• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/sysfs.h>
68 
69 #include <linux/uaccess.h>
70 #include <asm/unistd.h>
71 #include <asm/mmu_context.h>
72 #include <trace/hooks/mm.h>
73 
74 /*
75  * The default value should be high enough to not crash a system that randomly
76  * crashes its kernel from time to time, but low enough to at least not permit
77  * overflowing 32-bit refcounts or the ldsem writer count.
78  */
79 static unsigned int oops_limit = 10000;
80 
81 #ifdef CONFIG_SYSCTL
82 static struct ctl_table kern_exit_table[] = {
83 	{
84 		.procname       = "oops_limit",
85 		.data           = &oops_limit,
86 		.maxlen         = sizeof(oops_limit),
87 		.mode           = 0644,
88 		.proc_handler   = proc_douintvec,
89 	},
90 	{ }
91 };
92 
kernel_exit_sysctls_init(void)93 static __init int kernel_exit_sysctls_init(void)
94 {
95 	register_sysctl_init("kernel", kern_exit_table);
96 	return 0;
97 }
98 late_initcall(kernel_exit_sysctls_init);
99 #endif
100 
101 static atomic_t oops_count = ATOMIC_INIT(0);
102 
103 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)104 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
105 			       char *page)
106 {
107 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
108 }
109 
110 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
111 
kernel_exit_sysfs_init(void)112 static __init int kernel_exit_sysfs_init(void)
113 {
114 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
115 	return 0;
116 }
117 late_initcall(kernel_exit_sysfs_init);
118 #endif
119 
__unhash_process(struct task_struct * p,bool group_dead)120 static void __unhash_process(struct task_struct *p, bool group_dead)
121 {
122 	nr_threads--;
123 	detach_pid(p, PIDTYPE_PID);
124 	if (group_dead) {
125 		detach_pid(p, PIDTYPE_TGID);
126 		detach_pid(p, PIDTYPE_PGID);
127 		detach_pid(p, PIDTYPE_SID);
128 
129 		list_del_rcu(&p->tasks);
130 		list_del_init(&p->sibling);
131 		__this_cpu_dec(process_counts);
132 	}
133 	list_del_rcu(&p->thread_group);
134 	list_del_rcu(&p->thread_node);
135 }
136 
137 /*
138  * This function expects the tasklist_lock write-locked.
139  */
__exit_signal(struct task_struct * tsk)140 static void __exit_signal(struct task_struct *tsk)
141 {
142 	struct signal_struct *sig = tsk->signal;
143 	bool group_dead = thread_group_leader(tsk);
144 	struct sighand_struct *sighand;
145 	struct tty_struct *tty;
146 	u64 utime, stime;
147 
148 	sighand = rcu_dereference_check(tsk->sighand,
149 					lockdep_tasklist_lock_is_held());
150 	spin_lock(&sighand->siglock);
151 
152 #ifdef CONFIG_POSIX_TIMERS
153 	posix_cpu_timers_exit(tsk);
154 	if (group_dead)
155 		posix_cpu_timers_exit_group(tsk);
156 #endif
157 
158 	if (group_dead) {
159 		tty = sig->tty;
160 		sig->tty = NULL;
161 	} else {
162 		/*
163 		 * If there is any task waiting for the group exit
164 		 * then notify it:
165 		 */
166 		if (sig->notify_count > 0 && !--sig->notify_count)
167 			wake_up_process(sig->group_exit_task);
168 
169 		if (tsk == sig->curr_target)
170 			sig->curr_target = next_thread(tsk);
171 	}
172 
173 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
174 			      sizeof(unsigned long long));
175 
176 	/*
177 	 * Accumulate here the counters for all threads as they die. We could
178 	 * skip the group leader because it is the last user of signal_struct,
179 	 * but we want to avoid the race with thread_group_cputime() which can
180 	 * see the empty ->thread_head list.
181 	 */
182 	task_cputime(tsk, &utime, &stime);
183 	write_seqlock(&sig->stats_lock);
184 	sig->utime += utime;
185 	sig->stime += stime;
186 	sig->gtime += task_gtime(tsk);
187 	sig->min_flt += tsk->min_flt;
188 	sig->maj_flt += tsk->maj_flt;
189 	sig->nvcsw += tsk->nvcsw;
190 	sig->nivcsw += tsk->nivcsw;
191 	sig->inblock += task_io_get_inblock(tsk);
192 	sig->oublock += task_io_get_oublock(tsk);
193 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
194 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
195 	sig->nr_threads--;
196 	__unhash_process(tsk, group_dead);
197 	write_sequnlock(&sig->stats_lock);
198 
199 	/*
200 	 * Do this under ->siglock, we can race with another thread
201 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
202 	 */
203 	flush_sigqueue(&tsk->pending);
204 	tsk->sighand = NULL;
205 	spin_unlock(&sighand->siglock);
206 
207 	__cleanup_sighand(sighand);
208 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
209 	if (group_dead) {
210 		flush_sigqueue(&sig->shared_pending);
211 		tty_kref_put(tty);
212 	}
213 }
214 
delayed_put_task_struct(struct rcu_head * rhp)215 static void delayed_put_task_struct(struct rcu_head *rhp)
216 {
217 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
218 
219 	perf_event_delayed_put(tsk);
220 	trace_sched_process_free(tsk);
221 	put_task_struct(tsk);
222 }
223 
put_task_struct_rcu_user(struct task_struct * task)224 void put_task_struct_rcu_user(struct task_struct *task)
225 {
226 	if (refcount_dec_and_test(&task->rcu_users))
227 		call_rcu(&task->rcu, delayed_put_task_struct);
228 }
229 
release_task(struct task_struct * p)230 void release_task(struct task_struct *p)
231 {
232 	struct task_struct *leader;
233 	struct pid *thread_pid;
234 	int zap_leader;
235 repeat:
236 	/* don't need to get the RCU readlock here - the process is dead and
237 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
238 	rcu_read_lock();
239 	atomic_dec(&__task_cred(p)->user->processes);
240 	rcu_read_unlock();
241 
242 	cgroup_release(p);
243 
244 	write_lock_irq(&tasklist_lock);
245 	ptrace_release_task(p);
246 	thread_pid = get_pid(p->thread_pid);
247 	__exit_signal(p);
248 
249 	/*
250 	 * If we are the last non-leader member of the thread
251 	 * group, and the leader is zombie, then notify the
252 	 * group leader's parent process. (if it wants notification.)
253 	 */
254 	zap_leader = 0;
255 	leader = p->group_leader;
256 	if (leader != p && thread_group_empty(leader)
257 			&& leader->exit_state == EXIT_ZOMBIE) {
258 		/*
259 		 * If we were the last child thread and the leader has
260 		 * exited already, and the leader's parent ignores SIGCHLD,
261 		 * then we are the one who should release the leader.
262 		 */
263 		zap_leader = do_notify_parent(leader, leader->exit_signal);
264 		if (zap_leader)
265 			leader->exit_state = EXIT_DEAD;
266 	}
267 
268 	write_unlock_irq(&tasklist_lock);
269 	seccomp_filter_release(p);
270 	proc_flush_pid(thread_pid);
271 	put_pid(thread_pid);
272 	release_thread(p);
273 	put_task_struct_rcu_user(p);
274 
275 	p = leader;
276 	if (unlikely(zap_leader))
277 		goto repeat;
278 }
279 
rcuwait_wake_up(struct rcuwait * w)280 int rcuwait_wake_up(struct rcuwait *w)
281 {
282 	int ret = 0;
283 	struct task_struct *task;
284 
285 	rcu_read_lock();
286 
287 	/*
288 	 * Order condition vs @task, such that everything prior to the load
289 	 * of @task is visible. This is the condition as to why the user called
290 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
291 	 * barrier (A) in rcuwait_wait_event().
292 	 *
293 	 *    WAIT                WAKE
294 	 *    [S] tsk = current	  [S] cond = true
295 	 *        MB (A)	      MB (B)
296 	 *    [L] cond		  [L] tsk
297 	 */
298 	smp_mb(); /* (B) */
299 
300 	task = rcu_dereference(w->task);
301 	if (task)
302 		ret = wake_up_process(task);
303 	rcu_read_unlock();
304 
305 	return ret;
306 }
307 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
308 
309 /*
310  * Determine if a process group is "orphaned", according to the POSIX
311  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
312  * by terminal-generated stop signals.  Newly orphaned process groups are
313  * to receive a SIGHUP and a SIGCONT.
314  *
315  * "I ask you, have you ever known what it is to be an orphan?"
316  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)317 static int will_become_orphaned_pgrp(struct pid *pgrp,
318 					struct task_struct *ignored_task)
319 {
320 	struct task_struct *p;
321 
322 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
323 		if ((p == ignored_task) ||
324 		    (p->exit_state && thread_group_empty(p)) ||
325 		    is_global_init(p->real_parent))
326 			continue;
327 
328 		if (task_pgrp(p->real_parent) != pgrp &&
329 		    task_session(p->real_parent) == task_session(p))
330 			return 0;
331 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
332 
333 	return 1;
334 }
335 
is_current_pgrp_orphaned(void)336 int is_current_pgrp_orphaned(void)
337 {
338 	int retval;
339 
340 	read_lock(&tasklist_lock);
341 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
342 	read_unlock(&tasklist_lock);
343 
344 	return retval;
345 }
346 
has_stopped_jobs(struct pid * pgrp)347 static bool has_stopped_jobs(struct pid *pgrp)
348 {
349 	struct task_struct *p;
350 
351 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
352 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
353 			return true;
354 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
355 
356 	return false;
357 }
358 
359 /*
360  * Check to see if any process groups have become orphaned as
361  * a result of our exiting, and if they have any stopped jobs,
362  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
363  */
364 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)365 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
366 {
367 	struct pid *pgrp = task_pgrp(tsk);
368 	struct task_struct *ignored_task = tsk;
369 
370 	if (!parent)
371 		/* exit: our father is in a different pgrp than
372 		 * we are and we were the only connection outside.
373 		 */
374 		parent = tsk->real_parent;
375 	else
376 		/* reparent: our child is in a different pgrp than
377 		 * we are, and it was the only connection outside.
378 		 */
379 		ignored_task = NULL;
380 
381 	if (task_pgrp(parent) != pgrp &&
382 	    task_session(parent) == task_session(tsk) &&
383 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
384 	    has_stopped_jobs(pgrp)) {
385 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
386 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
387 	}
388 }
389 
390 #ifdef CONFIG_MEMCG
391 /*
392  * A task is exiting.   If it owned this mm, find a new owner for the mm.
393  */
mm_update_next_owner(struct mm_struct * mm)394 void mm_update_next_owner(struct mm_struct *mm)
395 {
396 	struct task_struct *c, *g, *p = current;
397 
398 retry:
399 	/*
400 	 * If the exiting or execing task is not the owner, it's
401 	 * someone else's problem.
402 	 */
403 	if (mm->owner != p)
404 		return;
405 	/*
406 	 * The current owner is exiting/execing and there are no other
407 	 * candidates.  Do not leave the mm pointing to a possibly
408 	 * freed task structure.
409 	 */
410 	if (atomic_read(&mm->mm_users) <= 1) {
411 		WRITE_ONCE(mm->owner, NULL);
412 		return;
413 	}
414 
415 	read_lock(&tasklist_lock);
416 	/*
417 	 * Search in the children
418 	 */
419 	list_for_each_entry(c, &p->children, sibling) {
420 		if (c->mm == mm)
421 			goto assign_new_owner;
422 	}
423 
424 	/*
425 	 * Search in the siblings
426 	 */
427 	list_for_each_entry(c, &p->real_parent->children, sibling) {
428 		if (c->mm == mm)
429 			goto assign_new_owner;
430 	}
431 
432 	/*
433 	 * Search through everything else, we should not get here often.
434 	 */
435 	for_each_process(g) {
436 		if (g->flags & PF_KTHREAD)
437 			continue;
438 		for_each_thread(g, c) {
439 			if (c->mm == mm)
440 				goto assign_new_owner;
441 			if (c->mm)
442 				break;
443 		}
444 	}
445 	read_unlock(&tasklist_lock);
446 	/*
447 	 * We found no owner yet mm_users > 1: this implies that we are
448 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
449 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
450 	 */
451 	WRITE_ONCE(mm->owner, NULL);
452 	return;
453 
454 assign_new_owner:
455 	BUG_ON(c == p);
456 	get_task_struct(c);
457 	/*
458 	 * The task_lock protects c->mm from changing.
459 	 * We always want mm->owner->mm == mm
460 	 */
461 	task_lock(c);
462 	/*
463 	 * Delay read_unlock() till we have the task_lock()
464 	 * to ensure that c does not slip away underneath us
465 	 */
466 	read_unlock(&tasklist_lock);
467 	if (c->mm != mm) {
468 		task_unlock(c);
469 		put_task_struct(c);
470 		goto retry;
471 	}
472 	WRITE_ONCE(mm->owner, c);
473 	lru_gen_migrate_mm(mm);
474 	task_unlock(c);
475 	put_task_struct(c);
476 }
477 #endif /* CONFIG_MEMCG */
478 
479 /*
480  * Turn us into a lazy TLB process if we
481  * aren't already..
482  */
exit_mm(void)483 static void exit_mm(void)
484 {
485 	struct mm_struct *mm = current->mm;
486 	struct core_state *core_state;
487 
488 	exit_mm_release(current, mm);
489 	if (!mm)
490 		return;
491 	sync_mm_rss(mm);
492 	/*
493 	 * Serialize with any possible pending coredump.
494 	 * We must hold mmap_lock around checking core_state
495 	 * and clearing tsk->mm.  The core-inducing thread
496 	 * will increment ->nr_threads for each thread in the
497 	 * group with ->mm != NULL.
498 	 */
499 	mmap_read_lock(mm);
500 	core_state = mm->core_state;
501 	if (core_state) {
502 		struct core_thread self;
503 
504 		mmap_read_unlock(mm);
505 
506 		self.task = current;
507 		if (self.task->flags & PF_SIGNALED)
508 			self.next = xchg(&core_state->dumper.next, &self);
509 		else
510 			self.task = NULL;
511 		/*
512 		 * Implies mb(), the result of xchg() must be visible
513 		 * to core_state->dumper.
514 		 */
515 		if (atomic_dec_and_test(&core_state->nr_threads))
516 			complete(&core_state->startup);
517 
518 		for (;;) {
519 			set_current_state(TASK_UNINTERRUPTIBLE);
520 			if (!self.task) /* see coredump_finish() */
521 				break;
522 			freezable_schedule();
523 		}
524 		__set_current_state(TASK_RUNNING);
525 		mmap_read_lock(mm);
526 	}
527 	mmgrab(mm);
528 	BUG_ON(mm != current->active_mm);
529 	/* more a memory barrier than a real lock */
530 	task_lock(current);
531 	current->mm = NULL;
532 	mmap_read_unlock(mm);
533 	enter_lazy_tlb(mm, current);
534 	task_unlock(current);
535 	mm_update_next_owner(mm);
536 	trace_android_vh_exit_mm(mm);
537 	mmput(mm);
538 	if (test_thread_flag(TIF_MEMDIE))
539 		exit_oom_victim();
540 }
541 
find_alive_thread(struct task_struct * p)542 static struct task_struct *find_alive_thread(struct task_struct *p)
543 {
544 	struct task_struct *t;
545 
546 	for_each_thread(p, t) {
547 		if (!(t->flags & PF_EXITING))
548 			return t;
549 	}
550 	return NULL;
551 }
552 
find_child_reaper(struct task_struct * father,struct list_head * dead)553 static struct task_struct *find_child_reaper(struct task_struct *father,
554 						struct list_head *dead)
555 	__releases(&tasklist_lock)
556 	__acquires(&tasklist_lock)
557 {
558 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
559 	struct task_struct *reaper = pid_ns->child_reaper;
560 	struct task_struct *p, *n;
561 
562 	if (likely(reaper != father))
563 		return reaper;
564 
565 	reaper = find_alive_thread(father);
566 	if (reaper) {
567 		pid_ns->child_reaper = reaper;
568 		return reaper;
569 	}
570 
571 	write_unlock_irq(&tasklist_lock);
572 
573 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
574 		list_del_init(&p->ptrace_entry);
575 		release_task(p);
576 	}
577 
578 	zap_pid_ns_processes(pid_ns);
579 	write_lock_irq(&tasklist_lock);
580 
581 	return father;
582 }
583 
584 /*
585  * When we die, we re-parent all our children, and try to:
586  * 1. give them to another thread in our thread group, if such a member exists
587  * 2. give it to the first ancestor process which prctl'd itself as a
588  *    child_subreaper for its children (like a service manager)
589  * 3. give it to the init process (PID 1) in our pid namespace
590  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)591 static struct task_struct *find_new_reaper(struct task_struct *father,
592 					   struct task_struct *child_reaper)
593 {
594 	struct task_struct *thread, *reaper;
595 
596 	thread = find_alive_thread(father);
597 	if (thread)
598 		return thread;
599 
600 	if (father->signal->has_child_subreaper) {
601 		unsigned int ns_level = task_pid(father)->level;
602 		/*
603 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
604 		 * We can't check reaper != child_reaper to ensure we do not
605 		 * cross the namespaces, the exiting parent could be injected
606 		 * by setns() + fork().
607 		 * We check pid->level, this is slightly more efficient than
608 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
609 		 */
610 		for (reaper = father->real_parent;
611 		     task_pid(reaper)->level == ns_level;
612 		     reaper = reaper->real_parent) {
613 			if (reaper == &init_task)
614 				break;
615 			if (!reaper->signal->is_child_subreaper)
616 				continue;
617 			thread = find_alive_thread(reaper);
618 			if (thread)
619 				return thread;
620 		}
621 	}
622 
623 	return child_reaper;
624 }
625 
626 /*
627 * Any that need to be release_task'd are put on the @dead list.
628  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)629 static void reparent_leader(struct task_struct *father, struct task_struct *p,
630 				struct list_head *dead)
631 {
632 	if (unlikely(p->exit_state == EXIT_DEAD))
633 		return;
634 
635 	/* We don't want people slaying init. */
636 	p->exit_signal = SIGCHLD;
637 
638 	/* If it has exited notify the new parent about this child's death. */
639 	if (!p->ptrace &&
640 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
641 		if (do_notify_parent(p, p->exit_signal)) {
642 			p->exit_state = EXIT_DEAD;
643 			list_add(&p->ptrace_entry, dead);
644 		}
645 	}
646 
647 	kill_orphaned_pgrp(p, father);
648 }
649 
650 /*
651  * This does two things:
652  *
653  * A.  Make init inherit all the child processes
654  * B.  Check to see if any process groups have become orphaned
655  *	as a result of our exiting, and if they have any stopped
656  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
657  */
forget_original_parent(struct task_struct * father,struct list_head * dead)658 static void forget_original_parent(struct task_struct *father,
659 					struct list_head *dead)
660 {
661 	struct task_struct *p, *t, *reaper;
662 
663 	if (unlikely(!list_empty(&father->ptraced)))
664 		exit_ptrace(father, dead);
665 
666 	/* Can drop and reacquire tasklist_lock */
667 	reaper = find_child_reaper(father, dead);
668 	if (list_empty(&father->children))
669 		return;
670 
671 	reaper = find_new_reaper(father, reaper);
672 	list_for_each_entry(p, &father->children, sibling) {
673 		for_each_thread(p, t) {
674 			RCU_INIT_POINTER(t->real_parent, reaper);
675 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
676 			if (likely(!t->ptrace))
677 				t->parent = t->real_parent;
678 			if (t->pdeath_signal)
679 				group_send_sig_info(t->pdeath_signal,
680 						    SEND_SIG_NOINFO, t,
681 						    PIDTYPE_TGID);
682 		}
683 		/*
684 		 * If this is a threaded reparent there is no need to
685 		 * notify anyone anything has happened.
686 		 */
687 		if (!same_thread_group(reaper, father))
688 			reparent_leader(father, p, dead);
689 	}
690 	list_splice_tail_init(&father->children, &reaper->children);
691 }
692 
693 /*
694  * Send signals to all our closest relatives so that they know
695  * to properly mourn us..
696  */
exit_notify(struct task_struct * tsk,int group_dead)697 static void exit_notify(struct task_struct *tsk, int group_dead)
698 {
699 	bool autoreap;
700 	struct task_struct *p, *n;
701 	LIST_HEAD(dead);
702 
703 	write_lock_irq(&tasklist_lock);
704 	forget_original_parent(tsk, &dead);
705 
706 	if (group_dead)
707 		kill_orphaned_pgrp(tsk->group_leader, NULL);
708 
709 	tsk->exit_state = EXIT_ZOMBIE;
710 	if (unlikely(tsk->ptrace)) {
711 		int sig = thread_group_leader(tsk) &&
712 				thread_group_empty(tsk) &&
713 				!ptrace_reparented(tsk) ?
714 			tsk->exit_signal : SIGCHLD;
715 		autoreap = do_notify_parent(tsk, sig);
716 	} else if (thread_group_leader(tsk)) {
717 		autoreap = thread_group_empty(tsk) &&
718 			do_notify_parent(tsk, tsk->exit_signal);
719 	} else {
720 		autoreap = true;
721 	}
722 
723 	if (autoreap) {
724 		tsk->exit_state = EXIT_DEAD;
725 		list_add(&tsk->ptrace_entry, &dead);
726 	}
727 
728 	/* mt-exec, de_thread() is waiting for group leader */
729 	if (unlikely(tsk->signal->notify_count < 0))
730 		wake_up_process(tsk->signal->group_exit_task);
731 	write_unlock_irq(&tasklist_lock);
732 
733 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
734 		list_del_init(&p->ptrace_entry);
735 		release_task(p);
736 	}
737 }
738 
739 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)740 static void check_stack_usage(void)
741 {
742 	static DEFINE_SPINLOCK(low_water_lock);
743 	static int lowest_to_date = THREAD_SIZE;
744 	unsigned long free;
745 
746 	free = stack_not_used(current);
747 
748 	if (free >= lowest_to_date)
749 		return;
750 
751 	spin_lock(&low_water_lock);
752 	if (free < lowest_to_date) {
753 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
754 			current->comm, task_pid_nr(current), free);
755 		lowest_to_date = free;
756 	}
757 	spin_unlock(&low_water_lock);
758 }
759 #else
check_stack_usage(void)760 static inline void check_stack_usage(void) {}
761 #endif
762 
do_exit(long code)763 void __noreturn do_exit(long code)
764 {
765 	struct task_struct *tsk = current;
766 	int group_dead;
767 
768 	/*
769 	 * We can get here from a kernel oops, sometimes with preemption off.
770 	 * Start by checking for critical errors.
771 	 * Then fix up important state like USER_DS and preemption.
772 	 * Then do everything else.
773 	 */
774 
775 	WARN_ON(blk_needs_flush_plug(tsk));
776 
777 	if (unlikely(in_interrupt()))
778 		panic("Aiee, killing interrupt handler!");
779 	if (unlikely(!tsk->pid))
780 		panic("Attempted to kill the idle task!");
781 
782 	/*
783 	 * If do_exit is called because this processes oopsed, it's possible
784 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
785 	 * continuing. Amongst other possible reasons, this is to prevent
786 	 * mm_release()->clear_child_tid() from writing to a user-controlled
787 	 * kernel address.
788 	 */
789 	force_uaccess_begin();
790 
791 	if (unlikely(in_atomic())) {
792 		pr_info("note: %s[%d] exited with preempt_count %d\n",
793 			current->comm, task_pid_nr(current),
794 			preempt_count());
795 		preempt_count_set(PREEMPT_ENABLED);
796 	}
797 
798 	profile_task_exit(tsk);
799 	kcov_task_exit(tsk);
800 
801 	ptrace_event(PTRACE_EVENT_EXIT, code);
802 
803 	validate_creds_for_do_exit(tsk);
804 
805 	/*
806 	 * We're taking recursive faults here in do_exit. Safest is to just
807 	 * leave this task alone and wait for reboot.
808 	 */
809 	if (unlikely(tsk->flags & PF_EXITING)) {
810 		pr_alert("Fixing recursive fault but reboot is needed!\n");
811 		futex_exit_recursive(tsk);
812 		set_current_state(TASK_UNINTERRUPTIBLE);
813 		schedule();
814 	}
815 
816 	io_uring_files_cancel();
817 	exit_signals(tsk);  /* sets PF_EXITING */
818 
819 	/* sync mm's RSS info before statistics gathering */
820 	if (tsk->mm)
821 		sync_mm_rss(tsk->mm);
822 	acct_update_integrals(tsk);
823 	group_dead = atomic_dec_and_test(&tsk->signal->live);
824 	if (group_dead) {
825 		/*
826 		 * If the last thread of global init has exited, panic
827 		 * immediately to get a useable coredump.
828 		 */
829 		if (unlikely(is_global_init(tsk)))
830 			panic("Attempted to kill init! exitcode=0x%08x\n",
831 				tsk->signal->group_exit_code ?: (int)code);
832 
833 #ifdef CONFIG_POSIX_TIMERS
834 		hrtimer_cancel(&tsk->signal->real_timer);
835 		exit_itimers(tsk);
836 #endif
837 		if (tsk->mm)
838 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
839 	}
840 	acct_collect(code, group_dead);
841 	if (group_dead)
842 		tty_audit_exit();
843 	audit_free(tsk);
844 
845 	tsk->exit_code = code;
846 	taskstats_exit(tsk, group_dead);
847 
848 	exit_mm();
849 
850 	if (group_dead)
851 		acct_process();
852 	trace_sched_process_exit(tsk);
853 
854 	exit_sem(tsk);
855 	exit_shm(tsk);
856 	exit_files(tsk);
857 	exit_fs(tsk);
858 	if (group_dead)
859 		disassociate_ctty(1);
860 	exit_task_namespaces(tsk);
861 	exit_task_work(tsk);
862 	exit_thread(tsk);
863 
864 	/*
865 	 * Flush inherited counters to the parent - before the parent
866 	 * gets woken up by child-exit notifications.
867 	 *
868 	 * because of cgroup mode, must be called before cgroup_exit()
869 	 */
870 	perf_event_exit_task(tsk);
871 
872 	sched_autogroup_exit_task(tsk);
873 	cgroup_exit(tsk);
874 
875 	/*
876 	 * FIXME: do that only when needed, using sched_exit tracepoint
877 	 */
878 	flush_ptrace_hw_breakpoint(tsk);
879 
880 	exit_tasks_rcu_start();
881 	exit_notify(tsk, group_dead);
882 	proc_exit_connector(tsk);
883 	mpol_put_task_policy(tsk);
884 #ifdef CONFIG_FUTEX
885 	if (unlikely(current->pi_state_cache))
886 		kfree(current->pi_state_cache);
887 #endif
888 	/*
889 	 * Make sure we are holding no locks:
890 	 */
891 	debug_check_no_locks_held();
892 
893 	if (tsk->io_context)
894 		exit_io_context(tsk);
895 
896 	if (tsk->splice_pipe)
897 		free_pipe_info(tsk->splice_pipe);
898 
899 	if (tsk->task_frag.page)
900 		put_page(tsk->task_frag.page);
901 
902 	validate_creds_for_do_exit(tsk);
903 
904 	check_stack_usage();
905 	preempt_disable();
906 	if (tsk->nr_dirtied)
907 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
908 	exit_rcu();
909 	exit_tasks_rcu_finish();
910 
911 	lockdep_free_task(tsk);
912 	do_task_dead();
913 }
914 EXPORT_SYMBOL_GPL(do_exit);
915 
make_task_dead(int signr)916 void __noreturn make_task_dead(int signr)
917 {
918 	/*
919 	 * Take the task off the cpu after something catastrophic has
920 	 * happened.
921 	 */
922 	unsigned int limit;
923 
924 	/*
925 	 * Every time the system oopses, if the oops happens while a reference
926 	 * to an object was held, the reference leaks.
927 	 * If the oops doesn't also leak memory, repeated oopsing can cause
928 	 * reference counters to wrap around (if they're not using refcount_t).
929 	 * This means that repeated oopsing can make unexploitable-looking bugs
930 	 * exploitable through repeated oopsing.
931 	 * To make sure this can't happen, place an upper bound on how often the
932 	 * kernel may oops without panic().
933 	 */
934 	limit = READ_ONCE(oops_limit);
935 	if (atomic_inc_return(&oops_count) >= limit && limit)
936 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
937 
938 	do_exit(signr);
939 }
940 
complete_and_exit(struct completion * comp,long code)941 void complete_and_exit(struct completion *comp, long code)
942 {
943 	if (comp)
944 		complete(comp);
945 
946 	do_exit(code);
947 }
948 EXPORT_SYMBOL(complete_and_exit);
949 
SYSCALL_DEFINE1(exit,int,error_code)950 SYSCALL_DEFINE1(exit, int, error_code)
951 {
952 	do_exit((error_code&0xff)<<8);
953 }
954 
955 /*
956  * Take down every thread in the group.  This is called by fatal signals
957  * as well as by sys_exit_group (below).
958  */
959 void
do_group_exit(int exit_code)960 do_group_exit(int exit_code)
961 {
962 	struct signal_struct *sig = current->signal;
963 
964 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
965 
966 	if (signal_group_exit(sig))
967 		exit_code = sig->group_exit_code;
968 	else if (!thread_group_empty(current)) {
969 		struct sighand_struct *const sighand = current->sighand;
970 
971 		spin_lock_irq(&sighand->siglock);
972 		if (signal_group_exit(sig))
973 			/* Another thread got here before we took the lock.  */
974 			exit_code = sig->group_exit_code;
975 		else {
976 			sig->group_exit_code = exit_code;
977 			sig->flags = SIGNAL_GROUP_EXIT;
978 			zap_other_threads(current);
979 		}
980 		spin_unlock_irq(&sighand->siglock);
981 	}
982 
983 	do_exit(exit_code);
984 	/* NOTREACHED */
985 }
986 
987 /*
988  * this kills every thread in the thread group. Note that any externally
989  * wait4()-ing process will get the correct exit code - even if this
990  * thread is not the thread group leader.
991  */
SYSCALL_DEFINE1(exit_group,int,error_code)992 SYSCALL_DEFINE1(exit_group, int, error_code)
993 {
994 	do_group_exit((error_code & 0xff) << 8);
995 	/* NOTREACHED */
996 	return 0;
997 }
998 
999 struct waitid_info {
1000 	pid_t pid;
1001 	uid_t uid;
1002 	int status;
1003 	int cause;
1004 };
1005 
1006 struct wait_opts {
1007 	enum pid_type		wo_type;
1008 	int			wo_flags;
1009 	struct pid		*wo_pid;
1010 
1011 	struct waitid_info	*wo_info;
1012 	int			wo_stat;
1013 	struct rusage		*wo_rusage;
1014 
1015 	wait_queue_entry_t		child_wait;
1016 	int			notask_error;
1017 };
1018 
eligible_pid(struct wait_opts * wo,struct task_struct * p)1019 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1020 {
1021 	return	wo->wo_type == PIDTYPE_MAX ||
1022 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1023 }
1024 
1025 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1026 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1027 {
1028 	if (!eligible_pid(wo, p))
1029 		return 0;
1030 
1031 	/*
1032 	 * Wait for all children (clone and not) if __WALL is set or
1033 	 * if it is traced by us.
1034 	 */
1035 	if (ptrace || (wo->wo_flags & __WALL))
1036 		return 1;
1037 
1038 	/*
1039 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1040 	 * otherwise, wait for non-clone children *only*.
1041 	 *
1042 	 * Note: a "clone" child here is one that reports to its parent
1043 	 * using a signal other than SIGCHLD, or a non-leader thread which
1044 	 * we can only see if it is traced by us.
1045 	 */
1046 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1047 		return 0;
1048 
1049 	return 1;
1050 }
1051 
1052 /*
1053  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1054  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1055  * the lock and this task is uninteresting.  If we return nonzero, we have
1056  * released the lock and the system call should return.
1057  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1058 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1059 {
1060 	int state, status;
1061 	pid_t pid = task_pid_vnr(p);
1062 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1063 	struct waitid_info *infop;
1064 
1065 	if (!likely(wo->wo_flags & WEXITED))
1066 		return 0;
1067 
1068 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1069 		status = p->exit_code;
1070 		get_task_struct(p);
1071 		read_unlock(&tasklist_lock);
1072 		sched_annotate_sleep();
1073 		if (wo->wo_rusage)
1074 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1075 		put_task_struct(p);
1076 		goto out_info;
1077 	}
1078 	/*
1079 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1080 	 */
1081 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1082 		EXIT_TRACE : EXIT_DEAD;
1083 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1084 		return 0;
1085 	/*
1086 	 * We own this thread, nobody else can reap it.
1087 	 */
1088 	read_unlock(&tasklist_lock);
1089 	sched_annotate_sleep();
1090 
1091 	/*
1092 	 * Check thread_group_leader() to exclude the traced sub-threads.
1093 	 */
1094 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1095 		struct signal_struct *sig = p->signal;
1096 		struct signal_struct *psig = current->signal;
1097 		unsigned long maxrss;
1098 		u64 tgutime, tgstime;
1099 
1100 		/*
1101 		 * The resource counters for the group leader are in its
1102 		 * own task_struct.  Those for dead threads in the group
1103 		 * are in its signal_struct, as are those for the child
1104 		 * processes it has previously reaped.  All these
1105 		 * accumulate in the parent's signal_struct c* fields.
1106 		 *
1107 		 * We don't bother to take a lock here to protect these
1108 		 * p->signal fields because the whole thread group is dead
1109 		 * and nobody can change them.
1110 		 *
1111 		 * psig->stats_lock also protects us from our sub-theads
1112 		 * which can reap other children at the same time. Until
1113 		 * we change k_getrusage()-like users to rely on this lock
1114 		 * we have to take ->siglock as well.
1115 		 *
1116 		 * We use thread_group_cputime_adjusted() to get times for
1117 		 * the thread group, which consolidates times for all threads
1118 		 * in the group including the group leader.
1119 		 */
1120 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1121 		spin_lock_irq(&current->sighand->siglock);
1122 		write_seqlock(&psig->stats_lock);
1123 		psig->cutime += tgutime + sig->cutime;
1124 		psig->cstime += tgstime + sig->cstime;
1125 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1126 		psig->cmin_flt +=
1127 			p->min_flt + sig->min_flt + sig->cmin_flt;
1128 		psig->cmaj_flt +=
1129 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1130 		psig->cnvcsw +=
1131 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1132 		psig->cnivcsw +=
1133 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1134 		psig->cinblock +=
1135 			task_io_get_inblock(p) +
1136 			sig->inblock + sig->cinblock;
1137 		psig->coublock +=
1138 			task_io_get_oublock(p) +
1139 			sig->oublock + sig->coublock;
1140 		maxrss = max(sig->maxrss, sig->cmaxrss);
1141 		if (psig->cmaxrss < maxrss)
1142 			psig->cmaxrss = maxrss;
1143 		task_io_accounting_add(&psig->ioac, &p->ioac);
1144 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1145 		write_sequnlock(&psig->stats_lock);
1146 		spin_unlock_irq(&current->sighand->siglock);
1147 	}
1148 
1149 	if (wo->wo_rusage)
1150 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1151 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1152 		? p->signal->group_exit_code : p->exit_code;
1153 	wo->wo_stat = status;
1154 
1155 	if (state == EXIT_TRACE) {
1156 		write_lock_irq(&tasklist_lock);
1157 		/* We dropped tasklist, ptracer could die and untrace */
1158 		ptrace_unlink(p);
1159 
1160 		/* If parent wants a zombie, don't release it now */
1161 		state = EXIT_ZOMBIE;
1162 		if (do_notify_parent(p, p->exit_signal))
1163 			state = EXIT_DEAD;
1164 		p->exit_state = state;
1165 		write_unlock_irq(&tasklist_lock);
1166 	}
1167 	if (state == EXIT_DEAD)
1168 		release_task(p);
1169 
1170 out_info:
1171 	infop = wo->wo_info;
1172 	if (infop) {
1173 		if ((status & 0x7f) == 0) {
1174 			infop->cause = CLD_EXITED;
1175 			infop->status = status >> 8;
1176 		} else {
1177 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1178 			infop->status = status & 0x7f;
1179 		}
1180 		infop->pid = pid;
1181 		infop->uid = uid;
1182 	}
1183 
1184 	return pid;
1185 }
1186 
task_stopped_code(struct task_struct * p,bool ptrace)1187 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1188 {
1189 	if (ptrace) {
1190 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1191 			return &p->exit_code;
1192 	} else {
1193 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1194 			return &p->signal->group_exit_code;
1195 	}
1196 	return NULL;
1197 }
1198 
1199 /**
1200  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1201  * @wo: wait options
1202  * @ptrace: is the wait for ptrace
1203  * @p: task to wait for
1204  *
1205  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1206  *
1207  * CONTEXT:
1208  * read_lock(&tasklist_lock), which is released if return value is
1209  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1210  *
1211  * RETURNS:
1212  * 0 if wait condition didn't exist and search for other wait conditions
1213  * should continue.  Non-zero return, -errno on failure and @p's pid on
1214  * success, implies that tasklist_lock is released and wait condition
1215  * search should terminate.
1216  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1217 static int wait_task_stopped(struct wait_opts *wo,
1218 				int ptrace, struct task_struct *p)
1219 {
1220 	struct waitid_info *infop;
1221 	int exit_code, *p_code, why;
1222 	uid_t uid = 0; /* unneeded, required by compiler */
1223 	pid_t pid;
1224 
1225 	/*
1226 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1227 	 */
1228 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1229 		return 0;
1230 
1231 	if (!task_stopped_code(p, ptrace))
1232 		return 0;
1233 
1234 	exit_code = 0;
1235 	spin_lock_irq(&p->sighand->siglock);
1236 
1237 	p_code = task_stopped_code(p, ptrace);
1238 	if (unlikely(!p_code))
1239 		goto unlock_sig;
1240 
1241 	exit_code = *p_code;
1242 	if (!exit_code)
1243 		goto unlock_sig;
1244 
1245 	if (!unlikely(wo->wo_flags & WNOWAIT))
1246 		*p_code = 0;
1247 
1248 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1249 unlock_sig:
1250 	spin_unlock_irq(&p->sighand->siglock);
1251 	if (!exit_code)
1252 		return 0;
1253 
1254 	/*
1255 	 * Now we are pretty sure this task is interesting.
1256 	 * Make sure it doesn't get reaped out from under us while we
1257 	 * give up the lock and then examine it below.  We don't want to
1258 	 * keep holding onto the tasklist_lock while we call getrusage and
1259 	 * possibly take page faults for user memory.
1260 	 */
1261 	get_task_struct(p);
1262 	pid = task_pid_vnr(p);
1263 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1264 	read_unlock(&tasklist_lock);
1265 	sched_annotate_sleep();
1266 	if (wo->wo_rusage)
1267 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1268 	put_task_struct(p);
1269 
1270 	if (likely(!(wo->wo_flags & WNOWAIT)))
1271 		wo->wo_stat = (exit_code << 8) | 0x7f;
1272 
1273 	infop = wo->wo_info;
1274 	if (infop) {
1275 		infop->cause = why;
1276 		infop->status = exit_code;
1277 		infop->pid = pid;
1278 		infop->uid = uid;
1279 	}
1280 	return pid;
1281 }
1282 
1283 /*
1284  * Handle do_wait work for one task in a live, non-stopped state.
1285  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1286  * the lock and this task is uninteresting.  If we return nonzero, we have
1287  * released the lock and the system call should return.
1288  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1289 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1290 {
1291 	struct waitid_info *infop;
1292 	pid_t pid;
1293 	uid_t uid;
1294 
1295 	if (!unlikely(wo->wo_flags & WCONTINUED))
1296 		return 0;
1297 
1298 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1299 		return 0;
1300 
1301 	spin_lock_irq(&p->sighand->siglock);
1302 	/* Re-check with the lock held.  */
1303 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1304 		spin_unlock_irq(&p->sighand->siglock);
1305 		return 0;
1306 	}
1307 	if (!unlikely(wo->wo_flags & WNOWAIT))
1308 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1309 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1310 	spin_unlock_irq(&p->sighand->siglock);
1311 
1312 	pid = task_pid_vnr(p);
1313 	get_task_struct(p);
1314 	read_unlock(&tasklist_lock);
1315 	sched_annotate_sleep();
1316 	if (wo->wo_rusage)
1317 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1318 	put_task_struct(p);
1319 
1320 	infop = wo->wo_info;
1321 	if (!infop) {
1322 		wo->wo_stat = 0xffff;
1323 	} else {
1324 		infop->cause = CLD_CONTINUED;
1325 		infop->pid = pid;
1326 		infop->uid = uid;
1327 		infop->status = SIGCONT;
1328 	}
1329 	return pid;
1330 }
1331 
1332 /*
1333  * Consider @p for a wait by @parent.
1334  *
1335  * -ECHILD should be in ->notask_error before the first call.
1336  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1337  * Returns zero if the search for a child should continue;
1338  * then ->notask_error is 0 if @p is an eligible child,
1339  * or still -ECHILD.
1340  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1341 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1342 				struct task_struct *p)
1343 {
1344 	/*
1345 	 * We can race with wait_task_zombie() from another thread.
1346 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1347 	 * can't confuse the checks below.
1348 	 */
1349 	int exit_state = READ_ONCE(p->exit_state);
1350 	int ret;
1351 
1352 	if (unlikely(exit_state == EXIT_DEAD))
1353 		return 0;
1354 
1355 	ret = eligible_child(wo, ptrace, p);
1356 	if (!ret)
1357 		return ret;
1358 
1359 	if (unlikely(exit_state == EXIT_TRACE)) {
1360 		/*
1361 		 * ptrace == 0 means we are the natural parent. In this case
1362 		 * we should clear notask_error, debugger will notify us.
1363 		 */
1364 		if (likely(!ptrace))
1365 			wo->notask_error = 0;
1366 		return 0;
1367 	}
1368 
1369 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1370 		/*
1371 		 * If it is traced by its real parent's group, just pretend
1372 		 * the caller is ptrace_do_wait() and reap this child if it
1373 		 * is zombie.
1374 		 *
1375 		 * This also hides group stop state from real parent; otherwise
1376 		 * a single stop can be reported twice as group and ptrace stop.
1377 		 * If a ptracer wants to distinguish these two events for its
1378 		 * own children it should create a separate process which takes
1379 		 * the role of real parent.
1380 		 */
1381 		if (!ptrace_reparented(p))
1382 			ptrace = 1;
1383 	}
1384 
1385 	/* slay zombie? */
1386 	if (exit_state == EXIT_ZOMBIE) {
1387 		/* we don't reap group leaders with subthreads */
1388 		if (!delay_group_leader(p)) {
1389 			/*
1390 			 * A zombie ptracee is only visible to its ptracer.
1391 			 * Notification and reaping will be cascaded to the
1392 			 * real parent when the ptracer detaches.
1393 			 */
1394 			if (unlikely(ptrace) || likely(!p->ptrace))
1395 				return wait_task_zombie(wo, p);
1396 		}
1397 
1398 		/*
1399 		 * Allow access to stopped/continued state via zombie by
1400 		 * falling through.  Clearing of notask_error is complex.
1401 		 *
1402 		 * When !@ptrace:
1403 		 *
1404 		 * If WEXITED is set, notask_error should naturally be
1405 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1406 		 * so, if there are live subthreads, there are events to
1407 		 * wait for.  If all subthreads are dead, it's still safe
1408 		 * to clear - this function will be called again in finite
1409 		 * amount time once all the subthreads are released and
1410 		 * will then return without clearing.
1411 		 *
1412 		 * When @ptrace:
1413 		 *
1414 		 * Stopped state is per-task and thus can't change once the
1415 		 * target task dies.  Only continued and exited can happen.
1416 		 * Clear notask_error if WCONTINUED | WEXITED.
1417 		 */
1418 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1419 			wo->notask_error = 0;
1420 	} else {
1421 		/*
1422 		 * @p is alive and it's gonna stop, continue or exit, so
1423 		 * there always is something to wait for.
1424 		 */
1425 		wo->notask_error = 0;
1426 	}
1427 
1428 	/*
1429 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1430 	 * is used and the two don't interact with each other.
1431 	 */
1432 	ret = wait_task_stopped(wo, ptrace, p);
1433 	if (ret)
1434 		return ret;
1435 
1436 	/*
1437 	 * Wait for continued.  There's only one continued state and the
1438 	 * ptracer can consume it which can confuse the real parent.  Don't
1439 	 * use WCONTINUED from ptracer.  You don't need or want it.
1440 	 */
1441 	return wait_task_continued(wo, p);
1442 }
1443 
1444 /*
1445  * Do the work of do_wait() for one thread in the group, @tsk.
1446  *
1447  * -ECHILD should be in ->notask_error before the first call.
1448  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1449  * Returns zero if the search for a child should continue; then
1450  * ->notask_error is 0 if there were any eligible children,
1451  * or still -ECHILD.
1452  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1453 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1454 {
1455 	struct task_struct *p;
1456 
1457 	list_for_each_entry(p, &tsk->children, sibling) {
1458 		int ret = wait_consider_task(wo, 0, p);
1459 
1460 		if (ret)
1461 			return ret;
1462 	}
1463 
1464 	return 0;
1465 }
1466 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1467 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1468 {
1469 	struct task_struct *p;
1470 
1471 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1472 		int ret = wait_consider_task(wo, 1, p);
1473 
1474 		if (ret)
1475 			return ret;
1476 	}
1477 
1478 	return 0;
1479 }
1480 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1481 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1482 				int sync, void *key)
1483 {
1484 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1485 						child_wait);
1486 	struct task_struct *p = key;
1487 
1488 	if (!eligible_pid(wo, p))
1489 		return 0;
1490 
1491 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1492 		return 0;
1493 
1494 	return default_wake_function(wait, mode, sync, key);
1495 }
1496 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1497 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1498 {
1499 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1500 			   TASK_INTERRUPTIBLE, p);
1501 }
1502 
do_wait(struct wait_opts * wo)1503 static long do_wait(struct wait_opts *wo)
1504 {
1505 	struct task_struct *tsk;
1506 	int retval;
1507 
1508 	trace_sched_process_wait(wo->wo_pid);
1509 
1510 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1511 	wo->child_wait.private = current;
1512 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1513 repeat:
1514 	/*
1515 	 * If there is nothing that can match our criteria, just get out.
1516 	 * We will clear ->notask_error to zero if we see any child that
1517 	 * might later match our criteria, even if we are not able to reap
1518 	 * it yet.
1519 	 */
1520 	wo->notask_error = -ECHILD;
1521 	if ((wo->wo_type < PIDTYPE_MAX) &&
1522 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1523 		goto notask;
1524 
1525 	set_current_state(TASK_INTERRUPTIBLE);
1526 	read_lock(&tasklist_lock);
1527 	tsk = current;
1528 	do {
1529 		retval = do_wait_thread(wo, tsk);
1530 		if (retval)
1531 			goto end;
1532 
1533 		retval = ptrace_do_wait(wo, tsk);
1534 		if (retval)
1535 			goto end;
1536 
1537 		if (wo->wo_flags & __WNOTHREAD)
1538 			break;
1539 	} while_each_thread(current, tsk);
1540 	read_unlock(&tasklist_lock);
1541 
1542 notask:
1543 	retval = wo->notask_error;
1544 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1545 		retval = -ERESTARTSYS;
1546 		if (!signal_pending(current)) {
1547 			schedule();
1548 			goto repeat;
1549 		}
1550 	}
1551 end:
1552 	__set_current_state(TASK_RUNNING);
1553 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1554 	return retval;
1555 }
1556 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1557 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1558 			  int options, struct rusage *ru)
1559 {
1560 	struct wait_opts wo;
1561 	struct pid *pid = NULL;
1562 	enum pid_type type;
1563 	long ret;
1564 	unsigned int f_flags = 0;
1565 
1566 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1567 			__WNOTHREAD|__WCLONE|__WALL))
1568 		return -EINVAL;
1569 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1570 		return -EINVAL;
1571 
1572 	switch (which) {
1573 	case P_ALL:
1574 		type = PIDTYPE_MAX;
1575 		break;
1576 	case P_PID:
1577 		type = PIDTYPE_PID;
1578 		if (upid <= 0)
1579 			return -EINVAL;
1580 
1581 		pid = find_get_pid(upid);
1582 		break;
1583 	case P_PGID:
1584 		type = PIDTYPE_PGID;
1585 		if (upid < 0)
1586 			return -EINVAL;
1587 
1588 		if (upid)
1589 			pid = find_get_pid(upid);
1590 		else
1591 			pid = get_task_pid(current, PIDTYPE_PGID);
1592 		break;
1593 	case P_PIDFD:
1594 		type = PIDTYPE_PID;
1595 		if (upid < 0)
1596 			return -EINVAL;
1597 
1598 		pid = pidfd_get_pid(upid, &f_flags);
1599 		if (IS_ERR(pid))
1600 			return PTR_ERR(pid);
1601 
1602 		break;
1603 	default:
1604 		return -EINVAL;
1605 	}
1606 
1607 	wo.wo_type	= type;
1608 	wo.wo_pid	= pid;
1609 	wo.wo_flags	= options;
1610 	wo.wo_info	= infop;
1611 	wo.wo_rusage	= ru;
1612 	if (f_flags & O_NONBLOCK)
1613 		wo.wo_flags |= WNOHANG;
1614 
1615 	ret = do_wait(&wo);
1616 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1617 		ret = -EAGAIN;
1618 
1619 	put_pid(pid);
1620 	return ret;
1621 }
1622 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1623 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1624 		infop, int, options, struct rusage __user *, ru)
1625 {
1626 	struct rusage r;
1627 	struct waitid_info info = {.status = 0};
1628 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1629 	int signo = 0;
1630 
1631 	if (err > 0) {
1632 		signo = SIGCHLD;
1633 		err = 0;
1634 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1635 			return -EFAULT;
1636 	}
1637 	if (!infop)
1638 		return err;
1639 
1640 	if (!user_write_access_begin(infop, sizeof(*infop)))
1641 		return -EFAULT;
1642 
1643 	unsafe_put_user(signo, &infop->si_signo, Efault);
1644 	unsafe_put_user(0, &infop->si_errno, Efault);
1645 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1646 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1647 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1648 	unsafe_put_user(info.status, &infop->si_status, Efault);
1649 	user_write_access_end();
1650 	return err;
1651 Efault:
1652 	user_write_access_end();
1653 	return -EFAULT;
1654 }
1655 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1656 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1657 		  struct rusage *ru)
1658 {
1659 	struct wait_opts wo;
1660 	struct pid *pid = NULL;
1661 	enum pid_type type;
1662 	long ret;
1663 
1664 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1665 			__WNOTHREAD|__WCLONE|__WALL))
1666 		return -EINVAL;
1667 
1668 	/* -INT_MIN is not defined */
1669 	if (upid == INT_MIN)
1670 		return -ESRCH;
1671 
1672 	if (upid == -1)
1673 		type = PIDTYPE_MAX;
1674 	else if (upid < 0) {
1675 		type = PIDTYPE_PGID;
1676 		pid = find_get_pid(-upid);
1677 	} else if (upid == 0) {
1678 		type = PIDTYPE_PGID;
1679 		pid = get_task_pid(current, PIDTYPE_PGID);
1680 	} else /* upid > 0 */ {
1681 		type = PIDTYPE_PID;
1682 		pid = find_get_pid(upid);
1683 	}
1684 
1685 	wo.wo_type	= type;
1686 	wo.wo_pid	= pid;
1687 	wo.wo_flags	= options | WEXITED;
1688 	wo.wo_info	= NULL;
1689 	wo.wo_stat	= 0;
1690 	wo.wo_rusage	= ru;
1691 	ret = do_wait(&wo);
1692 	put_pid(pid);
1693 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1694 		ret = -EFAULT;
1695 
1696 	return ret;
1697 }
1698 
kernel_wait(pid_t pid,int * stat)1699 int kernel_wait(pid_t pid, int *stat)
1700 {
1701 	struct wait_opts wo = {
1702 		.wo_type	= PIDTYPE_PID,
1703 		.wo_pid		= find_get_pid(pid),
1704 		.wo_flags	= WEXITED,
1705 	};
1706 	int ret;
1707 
1708 	ret = do_wait(&wo);
1709 	if (ret > 0 && wo.wo_stat)
1710 		*stat = wo.wo_stat;
1711 	put_pid(wo.wo_pid);
1712 	return ret;
1713 }
1714 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1715 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1716 		int, options, struct rusage __user *, ru)
1717 {
1718 	struct rusage r;
1719 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1720 
1721 	if (err > 0) {
1722 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1723 			return -EFAULT;
1724 	}
1725 	return err;
1726 }
1727 
1728 #ifdef __ARCH_WANT_SYS_WAITPID
1729 
1730 /*
1731  * sys_waitpid() remains for compatibility. waitpid() should be
1732  * implemented by calling sys_wait4() from libc.a.
1733  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1734 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1735 {
1736 	return kernel_wait4(pid, stat_addr, options, NULL);
1737 }
1738 
1739 #endif
1740 
1741 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1742 COMPAT_SYSCALL_DEFINE4(wait4,
1743 	compat_pid_t, pid,
1744 	compat_uint_t __user *, stat_addr,
1745 	int, options,
1746 	struct compat_rusage __user *, ru)
1747 {
1748 	struct rusage r;
1749 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1750 	if (err > 0) {
1751 		if (ru && put_compat_rusage(&r, ru))
1752 			return -EFAULT;
1753 	}
1754 	return err;
1755 }
1756 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1757 COMPAT_SYSCALL_DEFINE5(waitid,
1758 		int, which, compat_pid_t, pid,
1759 		struct compat_siginfo __user *, infop, int, options,
1760 		struct compat_rusage __user *, uru)
1761 {
1762 	struct rusage ru;
1763 	struct waitid_info info = {.status = 0};
1764 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1765 	int signo = 0;
1766 	if (err > 0) {
1767 		signo = SIGCHLD;
1768 		err = 0;
1769 		if (uru) {
1770 			/* kernel_waitid() overwrites everything in ru */
1771 			if (COMPAT_USE_64BIT_TIME)
1772 				err = copy_to_user(uru, &ru, sizeof(ru));
1773 			else
1774 				err = put_compat_rusage(&ru, uru);
1775 			if (err)
1776 				return -EFAULT;
1777 		}
1778 	}
1779 
1780 	if (!infop)
1781 		return err;
1782 
1783 	if (!user_write_access_begin(infop, sizeof(*infop)))
1784 		return -EFAULT;
1785 
1786 	unsafe_put_user(signo, &infop->si_signo, Efault);
1787 	unsafe_put_user(0, &infop->si_errno, Efault);
1788 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1789 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1790 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1791 	unsafe_put_user(info.status, &infop->si_status, Efault);
1792 	user_write_access_end();
1793 	return err;
1794 Efault:
1795 	user_write_access_end();
1796 	return -EFAULT;
1797 }
1798 #endif
1799 
1800 /**
1801  * thread_group_exited - check that a thread group has exited
1802  * @pid: tgid of thread group to be checked.
1803  *
1804  * Test if the thread group represented by tgid has exited (all
1805  * threads are zombies, dead or completely gone).
1806  *
1807  * Return: true if the thread group has exited. false otherwise.
1808  */
thread_group_exited(struct pid * pid)1809 bool thread_group_exited(struct pid *pid)
1810 {
1811 	struct task_struct *task;
1812 	bool exited;
1813 
1814 	rcu_read_lock();
1815 	task = pid_task(pid, PIDTYPE_PID);
1816 	exited = !task ||
1817 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1818 	rcu_read_unlock();
1819 
1820 	return exited;
1821 }
1822 EXPORT_SYMBOL(thread_group_exited);
1823 
abort(void)1824 __weak void abort(void)
1825 {
1826 	BUG();
1827 
1828 	/* if that doesn't kill us, halt */
1829 	panic("Oops failed to kill thread");
1830 }
1831 EXPORT_SYMBOL(abort);
1832