• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Coherent per-device memory handling.
4  * Borrowed from i386
5  */
6 #include <linux/io.h>
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/dma-direct.h>
11 #include <linux/dma-map-ops.h>
12 
13 struct dma_coherent_mem {
14 	void		*virt_base;
15 	dma_addr_t	device_base;
16 	unsigned long	pfn_base;
17 	int		size;
18 	unsigned long	*bitmap;
19 	spinlock_t	spinlock;
20 	bool		use_dev_dma_pfn_offset;
21 };
22 
23 static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
24 
dev_get_coherent_memory(struct device * dev)25 static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
26 {
27 	if (dev && dev->dma_mem)
28 		return dev->dma_mem;
29 	return NULL;
30 }
31 
dma_get_device_base(struct device * dev,struct dma_coherent_mem * mem)32 static inline dma_addr_t dma_get_device_base(struct device *dev,
33 					     struct dma_coherent_mem * mem)
34 {
35 	if (mem->use_dev_dma_pfn_offset)
36 		return phys_to_dma(dev, PFN_PHYS(mem->pfn_base));
37 	return mem->device_base;
38 }
39 
dma_init_coherent_memory(phys_addr_t phys_addr,dma_addr_t device_addr,size_t size,struct dma_coherent_mem ** mem)40 static int dma_init_coherent_memory(phys_addr_t phys_addr,
41 		dma_addr_t device_addr, size_t size,
42 		struct dma_coherent_mem **mem)
43 {
44 	struct dma_coherent_mem *dma_mem = NULL;
45 	void *mem_base = NULL;
46 	int pages = size >> PAGE_SHIFT;
47 	int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
48 	int ret;
49 
50 	if (!size) {
51 		ret = -EINVAL;
52 		goto out;
53 	}
54 
55 	mem_base = memremap(phys_addr, size, MEMREMAP_WC);
56 	if (!mem_base) {
57 		ret = -EINVAL;
58 		goto out;
59 	}
60 	dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
61 	if (!dma_mem) {
62 		ret = -ENOMEM;
63 		goto out;
64 	}
65 	dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
66 	if (!dma_mem->bitmap) {
67 		ret = -ENOMEM;
68 		goto out;
69 	}
70 
71 	dma_mem->virt_base = mem_base;
72 	dma_mem->device_base = device_addr;
73 	dma_mem->pfn_base = PFN_DOWN(phys_addr);
74 	dma_mem->size = pages;
75 	spin_lock_init(&dma_mem->spinlock);
76 
77 	*mem = dma_mem;
78 	return 0;
79 
80 out:
81 	kfree(dma_mem);
82 	if (mem_base)
83 		memunmap(mem_base);
84 	return ret;
85 }
86 
_dma_release_coherent_memory(struct dma_coherent_mem * mem)87 static void _dma_release_coherent_memory(struct dma_coherent_mem *mem)
88 {
89 	if (!mem)
90 		return;
91 
92 	memunmap(mem->virt_base);
93 	kfree(mem->bitmap);
94 	kfree(mem);
95 }
96 
dma_assign_coherent_memory(struct device * dev,struct dma_coherent_mem * mem)97 static int dma_assign_coherent_memory(struct device *dev,
98 				      struct dma_coherent_mem *mem)
99 {
100 	if (!dev)
101 		return -ENODEV;
102 
103 	if (dev->dma_mem)
104 		return -EBUSY;
105 
106 	dev->dma_mem = mem;
107 	return 0;
108 }
109 
110 /*
111  * Declare a region of memory to be handed out by dma_alloc_coherent() when it
112  * is asked for coherent memory for this device.  This shall only be used
113  * from platform code, usually based on the device tree description.
114  *
115  * phys_addr is the CPU physical address to which the memory is currently
116  * assigned (this will be ioremapped so the CPU can access the region).
117  *
118  * device_addr is the DMA address the device needs to be programmed with to
119  * actually address this memory (this will be handed out as the dma_addr_t in
120  * dma_alloc_coherent()).
121  *
122  * size is the size of the area (must be a multiple of PAGE_SIZE).
123  *
124  * As a simplification for the platforms, only *one* such region of memory may
125  * be declared per device.
126  */
dma_declare_coherent_memory(struct device * dev,phys_addr_t phys_addr,dma_addr_t device_addr,size_t size)127 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
128 				dma_addr_t device_addr, size_t size)
129 {
130 	struct dma_coherent_mem *mem;
131 	int ret;
132 
133 	ret = dma_init_coherent_memory(phys_addr, device_addr, size, &mem);
134 	if (ret)
135 		return ret;
136 
137 	ret = dma_assign_coherent_memory(dev, mem);
138 	if (ret)
139 		_dma_release_coherent_memory(mem);
140 	return ret;
141 }
142 
dma_release_coherent_memory(struct device * dev)143 void dma_release_coherent_memory(struct device *dev)
144 {
145 	if (dev) {
146 		_dma_release_coherent_memory(dev->dma_mem);
147 		dev->dma_mem = NULL;
148 	}
149 }
150 
__dma_alloc_from_coherent(struct device * dev,struct dma_coherent_mem * mem,ssize_t size,dma_addr_t * dma_handle)151 static void *__dma_alloc_from_coherent(struct device *dev,
152 				       struct dma_coherent_mem *mem,
153 				       ssize_t size, dma_addr_t *dma_handle)
154 {
155 	int order = get_order(size);
156 	unsigned long flags;
157 	int pageno;
158 	void *ret;
159 
160 	spin_lock_irqsave(&mem->spinlock, flags);
161 
162 	if (unlikely(size > ((dma_addr_t)mem->size << PAGE_SHIFT)))
163 		goto err;
164 
165 	pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
166 	if (unlikely(pageno < 0))
167 		goto err;
168 
169 	/*
170 	 * Memory was found in the coherent area.
171 	 */
172 	*dma_handle = dma_get_device_base(dev, mem) +
173 			((dma_addr_t)pageno << PAGE_SHIFT);
174 	ret = mem->virt_base + ((dma_addr_t)pageno << PAGE_SHIFT);
175 	spin_unlock_irqrestore(&mem->spinlock, flags);
176 	memset(ret, 0, size);
177 	return ret;
178 err:
179 	spin_unlock_irqrestore(&mem->spinlock, flags);
180 	return NULL;
181 }
182 
183 /**
184  * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool
185  * @dev:	device from which we allocate memory
186  * @size:	size of requested memory area
187  * @dma_handle:	This will be filled with the correct dma handle
188  * @ret:	This pointer will be filled with the virtual address
189  *		to allocated area.
190  *
191  * This function should be only called from per-arch dma_alloc_coherent()
192  * to support allocation from per-device coherent memory pools.
193  *
194  * Returns 0 if dma_alloc_coherent should continue with allocating from
195  * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
196  */
dma_alloc_from_dev_coherent(struct device * dev,ssize_t size,dma_addr_t * dma_handle,void ** ret)197 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
198 		dma_addr_t *dma_handle, void **ret)
199 {
200 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
201 
202 	if (!mem)
203 		return 0;
204 
205 	*ret = __dma_alloc_from_coherent(dev, mem, size, dma_handle);
206 	return 1;
207 }
208 
dma_alloc_from_global_coherent(struct device * dev,ssize_t size,dma_addr_t * dma_handle)209 void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size,
210 				     dma_addr_t *dma_handle)
211 {
212 	if (!dma_coherent_default_memory)
213 		return NULL;
214 
215 	return __dma_alloc_from_coherent(dev, dma_coherent_default_memory, size,
216 					 dma_handle);
217 }
218 
__dma_release_from_coherent(struct dma_coherent_mem * mem,int order,void * vaddr)219 static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
220 				       int order, void *vaddr)
221 {
222 	if (mem && vaddr >= mem->virt_base && vaddr <
223 		   (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) {
224 		int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
225 		unsigned long flags;
226 
227 		spin_lock_irqsave(&mem->spinlock, flags);
228 		bitmap_release_region(mem->bitmap, page, order);
229 		spin_unlock_irqrestore(&mem->spinlock, flags);
230 		return 1;
231 	}
232 	return 0;
233 }
234 
235 /**
236  * dma_release_from_dev_coherent() - free memory to device coherent memory pool
237  * @dev:	device from which the memory was allocated
238  * @order:	the order of pages allocated
239  * @vaddr:	virtual address of allocated pages
240  *
241  * This checks whether the memory was allocated from the per-device
242  * coherent memory pool and if so, releases that memory.
243  *
244  * Returns 1 if we correctly released the memory, or 0 if the caller should
245  * proceed with releasing memory from generic pools.
246  */
dma_release_from_dev_coherent(struct device * dev,int order,void * vaddr)247 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
248 {
249 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
250 
251 	return __dma_release_from_coherent(mem, order, vaddr);
252 }
253 
dma_release_from_global_coherent(int order,void * vaddr)254 int dma_release_from_global_coherent(int order, void *vaddr)
255 {
256 	if (!dma_coherent_default_memory)
257 		return 0;
258 
259 	return __dma_release_from_coherent(dma_coherent_default_memory, order,
260 			vaddr);
261 }
262 
__dma_mmap_from_coherent(struct dma_coherent_mem * mem,struct vm_area_struct * vma,void * vaddr,size_t size,int * ret)263 static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
264 		struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
265 {
266 	if (mem && vaddr >= mem->virt_base && vaddr + size <=
267 		   (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) {
268 		unsigned long off = vma->vm_pgoff;
269 		int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
270 		unsigned long user_count = vma_pages(vma);
271 		int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
272 
273 		*ret = -ENXIO;
274 		if (off < count && user_count <= count - off) {
275 			unsigned long pfn = mem->pfn_base + start + off;
276 			*ret = remap_pfn_range(vma, vma->vm_start, pfn,
277 					       user_count << PAGE_SHIFT,
278 					       vma->vm_page_prot);
279 		}
280 		return 1;
281 	}
282 	return 0;
283 }
284 
285 /**
286  * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool
287  * @dev:	device from which the memory was allocated
288  * @vma:	vm_area for the userspace memory
289  * @vaddr:	cpu address returned by dma_alloc_from_dev_coherent
290  * @size:	size of the memory buffer allocated
291  * @ret:	result from remap_pfn_range()
292  *
293  * This checks whether the memory was allocated from the per-device
294  * coherent memory pool and if so, maps that memory to the provided vma.
295  *
296  * Returns 1 if @vaddr belongs to the device coherent pool and the caller
297  * should return @ret, or 0 if they should proceed with mapping memory from
298  * generic areas.
299  */
dma_mmap_from_dev_coherent(struct device * dev,struct vm_area_struct * vma,void * vaddr,size_t size,int * ret)300 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
301 			   void *vaddr, size_t size, int *ret)
302 {
303 	struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
304 
305 	return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
306 }
307 
dma_mmap_from_global_coherent(struct vm_area_struct * vma,void * vaddr,size_t size,int * ret)308 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
309 				   size_t size, int *ret)
310 {
311 	if (!dma_coherent_default_memory)
312 		return 0;
313 
314 	return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
315 					vaddr, size, ret);
316 }
317 
318 /*
319  * Support for reserved memory regions defined in device tree
320  */
321 #ifdef CONFIG_OF_RESERVED_MEM
322 #include <linux/of.h>
323 #include <linux/of_fdt.h>
324 #include <linux/of_reserved_mem.h>
325 
326 static struct reserved_mem *dma_reserved_default_memory __initdata;
327 
rmem_dma_device_init(struct reserved_mem * rmem,struct device * dev)328 static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
329 {
330 	struct dma_coherent_mem *mem = rmem->priv;
331 	int ret;
332 
333 	if (!mem) {
334 		ret = dma_init_coherent_memory(rmem->base, rmem->base,
335 					       rmem->size, &mem);
336 		if (ret) {
337 			pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n",
338 				&rmem->base, (unsigned long)rmem->size / SZ_1M);
339 			return ret;
340 		}
341 	}
342 	mem->use_dev_dma_pfn_offset = true;
343 	rmem->priv = mem;
344 	dma_assign_coherent_memory(dev, mem);
345 	return 0;
346 }
347 
rmem_dma_device_release(struct reserved_mem * rmem,struct device * dev)348 static void rmem_dma_device_release(struct reserved_mem *rmem,
349 				    struct device *dev)
350 {
351 	if (dev)
352 		dev->dma_mem = NULL;
353 }
354 
355 static const struct reserved_mem_ops rmem_dma_ops = {
356 	.device_init	= rmem_dma_device_init,
357 	.device_release	= rmem_dma_device_release,
358 };
359 
rmem_dma_setup(struct reserved_mem * rmem)360 static int __init rmem_dma_setup(struct reserved_mem *rmem)
361 {
362 	unsigned long node = rmem->fdt_node;
363 
364 	if (of_get_flat_dt_prop(node, "reusable", NULL))
365 		return -EINVAL;
366 
367 #ifdef CONFIG_ARM
368 	if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
369 		pr_err("Reserved memory: regions without no-map are not yet supported\n");
370 		return -EINVAL;
371 	}
372 
373 	if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
374 		WARN(dma_reserved_default_memory,
375 		     "Reserved memory: region for default DMA coherent area is redefined\n");
376 		dma_reserved_default_memory = rmem;
377 	}
378 #endif
379 
380 	rmem->ops = &rmem_dma_ops;
381 	pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
382 		&rmem->base, (unsigned long)rmem->size / SZ_1M);
383 	return 0;
384 }
385 
dma_init_reserved_memory(void)386 static int __init dma_init_reserved_memory(void)
387 {
388 	const struct reserved_mem_ops *ops;
389 	int ret;
390 
391 	if (!dma_reserved_default_memory)
392 		return -ENOMEM;
393 
394 	ops = dma_reserved_default_memory->ops;
395 
396 	/*
397 	 * We rely on rmem_dma_device_init() does not propagate error of
398 	 * dma_assign_coherent_memory() for "NULL" device.
399 	 */
400 	ret = ops->device_init(dma_reserved_default_memory, NULL);
401 
402 	if (!ret) {
403 		dma_coherent_default_memory = dma_reserved_default_memory->priv;
404 		pr_info("DMA: default coherent area is set\n");
405 	}
406 
407 	return ret;
408 }
409 
410 core_initcall(dma_init_reserved_memory);
411 
412 RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
413 #endif
414