1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Coherent per-device memory handling.
4 * Borrowed from i386
5 */
6 #include <linux/io.h>
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/dma-direct.h>
11 #include <linux/dma-map-ops.h>
12
13 struct dma_coherent_mem {
14 void *virt_base;
15 dma_addr_t device_base;
16 unsigned long pfn_base;
17 int size;
18 unsigned long *bitmap;
19 spinlock_t spinlock;
20 bool use_dev_dma_pfn_offset;
21 };
22
23 static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
24
dev_get_coherent_memory(struct device * dev)25 static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
26 {
27 if (dev && dev->dma_mem)
28 return dev->dma_mem;
29 return NULL;
30 }
31
dma_get_device_base(struct device * dev,struct dma_coherent_mem * mem)32 static inline dma_addr_t dma_get_device_base(struct device *dev,
33 struct dma_coherent_mem * mem)
34 {
35 if (mem->use_dev_dma_pfn_offset)
36 return phys_to_dma(dev, PFN_PHYS(mem->pfn_base));
37 return mem->device_base;
38 }
39
dma_init_coherent_memory(phys_addr_t phys_addr,dma_addr_t device_addr,size_t size,struct dma_coherent_mem ** mem)40 static int dma_init_coherent_memory(phys_addr_t phys_addr,
41 dma_addr_t device_addr, size_t size,
42 struct dma_coherent_mem **mem)
43 {
44 struct dma_coherent_mem *dma_mem = NULL;
45 void *mem_base = NULL;
46 int pages = size >> PAGE_SHIFT;
47 int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
48 int ret;
49
50 if (!size) {
51 ret = -EINVAL;
52 goto out;
53 }
54
55 mem_base = memremap(phys_addr, size, MEMREMAP_WC);
56 if (!mem_base) {
57 ret = -EINVAL;
58 goto out;
59 }
60 dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
61 if (!dma_mem) {
62 ret = -ENOMEM;
63 goto out;
64 }
65 dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
66 if (!dma_mem->bitmap) {
67 ret = -ENOMEM;
68 goto out;
69 }
70
71 dma_mem->virt_base = mem_base;
72 dma_mem->device_base = device_addr;
73 dma_mem->pfn_base = PFN_DOWN(phys_addr);
74 dma_mem->size = pages;
75 spin_lock_init(&dma_mem->spinlock);
76
77 *mem = dma_mem;
78 return 0;
79
80 out:
81 kfree(dma_mem);
82 if (mem_base)
83 memunmap(mem_base);
84 return ret;
85 }
86
_dma_release_coherent_memory(struct dma_coherent_mem * mem)87 static void _dma_release_coherent_memory(struct dma_coherent_mem *mem)
88 {
89 if (!mem)
90 return;
91
92 memunmap(mem->virt_base);
93 kfree(mem->bitmap);
94 kfree(mem);
95 }
96
dma_assign_coherent_memory(struct device * dev,struct dma_coherent_mem * mem)97 static int dma_assign_coherent_memory(struct device *dev,
98 struct dma_coherent_mem *mem)
99 {
100 if (!dev)
101 return -ENODEV;
102
103 if (dev->dma_mem)
104 return -EBUSY;
105
106 dev->dma_mem = mem;
107 return 0;
108 }
109
110 /*
111 * Declare a region of memory to be handed out by dma_alloc_coherent() when it
112 * is asked for coherent memory for this device. This shall only be used
113 * from platform code, usually based on the device tree description.
114 *
115 * phys_addr is the CPU physical address to which the memory is currently
116 * assigned (this will be ioremapped so the CPU can access the region).
117 *
118 * device_addr is the DMA address the device needs to be programmed with to
119 * actually address this memory (this will be handed out as the dma_addr_t in
120 * dma_alloc_coherent()).
121 *
122 * size is the size of the area (must be a multiple of PAGE_SIZE).
123 *
124 * As a simplification for the platforms, only *one* such region of memory may
125 * be declared per device.
126 */
dma_declare_coherent_memory(struct device * dev,phys_addr_t phys_addr,dma_addr_t device_addr,size_t size)127 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
128 dma_addr_t device_addr, size_t size)
129 {
130 struct dma_coherent_mem *mem;
131 int ret;
132
133 ret = dma_init_coherent_memory(phys_addr, device_addr, size, &mem);
134 if (ret)
135 return ret;
136
137 ret = dma_assign_coherent_memory(dev, mem);
138 if (ret)
139 _dma_release_coherent_memory(mem);
140 return ret;
141 }
142
dma_release_coherent_memory(struct device * dev)143 void dma_release_coherent_memory(struct device *dev)
144 {
145 if (dev) {
146 _dma_release_coherent_memory(dev->dma_mem);
147 dev->dma_mem = NULL;
148 }
149 }
150
__dma_alloc_from_coherent(struct device * dev,struct dma_coherent_mem * mem,ssize_t size,dma_addr_t * dma_handle)151 static void *__dma_alloc_from_coherent(struct device *dev,
152 struct dma_coherent_mem *mem,
153 ssize_t size, dma_addr_t *dma_handle)
154 {
155 int order = get_order(size);
156 unsigned long flags;
157 int pageno;
158 void *ret;
159
160 spin_lock_irqsave(&mem->spinlock, flags);
161
162 if (unlikely(size > ((dma_addr_t)mem->size << PAGE_SHIFT)))
163 goto err;
164
165 pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
166 if (unlikely(pageno < 0))
167 goto err;
168
169 /*
170 * Memory was found in the coherent area.
171 */
172 *dma_handle = dma_get_device_base(dev, mem) +
173 ((dma_addr_t)pageno << PAGE_SHIFT);
174 ret = mem->virt_base + ((dma_addr_t)pageno << PAGE_SHIFT);
175 spin_unlock_irqrestore(&mem->spinlock, flags);
176 memset(ret, 0, size);
177 return ret;
178 err:
179 spin_unlock_irqrestore(&mem->spinlock, flags);
180 return NULL;
181 }
182
183 /**
184 * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool
185 * @dev: device from which we allocate memory
186 * @size: size of requested memory area
187 * @dma_handle: This will be filled with the correct dma handle
188 * @ret: This pointer will be filled with the virtual address
189 * to allocated area.
190 *
191 * This function should be only called from per-arch dma_alloc_coherent()
192 * to support allocation from per-device coherent memory pools.
193 *
194 * Returns 0 if dma_alloc_coherent should continue with allocating from
195 * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
196 */
dma_alloc_from_dev_coherent(struct device * dev,ssize_t size,dma_addr_t * dma_handle,void ** ret)197 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
198 dma_addr_t *dma_handle, void **ret)
199 {
200 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
201
202 if (!mem)
203 return 0;
204
205 *ret = __dma_alloc_from_coherent(dev, mem, size, dma_handle);
206 return 1;
207 }
208
dma_alloc_from_global_coherent(struct device * dev,ssize_t size,dma_addr_t * dma_handle)209 void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size,
210 dma_addr_t *dma_handle)
211 {
212 if (!dma_coherent_default_memory)
213 return NULL;
214
215 return __dma_alloc_from_coherent(dev, dma_coherent_default_memory, size,
216 dma_handle);
217 }
218
__dma_release_from_coherent(struct dma_coherent_mem * mem,int order,void * vaddr)219 static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
220 int order, void *vaddr)
221 {
222 if (mem && vaddr >= mem->virt_base && vaddr <
223 (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) {
224 int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
225 unsigned long flags;
226
227 spin_lock_irqsave(&mem->spinlock, flags);
228 bitmap_release_region(mem->bitmap, page, order);
229 spin_unlock_irqrestore(&mem->spinlock, flags);
230 return 1;
231 }
232 return 0;
233 }
234
235 /**
236 * dma_release_from_dev_coherent() - free memory to device coherent memory pool
237 * @dev: device from which the memory was allocated
238 * @order: the order of pages allocated
239 * @vaddr: virtual address of allocated pages
240 *
241 * This checks whether the memory was allocated from the per-device
242 * coherent memory pool and if so, releases that memory.
243 *
244 * Returns 1 if we correctly released the memory, or 0 if the caller should
245 * proceed with releasing memory from generic pools.
246 */
dma_release_from_dev_coherent(struct device * dev,int order,void * vaddr)247 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
248 {
249 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
250
251 return __dma_release_from_coherent(mem, order, vaddr);
252 }
253
dma_release_from_global_coherent(int order,void * vaddr)254 int dma_release_from_global_coherent(int order, void *vaddr)
255 {
256 if (!dma_coherent_default_memory)
257 return 0;
258
259 return __dma_release_from_coherent(dma_coherent_default_memory, order,
260 vaddr);
261 }
262
__dma_mmap_from_coherent(struct dma_coherent_mem * mem,struct vm_area_struct * vma,void * vaddr,size_t size,int * ret)263 static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
264 struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
265 {
266 if (mem && vaddr >= mem->virt_base && vaddr + size <=
267 (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) {
268 unsigned long off = vma->vm_pgoff;
269 int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
270 unsigned long user_count = vma_pages(vma);
271 int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
272
273 *ret = -ENXIO;
274 if (off < count && user_count <= count - off) {
275 unsigned long pfn = mem->pfn_base + start + off;
276 *ret = remap_pfn_range(vma, vma->vm_start, pfn,
277 user_count << PAGE_SHIFT,
278 vma->vm_page_prot);
279 }
280 return 1;
281 }
282 return 0;
283 }
284
285 /**
286 * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool
287 * @dev: device from which the memory was allocated
288 * @vma: vm_area for the userspace memory
289 * @vaddr: cpu address returned by dma_alloc_from_dev_coherent
290 * @size: size of the memory buffer allocated
291 * @ret: result from remap_pfn_range()
292 *
293 * This checks whether the memory was allocated from the per-device
294 * coherent memory pool and if so, maps that memory to the provided vma.
295 *
296 * Returns 1 if @vaddr belongs to the device coherent pool and the caller
297 * should return @ret, or 0 if they should proceed with mapping memory from
298 * generic areas.
299 */
dma_mmap_from_dev_coherent(struct device * dev,struct vm_area_struct * vma,void * vaddr,size_t size,int * ret)300 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
301 void *vaddr, size_t size, int *ret)
302 {
303 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
304
305 return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
306 }
307
dma_mmap_from_global_coherent(struct vm_area_struct * vma,void * vaddr,size_t size,int * ret)308 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
309 size_t size, int *ret)
310 {
311 if (!dma_coherent_default_memory)
312 return 0;
313
314 return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
315 vaddr, size, ret);
316 }
317
318 /*
319 * Support for reserved memory regions defined in device tree
320 */
321 #ifdef CONFIG_OF_RESERVED_MEM
322 #include <linux/of.h>
323 #include <linux/of_fdt.h>
324 #include <linux/of_reserved_mem.h>
325
326 static struct reserved_mem *dma_reserved_default_memory __initdata;
327
rmem_dma_device_init(struct reserved_mem * rmem,struct device * dev)328 static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
329 {
330 struct dma_coherent_mem *mem = rmem->priv;
331 int ret;
332
333 if (!mem) {
334 ret = dma_init_coherent_memory(rmem->base, rmem->base,
335 rmem->size, &mem);
336 if (ret) {
337 pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %ld MiB\n",
338 &rmem->base, (unsigned long)rmem->size / SZ_1M);
339 return ret;
340 }
341 }
342 mem->use_dev_dma_pfn_offset = true;
343 rmem->priv = mem;
344 dma_assign_coherent_memory(dev, mem);
345 return 0;
346 }
347
rmem_dma_device_release(struct reserved_mem * rmem,struct device * dev)348 static void rmem_dma_device_release(struct reserved_mem *rmem,
349 struct device *dev)
350 {
351 if (dev)
352 dev->dma_mem = NULL;
353 }
354
355 static const struct reserved_mem_ops rmem_dma_ops = {
356 .device_init = rmem_dma_device_init,
357 .device_release = rmem_dma_device_release,
358 };
359
rmem_dma_setup(struct reserved_mem * rmem)360 static int __init rmem_dma_setup(struct reserved_mem *rmem)
361 {
362 unsigned long node = rmem->fdt_node;
363
364 if (of_get_flat_dt_prop(node, "reusable", NULL))
365 return -EINVAL;
366
367 #ifdef CONFIG_ARM
368 if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
369 pr_err("Reserved memory: regions without no-map are not yet supported\n");
370 return -EINVAL;
371 }
372
373 if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
374 WARN(dma_reserved_default_memory,
375 "Reserved memory: region for default DMA coherent area is redefined\n");
376 dma_reserved_default_memory = rmem;
377 }
378 #endif
379
380 rmem->ops = &rmem_dma_ops;
381 pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
382 &rmem->base, (unsigned long)rmem->size / SZ_1M);
383 return 0;
384 }
385
dma_init_reserved_memory(void)386 static int __init dma_init_reserved_memory(void)
387 {
388 const struct reserved_mem_ops *ops;
389 int ret;
390
391 if (!dma_reserved_default_memory)
392 return -ENOMEM;
393
394 ops = dma_reserved_default_memory->ops;
395
396 /*
397 * We rely on rmem_dma_device_init() does not propagate error of
398 * dma_assign_coherent_memory() for "NULL" device.
399 */
400 ret = ops->device_init(dma_reserved_default_memory, NULL);
401
402 if (!ret) {
403 dma_coherent_default_memory = dma_reserved_default_memory->priv;
404 pr_info("DMA: default coherent area is set\n");
405 }
406
407 return ret;
408 }
409
410 core_initcall(dma_init_reserved_memory);
411
412 RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
413 #endif
414