• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17 
18 /*
19  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20  * it for entirely different regions. In that case the arch code needs to
21  * override the variable below for dma-direct to work properly.
22  */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24 
phys_to_dma_direct(struct device * dev,phys_addr_t phys)25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26 		phys_addr_t phys)
27 {
28 	if (force_dma_unencrypted(dev))
29 		return phys_to_dma_unencrypted(dev, phys);
30 	return phys_to_dma(dev, phys);
31 }
32 
dma_direct_to_page(struct device * dev,dma_addr_t dma_addr)33 static inline struct page *dma_direct_to_page(struct device *dev,
34 		dma_addr_t dma_addr)
35 {
36 	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38 
dma_direct_get_required_mask(struct device * dev)39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41 	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 	u64 max_dma = phys_to_dma_direct(dev, phys);
43 
44 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46 EXPORT_SYMBOL_GPL(dma_direct_get_required_mask);
47 
dma_direct_optimal_gfp_mask(struct device * dev,u64 dma_mask,u64 * phys_limit)48 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
49 				  u64 *phys_limit)
50 {
51 	u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
52 
53 	/*
54 	 * Optimistically try the zone that the physical address mask falls
55 	 * into first.  If that returns memory that isn't actually addressable
56 	 * we will fallback to the next lower zone and try again.
57 	 *
58 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
59 	 * zones.
60 	 */
61 	*phys_limit = dma_to_phys(dev, dma_limit);
62 	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
63 		return GFP_DMA;
64 	if (*phys_limit <= DMA_BIT_MASK(32) &&
65 		!zone_dma32_are_empty())
66 		return GFP_DMA32;
67 	return 0;
68 }
69 
dma_coherent_ok(struct device * dev,phys_addr_t phys,size_t size)70 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
71 {
72 	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
73 
74 	if (dma_addr == DMA_MAPPING_ERROR)
75 		return false;
76 	return dma_addr + size - 1 <=
77 		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
78 }
79 
__dma_direct_free_pages(struct device * dev,struct page * page,size_t size)80 static void __dma_direct_free_pages(struct device *dev, struct page *page,
81 				    size_t size)
82 {
83 	if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
84 	    swiotlb_free(dev, page, size))
85 		return;
86 	dma_free_contiguous(dev, page, size);
87 }
88 
__dma_direct_alloc_pages(struct device * dev,size_t size,gfp_t gfp)89 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
90 		gfp_t gfp)
91 {
92 	int node = dev_to_node(dev);
93 	struct page *page = NULL;
94 	u64 phys_limit;
95 
96 	WARN_ON_ONCE(!PAGE_ALIGNED(size));
97 
98 	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
99 					   &phys_limit);
100 	if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
101 	    is_swiotlb_for_alloc(dev)) {
102 		page = swiotlb_alloc(dev, size);
103 		if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
104 			__dma_direct_free_pages(dev, page, size);
105 			return NULL;
106 		}
107 		return page;
108 	}
109 
110 	page = dma_alloc_contiguous(dev, size, gfp);
111 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
112 		dma_free_contiguous(dev, page, size);
113 		page = NULL;
114 	}
115 again:
116 	if (!page)
117 		page = alloc_pages_node(node, gfp, get_order(size));
118 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
119 		dma_free_contiguous(dev, page, size);
120 		page = NULL;
121 
122 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
123 		    phys_limit < DMA_BIT_MASK(64) &&
124 		    !(gfp & (GFP_DMA32 | GFP_DMA)) &&
125 		    !zone_dma32_are_empty()) {
126 			gfp |= GFP_DMA32;
127 			goto again;
128 		}
129 
130 		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
131 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
132 			goto again;
133 		}
134 	}
135 
136 	return page;
137 }
138 
dma_direct_alloc_from_pool(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)139 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
140 		dma_addr_t *dma_handle, gfp_t gfp)
141 {
142 	struct page *page;
143 	u64 phys_mask;
144 	void *ret;
145 
146 	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
147 					   &phys_mask);
148 	page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
149 	if (!page)
150 		return NULL;
151 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
152 	return ret;
153 }
154 
dma_direct_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)155 void *dma_direct_alloc(struct device *dev, size_t size,
156 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
157 {
158 	struct page *page;
159 	void *ret;
160 	int err;
161 
162 	size = PAGE_ALIGN(size);
163 	if (attrs & DMA_ATTR_NO_WARN)
164 		gfp |= __GFP_NOWARN;
165 
166 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
167 	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
168 		page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
169 		if (!page)
170 			return NULL;
171 		/* remove any dirty cache lines on the kernel alias */
172 		if (!PageHighMem(page))
173 			arch_dma_prep_coherent(page, size);
174 		*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
175 		/* return the page pointer as the opaque cookie */
176 		return page;
177 	}
178 
179 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
180 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev) &&
181 	    !is_swiotlb_for_alloc(dev))
182 		return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
183 
184 	/*
185 	 * Remapping or decrypting memory may block. If either is required and
186 	 * we can't block, allocate the memory from the atomic pools.
187 	 * If restricted DMA (i.e., is_swiotlb_for_alloc) is required, one must
188 	 * set up another device coherent pool by shared-dma-pool and use
189 	 * dma_alloc_from_dev_coherent instead.
190 	 */
191 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
192 	    !gfpflags_allow_blocking(gfp) &&
193 	    (force_dma_unencrypted(dev) ||
194 	     (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
195 	      !dev_is_dma_coherent(dev))) &&
196 	    !is_swiotlb_for_alloc(dev))
197 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
198 
199 	/* we always manually zero the memory once we are done */
200 	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
201 	if (!page)
202 		return NULL;
203 
204 	if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
205 	     !dev_is_dma_coherent(dev)) ||
206 	    (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
207 		/* remove any dirty cache lines on the kernel alias */
208 		arch_dma_prep_coherent(page, size);
209 
210 		/* create a coherent mapping */
211 		ret = dma_common_contiguous_remap(page, size,
212 				dma_pgprot(dev, PAGE_KERNEL, attrs),
213 				__builtin_return_address(0));
214 		if (!ret)
215 			goto out_free_pages;
216 		if (force_dma_unencrypted(dev)) {
217 			err = set_memory_decrypted((unsigned long)ret,
218 						   PFN_UP(size));
219 			if (err)
220 				goto out_free_pages;
221 		}
222 		memset(ret, 0, size);
223 		goto done;
224 	}
225 
226 	if (PageHighMem(page)) {
227 		/*
228 		 * Depending on the cma= arguments and per-arch setup
229 		 * dma_alloc_contiguous could return highmem pages.
230 		 * Without remapping there is no way to return them here,
231 		 * so log an error and fail.
232 		 */
233 		dev_info(dev, "Rejecting highmem page from CMA.\n");
234 		goto out_free_pages;
235 	}
236 
237 	ret = page_address(page);
238 	if (force_dma_unencrypted(dev)) {
239 		err = set_memory_decrypted((unsigned long)ret,
240 					   PFN_UP(size));
241 		if (err)
242 			goto out_free_pages;
243 	}
244 
245 	memset(ret, 0, size);
246 
247 	if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
248 	    !dev_is_dma_coherent(dev)) {
249 		arch_dma_prep_coherent(page, size);
250 		ret = arch_dma_set_uncached(ret, size);
251 		if (IS_ERR(ret))
252 			goto out_encrypt_pages;
253 	}
254 done:
255 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
256 	return ret;
257 
258 out_encrypt_pages:
259 	if (force_dma_unencrypted(dev)) {
260 		err = set_memory_encrypted((unsigned long)page_address(page),
261 					   PFN_UP(size));
262 		/* If memory cannot be re-encrypted, it must be leaked */
263 		if (err)
264 			return NULL;
265 	}
266 out_free_pages:
267 	__dma_direct_free_pages(dev, page, size);
268 	return NULL;
269 }
270 
dma_direct_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_addr,unsigned long attrs)271 void dma_direct_free(struct device *dev, size_t size,
272 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
273 {
274 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
275 	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
276 		/* cpu_addr is a struct page cookie, not a kernel address */
277 		dma_free_contiguous(dev, cpu_addr, size);
278 		return;
279 	}
280 
281 	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
282 	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) && !dev_is_dma_coherent(dev) &&
283 	    !is_swiotlb_for_alloc(dev)) {
284 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
285 		return;
286 	}
287 
288 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
289 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
290 	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
291 		return;
292 
293 	if (force_dma_unencrypted(dev))
294 		set_memory_encrypted((unsigned long)cpu_addr, PFN_UP(size));
295 
296 	if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
297 		vunmap(cpu_addr);
298 	else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
299 		arch_dma_clear_uncached(cpu_addr, size);
300 
301 	__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
302 }
303 
dma_direct_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)304 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
305 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
306 {
307 	struct page *page;
308 	void *ret;
309 
310 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
311 	    force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp) &&
312 	    !is_swiotlb_for_alloc(dev))
313 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
314 
315 	page = __dma_direct_alloc_pages(dev, size, gfp);
316 	if (!page)
317 		return NULL;
318 	if (PageHighMem(page)) {
319 		/*
320 		 * Depending on the cma= arguments and per-arch setup
321 		 * dma_alloc_contiguous could return highmem pages.
322 		 * Without remapping there is no way to return them here,
323 		 * so log an error and fail.
324 		 */
325 		dev_info(dev, "Rejecting highmem page from CMA.\n");
326 		goto out_free_pages;
327 	}
328 
329 	ret = page_address(page);
330 	if (force_dma_unencrypted(dev)) {
331 		if (set_memory_decrypted((unsigned long)ret, PFN_UP(size)))
332 			goto out_free_pages;
333 	}
334 	memset(ret, 0, size);
335 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
336 	return page;
337 out_free_pages:
338 	__dma_direct_free_pages(dev, page, size);
339 	return NULL;
340 }
341 EXPORT_SYMBOL_GPL(dma_direct_alloc);
342 
dma_direct_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_addr,enum dma_data_direction dir)343 void dma_direct_free_pages(struct device *dev, size_t size,
344 		struct page *page, dma_addr_t dma_addr,
345 		enum dma_data_direction dir)
346 {
347 	void *vaddr = page_address(page);
348 
349 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
350 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
351 	    dma_free_from_pool(dev, vaddr, size))
352 		return;
353 
354 	if (force_dma_unencrypted(dev))
355 		set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
356 
357 	__dma_direct_free_pages(dev, page, size);
358 }
359 EXPORT_SYMBOL_GPL(dma_direct_free);
360 
361 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
362     defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)363 void dma_direct_sync_sg_for_device(struct device *dev,
364 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
365 {
366 	struct scatterlist *sg;
367 	int i;
368 
369 	for_each_sg(sgl, sg, nents, i) {
370 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
371 
372 		if (unlikely(is_swiotlb_buffer(dev, paddr)))
373 			swiotlb_sync_single_for_device(dev, paddr, sg->length,
374 						       dir);
375 
376 		if (!dev_is_dma_coherent(dev))
377 			arch_sync_dma_for_device(paddr, sg->length,
378 					dir);
379 	}
380 }
381 #endif
382 
383 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
384     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
385     defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)386 void dma_direct_sync_sg_for_cpu(struct device *dev,
387 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
388 {
389 	struct scatterlist *sg;
390 	int i;
391 
392 	for_each_sg(sgl, sg, nents, i) {
393 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
394 
395 		if (!dev_is_dma_coherent(dev))
396 			arch_sync_dma_for_cpu(paddr, sg->length, dir);
397 
398 		if (unlikely(is_swiotlb_buffer(dev, paddr)))
399 			swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
400 						    dir);
401 
402 		if (dir == DMA_FROM_DEVICE)
403 			arch_dma_mark_clean(paddr, sg->length);
404 	}
405 
406 	if (!dev_is_dma_coherent(dev))
407 		arch_sync_dma_for_cpu_all();
408 }
409 
dma_direct_unmap_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)410 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
411 		int nents, enum dma_data_direction dir, unsigned long attrs)
412 {
413 	struct scatterlist *sg;
414 	int i;
415 
416 	for_each_sg(sgl, sg, nents, i)
417 		dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
418 			     attrs);
419 }
420 #endif
421 
dma_direct_map_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)422 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
423 		enum dma_data_direction dir, unsigned long attrs)
424 {
425 	int i;
426 	struct scatterlist *sg;
427 
428 	for_each_sg(sgl, sg, nents, i) {
429 		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
430 				sg->offset, sg->length, dir, attrs);
431 		if (sg->dma_address == DMA_MAPPING_ERROR)
432 			goto out_unmap;
433 		sg_dma_len(sg) = sg->length;
434 	}
435 
436 	return nents;
437 
438 out_unmap:
439 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
440 	return 0;
441 }
442 
dma_direct_map_resource(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir,unsigned long attrs)443 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
444 		size_t size, enum dma_data_direction dir, unsigned long attrs)
445 {
446 	dma_addr_t dma_addr = paddr;
447 
448 	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
449 		dev_err_once(dev,
450 			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
451 			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
452 		WARN_ON_ONCE(1);
453 		return DMA_MAPPING_ERROR;
454 	}
455 
456 	return dma_addr;
457 }
458 
dma_direct_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)459 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
460 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
461 		unsigned long attrs)
462 {
463 	struct page *page = dma_direct_to_page(dev, dma_addr);
464 	int ret;
465 
466 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
467 	if (!ret)
468 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
469 	return ret;
470 }
471 
dma_direct_can_mmap(struct device * dev)472 bool dma_direct_can_mmap(struct device *dev)
473 {
474 	return dev_is_dma_coherent(dev) ||
475 		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
476 }
477 
dma_direct_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)478 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
479 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
480 		unsigned long attrs)
481 {
482 	unsigned long user_count = vma_pages(vma);
483 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
484 	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
485 	int ret = -ENXIO;
486 
487 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
488 
489 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
490 		return ret;
491 
492 	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
493 		return -ENXIO;
494 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
495 			user_count << PAGE_SHIFT, vma->vm_page_prot);
496 }
497 
dma_direct_supported(struct device * dev,u64 mask)498 int dma_direct_supported(struct device *dev, u64 mask)
499 {
500 	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
501 
502 	/*
503 	 * Because 32-bit DMA masks are so common we expect every architecture
504 	 * to be able to satisfy them - either by not supporting more physical
505 	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
506 	 * architecture needs to use an IOMMU instead of the direct mapping.
507 	 */
508 	if (mask >= DMA_BIT_MASK(32))
509 		return 1;
510 
511 	/*
512 	 * This check needs to be against the actual bit mask value, so use
513 	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
514 	 * part of the check.
515 	 */
516 	if (IS_ENABLED(CONFIG_ZONE_DMA))
517 		min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
518 	return mask >= phys_to_dma_unencrypted(dev, min_mask);
519 }
520 
dma_direct_max_mapping_size(struct device * dev)521 size_t dma_direct_max_mapping_size(struct device *dev)
522 {
523 	/* If SWIOTLB is active, use its maximum mapping size */
524 	if (is_swiotlb_active(dev) &&
525 	    (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
526 		return swiotlb_max_mapping_size(dev);
527 	return SIZE_MAX;
528 }
529 
dma_direct_need_sync(struct device * dev,dma_addr_t dma_addr)530 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
531 {
532 	return !dev_is_dma_coherent(dev) ||
533 	       is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
534 }
535 
536 /**
537  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
538  * @dev:	device pointer; needed to "own" the alloced memory.
539  * @cpu_start:  beginning of memory region covered by this offset.
540  * @dma_start:  beginning of DMA/PCI region covered by this offset.
541  * @size:	size of the region.
542  *
543  * This is for the simple case of a uniform offset which cannot
544  * be discovered by "dma-ranges".
545  *
546  * It returns -ENOMEM if out of memory, -EINVAL if a map
547  * already exists, 0 otherwise.
548  *
549  * Note: any call to this from a driver is a bug.  The mapping needs
550  * to be described by the device tree or other firmware interfaces.
551  */
dma_direct_set_offset(struct device * dev,phys_addr_t cpu_start,dma_addr_t dma_start,u64 size)552 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
553 			 dma_addr_t dma_start, u64 size)
554 {
555 	struct bus_dma_region *map;
556 	u64 offset = (u64)cpu_start - (u64)dma_start;
557 
558 	if (dev->dma_range_map) {
559 		dev_err(dev, "attempt to add DMA range to existing map\n");
560 		return -EINVAL;
561 	}
562 
563 	if (!offset)
564 		return 0;
565 
566 	map = kcalloc(2, sizeof(*map), GFP_KERNEL);
567 	if (!map)
568 		return -ENOMEM;
569 	map[0].cpu_start = cpu_start;
570 	map[0].dma_start = dma_start;
571 	map[0].offset = offset;
572 	map[0].size = size;
573 	dev->dma_range_map = map;
574 	return 0;
575 }
576 EXPORT_SYMBOL_GPL(dma_direct_set_offset);
577