1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/exit.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/sysfs.h>
68
69 #include <linux/uaccess.h>
70 #include <asm/unistd.h>
71 #include <asm/mmu_context.h>
72 #include <trace/hooks/mm.h>
73
74 /*
75 * The default value should be high enough to not crash a system that randomly
76 * crashes its kernel from time to time, but low enough to at least not permit
77 * overflowing 32-bit refcounts or the ldsem writer count.
78 */
79 static unsigned int oops_limit = 10000;
80
81 #ifdef CONFIG_SYSCTL
82 static struct ctl_table kern_exit_table[] = {
83 {
84 .procname = "oops_limit",
85 .data = &oops_limit,
86 .maxlen = sizeof(oops_limit),
87 .mode = 0644,
88 .proc_handler = proc_douintvec,
89 },
90 { }
91 };
92
kernel_exit_sysctls_init(void)93 static __init int kernel_exit_sysctls_init(void)
94 {
95 register_sysctl_init("kernel", kern_exit_table);
96 return 0;
97 }
98 late_initcall(kernel_exit_sysctls_init);
99 #endif
100
101 static atomic_t oops_count = ATOMIC_INIT(0);
102
103 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)104 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
105 char *page)
106 {
107 return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
108 }
109
110 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
111
kernel_exit_sysfs_init(void)112 static __init int kernel_exit_sysfs_init(void)
113 {
114 sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
115 return 0;
116 }
117 late_initcall(kernel_exit_sysfs_init);
118 #endif
119
__unhash_process(struct task_struct * p,bool group_dead)120 static void __unhash_process(struct task_struct *p, bool group_dead)
121 {
122 nr_threads--;
123 detach_pid(p, PIDTYPE_PID);
124 if (group_dead) {
125 detach_pid(p, PIDTYPE_TGID);
126 detach_pid(p, PIDTYPE_PGID);
127 detach_pid(p, PIDTYPE_SID);
128
129 list_del_rcu(&p->tasks);
130 list_del_init(&p->sibling);
131 __this_cpu_dec(process_counts);
132 }
133 list_del_rcu(&p->thread_group);
134 list_del_rcu(&p->thread_node);
135 }
136
137 /*
138 * This function expects the tasklist_lock write-locked.
139 */
__exit_signal(struct task_struct * tsk)140 static void __exit_signal(struct task_struct *tsk)
141 {
142 struct signal_struct *sig = tsk->signal;
143 bool group_dead = thread_group_leader(tsk);
144 struct sighand_struct *sighand;
145 struct tty_struct *tty;
146 u64 utime, stime;
147
148 sighand = rcu_dereference_check(tsk->sighand,
149 lockdep_tasklist_lock_is_held());
150 spin_lock(&sighand->siglock);
151
152 #ifdef CONFIG_POSIX_TIMERS
153 posix_cpu_timers_exit(tsk);
154 if (group_dead)
155 posix_cpu_timers_exit_group(tsk);
156 #endif
157
158 if (group_dead) {
159 tty = sig->tty;
160 sig->tty = NULL;
161 } else {
162 /*
163 * If there is any task waiting for the group exit
164 * then notify it:
165 */
166 if (sig->notify_count > 0 && !--sig->notify_count)
167 wake_up_process(sig->group_exit_task);
168
169 if (tsk == sig->curr_target)
170 sig->curr_target = next_thread(tsk);
171 }
172
173 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
174 sizeof(unsigned long long));
175
176 /*
177 * Accumulate here the counters for all threads as they die. We could
178 * skip the group leader because it is the last user of signal_struct,
179 * but we want to avoid the race with thread_group_cputime() which can
180 * see the empty ->thread_head list.
181 */
182 task_cputime(tsk, &utime, &stime);
183 write_seqlock(&sig->stats_lock);
184 sig->utime += utime;
185 sig->stime += stime;
186 sig->gtime += task_gtime(tsk);
187 sig->min_flt += tsk->min_flt;
188 sig->maj_flt += tsk->maj_flt;
189 sig->nvcsw += tsk->nvcsw;
190 sig->nivcsw += tsk->nivcsw;
191 sig->inblock += task_io_get_inblock(tsk);
192 sig->oublock += task_io_get_oublock(tsk);
193 task_io_accounting_add(&sig->ioac, &tsk->ioac);
194 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
195 sig->nr_threads--;
196 __unhash_process(tsk, group_dead);
197 write_sequnlock(&sig->stats_lock);
198
199 /*
200 * Do this under ->siglock, we can race with another thread
201 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
202 */
203 flush_sigqueue(&tsk->pending);
204 tsk->sighand = NULL;
205 spin_unlock(&sighand->siglock);
206
207 __cleanup_sighand(sighand);
208 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
209 if (group_dead) {
210 flush_sigqueue(&sig->shared_pending);
211 tty_kref_put(tty);
212 }
213 }
214
delayed_put_task_struct(struct rcu_head * rhp)215 static void delayed_put_task_struct(struct rcu_head *rhp)
216 {
217 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
218
219 perf_event_delayed_put(tsk);
220 trace_sched_process_free(tsk);
221 put_task_struct(tsk);
222 }
223
put_task_struct_rcu_user(struct task_struct * task)224 void put_task_struct_rcu_user(struct task_struct *task)
225 {
226 if (refcount_dec_and_test(&task->rcu_users))
227 call_rcu(&task->rcu, delayed_put_task_struct);
228 }
229
release_task(struct task_struct * p)230 void release_task(struct task_struct *p)
231 {
232 struct task_struct *leader;
233 struct pid *thread_pid;
234 int zap_leader;
235 repeat:
236 /* don't need to get the RCU readlock here - the process is dead and
237 * can't be modifying its own credentials. But shut RCU-lockdep up */
238 rcu_read_lock();
239 atomic_dec(&__task_cred(p)->user->processes);
240 rcu_read_unlock();
241
242 cgroup_release(p);
243
244 write_lock_irq(&tasklist_lock);
245 ptrace_release_task(p);
246 thread_pid = get_pid(p->thread_pid);
247 __exit_signal(p);
248
249 /*
250 * If we are the last non-leader member of the thread
251 * group, and the leader is zombie, then notify the
252 * group leader's parent process. (if it wants notification.)
253 */
254 zap_leader = 0;
255 leader = p->group_leader;
256 if (leader != p && thread_group_empty(leader)
257 && leader->exit_state == EXIT_ZOMBIE) {
258 /*
259 * If we were the last child thread and the leader has
260 * exited already, and the leader's parent ignores SIGCHLD,
261 * then we are the one who should release the leader.
262 */
263 zap_leader = do_notify_parent(leader, leader->exit_signal);
264 if (zap_leader)
265 leader->exit_state = EXIT_DEAD;
266 }
267
268 write_unlock_irq(&tasklist_lock);
269 seccomp_filter_release(p);
270 proc_flush_pid(thread_pid);
271 put_pid(thread_pid);
272 release_thread(p);
273 put_task_struct_rcu_user(p);
274
275 p = leader;
276 if (unlikely(zap_leader))
277 goto repeat;
278 }
279
rcuwait_wake_up(struct rcuwait * w)280 int rcuwait_wake_up(struct rcuwait *w)
281 {
282 int ret = 0;
283 struct task_struct *task;
284
285 rcu_read_lock();
286
287 /*
288 * Order condition vs @task, such that everything prior to the load
289 * of @task is visible. This is the condition as to why the user called
290 * rcuwait_wake() in the first place. Pairs with set_current_state()
291 * barrier (A) in rcuwait_wait_event().
292 *
293 * WAIT WAKE
294 * [S] tsk = current [S] cond = true
295 * MB (A) MB (B)
296 * [L] cond [L] tsk
297 */
298 smp_mb(); /* (B) */
299
300 task = rcu_dereference(w->task);
301 if (task)
302 ret = wake_up_process(task);
303 rcu_read_unlock();
304
305 return ret;
306 }
307 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
308
309 /*
310 * Determine if a process group is "orphaned", according to the POSIX
311 * definition in 2.2.2.52. Orphaned process groups are not to be affected
312 * by terminal-generated stop signals. Newly orphaned process groups are
313 * to receive a SIGHUP and a SIGCONT.
314 *
315 * "I ask you, have you ever known what it is to be an orphan?"
316 */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)317 static int will_become_orphaned_pgrp(struct pid *pgrp,
318 struct task_struct *ignored_task)
319 {
320 struct task_struct *p;
321
322 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
323 if ((p == ignored_task) ||
324 (p->exit_state && thread_group_empty(p)) ||
325 is_global_init(p->real_parent))
326 continue;
327
328 if (task_pgrp(p->real_parent) != pgrp &&
329 task_session(p->real_parent) == task_session(p))
330 return 0;
331 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
332
333 return 1;
334 }
335
is_current_pgrp_orphaned(void)336 int is_current_pgrp_orphaned(void)
337 {
338 int retval;
339
340 read_lock(&tasklist_lock);
341 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
342 read_unlock(&tasklist_lock);
343
344 return retval;
345 }
346
has_stopped_jobs(struct pid * pgrp)347 static bool has_stopped_jobs(struct pid *pgrp)
348 {
349 struct task_struct *p;
350
351 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
352 if (p->signal->flags & SIGNAL_STOP_STOPPED)
353 return true;
354 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
355
356 return false;
357 }
358
359 /*
360 * Check to see if any process groups have become orphaned as
361 * a result of our exiting, and if they have any stopped jobs,
362 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
363 */
364 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)365 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
366 {
367 struct pid *pgrp = task_pgrp(tsk);
368 struct task_struct *ignored_task = tsk;
369
370 if (!parent)
371 /* exit: our father is in a different pgrp than
372 * we are and we were the only connection outside.
373 */
374 parent = tsk->real_parent;
375 else
376 /* reparent: our child is in a different pgrp than
377 * we are, and it was the only connection outside.
378 */
379 ignored_task = NULL;
380
381 if (task_pgrp(parent) != pgrp &&
382 task_session(parent) == task_session(tsk) &&
383 will_become_orphaned_pgrp(pgrp, ignored_task) &&
384 has_stopped_jobs(pgrp)) {
385 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
386 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
387 }
388 }
389
390 #ifdef CONFIG_MEMCG
391 /*
392 * A task is exiting. If it owned this mm, find a new owner for the mm.
393 */
mm_update_next_owner(struct mm_struct * mm)394 void mm_update_next_owner(struct mm_struct *mm)
395 {
396 struct task_struct *c, *g, *p = current;
397
398 retry:
399 /*
400 * If the exiting or execing task is not the owner, it's
401 * someone else's problem.
402 */
403 if (mm->owner != p)
404 return;
405 /*
406 * The current owner is exiting/execing and there are no other
407 * candidates. Do not leave the mm pointing to a possibly
408 * freed task structure.
409 */
410 if (atomic_read(&mm->mm_users) <= 1) {
411 WRITE_ONCE(mm->owner, NULL);
412 return;
413 }
414
415 read_lock(&tasklist_lock);
416 /*
417 * Search in the children
418 */
419 list_for_each_entry(c, &p->children, sibling) {
420 if (c->mm == mm)
421 goto assign_new_owner;
422 }
423
424 /*
425 * Search in the siblings
426 */
427 list_for_each_entry(c, &p->real_parent->children, sibling) {
428 if (c->mm == mm)
429 goto assign_new_owner;
430 }
431
432 /*
433 * Search through everything else, we should not get here often.
434 */
435 for_each_process(g) {
436 if (g->flags & PF_KTHREAD)
437 continue;
438 for_each_thread(g, c) {
439 if (c->mm == mm)
440 goto assign_new_owner;
441 if (c->mm)
442 break;
443 }
444 }
445 read_unlock(&tasklist_lock);
446 /*
447 * We found no owner yet mm_users > 1: this implies that we are
448 * most likely racing with swapoff (try_to_unuse()) or /proc or
449 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
450 */
451 WRITE_ONCE(mm->owner, NULL);
452 return;
453
454 assign_new_owner:
455 BUG_ON(c == p);
456 get_task_struct(c);
457 /*
458 * The task_lock protects c->mm from changing.
459 * We always want mm->owner->mm == mm
460 */
461 task_lock(c);
462 /*
463 * Delay read_unlock() till we have the task_lock()
464 * to ensure that c does not slip away underneath us
465 */
466 read_unlock(&tasklist_lock);
467 if (c->mm != mm) {
468 task_unlock(c);
469 put_task_struct(c);
470 goto retry;
471 }
472 WRITE_ONCE(mm->owner, c);
473 lru_gen_migrate_mm(mm);
474 task_unlock(c);
475 put_task_struct(c);
476 }
477 #endif /* CONFIG_MEMCG */
478
479 /*
480 * Turn us into a lazy TLB process if we
481 * aren't already..
482 */
exit_mm(void)483 static void exit_mm(void)
484 {
485 struct mm_struct *mm = current->mm;
486 struct core_state *core_state;
487
488 exit_mm_release(current, mm);
489 if (!mm)
490 return;
491 sync_mm_rss(mm);
492 /*
493 * Serialize with any possible pending coredump.
494 * We must hold mmap_lock around checking core_state
495 * and clearing tsk->mm. The core-inducing thread
496 * will increment ->nr_threads for each thread in the
497 * group with ->mm != NULL.
498 */
499 mmap_read_lock(mm);
500 core_state = mm->core_state;
501 if (core_state) {
502 struct core_thread self;
503
504 mmap_read_unlock(mm);
505
506 self.task = current;
507 if (self.task->flags & PF_SIGNALED)
508 self.next = xchg(&core_state->dumper.next, &self);
509 else
510 self.task = NULL;
511 /*
512 * Implies mb(), the result of xchg() must be visible
513 * to core_state->dumper.
514 */
515 if (atomic_dec_and_test(&core_state->nr_threads))
516 complete(&core_state->startup);
517
518 for (;;) {
519 set_current_state(TASK_UNINTERRUPTIBLE);
520 if (!self.task) /* see coredump_finish() */
521 break;
522 freezable_schedule();
523 }
524 __set_current_state(TASK_RUNNING);
525 mmap_read_lock(mm);
526 }
527 mmgrab(mm);
528 BUG_ON(mm != current->active_mm);
529 /* more a memory barrier than a real lock */
530 task_lock(current);
531 current->mm = NULL;
532 mmap_read_unlock(mm);
533 enter_lazy_tlb(mm, current);
534 task_unlock(current);
535 mm_update_next_owner(mm);
536 trace_android_vh_exit_mm(mm);
537 mmput(mm);
538 if (test_thread_flag(TIF_MEMDIE))
539 exit_oom_victim();
540 }
541
find_alive_thread(struct task_struct * p)542 static struct task_struct *find_alive_thread(struct task_struct *p)
543 {
544 struct task_struct *t;
545
546 for_each_thread(p, t) {
547 if (!(t->flags & PF_EXITING))
548 return t;
549 }
550 return NULL;
551 }
552
find_child_reaper(struct task_struct * father,struct list_head * dead)553 static struct task_struct *find_child_reaper(struct task_struct *father,
554 struct list_head *dead)
555 __releases(&tasklist_lock)
556 __acquires(&tasklist_lock)
557 {
558 struct pid_namespace *pid_ns = task_active_pid_ns(father);
559 struct task_struct *reaper = pid_ns->child_reaper;
560 struct task_struct *p, *n;
561
562 if (likely(reaper != father))
563 return reaper;
564
565 reaper = find_alive_thread(father);
566 if (reaper) {
567 pid_ns->child_reaper = reaper;
568 return reaper;
569 }
570
571 write_unlock_irq(&tasklist_lock);
572
573 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
574 list_del_init(&p->ptrace_entry);
575 release_task(p);
576 }
577
578 zap_pid_ns_processes(pid_ns);
579 write_lock_irq(&tasklist_lock);
580
581 return father;
582 }
583
584 /*
585 * When we die, we re-parent all our children, and try to:
586 * 1. give them to another thread in our thread group, if such a member exists
587 * 2. give it to the first ancestor process which prctl'd itself as a
588 * child_subreaper for its children (like a service manager)
589 * 3. give it to the init process (PID 1) in our pid namespace
590 */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)591 static struct task_struct *find_new_reaper(struct task_struct *father,
592 struct task_struct *child_reaper)
593 {
594 struct task_struct *thread, *reaper;
595
596 thread = find_alive_thread(father);
597 if (thread)
598 return thread;
599
600 if (father->signal->has_child_subreaper) {
601 unsigned int ns_level = task_pid(father)->level;
602 /*
603 * Find the first ->is_child_subreaper ancestor in our pid_ns.
604 * We can't check reaper != child_reaper to ensure we do not
605 * cross the namespaces, the exiting parent could be injected
606 * by setns() + fork().
607 * We check pid->level, this is slightly more efficient than
608 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
609 */
610 for (reaper = father->real_parent;
611 task_pid(reaper)->level == ns_level;
612 reaper = reaper->real_parent) {
613 if (reaper == &init_task)
614 break;
615 if (!reaper->signal->is_child_subreaper)
616 continue;
617 thread = find_alive_thread(reaper);
618 if (thread)
619 return thread;
620 }
621 }
622
623 return child_reaper;
624 }
625
626 /*
627 * Any that need to be release_task'd are put on the @dead list.
628 */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)629 static void reparent_leader(struct task_struct *father, struct task_struct *p,
630 struct list_head *dead)
631 {
632 if (unlikely(p->exit_state == EXIT_DEAD))
633 return;
634
635 /* We don't want people slaying init. */
636 p->exit_signal = SIGCHLD;
637
638 /* If it has exited notify the new parent about this child's death. */
639 if (!p->ptrace &&
640 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
641 if (do_notify_parent(p, p->exit_signal)) {
642 p->exit_state = EXIT_DEAD;
643 list_add(&p->ptrace_entry, dead);
644 }
645 }
646
647 kill_orphaned_pgrp(p, father);
648 }
649
650 /*
651 * This does two things:
652 *
653 * A. Make init inherit all the child processes
654 * B. Check to see if any process groups have become orphaned
655 * as a result of our exiting, and if they have any stopped
656 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
657 */
forget_original_parent(struct task_struct * father,struct list_head * dead)658 static void forget_original_parent(struct task_struct *father,
659 struct list_head *dead)
660 {
661 struct task_struct *p, *t, *reaper;
662
663 if (unlikely(!list_empty(&father->ptraced)))
664 exit_ptrace(father, dead);
665
666 /* Can drop and reacquire tasklist_lock */
667 reaper = find_child_reaper(father, dead);
668 if (list_empty(&father->children))
669 return;
670
671 reaper = find_new_reaper(father, reaper);
672 list_for_each_entry(p, &father->children, sibling) {
673 for_each_thread(p, t) {
674 RCU_INIT_POINTER(t->real_parent, reaper);
675 BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
676 if (likely(!t->ptrace))
677 t->parent = t->real_parent;
678 if (t->pdeath_signal)
679 group_send_sig_info(t->pdeath_signal,
680 SEND_SIG_NOINFO, t,
681 PIDTYPE_TGID);
682 }
683 /*
684 * If this is a threaded reparent there is no need to
685 * notify anyone anything has happened.
686 */
687 if (!same_thread_group(reaper, father))
688 reparent_leader(father, p, dead);
689 }
690 list_splice_tail_init(&father->children, &reaper->children);
691 }
692
693 /*
694 * Send signals to all our closest relatives so that they know
695 * to properly mourn us..
696 */
exit_notify(struct task_struct * tsk,int group_dead)697 static void exit_notify(struct task_struct *tsk, int group_dead)
698 {
699 bool autoreap;
700 struct task_struct *p, *n;
701 LIST_HEAD(dead);
702
703 write_lock_irq(&tasklist_lock);
704 forget_original_parent(tsk, &dead);
705
706 if (group_dead)
707 kill_orphaned_pgrp(tsk->group_leader, NULL);
708
709 tsk->exit_state = EXIT_ZOMBIE;
710 if (unlikely(tsk->ptrace)) {
711 int sig = thread_group_leader(tsk) &&
712 thread_group_empty(tsk) &&
713 !ptrace_reparented(tsk) ?
714 tsk->exit_signal : SIGCHLD;
715 autoreap = do_notify_parent(tsk, sig);
716 } else if (thread_group_leader(tsk)) {
717 autoreap = thread_group_empty(tsk) &&
718 do_notify_parent(tsk, tsk->exit_signal);
719 } else {
720 autoreap = true;
721 }
722
723 if (autoreap) {
724 tsk->exit_state = EXIT_DEAD;
725 list_add(&tsk->ptrace_entry, &dead);
726 }
727
728 /* mt-exec, de_thread() is waiting for group leader */
729 if (unlikely(tsk->signal->notify_count < 0))
730 wake_up_process(tsk->signal->group_exit_task);
731 write_unlock_irq(&tasklist_lock);
732
733 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
734 list_del_init(&p->ptrace_entry);
735 release_task(p);
736 }
737 }
738
739 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)740 static void check_stack_usage(void)
741 {
742 static DEFINE_SPINLOCK(low_water_lock);
743 static int lowest_to_date = THREAD_SIZE;
744 unsigned long free;
745
746 free = stack_not_used(current);
747
748 if (free >= lowest_to_date)
749 return;
750
751 spin_lock(&low_water_lock);
752 if (free < lowest_to_date) {
753 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
754 current->comm, task_pid_nr(current), free);
755 lowest_to_date = free;
756 }
757 spin_unlock(&low_water_lock);
758 }
759 #else
check_stack_usage(void)760 static inline void check_stack_usage(void) {}
761 #endif
762
do_exit(long code)763 void __noreturn do_exit(long code)
764 {
765 struct task_struct *tsk = current;
766 int group_dead;
767
768 /*
769 * We can get here from a kernel oops, sometimes with preemption off.
770 * Start by checking for critical errors.
771 * Then fix up important state like USER_DS and preemption.
772 * Then do everything else.
773 */
774
775 WARN_ON(blk_needs_flush_plug(tsk));
776
777 if (unlikely(in_interrupt()))
778 panic("Aiee, killing interrupt handler!");
779 if (unlikely(!tsk->pid))
780 panic("Attempted to kill the idle task!");
781
782 /*
783 * If do_exit is called because this processes oopsed, it's possible
784 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
785 * continuing. Amongst other possible reasons, this is to prevent
786 * mm_release()->clear_child_tid() from writing to a user-controlled
787 * kernel address.
788 */
789 force_uaccess_begin();
790
791 if (unlikely(in_atomic())) {
792 pr_info("note: %s[%d] exited with preempt_count %d\n",
793 current->comm, task_pid_nr(current),
794 preempt_count());
795 preempt_count_set(PREEMPT_ENABLED);
796 }
797
798 profile_task_exit(tsk);
799 kcov_task_exit(tsk);
800
801 ptrace_event(PTRACE_EVENT_EXIT, code);
802
803 validate_creds_for_do_exit(tsk);
804
805 /*
806 * We're taking recursive faults here in do_exit. Safest is to just
807 * leave this task alone and wait for reboot.
808 */
809 if (unlikely(tsk->flags & PF_EXITING)) {
810 pr_alert("Fixing recursive fault but reboot is needed!\n");
811 futex_exit_recursive(tsk);
812 set_current_state(TASK_UNINTERRUPTIBLE);
813 schedule();
814 }
815
816 io_uring_files_cancel();
817 exit_signals(tsk); /* sets PF_EXITING */
818
819 /* sync mm's RSS info before statistics gathering */
820 if (tsk->mm)
821 sync_mm_rss(tsk->mm);
822 acct_update_integrals(tsk);
823 group_dead = atomic_dec_and_test(&tsk->signal->live);
824 if (group_dead) {
825 /*
826 * If the last thread of global init has exited, panic
827 * immediately to get a useable coredump.
828 */
829 if (unlikely(is_global_init(tsk)))
830 panic("Attempted to kill init! exitcode=0x%08x\n",
831 tsk->signal->group_exit_code ?: (int)code);
832
833 #ifdef CONFIG_POSIX_TIMERS
834 hrtimer_cancel(&tsk->signal->real_timer);
835 exit_itimers(tsk);
836 #endif
837 if (tsk->mm)
838 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
839 }
840 acct_collect(code, group_dead);
841 if (group_dead)
842 tty_audit_exit();
843 audit_free(tsk);
844
845 tsk->exit_code = code;
846 taskstats_exit(tsk, group_dead);
847
848 exit_mm();
849
850 if (group_dead)
851 acct_process();
852 trace_sched_process_exit(tsk);
853
854 exit_sem(tsk);
855 exit_shm(tsk);
856 exit_files(tsk);
857 exit_fs(tsk);
858 if (group_dead)
859 disassociate_ctty(1);
860 exit_task_namespaces(tsk);
861 exit_task_work(tsk);
862 exit_thread(tsk);
863
864 /*
865 * Flush inherited counters to the parent - before the parent
866 * gets woken up by child-exit notifications.
867 *
868 * because of cgroup mode, must be called before cgroup_exit()
869 */
870 perf_event_exit_task(tsk);
871
872 sched_autogroup_exit_task(tsk);
873 cgroup_exit(tsk);
874
875 /*
876 * FIXME: do that only when needed, using sched_exit tracepoint
877 */
878 flush_ptrace_hw_breakpoint(tsk);
879
880 exit_tasks_rcu_start();
881 exit_notify(tsk, group_dead);
882 proc_exit_connector(tsk);
883 mpol_put_task_policy(tsk);
884 #ifdef CONFIG_FUTEX
885 if (unlikely(current->pi_state_cache))
886 kfree(current->pi_state_cache);
887 #endif
888 /*
889 * Make sure we are holding no locks:
890 */
891 debug_check_no_locks_held();
892
893 if (tsk->io_context)
894 exit_io_context(tsk);
895
896 if (tsk->splice_pipe)
897 free_pipe_info(tsk->splice_pipe);
898
899 if (tsk->task_frag.page)
900 put_page(tsk->task_frag.page);
901
902 validate_creds_for_do_exit(tsk);
903
904 check_stack_usage();
905 preempt_disable();
906 if (tsk->nr_dirtied)
907 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
908 exit_rcu();
909 exit_tasks_rcu_finish();
910
911 lockdep_free_task(tsk);
912 do_task_dead();
913 }
914 EXPORT_SYMBOL_GPL(do_exit);
915
make_task_dead(int signr)916 void __noreturn make_task_dead(int signr)
917 {
918 /*
919 * Take the task off the cpu after something catastrophic has
920 * happened.
921 */
922 unsigned int limit;
923
924 /*
925 * Every time the system oopses, if the oops happens while a reference
926 * to an object was held, the reference leaks.
927 * If the oops doesn't also leak memory, repeated oopsing can cause
928 * reference counters to wrap around (if they're not using refcount_t).
929 * This means that repeated oopsing can make unexploitable-looking bugs
930 * exploitable through repeated oopsing.
931 * To make sure this can't happen, place an upper bound on how often the
932 * kernel may oops without panic().
933 */
934 limit = READ_ONCE(oops_limit);
935 if (atomic_inc_return(&oops_count) >= limit && limit)
936 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
937
938 do_exit(signr);
939 }
940
complete_and_exit(struct completion * comp,long code)941 void complete_and_exit(struct completion *comp, long code)
942 {
943 if (comp)
944 complete(comp);
945
946 do_exit(code);
947 }
948 EXPORT_SYMBOL(complete_and_exit);
949
SYSCALL_DEFINE1(exit,int,error_code)950 SYSCALL_DEFINE1(exit, int, error_code)
951 {
952 do_exit((error_code&0xff)<<8);
953 }
954
955 /*
956 * Take down every thread in the group. This is called by fatal signals
957 * as well as by sys_exit_group (below).
958 */
959 void
do_group_exit(int exit_code)960 do_group_exit(int exit_code)
961 {
962 struct signal_struct *sig = current->signal;
963
964 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
965
966 if (signal_group_exit(sig))
967 exit_code = sig->group_exit_code;
968 else if (!thread_group_empty(current)) {
969 struct sighand_struct *const sighand = current->sighand;
970
971 spin_lock_irq(&sighand->siglock);
972 if (signal_group_exit(sig))
973 /* Another thread got here before we took the lock. */
974 exit_code = sig->group_exit_code;
975 else {
976 sig->group_exit_code = exit_code;
977 sig->flags = SIGNAL_GROUP_EXIT;
978 zap_other_threads(current);
979 }
980 spin_unlock_irq(&sighand->siglock);
981 }
982
983 do_exit(exit_code);
984 /* NOTREACHED */
985 }
986
987 /*
988 * this kills every thread in the thread group. Note that any externally
989 * wait4()-ing process will get the correct exit code - even if this
990 * thread is not the thread group leader.
991 */
SYSCALL_DEFINE1(exit_group,int,error_code)992 SYSCALL_DEFINE1(exit_group, int, error_code)
993 {
994 do_group_exit((error_code & 0xff) << 8);
995 /* NOTREACHED */
996 return 0;
997 }
998
999 struct waitid_info {
1000 pid_t pid;
1001 uid_t uid;
1002 int status;
1003 int cause;
1004 };
1005
1006 struct wait_opts {
1007 enum pid_type wo_type;
1008 int wo_flags;
1009 struct pid *wo_pid;
1010
1011 struct waitid_info *wo_info;
1012 int wo_stat;
1013 struct rusage *wo_rusage;
1014
1015 wait_queue_entry_t child_wait;
1016 int notask_error;
1017 };
1018
eligible_pid(struct wait_opts * wo,struct task_struct * p)1019 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1020 {
1021 return wo->wo_type == PIDTYPE_MAX ||
1022 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1023 }
1024
1025 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1026 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1027 {
1028 if (!eligible_pid(wo, p))
1029 return 0;
1030
1031 /*
1032 * Wait for all children (clone and not) if __WALL is set or
1033 * if it is traced by us.
1034 */
1035 if (ptrace || (wo->wo_flags & __WALL))
1036 return 1;
1037
1038 /*
1039 * Otherwise, wait for clone children *only* if __WCLONE is set;
1040 * otherwise, wait for non-clone children *only*.
1041 *
1042 * Note: a "clone" child here is one that reports to its parent
1043 * using a signal other than SIGCHLD, or a non-leader thread which
1044 * we can only see if it is traced by us.
1045 */
1046 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1047 return 0;
1048
1049 return 1;
1050 }
1051
1052 /*
1053 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1054 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1055 * the lock and this task is uninteresting. If we return nonzero, we have
1056 * released the lock and the system call should return.
1057 */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1058 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1059 {
1060 int state, status;
1061 pid_t pid = task_pid_vnr(p);
1062 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1063 struct waitid_info *infop;
1064
1065 if (!likely(wo->wo_flags & WEXITED))
1066 return 0;
1067
1068 if (unlikely(wo->wo_flags & WNOWAIT)) {
1069 status = p->exit_code;
1070 get_task_struct(p);
1071 read_unlock(&tasklist_lock);
1072 sched_annotate_sleep();
1073 if (wo->wo_rusage)
1074 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1075 put_task_struct(p);
1076 goto out_info;
1077 }
1078 /*
1079 * Move the task's state to DEAD/TRACE, only one thread can do this.
1080 */
1081 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1082 EXIT_TRACE : EXIT_DEAD;
1083 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1084 return 0;
1085 /*
1086 * We own this thread, nobody else can reap it.
1087 */
1088 read_unlock(&tasklist_lock);
1089 sched_annotate_sleep();
1090
1091 /*
1092 * Check thread_group_leader() to exclude the traced sub-threads.
1093 */
1094 if (state == EXIT_DEAD && thread_group_leader(p)) {
1095 struct signal_struct *sig = p->signal;
1096 struct signal_struct *psig = current->signal;
1097 unsigned long maxrss;
1098 u64 tgutime, tgstime;
1099
1100 /*
1101 * The resource counters for the group leader are in its
1102 * own task_struct. Those for dead threads in the group
1103 * are in its signal_struct, as are those for the child
1104 * processes it has previously reaped. All these
1105 * accumulate in the parent's signal_struct c* fields.
1106 *
1107 * We don't bother to take a lock here to protect these
1108 * p->signal fields because the whole thread group is dead
1109 * and nobody can change them.
1110 *
1111 * psig->stats_lock also protects us from our sub-theads
1112 * which can reap other children at the same time. Until
1113 * we change k_getrusage()-like users to rely on this lock
1114 * we have to take ->siglock as well.
1115 *
1116 * We use thread_group_cputime_adjusted() to get times for
1117 * the thread group, which consolidates times for all threads
1118 * in the group including the group leader.
1119 */
1120 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1121 spin_lock_irq(¤t->sighand->siglock);
1122 write_seqlock(&psig->stats_lock);
1123 psig->cutime += tgutime + sig->cutime;
1124 psig->cstime += tgstime + sig->cstime;
1125 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1126 psig->cmin_flt +=
1127 p->min_flt + sig->min_flt + sig->cmin_flt;
1128 psig->cmaj_flt +=
1129 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1130 psig->cnvcsw +=
1131 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1132 psig->cnivcsw +=
1133 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1134 psig->cinblock +=
1135 task_io_get_inblock(p) +
1136 sig->inblock + sig->cinblock;
1137 psig->coublock +=
1138 task_io_get_oublock(p) +
1139 sig->oublock + sig->coublock;
1140 maxrss = max(sig->maxrss, sig->cmaxrss);
1141 if (psig->cmaxrss < maxrss)
1142 psig->cmaxrss = maxrss;
1143 task_io_accounting_add(&psig->ioac, &p->ioac);
1144 task_io_accounting_add(&psig->ioac, &sig->ioac);
1145 write_sequnlock(&psig->stats_lock);
1146 spin_unlock_irq(¤t->sighand->siglock);
1147 }
1148
1149 if (wo->wo_rusage)
1150 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1151 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1152 ? p->signal->group_exit_code : p->exit_code;
1153 wo->wo_stat = status;
1154
1155 if (state == EXIT_TRACE) {
1156 write_lock_irq(&tasklist_lock);
1157 /* We dropped tasklist, ptracer could die and untrace */
1158 ptrace_unlink(p);
1159
1160 /* If parent wants a zombie, don't release it now */
1161 state = EXIT_ZOMBIE;
1162 if (do_notify_parent(p, p->exit_signal))
1163 state = EXIT_DEAD;
1164 p->exit_state = state;
1165 write_unlock_irq(&tasklist_lock);
1166 }
1167 if (state == EXIT_DEAD)
1168 release_task(p);
1169
1170 out_info:
1171 infop = wo->wo_info;
1172 if (infop) {
1173 if ((status & 0x7f) == 0) {
1174 infop->cause = CLD_EXITED;
1175 infop->status = status >> 8;
1176 } else {
1177 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1178 infop->status = status & 0x7f;
1179 }
1180 infop->pid = pid;
1181 infop->uid = uid;
1182 }
1183
1184 return pid;
1185 }
1186
task_stopped_code(struct task_struct * p,bool ptrace)1187 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1188 {
1189 if (ptrace) {
1190 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1191 return &p->exit_code;
1192 } else {
1193 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1194 return &p->signal->group_exit_code;
1195 }
1196 return NULL;
1197 }
1198
1199 /**
1200 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1201 * @wo: wait options
1202 * @ptrace: is the wait for ptrace
1203 * @p: task to wait for
1204 *
1205 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1206 *
1207 * CONTEXT:
1208 * read_lock(&tasklist_lock), which is released if return value is
1209 * non-zero. Also, grabs and releases @p->sighand->siglock.
1210 *
1211 * RETURNS:
1212 * 0 if wait condition didn't exist and search for other wait conditions
1213 * should continue. Non-zero return, -errno on failure and @p's pid on
1214 * success, implies that tasklist_lock is released and wait condition
1215 * search should terminate.
1216 */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1217 static int wait_task_stopped(struct wait_opts *wo,
1218 int ptrace, struct task_struct *p)
1219 {
1220 struct waitid_info *infop;
1221 int exit_code, *p_code, why;
1222 uid_t uid = 0; /* unneeded, required by compiler */
1223 pid_t pid;
1224
1225 /*
1226 * Traditionally we see ptrace'd stopped tasks regardless of options.
1227 */
1228 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1229 return 0;
1230
1231 if (!task_stopped_code(p, ptrace))
1232 return 0;
1233
1234 exit_code = 0;
1235 spin_lock_irq(&p->sighand->siglock);
1236
1237 p_code = task_stopped_code(p, ptrace);
1238 if (unlikely(!p_code))
1239 goto unlock_sig;
1240
1241 exit_code = *p_code;
1242 if (!exit_code)
1243 goto unlock_sig;
1244
1245 if (!unlikely(wo->wo_flags & WNOWAIT))
1246 *p_code = 0;
1247
1248 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1249 unlock_sig:
1250 spin_unlock_irq(&p->sighand->siglock);
1251 if (!exit_code)
1252 return 0;
1253
1254 /*
1255 * Now we are pretty sure this task is interesting.
1256 * Make sure it doesn't get reaped out from under us while we
1257 * give up the lock and then examine it below. We don't want to
1258 * keep holding onto the tasklist_lock while we call getrusage and
1259 * possibly take page faults for user memory.
1260 */
1261 get_task_struct(p);
1262 pid = task_pid_vnr(p);
1263 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1264 read_unlock(&tasklist_lock);
1265 sched_annotate_sleep();
1266 if (wo->wo_rusage)
1267 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1268 put_task_struct(p);
1269
1270 if (likely(!(wo->wo_flags & WNOWAIT)))
1271 wo->wo_stat = (exit_code << 8) | 0x7f;
1272
1273 infop = wo->wo_info;
1274 if (infop) {
1275 infop->cause = why;
1276 infop->status = exit_code;
1277 infop->pid = pid;
1278 infop->uid = uid;
1279 }
1280 return pid;
1281 }
1282
1283 /*
1284 * Handle do_wait work for one task in a live, non-stopped state.
1285 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1286 * the lock and this task is uninteresting. If we return nonzero, we have
1287 * released the lock and the system call should return.
1288 */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1289 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1290 {
1291 struct waitid_info *infop;
1292 pid_t pid;
1293 uid_t uid;
1294
1295 if (!unlikely(wo->wo_flags & WCONTINUED))
1296 return 0;
1297
1298 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1299 return 0;
1300
1301 spin_lock_irq(&p->sighand->siglock);
1302 /* Re-check with the lock held. */
1303 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1304 spin_unlock_irq(&p->sighand->siglock);
1305 return 0;
1306 }
1307 if (!unlikely(wo->wo_flags & WNOWAIT))
1308 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1309 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1310 spin_unlock_irq(&p->sighand->siglock);
1311
1312 pid = task_pid_vnr(p);
1313 get_task_struct(p);
1314 read_unlock(&tasklist_lock);
1315 sched_annotate_sleep();
1316 if (wo->wo_rusage)
1317 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1318 put_task_struct(p);
1319
1320 infop = wo->wo_info;
1321 if (!infop) {
1322 wo->wo_stat = 0xffff;
1323 } else {
1324 infop->cause = CLD_CONTINUED;
1325 infop->pid = pid;
1326 infop->uid = uid;
1327 infop->status = SIGCONT;
1328 }
1329 return pid;
1330 }
1331
1332 /*
1333 * Consider @p for a wait by @parent.
1334 *
1335 * -ECHILD should be in ->notask_error before the first call.
1336 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1337 * Returns zero if the search for a child should continue;
1338 * then ->notask_error is 0 if @p is an eligible child,
1339 * or still -ECHILD.
1340 */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1341 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1342 struct task_struct *p)
1343 {
1344 /*
1345 * We can race with wait_task_zombie() from another thread.
1346 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1347 * can't confuse the checks below.
1348 */
1349 int exit_state = READ_ONCE(p->exit_state);
1350 int ret;
1351
1352 if (unlikely(exit_state == EXIT_DEAD))
1353 return 0;
1354
1355 ret = eligible_child(wo, ptrace, p);
1356 if (!ret)
1357 return ret;
1358
1359 if (unlikely(exit_state == EXIT_TRACE)) {
1360 /*
1361 * ptrace == 0 means we are the natural parent. In this case
1362 * we should clear notask_error, debugger will notify us.
1363 */
1364 if (likely(!ptrace))
1365 wo->notask_error = 0;
1366 return 0;
1367 }
1368
1369 if (likely(!ptrace) && unlikely(p->ptrace)) {
1370 /*
1371 * If it is traced by its real parent's group, just pretend
1372 * the caller is ptrace_do_wait() and reap this child if it
1373 * is zombie.
1374 *
1375 * This also hides group stop state from real parent; otherwise
1376 * a single stop can be reported twice as group and ptrace stop.
1377 * If a ptracer wants to distinguish these two events for its
1378 * own children it should create a separate process which takes
1379 * the role of real parent.
1380 */
1381 if (!ptrace_reparented(p))
1382 ptrace = 1;
1383 }
1384
1385 /* slay zombie? */
1386 if (exit_state == EXIT_ZOMBIE) {
1387 /* we don't reap group leaders with subthreads */
1388 if (!delay_group_leader(p)) {
1389 /*
1390 * A zombie ptracee is only visible to its ptracer.
1391 * Notification and reaping will be cascaded to the
1392 * real parent when the ptracer detaches.
1393 */
1394 if (unlikely(ptrace) || likely(!p->ptrace))
1395 return wait_task_zombie(wo, p);
1396 }
1397
1398 /*
1399 * Allow access to stopped/continued state via zombie by
1400 * falling through. Clearing of notask_error is complex.
1401 *
1402 * When !@ptrace:
1403 *
1404 * If WEXITED is set, notask_error should naturally be
1405 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1406 * so, if there are live subthreads, there are events to
1407 * wait for. If all subthreads are dead, it's still safe
1408 * to clear - this function will be called again in finite
1409 * amount time once all the subthreads are released and
1410 * will then return without clearing.
1411 *
1412 * When @ptrace:
1413 *
1414 * Stopped state is per-task and thus can't change once the
1415 * target task dies. Only continued and exited can happen.
1416 * Clear notask_error if WCONTINUED | WEXITED.
1417 */
1418 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1419 wo->notask_error = 0;
1420 } else {
1421 /*
1422 * @p is alive and it's gonna stop, continue or exit, so
1423 * there always is something to wait for.
1424 */
1425 wo->notask_error = 0;
1426 }
1427
1428 /*
1429 * Wait for stopped. Depending on @ptrace, different stopped state
1430 * is used and the two don't interact with each other.
1431 */
1432 ret = wait_task_stopped(wo, ptrace, p);
1433 if (ret)
1434 return ret;
1435
1436 /*
1437 * Wait for continued. There's only one continued state and the
1438 * ptracer can consume it which can confuse the real parent. Don't
1439 * use WCONTINUED from ptracer. You don't need or want it.
1440 */
1441 return wait_task_continued(wo, p);
1442 }
1443
1444 /*
1445 * Do the work of do_wait() for one thread in the group, @tsk.
1446 *
1447 * -ECHILD should be in ->notask_error before the first call.
1448 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1449 * Returns zero if the search for a child should continue; then
1450 * ->notask_error is 0 if there were any eligible children,
1451 * or still -ECHILD.
1452 */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1453 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1454 {
1455 struct task_struct *p;
1456
1457 list_for_each_entry(p, &tsk->children, sibling) {
1458 int ret = wait_consider_task(wo, 0, p);
1459
1460 if (ret)
1461 return ret;
1462 }
1463
1464 return 0;
1465 }
1466
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1467 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1468 {
1469 struct task_struct *p;
1470
1471 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1472 int ret = wait_consider_task(wo, 1, p);
1473
1474 if (ret)
1475 return ret;
1476 }
1477
1478 return 0;
1479 }
1480
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1481 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1482 int sync, void *key)
1483 {
1484 struct wait_opts *wo = container_of(wait, struct wait_opts,
1485 child_wait);
1486 struct task_struct *p = key;
1487
1488 if (!eligible_pid(wo, p))
1489 return 0;
1490
1491 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1492 return 0;
1493
1494 return default_wake_function(wait, mode, sync, key);
1495 }
1496
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1497 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1498 {
1499 __wake_up_sync_key(&parent->signal->wait_chldexit,
1500 TASK_INTERRUPTIBLE, p);
1501 }
1502
do_wait(struct wait_opts * wo)1503 static long do_wait(struct wait_opts *wo)
1504 {
1505 struct task_struct *tsk;
1506 int retval;
1507
1508 trace_sched_process_wait(wo->wo_pid);
1509
1510 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1511 wo->child_wait.private = current;
1512 add_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1513 repeat:
1514 /*
1515 * If there is nothing that can match our criteria, just get out.
1516 * We will clear ->notask_error to zero if we see any child that
1517 * might later match our criteria, even if we are not able to reap
1518 * it yet.
1519 */
1520 wo->notask_error = -ECHILD;
1521 if ((wo->wo_type < PIDTYPE_MAX) &&
1522 (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1523 goto notask;
1524
1525 set_current_state(TASK_INTERRUPTIBLE);
1526 read_lock(&tasklist_lock);
1527 tsk = current;
1528 do {
1529 retval = do_wait_thread(wo, tsk);
1530 if (retval)
1531 goto end;
1532
1533 retval = ptrace_do_wait(wo, tsk);
1534 if (retval)
1535 goto end;
1536
1537 if (wo->wo_flags & __WNOTHREAD)
1538 break;
1539 } while_each_thread(current, tsk);
1540 read_unlock(&tasklist_lock);
1541
1542 notask:
1543 retval = wo->notask_error;
1544 if (!retval && !(wo->wo_flags & WNOHANG)) {
1545 retval = -ERESTARTSYS;
1546 if (!signal_pending(current)) {
1547 schedule();
1548 goto repeat;
1549 }
1550 }
1551 end:
1552 __set_current_state(TASK_RUNNING);
1553 remove_wait_queue(¤t->signal->wait_chldexit, &wo->child_wait);
1554 return retval;
1555 }
1556
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1557 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1558 int options, struct rusage *ru)
1559 {
1560 struct wait_opts wo;
1561 struct pid *pid = NULL;
1562 enum pid_type type;
1563 long ret;
1564 unsigned int f_flags = 0;
1565
1566 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1567 __WNOTHREAD|__WCLONE|__WALL))
1568 return -EINVAL;
1569 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1570 return -EINVAL;
1571
1572 switch (which) {
1573 case P_ALL:
1574 type = PIDTYPE_MAX;
1575 break;
1576 case P_PID:
1577 type = PIDTYPE_PID;
1578 if (upid <= 0)
1579 return -EINVAL;
1580
1581 pid = find_get_pid(upid);
1582 break;
1583 case P_PGID:
1584 type = PIDTYPE_PGID;
1585 if (upid < 0)
1586 return -EINVAL;
1587
1588 if (upid)
1589 pid = find_get_pid(upid);
1590 else
1591 pid = get_task_pid(current, PIDTYPE_PGID);
1592 break;
1593 case P_PIDFD:
1594 type = PIDTYPE_PID;
1595 if (upid < 0)
1596 return -EINVAL;
1597
1598 pid = pidfd_get_pid(upid, &f_flags);
1599 if (IS_ERR(pid))
1600 return PTR_ERR(pid);
1601
1602 break;
1603 default:
1604 return -EINVAL;
1605 }
1606
1607 wo.wo_type = type;
1608 wo.wo_pid = pid;
1609 wo.wo_flags = options;
1610 wo.wo_info = infop;
1611 wo.wo_rusage = ru;
1612 if (f_flags & O_NONBLOCK)
1613 wo.wo_flags |= WNOHANG;
1614
1615 ret = do_wait(&wo);
1616 if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1617 ret = -EAGAIN;
1618
1619 put_pid(pid);
1620 return ret;
1621 }
1622
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1623 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1624 infop, int, options, struct rusage __user *, ru)
1625 {
1626 struct rusage r;
1627 struct waitid_info info = {.status = 0};
1628 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1629 int signo = 0;
1630
1631 if (err > 0) {
1632 signo = SIGCHLD;
1633 err = 0;
1634 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1635 return -EFAULT;
1636 }
1637 if (!infop)
1638 return err;
1639
1640 if (!user_write_access_begin(infop, sizeof(*infop)))
1641 return -EFAULT;
1642
1643 unsafe_put_user(signo, &infop->si_signo, Efault);
1644 unsafe_put_user(0, &infop->si_errno, Efault);
1645 unsafe_put_user(info.cause, &infop->si_code, Efault);
1646 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1647 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1648 unsafe_put_user(info.status, &infop->si_status, Efault);
1649 user_write_access_end();
1650 return err;
1651 Efault:
1652 user_write_access_end();
1653 return -EFAULT;
1654 }
1655
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1656 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1657 struct rusage *ru)
1658 {
1659 struct wait_opts wo;
1660 struct pid *pid = NULL;
1661 enum pid_type type;
1662 long ret;
1663
1664 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1665 __WNOTHREAD|__WCLONE|__WALL))
1666 return -EINVAL;
1667
1668 /* -INT_MIN is not defined */
1669 if (upid == INT_MIN)
1670 return -ESRCH;
1671
1672 if (upid == -1)
1673 type = PIDTYPE_MAX;
1674 else if (upid < 0) {
1675 type = PIDTYPE_PGID;
1676 pid = find_get_pid(-upid);
1677 } else if (upid == 0) {
1678 type = PIDTYPE_PGID;
1679 pid = get_task_pid(current, PIDTYPE_PGID);
1680 } else /* upid > 0 */ {
1681 type = PIDTYPE_PID;
1682 pid = find_get_pid(upid);
1683 }
1684
1685 wo.wo_type = type;
1686 wo.wo_pid = pid;
1687 wo.wo_flags = options | WEXITED;
1688 wo.wo_info = NULL;
1689 wo.wo_stat = 0;
1690 wo.wo_rusage = ru;
1691 ret = do_wait(&wo);
1692 put_pid(pid);
1693 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1694 ret = -EFAULT;
1695
1696 return ret;
1697 }
1698
kernel_wait(pid_t pid,int * stat)1699 int kernel_wait(pid_t pid, int *stat)
1700 {
1701 struct wait_opts wo = {
1702 .wo_type = PIDTYPE_PID,
1703 .wo_pid = find_get_pid(pid),
1704 .wo_flags = WEXITED,
1705 };
1706 int ret;
1707
1708 ret = do_wait(&wo);
1709 if (ret > 0 && wo.wo_stat)
1710 *stat = wo.wo_stat;
1711 put_pid(wo.wo_pid);
1712 return ret;
1713 }
1714
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1715 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1716 int, options, struct rusage __user *, ru)
1717 {
1718 struct rusage r;
1719 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1720
1721 if (err > 0) {
1722 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1723 return -EFAULT;
1724 }
1725 return err;
1726 }
1727
1728 #ifdef __ARCH_WANT_SYS_WAITPID
1729
1730 /*
1731 * sys_waitpid() remains for compatibility. waitpid() should be
1732 * implemented by calling sys_wait4() from libc.a.
1733 */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1734 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1735 {
1736 return kernel_wait4(pid, stat_addr, options, NULL);
1737 }
1738
1739 #endif
1740
1741 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1742 COMPAT_SYSCALL_DEFINE4(wait4,
1743 compat_pid_t, pid,
1744 compat_uint_t __user *, stat_addr,
1745 int, options,
1746 struct compat_rusage __user *, ru)
1747 {
1748 struct rusage r;
1749 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1750 if (err > 0) {
1751 if (ru && put_compat_rusage(&r, ru))
1752 return -EFAULT;
1753 }
1754 return err;
1755 }
1756
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1757 COMPAT_SYSCALL_DEFINE5(waitid,
1758 int, which, compat_pid_t, pid,
1759 struct compat_siginfo __user *, infop, int, options,
1760 struct compat_rusage __user *, uru)
1761 {
1762 struct rusage ru;
1763 struct waitid_info info = {.status = 0};
1764 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1765 int signo = 0;
1766 if (err > 0) {
1767 signo = SIGCHLD;
1768 err = 0;
1769 if (uru) {
1770 /* kernel_waitid() overwrites everything in ru */
1771 if (COMPAT_USE_64BIT_TIME)
1772 err = copy_to_user(uru, &ru, sizeof(ru));
1773 else
1774 err = put_compat_rusage(&ru, uru);
1775 if (err)
1776 return -EFAULT;
1777 }
1778 }
1779
1780 if (!infop)
1781 return err;
1782
1783 if (!user_write_access_begin(infop, sizeof(*infop)))
1784 return -EFAULT;
1785
1786 unsafe_put_user(signo, &infop->si_signo, Efault);
1787 unsafe_put_user(0, &infop->si_errno, Efault);
1788 unsafe_put_user(info.cause, &infop->si_code, Efault);
1789 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1790 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1791 unsafe_put_user(info.status, &infop->si_status, Efault);
1792 user_write_access_end();
1793 return err;
1794 Efault:
1795 user_write_access_end();
1796 return -EFAULT;
1797 }
1798 #endif
1799
1800 /**
1801 * thread_group_exited - check that a thread group has exited
1802 * @pid: tgid of thread group to be checked.
1803 *
1804 * Test if the thread group represented by tgid has exited (all
1805 * threads are zombies, dead or completely gone).
1806 *
1807 * Return: true if the thread group has exited. false otherwise.
1808 */
thread_group_exited(struct pid * pid)1809 bool thread_group_exited(struct pid *pid)
1810 {
1811 struct task_struct *task;
1812 bool exited;
1813
1814 rcu_read_lock();
1815 task = pid_task(pid, PIDTYPE_PID);
1816 exited = !task ||
1817 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1818 rcu_read_unlock();
1819
1820 return exited;
1821 }
1822 EXPORT_SYMBOL(thread_group_exited);
1823
abort(void)1824 __weak void abort(void)
1825 {
1826 BUG();
1827
1828 /* if that doesn't kill us, halt */
1829 panic("Oops failed to kill thread");
1830 }
1831 EXPORT_SYMBOL(abort);
1832