivered and user space reacting on it would fail to
868 * move tasks to the newly plugged CPU up to the point where the
869 * work has finished because up to that point the newly plugged CPU
870 * is not assignable in cpusets/cgroups. On unplug that's not
871 * necessarily a visible issue, but it is still inconsistent state,
872 * which is the real problem which needs to be "fixed". This can't
873 * prevent the transient state between scheduling the work and
874 * returning from waiting for it.
875 */
876 if (!tasks_frozen)
877 cpuset_wait_for_hotplug();
878 }
879
880 #ifdef CONFIG_HOTPLUG_CPU
881 #ifndef arch_clear_mm_cpumask_cpu
882 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
883 #endif
884
885 /**
886 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
887 * @cpu: a CPU id
888 *
889 * This function walks all processes, finds a valid mm struct for each one and
890 * then clears a corresponding bit in mm's cpumask. While this all sounds
891 * trivial, there are various non-obvious corner cases, which this function
892 * tries to solve in a safe manner.
893 *
894 * Also note that the function uses a somewhat relaxed locking scheme, so it may
895 * be called only for an already offlined CPU.
896 */
clear_tasks_mm_cpumask(int cpu)897 void clear_tasks_mm_cpumask(int cpu)
898 {
899 struct task_struct *p;
900
901 /*
902 * This function is called after the cpu is taken down and marked
903 * offline, so its not like new tasks will ever get this cpu set in
904 * their mm mask. -- Peter Zijlstra
905 * Thus, we may use rcu_read_lock() here, instead of grabbing
906 * full-fledged tasklist_lock.
907 */
908 WARN_ON(cpu_online(cpu));
909 rcu_read_lock();
910 for_each_process(p) {
911 struct task_struct *t;
912
913 /*
914 * Main thread might exit, but other threads may still have
915 * a valid mm. Find one.
916 */
917 t = find_lock_task_mm(p);
918 if (!t)
919 continue;
920 arch_clear_mm_cpumask_cpu(cpu, t->mm);
921 task_unlock(t);
922 }
923 rcu_read_unlock();
924 }
925
926 /* Take this CPU down. */
take_cpu_down(void * _param)927 static int take_cpu_down(void *_param)
928 {
929 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
930 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
931 int err, cpu = smp_processor_id();
932 int ret;
933
934 /* Ensure this CPU doesn't handle any more interrupts. */
935 err = __cpu_disable();
936 if (err < 0)
937 return err;
938
939 /*
940 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
941 * do this step again.
942 */
943 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
944 st->state--;
945 /* Invoke the former CPU_DYING callbacks */
946 for (; st->state > target; st->state--) {
947 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
948 /*
949 * DYING must not fail!
950 */
951 WARN_ON_ONCE(ret);
952 }
953
954 /* Give up timekeeping duties */
955 tick_handover_do_timer();
956 /* Remove CPU from timer broadcasting */
957 tick_offline_cpu(cpu);
958 /* Park the stopper thread */
959 stop_machine_park(cpu);
960 return 0;
961 }
962
takedown_cpu(unsigned int cpu)963 static int takedown_cpu(unsigned int cpu)
964 {
965 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
966 int err;
967
968 /* Park the smpboot threads */
969 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
970
971 /*
972 * Prevent irq alloc/free while the dying cpu reorganizes the
973 * interrupt affinities.
974 */
975 irq_lock_sparse();
976
977 /*
978 * So now all preempt/rcu users must observe !cpu_active().
979 */
980 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
981 if (err) {
982 /* CPU refused to die */
983 irq_unlock_sparse();
984 /* Unpark the hotplug thread so we can rollback there */
985 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
986 return err;
987 }
988 BUG_ON(cpu_online(cpu));
989
990 /*
991 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
992 * all runnable tasks from the CPU, there's only the idle task left now
993 * that the migration thread is done doing the stop_machine thing.
994 *
995 * Wait for the stop thread to go away.
996 */
997 wait_for_ap_thread(st, false);
998 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
999
1000 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1001 irq_unlock_sparse();
1002
1003 hotplug_cpu__broadcast_tick_pull(cpu);
1004 /* This actually kills the CPU. */
1005 __cpu_die(cpu);
1006
1007 tick_cleanup_dead_cpu(cpu);
1008 rcutree_migrate_callbacks(cpu);
1009 return 0;
1010 }
1011
cpuhp_complete_idle_dead(void * arg)1012 static void cpuhp_complete_idle_dead(void *arg)
1013 {
1014 struct cpuhp_cpu_state *st = arg;
1015
1016 complete_ap_thread(st, false);
1017 }
1018
cpuhp_report_idle_dead(void)1019 void cpuhp_report_idle_dead(void)
1020 {
1021 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1022
1023 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1024 rcu_report_dead(smp_processor_id());
1025 st->state = CPUHP_AP_IDLE_DEAD;
1026 /*
1027 * We cannot call complete after rcu_report_dead() so we delegate it
1028 * to an online cpu.
1029 */
1030 smp_call_function_single(cpumask_first(cpu_online_mask),
1031 cpuhp_complete_idle_dead, st, 0);
1032 }
1033
undo_cpu_down(unsigned int cpu,struct cpuhp_cpu_state * st)1034 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
1035 {
1036 for (st->state++; st->state < st->target; st->state++)
1037 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1038 }
1039
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1040 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1041 enum cpuhp_state target)
1042 {
1043 enum cpuhp_state prev_state = st->state;
1044 int ret = 0;
1045
1046 for (; st->state > target; st->state--) {
1047 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
1048 if (ret) {
1049 st->target = prev_state;
1050 if (st->state < prev_state)
1051 undo_cpu_down(cpu, st);
1052 break;
1053 }
1054 }
1055 return ret;
1056 }
1057
1058 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1059 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1060 enum cpuhp_state target)
1061 {
1062 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1063 int prev_state, ret = 0;
1064
1065 if (num_active_cpus() == 1 && cpu_active(cpu))
1066 return -EBUSY;
1067
1068 if (!cpu_present(cpu))
1069 return -EINVAL;
1070
1071 cpus_write_lock();
1072
1073 cpuhp_tasks_frozen = tasks_frozen;
1074
1075 prev_state = cpuhp_set_state(st, target);
1076 /*
1077 * If the current CPU state is in the range of the AP hotplug thread,
1078 * then we need to kick the thread.
1079 */
1080 if (st->state > CPUHP_TEARDOWN_CPU) {
1081 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1082 ret = cpuhp_kick_ap_work(cpu);
1083 /*
1084 * The AP side has done the error rollback already. Just
1085 * return the error code..
1086 */
1087 if (ret)
1088 goto out;
1089
1090 /*
1091 * We might have stopped still in the range of the AP hotplug
1092 * thread. Nothing to do anymore.
1093 */
1094 if (st->state > CPUHP_TEARDOWN_CPU)
1095 goto out;
1096
1097 st->target = target;
1098 }
1099 /*
1100 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1101 * to do the further cleanups.
1102 */
1103 ret = cpuhp_down_callbacks(cpu, st, target);
1104 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
1105 cpuhp_reset_state(st, prev_state);
1106 __cpuhp_kick_ap(st);
1107 }
1108
1109 out:
1110 cpus_write_unlock();
1111 /*
1112 * Do post unplug cleanup. This is still protected against
1113 * concurrent CPU hotplug via cpu_add_remove_lock.
1114 */
1115 lockup_detector_cleanup();
1116 arch_smt_update();
1117 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1118 return ret;
1119 }
1120
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1121 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1122 {
1123 if (cpu_hotplug_disabled)
1124 return -EBUSY;
1125 return _cpu_down(cpu, 0, target);
1126 }
1127
cpu_down(unsigned int cpu,enum cpuhp_state target)1128 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1129 {
1130 int err;
1131
1132 trace_android_vh_cpu_down(NULL);
1133
1134 cpu_maps_update_begin();
1135 err = cpu_down_maps_locked(cpu, target);
1136 cpu_maps_update_done();
1137 return err;
1138 }
1139
1140 /**
1141 * cpu_device_down - Bring down a cpu device
1142 * @dev: Pointer to the cpu device to offline
1143 *
1144 * This function is meant to be used by device core cpu subsystem only.
1145 *
1146 * Other subsystems should use remove_cpu() instead.
1147 */
cpu_device_down(struct device * dev)1148 int cpu_device_down(struct device *dev)
1149 {
1150 return cpu_down(dev->id, CPUHP_OFFLINE);
1151 }
1152
remove_cpu(unsigned int cpu)1153 int remove_cpu(unsigned int cpu)
1154 {
1155 int ret;
1156
1157 lock_device_hotplug();
1158 ret = device_offline(get_cpu_device(cpu));
1159 unlock_device_hotplug();
1160
1161 return ret;
1162 }
1163 EXPORT_SYMBOL_GPL(remove_cpu);
1164
__pause_drain_rq(struct cpumask * cpus)1165 int __pause_drain_rq(struct cpumask *cpus)
1166 {
1167 unsigned int cpu;
1168 int err = 0;
1169
1170 /*
1171 * Disabling preemption avoids that one of the stopper, started from
1172 * sched_cpu_drain_rq(), blocks firing draining for the whole cpumask.
1173 */
1174 preempt_disable();
1175 for_each_cpu(cpu, cpus) {
1176 err = sched_cpu_drain_rq(cpu);
1177 if (err)
1178 break;
1179 }
1180 preempt_enable();
1181
1182 return err;
1183 }
1184
__wait_drain_rq(struct cpumask * cpus)1185 void __wait_drain_rq(struct cpumask *cpus)
1186 {
1187 unsigned int cpu;
1188
1189 for_each_cpu(cpu, cpus)
1190 sched_cpu_drain_rq_wait(cpu);
1191 }
1192
pause_cpus(struct cpumask * cpus)1193 int pause_cpus(struct cpumask *cpus)
1194 {
1195 int err = 0;
1196 int cpu;
1197 u64 start_time = 0;
1198
1199 start_time = sched_clock();
1200
1201 cpu_maps_update_begin();
1202
1203 if (cpu_hotplug_disabled) {
1204 err = -EBUSY;
1205 goto err_cpu_maps_update;
1206 }
1207
1208 /* Pausing an already inactive CPU isn't an error */
1209 cpumask_and(cpus, cpus, cpu_active_mask);
1210
1211 for_each_cpu(cpu, cpus) {
1212 if (!cpu_online(cpu) || dl_bw_check_overflow(cpu) ||
1213 get_cpu_device(cpu)->offline_disabled == true) {
1214 err = -EBUSY;
1215 goto err_cpu_maps_update;
1216 }
1217 }
1218
1219 if (cpumask_weight(cpus) >= num_active_cpus()) {
1220 err = -EBUSY;
1221 goto err_cpu_maps_update;
1222 }
1223
1224 if (cpumask_empty(cpus))
1225 goto err_cpu_maps_update;
1226
1227 /*
1228 * Lazy migration:
1229 *
1230 * We do care about how fast a CPU can go idle and stay this in this
1231 * state. If we try to take the cpus_write_lock() here, we would have
1232 * to wait for a few dozens of ms, as this function might schedule.
1233 * However, we can, as a first step, flip the active mask and migrate
1234 * anything currently on the run-queue, to give a chance to the paused
1235 * CPUs to reach quickly an idle state. There's a risk meanwhile for
1236 * another CPU to observe an out-of-date active_mask or to incompletely
1237 * update a cpuset. Both problems would be resolved later in the slow
1238 * path, which ensures active_mask synchronization, triggers a cpuset
1239 * rebuild and migrate any task that would have escaped the lazy
1240 * migration.
1241 */
1242 for_each_cpu(cpu, cpus)
1243 set_cpu_active(cpu, false);
1244 err = __pause_drain_rq(cpus);
1245 if (err) {
1246 __wait_drain_rq(cpus);
1247 for_each_cpu(cpu, cpus)
1248 set_cpu_active(cpu, true);
1249 goto err_cpu_maps_update;
1250 }
1251
1252 /*
1253 * Slow path deactivation:
1254 *
1255 * Now that paused CPUs are most likely idle, we can go through a
1256 * complete scheduler deactivation.
1257 *
1258 * The cpu_active_mask being already set and cpus_write_lock calling
1259 * synchronize_rcu(), we know that all preempt-disabled and RCU users
1260 * will observe the updated value.
1261 */
1262 cpus_write_lock();
1263
1264 __wait_drain_rq(cpus);
1265
1266 cpuhp_tasks_frozen = 0;
1267
1268 if (sched_cpus_deactivate_nosync(cpus)) {
1269 err = -EBUSY;
1270 goto err_cpus_write_unlock;
1271 }
1272
1273 err = __pause_drain_rq(cpus);
1274 __wait_drain_rq(cpus);
1275 if (err) {
1276 for_each_cpu(cpu, cpus)
1277 sched_cpu_activate(cpu);
1278 goto err_cpus_write_unlock;
1279 }
1280
1281 /*
1282 * Even if living on the side of the regular HP path, pause is using
1283 * one of the HP step (CPUHP_AP_ACTIVE). This should be reflected on the
1284 * current state of the CPU.
1285 */
1286 for_each_cpu(cpu, cpus) {
1287 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1288
1289 st->state = CPUHP_AP_ACTIVE - 1;
1290 st->target = st->state;
1291 }
1292
1293 err_cpus_write_unlock:
1294 cpus_write_unlock();
1295 err_cpu_maps_update:
1296 cpu_maps_update_done();
1297
1298 trace_cpuhp_pause(cpus, start_time, 1);
1299
1300 return err;
1301 }
1302 EXPORT_SYMBOL_GPL(pause_cpus);
1303
resume_cpus(struct cpumask * cpus)1304 int resume_cpus(struct cpumask *cpus)
1305 {
1306 unsigned int cpu;
1307 int err = 0;
1308 u64 start_time = 0;
1309
1310 start_time = sched_clock();
1311
1312 cpu_maps_update_begin();
1313
1314 if (cpu_hotplug_disabled) {
1315 err = -EBUSY;
1316 goto err_cpu_maps_update;
1317 }
1318
1319 /* Resuming an already active CPU isn't an error */
1320 cpumask_andnot(cpus, cpus, cpu_active_mask);
1321
1322 for_each_cpu(cpu, cpus) {
1323 if (!cpu_online(cpu)) {
1324 err = -EBUSY;
1325 goto err_cpu_maps_update;
1326 }
1327 }
1328
1329 if (cpumask_empty(cpus))
1330 goto err_cpu_maps_update;
1331
1332 for_each_cpu(cpu, cpus)
1333 set_cpu_active(cpu, true);
1334
1335 trace_android_rvh_resume_cpus(cpus, &err);
1336 if (err)
1337 goto err_cpu_maps_update;
1338
1339 /* Lazy Resume. Build domains immediately instead of scheduling
1340 * a workqueue. This is so that the cpu can pull load when
1341 * sent a load balancing kick.
1342 */
1343 cpuset_hotplug_workfn(NULL);
1344
1345 cpus_write_lock();
1346
1347 cpuhp_tasks_frozen = 0;
1348
1349 if (sched_cpus_activate(cpus)) {
1350 err = -EBUSY;
1351 goto err_cpus_write_unlock;
1352 }
1353
1354 /*
1355 * see pause_cpus.
1356 */
1357 for_each_cpu(cpu, cpus) {
1358 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1359
1360 st->state = CPUHP_ONLINE;
1361 st->target = st->state;
1362 }
1363
1364 err_cpus_write_unlock:
1365 cpus_write_unlock();
1366 err_cpu_maps_update:
1367 cpu_maps_update_done();
1368
1369 trace_cpuhp_pause(cpus, start_time, 0);
1370
1371 return err;
1372 }
1373 EXPORT_SYMBOL_GPL(resume_cpus);
1374
smp_shutdown_nonboot_cpus(unsigned int primary_cpu)1375 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1376 {
1377 unsigned int cpu;
1378 int error;
1379
1380 cpu_maps_update_begin();
1381
1382 /*
1383 * Make certain the cpu I'm about to reboot on is online.
1384 *
1385 * This is inline to what migrate_to_reboot_cpu() already do.
1386 */
1387 if (!cpu_online(primary_cpu))
1388 primary_cpu = cpumask_first(cpu_online_mask);
1389
1390 for_each_online_cpu(cpu) {
1391 if (cpu == primary_cpu)
1392 continue;
1393
1394 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1395 if (error) {
1396 pr_err("Failed to offline CPU%d - error=%d",
1397 cpu, error);
1398 break;
1399 }
1400 }
1401
1402 /*
1403 * Ensure all but the reboot CPU are offline.
1404 */
1405 BUG_ON(num_online_cpus() > 1);
1406
1407 /*
1408 * Make sure the CPUs won't be enabled by someone else after this
1409 * point. Kexec will reboot to a new kernel shortly resetting
1410 * everything along the way.
1411 */
1412 cpu_hotplug_disabled++;
1413
1414 cpu_maps_update_done();
1415 }
1416
1417 #else
1418 #define takedown_cpu NULL
1419 #endif /*CONFIG_HOTPLUG_CPU*/
1420
1421 /**
1422 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1423 * @cpu: cpu that just started
1424 *
1425 * It must be called by the arch code on the new cpu, before the new cpu
1426 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1427 */
notify_cpu_starting(unsigned int cpu)1428 void notify_cpu_starting(unsigned int cpu)
1429 {
1430 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1431 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1432 int ret;
1433
1434 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1435 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1436 while (st->state < target) {
1437 st->state++;
1438 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1439 /*
1440 * STARTING must not fail!
1441 */
1442 WARN_ON_ONCE(ret);
1443 }
1444 }
1445
1446 /*
1447 * Called from the idle task. Wake up the controlling task which brings the
1448 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1449 * online bringup to the hotplug thread.
1450 */
cpuhp_online_idle(enum cpuhp_state state)1451 void cpuhp_online_idle(enum cpuhp_state state)
1452 {
1453 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1454
1455 /* Happens for the boot cpu */
1456 if (state != CPUHP_AP_ONLINE_IDLE)
1457 return;
1458
1459 /*
1460 * Unpart the stopper thread before we start the idle loop (and start
1461 * scheduling); this ensures the stopper task is always available.
1462 */
1463 stop_machine_unpark(smp_processor_id());
1464
1465 st->state = CPUHP_AP_ONLINE_IDLE;
1466 complete_ap_thread(st, true);
1467 }
1468
switch_to_rt_policy(void)1469 static int switch_to_rt_policy(void)
1470 {
1471 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1472 unsigned int policy = current->policy;
1473
1474 if (policy == SCHED_NORMAL)
1475 /* Switch to SCHED_FIFO from SCHED_NORMAL. */
1476 return sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m);
1477 else
1478 return 1;
1479 }
1480
switch_to_fair_policy(void)1481 static int switch_to_fair_policy(void)
1482 {
1483 struct sched_param param = { .sched_priority = 0 };
1484
1485 return sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m);
1486 }
1487
1488 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1489 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1490 {
1491 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1492 struct task_struct *idle;
1493 int ret = 0;
1494
1495 cpus_write_lock();
1496
1497 if (!cpu_present(cpu)) {
1498 ret = -EINVAL;
1499 goto out;
1500 }
1501
1502 /*
1503 * The caller of cpu_up() might have raced with another
1504 * caller. Nothing to do.
1505 */
1506 if (st->state >= target)
1507 goto out;
1508
1509 if (st->state == CPUHP_OFFLINE) {
1510 /* Let it fail before we try to bring the cpu up */
1511 idle = idle_thread_get(cpu);
1512 if (IS_ERR(idle)) {
1513 ret = PTR_ERR(idle);
1514 goto out;
1515 }
1516 }
1517
1518 cpuhp_tasks_frozen = tasks_frozen;
1519
1520 cpuhp_set_state(st, target);
1521 /*
1522 * If the current CPU state is in the range of the AP hotplug thread,
1523 * then we need to kick the thread once more.
1524 */
1525 if (st->state > CPUHP_BRINGUP_CPU) {
1526 ret = cpuhp_kick_ap_work(cpu);
1527 /*
1528 * The AP side has done the error rollback already. Just
1529 * return the error code..
1530 */
1531 if (ret)
1532 goto out;
1533 }
1534
1535 /*
1536 * Try to reach the target state. We max out on the BP at
1537 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1538 * responsible for bringing it up to the target state.
1539 */
1540 target = min((int)target, CPUHP_BRINGUP_CPU);
1541 ret = cpuhp_up_callbacks(cpu, st, target);
1542 out:
1543 cpus_write_unlock();
1544 arch_smt_update();
1545 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1546 return ret;
1547 }
1548
cpu_up(unsigned int cpu,enum cpuhp_state target)1549 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1550 {
1551 int err = 0;
1552 int switch_err;
1553
1554 if (!cpu_possible(cpu)) {
1555 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1556 cpu);
1557 #if defined(CONFIG_IA64)
1558 pr_err("please check additional_cpus= boot parameter\n");
1559 #endif
1560 return -EINVAL;
1561 }
1562
1563 trace_android_vh_cpu_up(NULL);
1564
1565 /*
1566 * CPU hotplug operations consists of many steps and each step
1567 * calls a callback of core kernel subsystem. CPU hotplug-in
1568 * operation may get preempted by other CFS tasks and whole
1569 * operation of cpu hotplug in CPU gets delayed. Switch the
1570 * current task to SCHED_FIFO from SCHED_NORMAL, so that
1571 * hotplug in operation may complete quickly in heavy loaded
1572 * conditions and new CPU will start handle the workload.
1573 */
1574
1575 switch_err = switch_to_rt_policy();
1576
1577 err = try_online_node(cpu_to_node(cpu));
1578 if (err)
1579 goto switch_out;
1580
1581 cpu_maps_update_begin();
1582
1583 if (cpu_hotplug_disabled) {
1584 err = -EBUSY;
1585 goto out;
1586 }
1587 if (!cpu_smt_allowed(cpu)) {
1588 err = -EPERM;
1589 goto out;
1590 }
1591
1592 err = _cpu_up(cpu, 0, target);
1593 out:
1594 cpu_maps_update_done();
1595 switch_out:
1596 if (!switch_err) {
1597 switch_err = switch_to_fair_policy();
1598 if (switch_err)
1599 pr_err("Hotplug policy switch err=%d Task %s pid=%d\n",
1600 switch_err, current->comm, current->pid);
1601 }
1602
1603 return err;
1604 }
1605
1606 /**
1607 * cpu_device_up - Bring up a cpu device
1608 * @dev: Pointer to the cpu device to online
1609 *
1610 * This function is meant to be used by device core cpu subsystem only.
1611 *
1612 * Other subsystems should use add_cpu() instead.
1613 */
cpu_device_up(struct device * dev)1614 int cpu_device_up(struct device *dev)
1615 {
1616 return cpu_up(dev->id, CPUHP_ONLINE);
1617 }
1618
add_cpu(unsigned int cpu)1619 int add_cpu(unsigned int cpu)
1620 {
1621 int ret;
1622
1623 lock_device_hotplug();
1624 ret = device_online(get_cpu_device(cpu));
1625 unlock_device_hotplug();
1626
1627 return ret;
1628 }
1629 EXPORT_SYMBOL_GPL(add_cpu);
1630
1631 /**
1632 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1633 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1634 *
1635 * On some architectures like arm64, we can hibernate on any CPU, but on
1636 * wake up the CPU we hibernated on might be offline as a side effect of
1637 * using maxcpus= for example.
1638 */
bringup_hibernate_cpu(unsigned int sleep_cpu)1639 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1640 {
1641 int ret;
1642
1643 if (!cpu_online(sleep_cpu)) {
1644 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1645 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1646 if (ret) {
1647 pr_err("Failed to bring hibernate-CPU up!\n");
1648 return ret;
1649 }
1650 }
1651 return 0;
1652 }
1653
bringup_nonboot_cpus(unsigned int setup_max_cpus)1654 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1655 {
1656 unsigned int cpu;
1657
1658 for_each_present_cpu(cpu) {
1659 if (num_online_cpus() >= setup_max_cpus)
1660 break;
1661 if (!cpu_online(cpu))
1662 cpu_up(cpu, CPUHP_ONLINE);
1663 }
1664 }
1665
1666 #ifdef CONFIG_PM_SLEEP_SMP
1667 static cpumask_var_t frozen_cpus;
1668
freeze_secondary_cpus(int primary)1669 int freeze_secondary_cpus(int primary)
1670 {
1671 int cpu, error = 0;
1672
1673 cpu_maps_update_begin();
1674 if (primary == -1) {
1675 primary = cpumask_first(cpu_online_mask);
1676 if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1677 primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1678 } else {
1679 if (!cpu_online(primary))
1680 primary = cpumask_first(cpu_online_mask);
1681 }
1682
1683 /*
1684 * We take down all of the non-boot CPUs in one shot to avoid races
1685 * with the userspace trying to use the CPU hotplug at the same time
1686 */
1687 cpumask_clear(frozen_cpus);
1688
1689 pr_info("Disabling non-boot CPUs ...\n");
1690 for_each_online_cpu(cpu) {
1691 if (cpu == primary)
1692 continue;
1693
1694 if (pm_wakeup_pending()) {
1695 pr_info("Wakeup pending. Abort CPU freeze\n");
1696 error = -EBUSY;
1697 break;
1698 }
1699
1700 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1701 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1702 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1703 if (!error)
1704 cpumask_set_cpu(cpu, frozen_cpus);
1705 else {
1706 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1707 break;
1708 }
1709 }
1710
1711 if (!error)
1712 BUG_ON(num_online_cpus() > 1);
1713 else
1714 pr_err("Non-boot CPUs are not disabled\n");
1715
1716 /*
1717 * Make sure the CPUs won't be enabled by someone else. We need to do
1718 * this even in case of failure as all freeze_secondary_cpus() users are
1719 * supposed to do thaw_secondary_cpus() on the failure path.
1720 */
1721 cpu_hotplug_disabled++;
1722
1723 cpu_maps_update_done();
1724 return error;
1725 }
1726
arch_thaw_secondary_cpus_begin(void)1727 void __weak arch_thaw_secondary_cpus_begin(void)
1728 {
1729 }
1730
arch_thaw_secondary_cpus_end(void)1731 void __weak arch_thaw_secondary_cpus_end(void)
1732 {
1733 }
1734
thaw_secondary_cpus(void)1735 void thaw_secondary_cpus(void)
1736 {
1737 int cpu, error;
1738 struct device *cpu_device;
1739
1740 /* Allow everyone to use the CPU hotplug again */
1741 cpu_maps_update_begin();
1742 __cpu_hotplug_enable();
1743 if (cpumask_empty(frozen_cpus))
1744 goto out;
1745
1746 pr_info("Enabling non-boot CPUs ...\n");
1747
1748 arch_thaw_secondary_cpus_begin();
1749
1750 for_each_cpu(cpu, frozen_cpus) {
1751 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1752 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1753 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1754 if (!error) {
1755 pr_info("CPU%d is up\n", cpu);
1756 cpu_device = get_cpu_device(cpu);
1757 if (!cpu_device)
1758 pr_err("%s: failed to get cpu%d device\n",
1759 __func__, cpu);
1760 else
1761 kobject_uevent(&cpu_device->kobj, KOBJ_ONLINE);
1762 continue;
1763 }
1764 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1765 }
1766
1767 arch_thaw_secondary_cpus_end();
1768
1769 cpumask_clear(frozen_cpus);
1770 out:
1771 cpu_maps_update_done();
1772 }
1773
alloc_frozen_cpus(void)1774 static int __init alloc_frozen_cpus(void)
1775 {
1776 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1777 return -ENOMEM;
1778 return 0;
1779 }
1780 core_initcall(alloc_frozen_cpus);
1781
1782 /*
1783 * When callbacks for CPU hotplug notifications are being executed, we must
1784 * ensure that the state of the system with respect to the tasks being frozen
1785 * or not, as reported by the notification, remains unchanged *throughout the
1786 * duration* of the execution of the callbacks.
1787 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1788 *
1789 * This synchronization is implemented by mutually excluding regular CPU
1790 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1791 * Hibernate notifications.
1792 */
1793 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1794 cpu_hotplug_pm_callback(struct notifier_block *nb,
1795 unsigned long action, void *ptr)
1796 {
1797 switch (action) {
1798
1799 case PM_SUSPEND_PREPARE:
1800 case PM_HIBERNATION_PREPARE:
1801 cpu_hotplug_disable();
1802 break;
1803
1804 case PM_POST_SUSPEND:
1805 case PM_POST_HIBERNATION:
1806 cpu_hotplug_enable();
1807 break;
1808
1809 default:
1810 return NOTIFY_DONE;
1811 }
1812
1813 return NOTIFY_OK;
1814 }
1815
1816
cpu_hotplug_pm_sync_init(void)1817 static int __init cpu_hotplug_pm_sync_init(void)
1818 {
1819 /*
1820 * cpu_hotplug_pm_callback has higher priority than x86
1821 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1822 * to disable cpu hotplug to avoid cpu hotplug race.
1823 */
1824 pm_notifier(cpu_hotplug_pm_callback, 0);
1825 return 0;
1826 }
1827 core_initcall(cpu_hotplug_pm_sync_init);
1828
1829 #endif /* CONFIG_PM_SLEEP_SMP */
1830
1831 int __boot_cpu_id;
1832
1833 /* Horrific hacks because we can't add more to cpuhp_hp_states. */
random_and_perf_prepare_fusion(unsigned int cpu)1834 static int random_and_perf_prepare_fusion(unsigned int cpu)
1835 {
1836 int (*fn)(unsigned int cpu);
1837 fn = perf_event_init_cpu;
1838 if (fn)
1839 fn(cpu);
1840 fn = random_prepare_cpu;
1841 if (fn)
1842 fn(cpu);
1843 return 0;
1844 }
random_and_workqueue_online_fusion(unsigned int cpu)1845 static int random_and_workqueue_online_fusion(unsigned int cpu)
1846 {
1847 int (*fn)(unsigned int cpu);
1848 fn = workqueue_online_cpu;
1849 if (fn)
1850 fn(cpu);
1851 fn = random_online_cpu;
1852 if (fn)
1853 fn(cpu);
1854 return 0;
1855 }
1856
1857 #endif /* CONFIG_SMP */
1858
1859 /* Boot processor state steps */
1860 static struct cpuhp_step cpuhp_hp_states[] = {
1861 [CPUHP_OFFLINE] = {
1862 .name = "offline",
1863 .startup.single = NULL,
1864 .teardown.single = NULL,
1865 },
1866 #ifdef CONFIG_SMP
1867 [CPUHP_CREATE_THREADS]= {
1868 .name = "threads:prepare",
1869 .startup.single = smpboot_create_threads,
1870 .teardown.single = NULL,
1871 .cant_stop = true,
1872 },
1873 [CPUHP_PERF_PREPARE] = {
1874 .name = "perf:prepare",
1875 .startup.single = random_and_perf_prepare_fusion,
1876 .teardown.single = perf_event_exit_cpu,
1877 },
1878 [CPUHP_WORKQUEUE_PREP] = {
1879 .name = "workqueue:prepare",
1880 .startup.single = workqueue_prepare_cpu,
1881 .teardown.single = NULL,
1882 },
1883 [CPUHP_HRTIMERS_PREPARE] = {
1884 .name = "hrtimers:prepare",
1885 .startup.single = hrtimers_prepare_cpu,
1886 .teardown.single = hrtimers_dead_cpu,
1887 },
1888 [CPUHP_SMPCFD_PREPARE] = {
1889 .name = "smpcfd:prepare",
1890 .startup.single = smpcfd_prepare_cpu,
1891 .teardown.single = smpcfd_dead_cpu,
1892 },
1893 [CPUHP_RELAY_PREPARE] = {
1894 .name = "relay:prepare",
1895 .startup.single = relay_prepare_cpu,
1896 .teardown.single = NULL,
1897 },
1898 [CPUHP_SLAB_PREPARE] = {
1899 .name = "slab:prepare",
1900 .startup.single = slab_prepare_cpu,
1901 .teardown.single = slab_dead_cpu,
1902 },
1903 [CPUHP_RCUTREE_PREP] = {
1904 .name = "RCU/tree:prepare",
1905 .startup.single = rcutree_prepare_cpu,
1906 .teardown.single = rcutree_dead_cpu,
1907 },
1908 /*
1909 * On the tear-down path, timers_dead_cpu() must be invoked
1910 * before blk_mq_queue_reinit_notify() from notify_dead(),
1911 * otherwise a RCU stall occurs.
1912 */
1913 [CPUHP_TIMERS_PREPARE] = {
1914 .name = "timers:prepare",
1915 .startup.single = timers_prepare_cpu,
1916 .teardown.single = timers_dead_cpu,
1917 },
1918 /* Kicks the plugged cpu into life */
1919 [CPUHP_BRINGUP_CPU] = {
1920 .name = "cpu:bringup",
1921 .startup.single = bringup_cpu,
1922 .teardown.single = finish_cpu,
1923 .cant_stop = true,
1924 },
1925 /* Final state before CPU kills itself */
1926 [CPUHP_AP_IDLE_DEAD] = {
1927 .name = "idle:dead",
1928 },
1929 /*
1930 * Last state before CPU enters the idle loop to die. Transient state
1931 * for synchronization.
1932 */
1933 [CPUHP_AP_OFFLINE] = {
1934 .name = "ap:offline",
1935 .cant_stop = true,
1936 },
1937 /* First state is scheduler control. Interrupts are disabled */
1938 [CPUHP_AP_SCHED_STARTING] = {
1939 .name = "sched:starting",
1940 .startup.single = sched_cpu_starting,
1941 .teardown.single = sched_cpu_dying,
1942 },
1943 [CPUHP_AP_RCUTREE_DYING] = {
1944 .name = "RCU/tree:dying",
1945 .startup.single = NULL,
1946 .teardown.single = rcutree_dying_cpu,
1947 },
1948 [CPUHP_AP_SMPCFD_DYING] = {
1949 .name = "smpcfd:dying",
1950 .startup.single = NULL,
1951 .teardown.single = smpcfd_dying_cpu,
1952 },
1953 /* Entry state on starting. Interrupts enabled from here on. Transient
1954 * state for synchronsization */
1955 [CPUHP_AP_ONLINE] = {
1956 .name = "ap:online",
1957 },
1958 /*
1959 * Handled on controll processor until the plugged processor manages
1960 * this itself.
1961 */
1962 [CPUHP_TEARDOWN_CPU] = {
1963 .name = "cpu:teardown",
1964 .startup.single = NULL,
1965 .teardown.single = takedown_cpu,
1966 .cant_stop = true,
1967 },
1968 /* Handle smpboot threads park/unpark */
1969 [CPUHP_AP_SMPBOOT_THREADS] = {
1970 .name = "smpboot/threads:online",
1971 .startup.single = smpboot_unpark_threads,
1972 .teardown.single = smpboot_park_threads,
1973 },
1974 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1975 .name = "irq/affinity:online",
1976 .startup.single = irq_affinity_online_cpu,
1977 .teardown.single = NULL,
1978 },
1979 [CPUHP_AP_PERF_ONLINE] = {
1980 .name = "perf:online",
1981 .startup.single = perf_event_init_cpu,
1982 .teardown.single = perf_event_exit_cpu,
1983 },
1984 [CPUHP_AP_WATCHDOG_ONLINE] = {
1985 .name = "lockup_detector:online",
1986 .startup.single = lockup_detector_online_cpu,
1987 .teardown.single = lockup_detector_offline_cpu,
1988 },
1989 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1990 .name = "workqueue:online",
1991 .startup.single = random_and_workqueue_online_fusion,
1992 .teardown.single = workqueue_offline_cpu,
1993 },
1994 [CPUHP_AP_RCUTREE_ONLINE] = {
1995 .name = "RCU/tree:online",
1996 .startup.single = rcutree_online_cpu,
1997 .teardown.single = rcutree_offline_cpu,
1998 },
1999 #endif
2000 /*
2001 * The dynamically registered state space is here
2002 */
2003
2004 #ifdef CONFIG_SMP
2005 /* Last state is scheduler control setting the cpu active */
2006 [CPUHP_AP_ACTIVE] = {
2007 .name = "sched:active",
2008 .startup.single = sched_cpu_activate,
2009 .teardown.single = sched_cpu_deactivate,
2010 },
2011 #endif
2012
2013 /* CPU is fully up and running. */
2014 [CPUHP_ONLINE] = {
2015 .name = "online",
2016 .startup.single = NULL,
2017 .teardown.single = NULL,
2018 },
2019 };
2020
2021 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)2022 static int cpuhp_cb_check(enum cpuhp_state state)
2023 {
2024 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2025 return -EINVAL;
2026 return 0;
2027 }
2028
2029 /*
2030 * Returns a free for dynamic slot assignment of the Online state. The states
2031 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2032 * by having no name assigned.
2033 */
cpuhp_reserve_state(enum cpuhp_state state)2034 static int cpuhp_reserve_state(enum cpuhp_state state)
2035 {
2036 enum cpuhp_state i, end;
2037 struct cpuhp_step *step;
2038
2039 switch (state) {
2040 case CPUHP_AP_ONLINE_DYN:
2041 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2042 end = CPUHP_AP_ONLINE_DYN_END;
2043 break;
2044 case CPUHP_BP_PREPARE_DYN:
2045 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2046 end = CPUHP_BP_PREPARE_DYN_END;
2047 break;
2048 default:
2049 return -EINVAL;
2050 }
2051
2052 for (i = state; i <= end; i++, step++) {
2053 if (!step->name)
2054 return i;
2055 }
2056 WARN(1, "No more dynamic states available for CPU hotplug\n");
2057 return -ENOSPC;
2058 }
2059
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2060 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2061 int (*startup)(unsigned int cpu),
2062 int (*teardown)(unsigned int cpu),
2063 bool multi_instance)
2064 {
2065 /* (Un)Install the callbacks for further cpu hotplug operations */
2066 struct cpuhp_step *sp;
2067 int ret = 0;
2068
2069 /*
2070 * If name is NULL, then the state gets removed.
2071 *
2072 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2073 * the first allocation from these dynamic ranges, so the removal
2074 * would trigger a new allocation and clear the wrong (already
2075 * empty) state, leaving the callbacks of the to be cleared state
2076 * dangling, which causes wreckage on the next hotplug operation.
2077 */
2078 if (name && (state == CPUHP_AP_ONLINE_DYN ||
2079 state == CPUHP_BP_PREPARE_DYN)) {
2080 ret = cpuhp_reserve_state(state);
2081 if (ret < 0)
2082 return ret;
2083 state = ret;
2084 }
2085 sp = cpuhp_get_step(state);
2086 if (name && sp->name)
2087 return -EBUSY;
2088
2089 sp->startup.single = startup;
2090 sp->teardown.single = teardown;
2091 sp->name = name;
2092 sp->multi_instance = multi_instance;
2093 INIT_HLIST_HEAD(&sp->list);
2094 return ret;
2095 }
2096
cpuhp_get_teardown_cb(enum cpuhp_state state)2097 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2098 {
2099 return cpuhp_get_step(state)->teardown.single;
2100 }
2101
2102 /*
2103 * Call the startup/teardown function for a step either on the AP or
2104 * on the current CPU.
2105 */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)2106 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2107 struct hlist_node *node)
2108 {
2109 struct cpuhp_step *sp = cpuhp_get_step(state);
2110 int ret;
2111
2112 /*
2113 * If there's nothing to do, we done.
2114 * Relies on the union for multi_instance.
2115 */
2116 if ((bringup && !sp->startup.single) ||
2117 (!bringup && !sp->teardown.single))
2118 return 0;
2119 /*
2120 * The non AP bound callbacks can fail on bringup. On teardown
2121 * e.g. module removal we crash for now.
2122 */
2123 #ifdef CONFIG_SMP
2124 if (cpuhp_is_ap_state(state))
2125 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2126 else
2127 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2128 #else
2129 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2130 #endif
2131 BUG_ON(ret && !bringup);
2132 return ret;
2133 }
2134
2135 /*
2136 * Called from __cpuhp_setup_state on a recoverable failure.
2137 *
2138 * Note: The teardown callbacks for rollback are not allowed to fail!
2139 */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)2140 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2141 struct hlist_node *node)
2142 {
2143 int cpu;
2144
2145 /* Roll back the already executed steps on the other cpus */
2146 for_each_present_cpu(cpu) {
2147 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2148 int cpustate = st->state;
2149
2150 if (cpu >= failedcpu)
2151 break;
2152
2153 /* Did we invoke the startup call on that cpu ? */
2154 if (cpustate >= state)
2155 cpuhp_issue_call(cpu, state, false, node);
2156 }
2157 }
2158
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)2159 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2160 struct hlist_node *node,
2161 bool invoke)
2162 {
2163 struct cpuhp_step *sp;
2164 int cpu;
2165 int ret;
2166
2167 lockdep_assert_cpus_held();
2168
2169 sp = cpuhp_get_step(state);
2170 if (sp->multi_instance == false)
2171 return -EINVAL;
2172
2173 mutex_lock(&cpuhp_state_mutex);
2174
2175 if (!invoke || !sp->startup.multi)
2176 goto add_node;
2177
2178 /*
2179 * Try to call the startup callback for each present cpu
2180 * depending on the hotplug state of the cpu.
2181 */
2182 for_each_present_cpu(cpu) {
2183 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2184 int cpustate = st->state;
2185
2186 if (cpustate < state)
2187 continue;
2188
2189 ret = cpuhp_issue_call(cpu, state, true, node);
2190 if (ret) {
2191 if (sp->teardown.multi)
2192 cpuhp_rollback_install(cpu, state, node);
2193 goto unlock;
2194 }
2195 }
2196 add_node:
2197 ret = 0;
2198 hlist_add_head(node, &sp->list);
2199 unlock:
2200 mutex_unlock(&cpuhp_state_mutex);
2201 return ret;
2202 }
2203
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2204 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2205 bool invoke)
2206 {
2207 int ret;
2208
2209 cpus_read_lock();
2210 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2211 cpus_read_unlock();
2212 return ret;
2213 }
2214 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2215
2216 /**
2217 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2218 * @state: The state to setup
2219 * @invoke: If true, the startup function is invoked for cpus where
2220 * cpu state >= @state
2221 * @startup: startup callback function
2222 * @teardown: teardown callback function
2223 * @multi_instance: State is set up for multiple instances which get
2224 * added afterwards.
2225 *
2226 * The caller needs to hold cpus read locked while calling this function.
2227 * Returns:
2228 * On success:
2229 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
2230 * 0 for all other states
2231 * On failure: proper (negative) error code
2232 */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2233 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2234 const char *name, bool invoke,
2235 int (*startup)(unsigned int cpu),
2236 int (*teardown)(unsigned int cpu),
2237 bool multi_instance)
2238 {
2239 int cpu, ret = 0;
2240 bool dynstate;
2241
2242 lockdep_assert_cpus_held();
2243
2244 if (cpuhp_cb_check(state) || !name)
2245 return -EINVAL;
2246
2247 mutex_lock(&cpuhp_state_mutex);
2248
2249 ret = cpuhp_store_callbacks(state, name, startup, teardown,
2250 multi_instance);
2251
2252 dynstate = state == CPUHP_AP_ONLINE_DYN;
2253 if (ret > 0 && dynstate) {
2254 state = ret;
2255 ret = 0;
2256 }
2257
2258 if (ret || !invoke || !startup)
2259 goto out;
2260
2261 /*
2262 * Try to call the startup callback for each present cpu
2263 * depending on the hotplug state of the cpu.
2264 */
2265 for_each_present_cpu(cpu) {
2266 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2267 int cpustate = st->state;
2268
2269 if (cpustate < state)
2270 continue;
2271
2272 ret = cpuhp_issue_call(cpu, state, true, NULL);
2273 if (ret) {
2274 if (teardown)
2275 cpuhp_rollback_install(cpu, state, NULL);
2276 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2277 goto out;
2278 }
2279 }
2280 out:
2281 mutex_unlock(&cpuhp_state_mutex);
2282 /*
2283 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2284 * dynamically allocated state in case of success.
2285 */
2286 if (!ret && dynstate)
2287 return state;
2288 return ret;
2289 }
2290 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2291
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2292 int __cpuhp_setup_state(enum cpuhp_state state,
2293 const char *name, bool invoke,
2294 int (*startup)(unsigned int cpu),
2295 int (*teardown)(unsigned int cpu),
2296 bool multi_instance)
2297 {
2298 int ret;
2299
2300 cpus_read_lock();
2301 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2302 teardown, multi_instance);
2303 cpus_read_unlock();
2304 return ret;
2305 }
2306 EXPORT_SYMBOL(__cpuhp_setup_state);
2307
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2308 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2309 struct hlist_node *node, bool invoke)
2310 {
2311 struct cpuhp_step *sp = cpuhp_get_step(state);
2312 int cpu;
2313
2314 BUG_ON(cpuhp_cb_check(state));
2315
2316 if (!sp->multi_instance)
2317 return -EINVAL;
2318
2319 cpus_read_lock();
2320 mutex_lock(&cpuhp_state_mutex);
2321
2322 if (!invoke || !cpuhp_get_teardown_cb(state))
2323 goto remove;
2324 /*
2325 * Call the teardown callback for each present cpu depending
2326 * on the hotplug state of the cpu. This function is not
2327 * allowed to fail currently!
2328 */
2329 for_each_present_cpu(cpu) {
2330 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2331 int cpustate = st->state;
2332
2333 if (cpustate >= state)
2334 cpuhp_issue_call(cpu, state, false, node);
2335 }
2336
2337 remove:
2338 hlist_del(node);
2339 mutex_unlock(&cpuhp_state_mutex);
2340 cpus_read_unlock();
2341
2342 return 0;
2343 }
2344 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2345
2346 /**
2347 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2348 * @state: The state to remove
2349 * @invoke: If true, the teardown function is invoked for cpus where
2350 * cpu state >= @state
2351 *
2352 * The caller needs to hold cpus read locked while calling this function.
2353 * The teardown callback is currently not allowed to fail. Think
2354 * about module removal!
2355 */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)2356 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2357 {
2358 struct cpuhp_step *sp = cpuhp_get_step(state);
2359 int cpu;
2360
2361 BUG_ON(cpuhp_cb_check(state));
2362
2363 lockdep_assert_cpus_held();
2364
2365 mutex_lock(&cpuhp_state_mutex);
2366 if (sp->multi_instance) {
2367 WARN(!hlist_empty(&sp->list),
2368 "Error: Removing state %d which has instances left.\n",
2369 state);
2370 goto remove;
2371 }
2372
2373 if (!invoke || !cpuhp_get_teardown_cb(state))
2374 goto remove;
2375
2376 /*
2377 * Call the teardown callback for each present cpu depending
2378 * on the hotplug state of the cpu. This function is not
2379 * allowed to fail currently!
2380 */
2381 for_each_present_cpu(cpu) {
2382 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2383 int cpustate = st->state;
2384
2385 if (cpustate >= state)
2386 cpuhp_issue_call(cpu, state, false, NULL);
2387 }
2388 remove:
2389 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2390 mutex_unlock(&cpuhp_state_mutex);
2391 }
2392 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2393
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)2394 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2395 {
2396 cpus_read_lock();
2397 __cpuhp_remove_state_cpuslocked(state, invoke);
2398 cpus_read_unlock();
2399 }
2400 EXPORT_SYMBOL(__cpuhp_remove_state);
2401
2402 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_offline_cpu_device(unsigned int cpu)2403 static void cpuhp_offline_cpu_device(unsigned int cpu)
2404 {
2405 struct device *dev = get_cpu_device(cpu);
2406
2407 dev->offline = true;
2408 /* Tell user space about the state change */
2409 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2410 }
2411
cpuhp_online_cpu_device(unsigned int cpu)2412 static void cpuhp_online_cpu_device(unsigned int cpu)
2413 {
2414 struct device *dev = get_cpu_device(cpu);
2415
2416 dev->offline = false;
2417 /* Tell user space about the state change */
2418 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2419 }
2420
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2421 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2422 {
2423 int cpu, ret = 0;
2424
2425 cpu_maps_update_begin();
2426 for_each_online_cpu(cpu) {
2427 if (topology_is_primary_thread(cpu))
2428 continue;
2429 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2430 if (ret)
2431 break;
2432 /*
2433 * As this needs to hold the cpu maps lock it's impossible
2434 * to call device_offline() because that ends up calling
2435 * cpu_down() which takes cpu maps lock. cpu maps lock
2436 * needs to be held as this might race against in kernel
2437 * abusers of the hotplug machinery (thermal management).
2438 *
2439 * So nothing would update device:offline state. That would
2440 * leave the sysfs entry stale and prevent onlining after
2441 * smt control has been changed to 'off' again. This is
2442 * called under the sysfs hotplug lock, so it is properly
2443 * serialized against the regular offline usage.
2444 */
2445 cpuhp_offline_cpu_device(cpu);
2446 }
2447 if (!ret)
2448 cpu_smt_control = ctrlval;
2449 cpu_maps_update_done();
2450 return ret;
2451 }
2452
cpuhp_smt_enable(void)2453 int cpuhp_smt_enable(void)
2454 {
2455 int cpu, ret = 0;
2456
2457 cpu_maps_update_begin();
2458 cpu_smt_control = CPU_SMT_ENABLED;
2459 for_each_present_cpu(cpu) {
2460 /* Skip online CPUs and CPUs on offline nodes */
2461 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2462 continue;
2463 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2464 if (ret)
2465 break;
2466 /* See comment in cpuhp_smt_disable() */
2467 cpuhp_online_cpu_device(cpu);
2468 }
2469 cpu_maps_update_done();
2470 return ret;
2471 }
2472 #endif
2473
2474 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
show_cpuhp_state(struct device * dev,struct device_attribute * attr,char * buf)2475 static ssize_t show_cpuhp_state(struct device *dev,
2476 struct device_attribute *attr, char *buf)
2477 {
2478 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2479
2480 return sprintf(buf, "%d\n", st->state);
2481 }
2482 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
2483
write_cpuhp_target(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2484 static ssize_t write_cpuhp_target(struct device *dev,
2485 struct device_attribute *attr,
2486 const char *buf, size_t count)
2487 {
2488 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2489 struct cpuhp_step *sp;
2490 int target, ret;
2491
2492 ret = kstrtoint(buf, 10, &target);
2493 if (ret)
2494 return ret;
2495
2496 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2497 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2498 return -EINVAL;
2499 #else
2500 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2501 return -EINVAL;
2502 #endif
2503
2504 ret = lock_device_hotplug_sysfs();
2505 if (ret)
2506 return ret;
2507
2508 mutex_lock(&cpuhp_state_mutex);
2509 sp = cpuhp_get_step(target);
2510 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2511 mutex_unlock(&cpuhp_state_mutex);
2512 if (ret)
2513 goto out;
2514
2515 if (st->state < target)
2516 ret = cpu_up(dev->id, target);
2517 else if (st->state > target)
2518 ret = cpu_down(dev->id, target);
2519 else if (WARN_ON(st->target != target))
2520 st->target = target;
2521 out:
2522 unlock_device_hotplug();
2523 return ret ? ret : count;
2524 }
2525
show_cpuhp_target(struct device * dev,struct device_attribute * attr,char * buf)2526 static ssize_t show_cpuhp_target(struct device *dev,
2527 struct device_attribute *attr, char *buf)
2528 {
2529 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2530
2531 return sprintf(buf, "%d\n", st->target);
2532 }
2533 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
2534
2535
write_cpuhp_fail(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2536 static ssize_t write_cpuhp_fail(struct device *dev,
2537 struct device_attribute *attr,
2538 const char *buf, size_t count)
2539 {
2540 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2541 struct cpuhp_step *sp;
2542 int fail, ret;
2543
2544 ret = kstrtoint(buf, 10, &fail);
2545 if (ret)
2546 return ret;
2547
2548 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2549 return -EINVAL;
2550
2551 /*
2552 * Cannot fail STARTING/DYING callbacks.
2553 */
2554 if (cpuhp_is_atomic_state(fail))
2555 return -EINVAL;
2556
2557 /*
2558 * Cannot fail anything that doesn't have callbacks.
2559 */
2560 mutex_lock(&cpuhp_state_mutex);
2561 sp = cpuhp_get_step(fail);
2562 if (!sp->startup.single && !sp->teardown.single)
2563 ret = -EINVAL;
2564 mutex_unlock(&cpuhp_state_mutex);
2565 if (ret)
2566 return ret;
2567
2568 st->fail = fail;
2569
2570 return count;
2571 }
2572
show_cpuhp_fail(struct device * dev,struct device_attribute * attr,char * buf)2573 static ssize_t show_cpuhp_fail(struct device *dev,
2574 struct device_attribute *attr, char *buf)
2575 {
2576 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2577
2578 return sprintf(buf, "%d\n", st->fail);
2579 }
2580
2581 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
2582
2583 static struct attribute *cpuhp_cpu_attrs[] = {
2584 &dev_attr_state.attr,
2585 &dev_attr_target.attr,
2586 &dev_attr_fail.attr,
2587 NULL
2588 };
2589
2590 static const struct attribute_group cpuhp_cpu_attr_group = {
2591 .attrs = cpuhp_cpu_attrs,
2592 .name = "hotplug",
2593 NULL
2594 };
2595
show_cpuhp_states(struct device * dev,struct device_attribute * attr,char * buf)2596 static ssize_t show_cpuhp_states(struct device *dev,
2597 struct device_attribute *attr, char *buf)
2598 {
2599 ssize_t cur, res = 0;
2600 int i;
2601
2602 mutex_lock(&cpuhp_state_mutex);
2603 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2604 struct cpuhp_step *sp = cpuhp_get_step(i);
2605
2606 if (sp->name) {
2607 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2608 buf += cur;
2609 res += cur;
2610 }
2611 }
2612 mutex_unlock(&cpuhp_state_mutex);
2613 return res;
2614 }
2615 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
2616
2617 static struct attribute *cpuhp_cpu_root_attrs[] = {
2618 &dev_attr_states.attr,
2619 NULL
2620 };
2621
2622 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2623 .attrs = cpuhp_cpu_root_attrs,
2624 .name = "hotplug",
2625 NULL
2626 };
2627
2628 #ifdef CONFIG_HOTPLUG_SMT
2629
2630 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2631 __store_smt_control(struct device *dev, struct device_attribute *attr,
2632 const char *buf, size_t count)
2633 {
2634 int ctrlval, ret;
2635
2636 if (sysfs_streq(buf, "on"))
2637 ctrlval = CPU_SMT_ENABLED;
2638 else if (sysfs_streq(buf, "off"))
2639 ctrlval = CPU_SMT_DISABLED;
2640 else if (sysfs_streq(buf, "forceoff"))
2641 ctrlval = CPU_SMT_FORCE_DISABLED;
2642 else
2643 return -EINVAL;
2644
2645 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2646 return -EPERM;
2647
2648 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2649 return -ENODEV;
2650
2651 ret = lock_device_hotplug_sysfs();
2652 if (ret)
2653 return ret;
2654
2655 if (ctrlval != cpu_smt_control) {
2656 switch (ctrlval) {
2657 case CPU_SMT_ENABLED:
2658 ret = cpuhp_smt_enable();
2659 break;
2660 case CPU_SMT_DISABLED:
2661 case CPU_SMT_FORCE_DISABLED:
2662 ret = cpuhp_smt_disable(ctrlval);
2663 break;
2664 }
2665 }
2666
2667 unlock_device_hotplug();
2668 return ret ? ret : count;
2669 }
2670
2671 #else /* !CONFIG_HOTPLUG_SMT */
2672 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2673 __store_smt_control(struct device *dev, struct device_attribute *attr,
2674 const char *buf, size_t count)
2675 {
2676 return -ENODEV;
2677 }
2678 #endif /* CONFIG_HOTPLUG_SMT */
2679
2680 static const char *smt_states[] = {
2681 [CPU_SMT_ENABLED] = "on",
2682 [CPU_SMT_DISABLED] = "off",
2683 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2684 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2685 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2686 };
2687
2688 static ssize_t
show_smt_control(struct device * dev,struct device_attribute * attr,char * buf)2689 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2690 {
2691 const char *state = smt_states[cpu_smt_control];
2692
2693 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2694 }
2695
2696 static ssize_t
store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2697 store_smt_control(struct device *dev, struct device_attribute *attr,
2698 const char *buf, size_t count)
2699 {
2700 return __store_smt_control(dev, attr, buf, count);
2701 }
2702 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2703
2704 static ssize_t
show_smt_active(struct device * dev,struct device_attribute * attr,char * buf)2705 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2706 {
2707 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2708 }
2709 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2710
2711 static struct attribute *cpuhp_smt_attrs[] = {
2712 &dev_attr_control.attr,
2713 &dev_attr_active.attr,
2714 NULL
2715 };
2716
2717 static const struct attribute_group cpuhp_smt_attr_group = {
2718 .attrs = cpuhp_smt_attrs,
2719 .name = "smt",
2720 NULL
2721 };
2722
cpu_smt_sysfs_init(void)2723 static int __init cpu_smt_sysfs_init(void)
2724 {
2725 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2726 &cpuhp_smt_attr_group);
2727 }
2728
cpuhp_sysfs_init(void)2729 static int __init cpuhp_sysfs_init(void)
2730 {
2731 int cpu, ret;
2732
2733 ret = cpu_smt_sysfs_init();
2734 if (ret)
2735 return ret;
2736
2737 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2738 &cpuhp_cpu_root_attr_group);
2739 if (ret)
2740 return ret;
2741
2742 for_each_possible_cpu(cpu) {
2743 struct device *dev = get_cpu_device(cpu);
2744
2745 if (!dev)
2746 continue;
2747 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2748 if (ret)
2749 return ret;
2750 }
2751 return 0;
2752 }
2753 device_initcall(cpuhp_sysfs_init);
2754 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2755
2756 /*
2757 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2758 * represents all NR_CPUS bits binary values of 1<<nr.
2759 *
2760 * It is used by cpumask_of() to get a constant address to a CPU
2761 * mask value that has a single bit set only.
2762 */
2763
2764 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2765 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2766 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2767 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2768 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2769
2770 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2771
2772 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2773 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2774 #if BITS_PER_LONG > 32
2775 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2776 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2777 #endif
2778 };
2779 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2780
2781 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2782 EXPORT_SYMBOL(cpu_all_bits);
2783
2784 #ifdef CONFIG_INIT_ALL_POSSIBLE
2785 struct cpumask __cpu_possible_mask __read_mostly
2786 = {CPU_BITS_ALL};
2787 #else
2788 struct cpumask __cpu_possible_mask __read_mostly;
2789 #endif
2790 EXPORT_SYMBOL(__cpu_possible_mask);
2791
2792 struct cpumask __cpu_online_mask __read_mostly;
2793 EXPORT_SYMBOL(__cpu_online_mask);
2794
2795 struct cpumask __cpu_present_mask __read_mostly;
2796 EXPORT_SYMBOL(__cpu_present_mask);
2797
2798 struct cpumask __cpu_active_mask __read_mostly;
2799 EXPORT_SYMBOL(__cpu_active_mask);
2800
2801 atomic_t __num_online_cpus __read_mostly;
2802 EXPORT_SYMBOL(__num_online_cpus);
2803
init_cpu_present(const struct cpumask * src)2804 void init_cpu_present(const struct cpumask *src)
2805 {
2806 cpumask_copy(&__cpu_present_mask, src);
2807 }
2808
init_cpu_possible(const struct cpumask * src)2809 void init_cpu_possible(const struct cpumask *src)
2810 {
2811 cpumask_copy(&__cpu_possible_mask, src);
2812 }
2813
init_cpu_online(const struct cpumask * src)2814 void init_cpu_online(const struct cpumask *src)
2815 {
2816 cpumask_copy(&__cpu_online_mask, src);
2817 }
2818
set_cpu_online(unsigned int cpu,bool online)2819 void set_cpu_online(unsigned int cpu, bool online)
2820 {
2821 /*
2822 * atomic_inc/dec() is required to handle the horrid abuse of this
2823 * function by the reboot and kexec code which invoke it from
2824 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2825 * regular CPU hotplug is properly serialized.
2826 *
2827 * Note, that the fact that __num_online_cpus is of type atomic_t
2828 * does not protect readers which are not serialized against
2829 * concurrent hotplug operations.
2830 */
2831 if (online) {
2832 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2833 atomic_inc(&__num_online_cpus);
2834 } else {
2835 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2836 atomic_dec(&__num_online_cpus);
2837 }
2838 }
2839
2840 /*
2841 * Activate the first processor.
2842 */
boot_cpu_init(void)2843 void __init boot_cpu_init(void)
2844 {
2845 int cpu = smp_processor_id();
2846
2847 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2848 set_cpu_online(cpu, true);
2849 set_cpu_active(cpu, true);
2850 set_cpu_present(cpu, true);
2851 set_cpu_possible(cpu, true);
2852
2853 #ifdef CONFIG_SMP
2854 __boot_cpu_id = cpu;
2855 #endif
2856 }
2857
2858 /*
2859 * Must be called _AFTER_ setting up the per_cpu areas
2860 */
boot_cpu_hotplug_init(void)2861 void __init boot_cpu_hotplug_init(void)
2862 {
2863 #ifdef CONFIG_SMP
2864 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2865 #endif
2866 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2867 }
2868
2869 /*
2870 * These are used for a global "mitigations=" cmdline option for toggling
2871 * optional CPU mitigations.
2872 */
2873 enum cpu_mitigations {
2874 CPU_MITIGATIONS_OFF,
2875 CPU_MITIGATIONS_AUTO,
2876 CPU_MITIGATIONS_AUTO_NOSMT,
2877 };
2878
2879 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2880 CPU_MITIGATIONS_AUTO;
2881
mitigations_parse_cmdline(char * arg)2882 static int __init mitigations_parse_cmdline(char *arg)
2883 {
2884 if (!strcmp(arg, "off"))
2885 cpu_mitigations = CPU_MITIGATIONS_OFF;
2886 else if (!strcmp(arg, "auto"))
2887 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2888 else if (!strcmp(arg, "auto,nosmt"))
2889 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2890 else
2891 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2892 arg);
2893
2894 return 0;
2895 }
2896 early_param("mitigations", mitigations_parse_cmdline);
2897
2898 /* mitigations=off */
cpu_mitigations_off(void)2899 bool cpu_mitigations_off(void)
2900 {
2901 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2902 }
2903 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2904
2905 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)2906 bool cpu_mitigations_auto_nosmt(void)
2907 {
2908 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2909 }
2910 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2911