1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2018-2020 Christoph Hellwig.
4 *
5 * DMA operations that map physical memory directly without using an IOMMU.
6 */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17
18 /*
19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20 * it for entirely different regions. In that case the arch code needs to
21 * override the variable below for dma-direct to work properly.
22 */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24
phys_to_dma_direct(struct device * dev,phys_addr_t phys)25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26 phys_addr_t phys)
27 {
28 if (force_dma_unencrypted(dev))
29 return phys_to_dma_unencrypted(dev, phys);
30 return phys_to_dma(dev, phys);
31 }
32
dma_direct_to_page(struct device * dev,dma_addr_t dma_addr)33 static inline struct page *dma_direct_to_page(struct device *dev,
34 dma_addr_t dma_addr)
35 {
36 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38
dma_direct_get_required_mask(struct device * dev)39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 u64 max_dma = phys_to_dma_direct(dev, phys);
43
44 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46 EXPORT_SYMBOL_GPL(dma_direct_get_required_mask);
47
dma_direct_optimal_gfp_mask(struct device * dev,u64 dma_mask,u64 * phys_limit)48 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
49 u64 *phys_limit)
50 {
51 u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
52
53 /*
54 * Optimistically try the zone that the physical address mask falls
55 * into first. If that returns memory that isn't actually addressable
56 * we will fallback to the next lower zone and try again.
57 *
58 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
59 * zones.
60 */
61 *phys_limit = dma_to_phys(dev, dma_limit);
62 if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
63 return GFP_DMA;
64 if (*phys_limit <= DMA_BIT_MASK(32) &&
65 !zone_dma32_are_empty())
66 return GFP_DMA32;
67 return 0;
68 }
69
dma_coherent_ok(struct device * dev,phys_addr_t phys,size_t size)70 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
71 {
72 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
73
74 if (dma_addr == DMA_MAPPING_ERROR)
75 return false;
76 return dma_addr + size - 1 <=
77 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
78 }
79
__dma_direct_free_pages(struct device * dev,struct page * page,size_t size)80 static void __dma_direct_free_pages(struct device *dev, struct page *page,
81 size_t size)
82 {
83 if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
84 swiotlb_free(dev, page, size))
85 return;
86 dma_free_contiguous(dev, page, size);
87 }
88
__dma_direct_alloc_pages(struct device * dev,size_t size,gfp_t gfp)89 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
90 gfp_t gfp)
91 {
92 int node = dev_to_node(dev);
93 struct page *page = NULL;
94 u64 phys_limit;
95
96 WARN_ON_ONCE(!PAGE_ALIGNED(size));
97
98 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
99 &phys_limit);
100 if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
101 is_swiotlb_for_alloc(dev)) {
102 page = swiotlb_alloc(dev, size);
103 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
104 __dma_direct_free_pages(dev, page, size);
105 return NULL;
106 }
107 return page;
108 }
109
110 page = dma_alloc_contiguous(dev, size, gfp);
111 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
112 dma_free_contiguous(dev, page, size);
113 page = NULL;
114 }
115 again:
116 if (!page)
117 page = alloc_pages_node(node, gfp, get_order(size));
118 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
119 dma_free_contiguous(dev, page, size);
120 page = NULL;
121
122 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
123 phys_limit < DMA_BIT_MASK(64) &&
124 !(gfp & (GFP_DMA32 | GFP_DMA)) &&
125 !zone_dma32_are_empty()) {
126 gfp |= GFP_DMA32;
127 goto again;
128 }
129
130 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
131 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
132 goto again;
133 }
134 }
135
136 return page;
137 }
138
dma_direct_alloc_from_pool(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)139 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
140 dma_addr_t *dma_handle, gfp_t gfp)
141 {
142 struct page *page;
143 u64 phys_mask;
144 void *ret;
145
146 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
147 &phys_mask);
148 page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
149 if (!page)
150 return NULL;
151 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
152 return ret;
153 }
154
dma_direct_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)155 void *dma_direct_alloc(struct device *dev, size_t size,
156 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
157 {
158 struct page *page;
159 void *ret;
160 int err;
161
162 size = PAGE_ALIGN(size);
163 if (attrs & DMA_ATTR_NO_WARN)
164 gfp |= __GFP_NOWARN;
165
166 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
167 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
168 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
169 if (!page)
170 return NULL;
171 /* remove any dirty cache lines on the kernel alias */
172 if (!PageHighMem(page))
173 arch_dma_prep_coherent(page, size);
174 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
175 /* return the page pointer as the opaque cookie */
176 return page;
177 }
178
179 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
180 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev) &&
181 !is_swiotlb_for_alloc(dev))
182 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
183
184 /*
185 * Remapping or decrypting memory may block. If either is required and
186 * we can't block, allocate the memory from the atomic pools.
187 * If restricted DMA (i.e., is_swiotlb_for_alloc) is required, one must
188 * set up another device coherent pool by shared-dma-pool and use
189 * dma_alloc_from_dev_coherent instead.
190 */
191 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
192 !gfpflags_allow_blocking(gfp) &&
193 (force_dma_unencrypted(dev) ||
194 (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
195 !dev_is_dma_coherent(dev))) &&
196 !is_swiotlb_for_alloc(dev))
197 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
198
199 /* we always manually zero the memory once we are done */
200 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
201 if (!page)
202 return NULL;
203
204 if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
205 !dev_is_dma_coherent(dev)) ||
206 (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
207 /* remove any dirty cache lines on the kernel alias */
208 arch_dma_prep_coherent(page, size);
209
210 /* create a coherent mapping */
211 ret = dma_common_contiguous_remap(page, size,
212 dma_pgprot(dev, PAGE_KERNEL, attrs),
213 __builtin_return_address(0));
214 if (!ret)
215 goto out_free_pages;
216 if (force_dma_unencrypted(dev)) {
217 err = set_memory_decrypted((unsigned long)ret,
218 PFN_UP(size));
219 if (err)
220 goto out_free_pages;
221 }
222 memset(ret, 0, size);
223 goto done;
224 }
225
226 if (PageHighMem(page)) {
227 /*
228 * Depending on the cma= arguments and per-arch setup
229 * dma_alloc_contiguous could return highmem pages.
230 * Without remapping there is no way to return them here,
231 * so log an error and fail.
232 */
233 dev_info(dev, "Rejecting highmem page from CMA.\n");
234 goto out_free_pages;
235 }
236
237 ret = page_address(page);
238 if (force_dma_unencrypted(dev)) {
239 err = set_memory_decrypted((unsigned long)ret,
240 PFN_UP(size));
241 if (err)
242 goto out_free_pages;
243 }
244
245 memset(ret, 0, size);
246
247 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
248 !dev_is_dma_coherent(dev)) {
249 arch_dma_prep_coherent(page, size);
250 ret = arch_dma_set_uncached(ret, size);
251 if (IS_ERR(ret))
252 goto out_encrypt_pages;
253 }
254 done:
255 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
256 return ret;
257
258 out_encrypt_pages:
259 if (force_dma_unencrypted(dev)) {
260 err = set_memory_encrypted((unsigned long)page_address(page),
261 PFN_UP(size));
262 /* If memory cannot be re-encrypted, it must be leaked */
263 if (err)
264 return NULL;
265 }
266 out_free_pages:
267 __dma_direct_free_pages(dev, page, size);
268 return NULL;
269 }
270
dma_direct_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_addr,unsigned long attrs)271 void dma_direct_free(struct device *dev, size_t size,
272 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
273 {
274 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
275 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
276 /* cpu_addr is a struct page cookie, not a kernel address */
277 dma_free_contiguous(dev, cpu_addr, size);
278 return;
279 }
280
281 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
282 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev) &&
283 !is_swiotlb_for_alloc(dev)) {
284 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
285 return;
286 }
287
288 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
289 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
290 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
291 return;
292
293 if (force_dma_unencrypted(dev))
294 set_memory_encrypted((unsigned long)cpu_addr, PFN_UP(size));
295
296 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
297 vunmap(cpu_addr);
298 else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
299 arch_dma_clear_uncached(cpu_addr, size);
300
301 __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
302 }
303
dma_direct_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)304 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
305 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
306 {
307 struct page *page;
308 void *ret;
309
310 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
311 force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp) &&
312 !is_swiotlb_for_alloc(dev))
313 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
314
315 page = __dma_direct_alloc_pages(dev, size, gfp);
316 if (!page)
317 return NULL;
318 if (PageHighMem(page)) {
319 /*
320 * Depending on the cma= arguments and per-arch setup
321 * dma_alloc_contiguous could return highmem pages.
322 * Without remapping there is no way to return them here,
323 * so log an error and fail.
324 */
325 dev_info(dev, "Rejecting highmem page from CMA.\n");
326 goto out_free_pages;
327 }
328
329 ret = page_address(page);
330 if (force_dma_unencrypted(dev)) {
331 if (set_memory_decrypted((unsigned long)ret, PFN_UP(size)))
332 goto out_free_pages;
333 }
334 memset(ret, 0, size);
335 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
336 return page;
337 out_free_pages:
338 __dma_direct_free_pages(dev, page, size);
339 return NULL;
340 }
341 EXPORT_SYMBOL_GPL(dma_direct_alloc);
342
dma_direct_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_addr,enum dma_data_direction dir)343 void dma_direct_free_pages(struct device *dev, size_t size,
344 struct page *page, dma_addr_t dma_addr,
345 enum dma_data_direction dir)
346 {
347 void *vaddr = page_address(page);
348
349 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
350 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
351 dma_free_from_pool(dev, vaddr, size))
352 return;
353
354 if (force_dma_unencrypted(dev))
355 set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
356
357 __dma_direct_free_pages(dev, page, size);
358 }
359 EXPORT_SYMBOL_GPL(dma_direct_free);
360
361 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
362 defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)363 void dma_direct_sync_sg_for_device(struct device *dev,
364 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
365 {
366 struct scatterlist *sg;
367 int i;
368
369 for_each_sg(sgl, sg, nents, i) {
370 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
371
372 if (unlikely(is_swiotlb_buffer(dev, paddr)))
373 swiotlb_sync_single_for_device(dev, paddr, sg->length,
374 dir);
375
376 if (!dev_is_dma_coherent(dev))
377 arch_sync_dma_for_device(paddr, sg->length,
378 dir);
379 }
380 }
381 #endif
382
383 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
384 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
385 defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)386 void dma_direct_sync_sg_for_cpu(struct device *dev,
387 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
388 {
389 struct scatterlist *sg;
390 int i;
391
392 for_each_sg(sgl, sg, nents, i) {
393 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
394
395 if (!dev_is_dma_coherent(dev))
396 arch_sync_dma_for_cpu(paddr, sg->length, dir);
397
398 if (unlikely(is_swiotlb_buffer(dev, paddr)))
399 swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
400 dir);
401
402 if (dir == DMA_FROM_DEVICE)
403 arch_dma_mark_clean(paddr, sg->length);
404 }
405
406 if (!dev_is_dma_coherent(dev))
407 arch_sync_dma_for_cpu_all();
408 }
409
dma_direct_unmap_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)410 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
411 int nents, enum dma_data_direction dir, unsigned long attrs)
412 {
413 struct scatterlist *sg;
414 int i;
415
416 for_each_sg(sgl, sg, nents, i)
417 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
418 attrs);
419 }
420 #endif
421
dma_direct_map_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)422 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
423 enum dma_data_direction dir, unsigned long attrs)
424 {
425 int i;
426 struct scatterlist *sg;
427
428 for_each_sg(sgl, sg, nents, i) {
429 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
430 sg->offset, sg->length, dir, attrs);
431 if (sg->dma_address == DMA_MAPPING_ERROR)
432 goto out_unmap;
433 sg_dma_len(sg) = sg->length;
434 }
435
436 return nents;
437
438 out_unmap:
439 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
440 return 0;
441 }
442
dma_direct_map_resource(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir,unsigned long attrs)443 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
444 size_t size, enum dma_data_direction dir, unsigned long attrs)
445 {
446 dma_addr_t dma_addr = paddr;
447
448 if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
449 dev_err_once(dev,
450 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
451 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
452 WARN_ON_ONCE(1);
453 return DMA_MAPPING_ERROR;
454 }
455
456 return dma_addr;
457 }
458
dma_direct_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)459 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
460 void *cpu_addr, dma_addr_t dma_addr, size_t size,
461 unsigned long attrs)
462 {
463 struct page *page = dma_direct_to_page(dev, dma_addr);
464 int ret;
465
466 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
467 if (!ret)
468 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
469 return ret;
470 }
471
dma_direct_can_mmap(struct device * dev)472 bool dma_direct_can_mmap(struct device *dev)
473 {
474 return dev_is_dma_coherent(dev) ||
475 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
476 }
477
dma_direct_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)478 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
479 void *cpu_addr, dma_addr_t dma_addr, size_t size,
480 unsigned long attrs)
481 {
482 unsigned long user_count = vma_pages(vma);
483 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
484 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
485 int ret = -ENXIO;
486
487 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
488
489 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
490 return ret;
491
492 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
493 return -ENXIO;
494 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
495 user_count << PAGE_SHIFT, vma->vm_page_prot);
496 }
497
dma_direct_supported(struct device * dev,u64 mask)498 int dma_direct_supported(struct device *dev, u64 mask)
499 {
500 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
501
502 /*
503 * Because 32-bit DMA masks are so common we expect every architecture
504 * to be able to satisfy them - either by not supporting more physical
505 * memory, or by providing a ZONE_DMA32. If neither is the case, the
506 * architecture needs to use an IOMMU instead of the direct mapping.
507 */
508 if (mask >= DMA_BIT_MASK(32))
509 return 1;
510
511 /*
512 * This check needs to be against the actual bit mask value, so use
513 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
514 * part of the check.
515 */
516 if (IS_ENABLED(CONFIG_ZONE_DMA))
517 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
518 return mask >= phys_to_dma_unencrypted(dev, min_mask);
519 }
520
dma_direct_max_mapping_size(struct device * dev)521 size_t dma_direct_max_mapping_size(struct device *dev)
522 {
523 /* If SWIOTLB is active, use its maximum mapping size */
524 if (is_swiotlb_active(dev) &&
525 (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
526 return swiotlb_max_mapping_size(dev);
527 return SIZE_MAX;
528 }
529
dma_direct_need_sync(struct device * dev,dma_addr_t dma_addr)530 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
531 {
532 return !dev_is_dma_coherent(dev) ||
533 is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
534 }
535
536 /**
537 * dma_direct_set_offset - Assign scalar offset for a single DMA range.
538 * @dev: device pointer; needed to "own" the alloced memory.
539 * @cpu_start: beginning of memory region covered by this offset.
540 * @dma_start: beginning of DMA/PCI region covered by this offset.
541 * @size: size of the region.
542 *
543 * This is for the simple case of a uniform offset which cannot
544 * be discovered by "dma-ranges".
545 *
546 * It returns -ENOMEM if out of memory, -EINVAL if a map
547 * already exists, 0 otherwise.
548 *
549 * Note: any call to this from a driver is a bug. The mapping needs
550 * to be described by the device tree or other firmware interfaces.
551 */
dma_direct_set_offset(struct device * dev,phys_addr_t cpu_start,dma_addr_t dma_start,u64 size)552 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
553 dma_addr_t dma_start, u64 size)
554 {
555 struct bus_dma_region *map;
556 u64 offset = (u64)cpu_start - (u64)dma_start;
557
558 if (dev->dma_range_map) {
559 dev_err(dev, "attempt to add DMA range to existing map\n");
560 return -EINVAL;
561 }
562
563 if (!offset)
564 return 0;
565
566 map = kcalloc(2, sizeof(*map), GFP_KERNEL);
567 if (!map)
568 return -ENOMEM;
569 map[0].cpu_start = cpu_start;
570 map[0].dma_start = dma_start;
571 map[0].offset = offset;
572 map[0].size = size;
573 dev->dma_range_map = map;
574 return 0;
575 }
576 EXPORT_SYMBOL_GPL(dma_direct_set_offset);
577