1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Kernel thread helper functions.
3 * Copyright (C) 2004 IBM Corporation, Rusty Russell.
4 * Copyright (C) 2009 Red Hat, Inc.
5 *
6 * Creation is done via kthreadd, so that we get a clean environment
7 * even if we're invoked from userspace (think modprobe, hotplug cpu,
8 * etc.).
9 */
10 #include <uapi/linux/sched/types.h>
11 #include <linux/mm.h>
12 #include <linux/mmu_context.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/kthread.h>
17 #include <linux/completion.h>
18 #include <linux/err.h>
19 #include <linux/cgroup.h>
20 #include <linux/cpuset.h>
21 #include <linux/unistd.h>
22 #include <linux/file.h>
23 #include <linux/export.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/freezer.h>
27 #include <linux/ptrace.h>
28 #include <linux/uaccess.h>
29 #include <linux/numa.h>
30 #include <linux/sched/isolation.h>
31 #include <trace/events/sched.h>
32
33
34 static DEFINE_SPINLOCK(kthread_create_lock);
35 static LIST_HEAD(kthread_create_list);
36 struct task_struct *kthreadd_task;
37
38 struct kthread_create_info
39 {
40 /* Information passed to kthread() from kthreadd. */
41 int (*threadfn)(void *data);
42 void *data;
43 int node;
44
45 /* Result passed back to kthread_create() from kthreadd. */
46 struct task_struct *result;
47 struct completion *done;
48
49 struct list_head list;
50 };
51
52 struct kthread {
53 unsigned long flags;
54 unsigned int cpu;
55 int (*threadfn)(void *);
56 void *data;
57 mm_segment_t oldfs;
58 struct completion parked;
59 struct completion exited;
60 #ifdef CONFIG_BLK_CGROUP
61 struct cgroup_subsys_state *blkcg_css;
62 #endif
63 };
64
65 enum KTHREAD_BITS {
66 KTHREAD_IS_PER_CPU = 0,
67 KTHREAD_SHOULD_STOP,
68 KTHREAD_SHOULD_PARK,
69 };
70
set_kthread_struct(void * kthread)71 static inline void set_kthread_struct(void *kthread)
72 {
73 /*
74 * We abuse ->set_child_tid to avoid the new member and because it
75 * can't be wrongly copied by copy_process(). We also rely on fact
76 * that the caller can't exec, so PF_KTHREAD can't be cleared.
77 */
78 current->set_child_tid = (__force void __user *)kthread;
79 }
80
to_kthread(struct task_struct * k)81 static inline struct kthread *to_kthread(struct task_struct *k)
82 {
83 WARN_ON(!(k->flags & PF_KTHREAD));
84 return (__force void *)k->set_child_tid;
85 }
86
87 /*
88 * Variant of to_kthread() that doesn't assume @p is a kthread.
89 *
90 * Per construction; when:
91 *
92 * (p->flags & PF_KTHREAD) && p->set_child_tid
93 *
94 * the task is both a kthread and struct kthread is persistent. However
95 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
96 * begin_new_exec()).
97 */
__to_kthread(struct task_struct * p)98 static inline struct kthread *__to_kthread(struct task_struct *p)
99 {
100 void *kthread = (__force void *)p->set_child_tid;
101 if (kthread && !(p->flags & PF_KTHREAD))
102 kthread = NULL;
103 return kthread;
104 }
105
free_kthread_struct(struct task_struct * k)106 void free_kthread_struct(struct task_struct *k)
107 {
108 struct kthread *kthread;
109
110 /*
111 * Can be NULL if this kthread was created by kernel_thread()
112 * or if kmalloc() in kthread() failed.
113 */
114 kthread = to_kthread(k);
115 #ifdef CONFIG_BLK_CGROUP
116 WARN_ON_ONCE(kthread && kthread->blkcg_css);
117 #endif
118 kfree(kthread);
119 }
120
121 /**
122 * kthread_should_stop - should this kthread return now?
123 *
124 * When someone calls kthread_stop() on your kthread, it will be woken
125 * and this will return true. You should then return, and your return
126 * value will be passed through to kthread_stop().
127 */
kthread_should_stop(void)128 bool kthread_should_stop(void)
129 {
130 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
131 }
132 EXPORT_SYMBOL(kthread_should_stop);
133
__kthread_should_park(struct task_struct * k)134 bool __kthread_should_park(struct task_struct *k)
135 {
136 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
137 }
138 EXPORT_SYMBOL_GPL(__kthread_should_park);
139
140 /**
141 * kthread_should_park - should this kthread park now?
142 *
143 * When someone calls kthread_park() on your kthread, it will be woken
144 * and this will return true. You should then do the necessary
145 * cleanup and call kthread_parkme()
146 *
147 * Similar to kthread_should_stop(), but this keeps the thread alive
148 * and in a park position. kthread_unpark() "restarts" the thread and
149 * calls the thread function again.
150 */
kthread_should_park(void)151 bool kthread_should_park(void)
152 {
153 return __kthread_should_park(current);
154 }
155 EXPORT_SYMBOL_GPL(kthread_should_park);
156
157 /**
158 * kthread_freezable_should_stop - should this freezable kthread return now?
159 * @was_frozen: optional out parameter, indicates whether %current was frozen
160 *
161 * kthread_should_stop() for freezable kthreads, which will enter
162 * refrigerator if necessary. This function is safe from kthread_stop() /
163 * freezer deadlock and freezable kthreads should use this function instead
164 * of calling try_to_freeze() directly.
165 */
kthread_freezable_should_stop(bool * was_frozen)166 bool kthread_freezable_should_stop(bool *was_frozen)
167 {
168 bool frozen = false;
169
170 might_sleep();
171
172 if (unlikely(freezing(current)))
173 frozen = __refrigerator(true);
174
175 if (was_frozen)
176 *was_frozen = frozen;
177
178 return kthread_should_stop();
179 }
180 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
181
182 /**
183 * kthread_func - return the function specified on kthread creation
184 * @task: kthread task in question
185 *
186 * Returns NULL if the task is not a kthread.
187 */
kthread_func(struct task_struct * task)188 void *kthread_func(struct task_struct *task)
189 {
190 struct kthread *kthread = __to_kthread(task);
191 if (kthread)
192 return kthread->threadfn;
193 return NULL;
194 }
195 EXPORT_SYMBOL_GPL(kthread_func);
196
197 /**
198 * kthread_data - return data value specified on kthread creation
199 * @task: kthread task in question
200 *
201 * Return the data value specified when kthread @task was created.
202 * The caller is responsible for ensuring the validity of @task when
203 * calling this function.
204 */
kthread_data(struct task_struct * task)205 void *kthread_data(struct task_struct *task)
206 {
207 return to_kthread(task)->data;
208 }
209 EXPORT_SYMBOL_GPL(kthread_data);
210
211 /**
212 * kthread_probe_data - speculative version of kthread_data()
213 * @task: possible kthread task in question
214 *
215 * @task could be a kthread task. Return the data value specified when it
216 * was created if accessible. If @task isn't a kthread task or its data is
217 * inaccessible for any reason, %NULL is returned. This function requires
218 * that @task itself is safe to dereference.
219 */
kthread_probe_data(struct task_struct * task)220 void *kthread_probe_data(struct task_struct *task)
221 {
222 struct kthread *kthread = __to_kthread(task);
223 void *data = NULL;
224
225 if (kthread)
226 copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
227 return data;
228 }
229
__kthread_parkme(struct kthread * self)230 static void __kthread_parkme(struct kthread *self)
231 {
232 for (;;) {
233 /*
234 * TASK_PARKED is a special state; we must serialize against
235 * possible pending wakeups to avoid store-store collisions on
236 * task->state.
237 *
238 * Such a collision might possibly result in the task state
239 * changin from TASK_PARKED and us failing the
240 * wait_task_inactive() in kthread_park().
241 */
242 set_special_state(TASK_PARKED);
243 if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
244 break;
245
246 /*
247 * Thread is going to call schedule(), do not preempt it,
248 * or the caller of kthread_park() may spend more time in
249 * wait_task_inactive().
250 */
251 preempt_disable();
252 complete(&self->parked);
253 schedule_preempt_disabled();
254 preempt_enable();
255 }
256 __set_current_state(TASK_RUNNING);
257 }
258
kthread_parkme(void)259 void kthread_parkme(void)
260 {
261 __kthread_parkme(to_kthread(current));
262 }
263 EXPORT_SYMBOL_GPL(kthread_parkme);
264
kthread(void * _create)265 static int kthread(void *_create)
266 {
267 /* Copy data: it's on kthread's stack */
268 struct kthread_create_info *create = _create;
269 int (*threadfn)(void *data) = create->threadfn;
270 void *data = create->data;
271 struct completion *done;
272 struct kthread *self;
273 int ret;
274
275 self = kzalloc(sizeof(*self), GFP_KERNEL);
276 set_kthread_struct(self);
277
278 /* If user was SIGKILLed, I release the structure. */
279 done = xchg(&create->done, NULL);
280 if (!done) {
281 kfree(create);
282 do_exit(-EINTR);
283 }
284
285 if (!self) {
286 create->result = ERR_PTR(-ENOMEM);
287 complete(done);
288 do_exit(-ENOMEM);
289 }
290
291 self->threadfn = threadfn;
292 self->data = data;
293 init_completion(&self->exited);
294 init_completion(&self->parked);
295 current->vfork_done = &self->exited;
296
297 /* OK, tell user we're spawned, wait for stop or wakeup */
298 __set_current_state(TASK_UNINTERRUPTIBLE);
299 create->result = current;
300 /*
301 * Thread is going to call schedule(), do not preempt it,
302 * or the creator may spend more time in wait_task_inactive().
303 */
304 preempt_disable();
305 complete(done);
306 schedule_preempt_disabled();
307 preempt_enable();
308
309 ret = -EINTR;
310 if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
311 cgroup_kthread_ready();
312 __kthread_parkme(self);
313 ret = threadfn(data);
314 }
315 do_exit(ret);
316 }
317
318 /* called from do_fork() to get node information for about to be created task */
tsk_fork_get_node(struct task_struct * tsk)319 int tsk_fork_get_node(struct task_struct *tsk)
320 {
321 #ifdef CONFIG_NUMA
322 if (tsk == kthreadd_task)
323 return tsk->pref_node_fork;
324 #endif
325 return NUMA_NO_NODE;
326 }
327
create_kthread(struct kthread_create_info * create)328 static void create_kthread(struct kthread_create_info *create)
329 {
330 int pid;
331
332 #ifdef CONFIG_NUMA
333 current->pref_node_fork = create->node;
334 #endif
335 /* We want our own signal handler (we take no signals by default). */
336 pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
337 if (pid < 0) {
338 /* If user was SIGKILLed, I release the structure. */
339 struct completion *done = xchg(&create->done, NULL);
340
341 if (!done) {
342 kfree(create);
343 return;
344 }
345 create->result = ERR_PTR(pid);
346 complete(done);
347 }
348 }
349
350 static __printf(4, 0)
__kthread_create_on_node(int (* threadfn)(void * data),void * data,int node,const char namefmt[],va_list args)351 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
352 void *data, int node,
353 const char namefmt[],
354 va_list args)
355 {
356 DECLARE_COMPLETION_ONSTACK(done);
357 struct task_struct *task;
358 struct kthread_create_info *create = kmalloc(sizeof(*create),
359 GFP_KERNEL);
360
361 if (!create)
362 return ERR_PTR(-ENOMEM);
363 create->threadfn = threadfn;
364 create->data = data;
365 create->node = node;
366 create->done = &done;
367
368 spin_lock(&kthread_create_lock);
369 list_add_tail(&create->list, &kthread_create_list);
370 spin_unlock(&kthread_create_lock);
371
372 wake_up_process(kthreadd_task);
373 /*
374 * Wait for completion in killable state, for I might be chosen by
375 * the OOM killer while kthreadd is trying to allocate memory for
376 * new kernel thread.
377 */
378 if (unlikely(wait_for_completion_killable(&done))) {
379 /*
380 * If I was SIGKILLed before kthreadd (or new kernel thread)
381 * calls complete(), leave the cleanup of this structure to
382 * that thread.
383 */
384 if (xchg(&create->done, NULL))
385 return ERR_PTR(-EINTR);
386 /*
387 * kthreadd (or new kernel thread) will call complete()
388 * shortly.
389 */
390 wait_for_completion(&done);
391 }
392 task = create->result;
393 if (!IS_ERR(task)) {
394 static const struct sched_param param = { .sched_priority = 0 };
395 char name[TASK_COMM_LEN];
396
397 /*
398 * task is already visible to other tasks, so updating
399 * COMM must be protected.
400 */
401 vsnprintf(name, sizeof(name), namefmt, args);
402 set_task_comm(task, name);
403 /*
404 * root may have changed our (kthreadd's) priority or CPU mask.
405 * The kernel thread should not inherit these properties.
406 */
407 sched_setscheduler_nocheck(task, SCHED_NORMAL, ¶m);
408 set_cpus_allowed_ptr(task,
409 housekeeping_cpumask(HK_FLAG_KTHREAD));
410 }
411 kfree(create);
412 return task;
413 }
414
415 /**
416 * kthread_create_on_node - create a kthread.
417 * @threadfn: the function to run until signal_pending(current).
418 * @data: data ptr for @threadfn.
419 * @node: task and thread structures for the thread are allocated on this node
420 * @namefmt: printf-style name for the thread.
421 *
422 * Description: This helper function creates and names a kernel
423 * thread. The thread will be stopped: use wake_up_process() to start
424 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and
425 * is affine to all CPUs.
426 *
427 * If thread is going to be bound on a particular cpu, give its node
428 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
429 * When woken, the thread will run @threadfn() with @data as its
430 * argument. @threadfn() can either call do_exit() directly if it is a
431 * standalone thread for which no one will call kthread_stop(), or
432 * return when 'kthread_should_stop()' is true (which means
433 * kthread_stop() has been called). The return value should be zero
434 * or a negative error number; it will be passed to kthread_stop().
435 *
436 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
437 */
kthread_create_on_node(int (* threadfn)(void * data),void * data,int node,const char namefmt[],...)438 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
439 void *data, int node,
440 const char namefmt[],
441 ...)
442 {
443 struct task_struct *task;
444 va_list args;
445
446 va_start(args, namefmt);
447 task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
448 va_end(args);
449
450 return task;
451 }
452 EXPORT_SYMBOL(kthread_create_on_node);
453
__kthread_bind_mask(struct task_struct * p,const struct cpumask * mask,long state)454 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, long state)
455 {
456 unsigned long flags;
457
458 if (!wait_task_inactive(p, state)) {
459 WARN_ON(1);
460 return;
461 }
462
463 /* It's safe because the task is inactive. */
464 raw_spin_lock_irqsave(&p->pi_lock, flags);
465 do_set_cpus_allowed(p, mask);
466 p->flags |= PF_NO_SETAFFINITY;
467 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
468 }
469
__kthread_bind(struct task_struct * p,unsigned int cpu,long state)470 static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state)
471 {
472 __kthread_bind_mask(p, cpumask_of(cpu), state);
473 }
474
kthread_bind_mask(struct task_struct * p,const struct cpumask * mask)475 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
476 {
477 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
478 }
479 EXPORT_SYMBOL_GPL(kthread_bind_mask);
480
481 /**
482 * kthread_bind - bind a just-created kthread to a cpu.
483 * @p: thread created by kthread_create().
484 * @cpu: cpu (might not be online, must be possible) for @k to run on.
485 *
486 * Description: This function is equivalent to set_cpus_allowed(),
487 * except that @cpu doesn't need to be online, and the thread must be
488 * stopped (i.e., just returned from kthread_create()).
489 */
kthread_bind(struct task_struct * p,unsigned int cpu)490 void kthread_bind(struct task_struct *p, unsigned int cpu)
491 {
492 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
493 }
494 EXPORT_SYMBOL(kthread_bind);
495
496 /**
497 * kthread_create_on_cpu - Create a cpu bound kthread
498 * @threadfn: the function to run until signal_pending(current).
499 * @data: data ptr for @threadfn.
500 * @cpu: The cpu on which the thread should be bound,
501 * @namefmt: printf-style name for the thread. Format is restricted
502 * to "name.*%u". Code fills in cpu number.
503 *
504 * Description: This helper function creates and names a kernel thread
505 */
kthread_create_on_cpu(int (* threadfn)(void * data),void * data,unsigned int cpu,const char * namefmt)506 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
507 void *data, unsigned int cpu,
508 const char *namefmt)
509 {
510 struct task_struct *p;
511
512 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
513 cpu);
514 if (IS_ERR(p))
515 return p;
516 kthread_bind(p, cpu);
517 /* CPU hotplug need to bind once again when unparking the thread. */
518 to_kthread(p)->cpu = cpu;
519 return p;
520 }
521 EXPORT_SYMBOL(kthread_create_on_cpu);
522
kthread_set_per_cpu(struct task_struct * k,int cpu)523 void kthread_set_per_cpu(struct task_struct *k, int cpu)
524 {
525 struct kthread *kthread = to_kthread(k);
526 if (!kthread)
527 return;
528
529 WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
530
531 if (cpu < 0) {
532 clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
533 return;
534 }
535
536 kthread->cpu = cpu;
537 set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
538 }
539 EXPORT_SYMBOL_GPL(kthread_set_per_cpu);
540
kthread_is_per_cpu(struct task_struct * p)541 bool kthread_is_per_cpu(struct task_struct *p)
542 {
543 struct kthread *kthread = __to_kthread(p);
544 if (!kthread)
545 return false;
546
547 return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
548 }
549
550 /**
551 * kthread_unpark - unpark a thread created by kthread_create().
552 * @k: thread created by kthread_create().
553 *
554 * Sets kthread_should_park() for @k to return false, wakes it, and
555 * waits for it to return. If the thread is marked percpu then its
556 * bound to the cpu again.
557 */
kthread_unpark(struct task_struct * k)558 void kthread_unpark(struct task_struct *k)
559 {
560 struct kthread *kthread = to_kthread(k);
561
562 /*
563 * Newly created kthread was parked when the CPU was offline.
564 * The binding was lost and we need to set it again.
565 */
566 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
567 __kthread_bind(k, kthread->cpu, TASK_PARKED);
568
569 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
570 /*
571 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
572 */
573 wake_up_state(k, TASK_PARKED);
574 }
575 EXPORT_SYMBOL_GPL(kthread_unpark);
576
577 /**
578 * kthread_park - park a thread created by kthread_create().
579 * @k: thread created by kthread_create().
580 *
581 * Sets kthread_should_park() for @k to return true, wakes it, and
582 * waits for it to return. This can also be called after kthread_create()
583 * instead of calling wake_up_process(): the thread will park without
584 * calling threadfn().
585 *
586 * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
587 * If called by the kthread itself just the park bit is set.
588 */
kthread_park(struct task_struct * k)589 int kthread_park(struct task_struct *k)
590 {
591 struct kthread *kthread = to_kthread(k);
592
593 if (WARN_ON(k->flags & PF_EXITING))
594 return -ENOSYS;
595
596 if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
597 return -EBUSY;
598
599 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
600 if (k != current) {
601 wake_up_process(k);
602 /*
603 * Wait for __kthread_parkme() to complete(), this means we
604 * _will_ have TASK_PARKED and are about to call schedule().
605 */
606 wait_for_completion(&kthread->parked);
607 /*
608 * Now wait for that schedule() to complete and the task to
609 * get scheduled out.
610 */
611 WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
612 }
613
614 return 0;
615 }
616 EXPORT_SYMBOL_GPL(kthread_park);
617
618 /**
619 * kthread_stop - stop a thread created by kthread_create().
620 * @k: thread created by kthread_create().
621 *
622 * Sets kthread_should_stop() for @k to return true, wakes it, and
623 * waits for it to exit. This can also be called after kthread_create()
624 * instead of calling wake_up_process(): the thread will exit without
625 * calling threadfn().
626 *
627 * If threadfn() may call do_exit() itself, the caller must ensure
628 * task_struct can't go away.
629 *
630 * Returns the result of threadfn(), or %-EINTR if wake_up_process()
631 * was never called.
632 */
kthread_stop(struct task_struct * k)633 int kthread_stop(struct task_struct *k)
634 {
635 struct kthread *kthread;
636 int ret;
637
638 trace_sched_kthread_stop(k);
639
640 get_task_struct(k);
641 kthread = to_kthread(k);
642 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
643 kthread_unpark(k);
644 wake_up_process(k);
645 wait_for_completion(&kthread->exited);
646 ret = k->exit_code;
647 put_task_struct(k);
648
649 trace_sched_kthread_stop_ret(ret);
650 return ret;
651 }
652 EXPORT_SYMBOL(kthread_stop);
653
kthreadd(void * unused)654 int kthreadd(void *unused)
655 {
656 struct task_struct *tsk = current;
657
658 /* Setup a clean context for our children to inherit. */
659 set_task_comm(tsk, "kthreadd");
660 ignore_signals(tsk);
661 set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_FLAG_KTHREAD));
662 set_mems_allowed(node_states[N_MEMORY]);
663
664 current->flags |= PF_NOFREEZE;
665 cgroup_init_kthreadd();
666
667 for (;;) {
668 set_current_state(TASK_INTERRUPTIBLE);
669 if (list_empty(&kthread_create_list))
670 schedule();
671 __set_current_state(TASK_RUNNING);
672
673 spin_lock(&kthread_create_lock);
674 while (!list_empty(&kthread_create_list)) {
675 struct kthread_create_info *create;
676
677 create = list_entry(kthread_create_list.next,
678 struct kthread_create_info, list);
679 list_del_init(&create->list);
680 spin_unlock(&kthread_create_lock);
681
682 create_kthread(create);
683
684 spin_lock(&kthread_create_lock);
685 }
686 spin_unlock(&kthread_create_lock);
687 }
688
689 return 0;
690 }
691
__kthread_init_worker(struct kthread_worker * worker,const char * name,struct lock_class_key * key)692 void __kthread_init_worker(struct kthread_worker *worker,
693 const char *name,
694 struct lock_class_key *key)
695 {
696 memset(worker, 0, sizeof(struct kthread_worker));
697 raw_spin_lock_init(&worker->lock);
698 lockdep_set_class_and_name(&worker->lock, key, name);
699 INIT_LIST_HEAD(&worker->work_list);
700 INIT_LIST_HEAD(&worker->delayed_work_list);
701 }
702 EXPORT_SYMBOL_GPL(__kthread_init_worker);
703
704 /**
705 * kthread_worker_fn - kthread function to process kthread_worker
706 * @worker_ptr: pointer to initialized kthread_worker
707 *
708 * This function implements the main cycle of kthread worker. It processes
709 * work_list until it is stopped with kthread_stop(). It sleeps when the queue
710 * is empty.
711 *
712 * The works are not allowed to keep any locks, disable preemption or interrupts
713 * when they finish. There is defined a safe point for freezing when one work
714 * finishes and before a new one is started.
715 *
716 * Also the works must not be handled by more than one worker at the same time,
717 * see also kthread_queue_work().
718 */
kthread_worker_fn(void * worker_ptr)719 int kthread_worker_fn(void *worker_ptr)
720 {
721 struct kthread_worker *worker = worker_ptr;
722 struct kthread_work *work;
723
724 /*
725 * FIXME: Update the check and remove the assignment when all kthread
726 * worker users are created using kthread_create_worker*() functions.
727 */
728 WARN_ON(worker->task && worker->task != current);
729 worker->task = current;
730
731 if (worker->flags & KTW_FREEZABLE)
732 set_freezable();
733
734 repeat:
735 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */
736
737 if (kthread_should_stop()) {
738 __set_current_state(TASK_RUNNING);
739 raw_spin_lock_irq(&worker->lock);
740 worker->task = NULL;
741 raw_spin_unlock_irq(&worker->lock);
742 return 0;
743 }
744
745 work = NULL;
746 raw_spin_lock_irq(&worker->lock);
747 if (!list_empty(&worker->work_list)) {
748 work = list_first_entry(&worker->work_list,
749 struct kthread_work, node);
750 list_del_init(&work->node);
751 }
752 worker->current_work = work;
753 raw_spin_unlock_irq(&worker->lock);
754
755 if (work) {
756 __set_current_state(TASK_RUNNING);
757 work->func(work);
758 } else if (!freezing(current))
759 schedule();
760
761 try_to_freeze();
762 cond_resched();
763 goto repeat;
764 }
765 EXPORT_SYMBOL_GPL(kthread_worker_fn);
766
767 static __printf(3, 0) struct kthread_worker *
__kthread_create_worker(int cpu,unsigned int flags,const char namefmt[],va_list args)768 __kthread_create_worker(int cpu, unsigned int flags,
769 const char namefmt[], va_list args)
770 {
771 struct kthread_worker *worker;
772 struct task_struct *task;
773 int node = NUMA_NO_NODE;
774
775 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
776 if (!worker)
777 return ERR_PTR(-ENOMEM);
778
779 kthread_init_worker(worker);
780
781 if (cpu >= 0)
782 node = cpu_to_node(cpu);
783
784 task = __kthread_create_on_node(kthread_worker_fn, worker,
785 node, namefmt, args);
786 if (IS_ERR(task))
787 goto fail_task;
788
789 if (cpu >= 0)
790 kthread_bind(task, cpu);
791
792 worker->flags = flags;
793 worker->task = task;
794 wake_up_process(task);
795 return worker;
796
797 fail_task:
798 kfree(worker);
799 return ERR_CAST(task);
800 }
801
802 /**
803 * kthread_create_worker - create a kthread worker
804 * @flags: flags modifying the default behavior of the worker
805 * @namefmt: printf-style name for the kthread worker (task).
806 *
807 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
808 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
809 * when the worker was SIGKILLed.
810 */
811 struct kthread_worker *
kthread_create_worker(unsigned int flags,const char namefmt[],...)812 kthread_create_worker(unsigned int flags, const char namefmt[], ...)
813 {
814 struct kthread_worker *worker;
815 va_list args;
816
817 va_start(args, namefmt);
818 worker = __kthread_create_worker(-1, flags, namefmt, args);
819 va_end(args);
820
821 return worker;
822 }
823 EXPORT_SYMBOL(kthread_create_worker);
824
825 /**
826 * kthread_create_worker_on_cpu - create a kthread worker and bind it
827 * to a given CPU and the associated NUMA node.
828 * @cpu: CPU number
829 * @flags: flags modifying the default behavior of the worker
830 * @namefmt: printf-style name for the kthread worker (task).
831 *
832 * Use a valid CPU number if you want to bind the kthread worker
833 * to the given CPU and the associated NUMA node.
834 *
835 * A good practice is to add the cpu number also into the worker name.
836 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
837 *
838 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
839 * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
840 * when the worker was SIGKILLed.
841 */
842 struct kthread_worker *
kthread_create_worker_on_cpu(int cpu,unsigned int flags,const char namefmt[],...)843 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
844 const char namefmt[], ...)
845 {
846 struct kthread_worker *worker;
847 va_list args;
848
849 va_start(args, namefmt);
850 worker = __kthread_create_worker(cpu, flags, namefmt, args);
851 va_end(args);
852
853 return worker;
854 }
855 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
856
857 /*
858 * Returns true when the work could not be queued at the moment.
859 * It happens when it is already pending in a worker list
860 * or when it is being cancelled.
861 */
queuing_blocked(struct kthread_worker * worker,struct kthread_work * work)862 static inline bool queuing_blocked(struct kthread_worker *worker,
863 struct kthread_work *work)
864 {
865 lockdep_assert_held(&worker->lock);
866
867 return !list_empty(&work->node) || work->canceling;
868 }
869
kthread_insert_work_sanity_check(struct kthread_worker * worker,struct kthread_work * work)870 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
871 struct kthread_work *work)
872 {
873 lockdep_assert_held(&worker->lock);
874 WARN_ON_ONCE(!list_empty(&work->node));
875 /* Do not use a work with >1 worker, see kthread_queue_work() */
876 WARN_ON_ONCE(work->worker && work->worker != worker);
877 }
878
879 /* insert @work before @pos in @worker */
kthread_insert_work(struct kthread_worker * worker,struct kthread_work * work,struct list_head * pos)880 static void kthread_insert_work(struct kthread_worker *worker,
881 struct kthread_work *work,
882 struct list_head *pos)
883 {
884 kthread_insert_work_sanity_check(worker, work);
885
886 list_add_tail(&work->node, pos);
887 work->worker = worker;
888 if (!worker->current_work && likely(worker->task))
889 wake_up_process(worker->task);
890 }
891
892 /**
893 * kthread_queue_work - queue a kthread_work
894 * @worker: target kthread_worker
895 * @work: kthread_work to queue
896 *
897 * Queue @work to work processor @task for async execution. @task
898 * must have been created with kthread_worker_create(). Returns %true
899 * if @work was successfully queued, %false if it was already pending.
900 *
901 * Reinitialize the work if it needs to be used by another worker.
902 * For example, when the worker was stopped and started again.
903 */
kthread_queue_work(struct kthread_worker * worker,struct kthread_work * work)904 bool kthread_queue_work(struct kthread_worker *worker,
905 struct kthread_work *work)
906 {
907 bool ret = false;
908 unsigned long flags;
909
910 raw_spin_lock_irqsave(&worker->lock, flags);
911 if (!queuing_blocked(worker, work)) {
912 kthread_insert_work(worker, work, &worker->work_list);
913 ret = true;
914 }
915 raw_spin_unlock_irqrestore(&worker->lock, flags);
916 return ret;
917 }
918 EXPORT_SYMBOL_GPL(kthread_queue_work);
919
920 /**
921 * kthread_delayed_work_timer_fn - callback that queues the associated kthread
922 * delayed work when the timer expires.
923 * @t: pointer to the expired timer
924 *
925 * The format of the function is defined by struct timer_list.
926 * It should have been called from irqsafe timer with irq already off.
927 */
kthread_delayed_work_timer_fn(struct timer_list * t)928 void kthread_delayed_work_timer_fn(struct timer_list *t)
929 {
930 struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
931 struct kthread_work *work = &dwork->work;
932 struct kthread_worker *worker = work->worker;
933 unsigned long flags;
934
935 /*
936 * This might happen when a pending work is reinitialized.
937 * It means that it is used a wrong way.
938 */
939 if (WARN_ON_ONCE(!worker))
940 return;
941
942 raw_spin_lock_irqsave(&worker->lock, flags);
943 /* Work must not be used with >1 worker, see kthread_queue_work(). */
944 WARN_ON_ONCE(work->worker != worker);
945
946 /* Move the work from worker->delayed_work_list. */
947 WARN_ON_ONCE(list_empty(&work->node));
948 list_del_init(&work->node);
949 if (!work->canceling)
950 kthread_insert_work(worker, work, &worker->work_list);
951
952 raw_spin_unlock_irqrestore(&worker->lock, flags);
953 }
954 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
955
__kthread_queue_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)956 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
957 struct kthread_delayed_work *dwork,
958 unsigned long delay)
959 {
960 struct timer_list *timer = &dwork->timer;
961 struct kthread_work *work = &dwork->work;
962
963 /*
964 * With CFI, timer->function can point to a jump table entry in a module,
965 * which fails the comparison. Disable the warning if CFI and modules are
966 * both enabled.
967 */
968 if (!IS_ENABLED(CONFIG_CFI_CLANG) || !IS_ENABLED(CONFIG_MODULES))
969 WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
970
971 /*
972 * If @delay is 0, queue @dwork->work immediately. This is for
973 * both optimization and correctness. The earliest @timer can
974 * expire is on the closest next tick and delayed_work users depend
975 * on that there's no such delay when @delay is 0.
976 */
977 if (!delay) {
978 kthread_insert_work(worker, work, &worker->work_list);
979 return;
980 }
981
982 /* Be paranoid and try to detect possible races already now. */
983 kthread_insert_work_sanity_check(worker, work);
984
985 list_add(&work->node, &worker->delayed_work_list);
986 work->worker = worker;
987 timer->expires = jiffies + delay;
988 add_timer(timer);
989 }
990
991 /**
992 * kthread_queue_delayed_work - queue the associated kthread work
993 * after a delay.
994 * @worker: target kthread_worker
995 * @dwork: kthread_delayed_work to queue
996 * @delay: number of jiffies to wait before queuing
997 *
998 * If the work has not been pending it starts a timer that will queue
999 * the work after the given @delay. If @delay is zero, it queues the
1000 * work immediately.
1001 *
1002 * Return: %false if the @work has already been pending. It means that
1003 * either the timer was running or the work was queued. It returns %true
1004 * otherwise.
1005 */
kthread_queue_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)1006 bool kthread_queue_delayed_work(struct kthread_worker *worker,
1007 struct kthread_delayed_work *dwork,
1008 unsigned long delay)
1009 {
1010 struct kthread_work *work = &dwork->work;
1011 unsigned long flags;
1012 bool ret = false;
1013
1014 raw_spin_lock_irqsave(&worker->lock, flags);
1015
1016 if (!queuing_blocked(worker, work)) {
1017 __kthread_queue_delayed_work(worker, dwork, delay);
1018 ret = true;
1019 }
1020
1021 raw_spin_unlock_irqrestore(&worker->lock, flags);
1022 return ret;
1023 }
1024 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1025
1026 struct kthread_flush_work {
1027 struct kthread_work work;
1028 struct completion done;
1029 };
1030
kthread_flush_work_fn(struct kthread_work * work)1031 static void kthread_flush_work_fn(struct kthread_work *work)
1032 {
1033 struct kthread_flush_work *fwork =
1034 container_of(work, struct kthread_flush_work, work);
1035 complete(&fwork->done);
1036 }
1037
1038 /**
1039 * kthread_flush_work - flush a kthread_work
1040 * @work: work to flush
1041 *
1042 * If @work is queued or executing, wait for it to finish execution.
1043 */
kthread_flush_work(struct kthread_work * work)1044 void kthread_flush_work(struct kthread_work *work)
1045 {
1046 struct kthread_flush_work fwork = {
1047 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1048 COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1049 };
1050 struct kthread_worker *worker;
1051 bool noop = false;
1052
1053 worker = work->worker;
1054 if (!worker)
1055 return;
1056
1057 raw_spin_lock_irq(&worker->lock);
1058 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1059 WARN_ON_ONCE(work->worker != worker);
1060
1061 if (!list_empty(&work->node))
1062 kthread_insert_work(worker, &fwork.work, work->node.next);
1063 else if (worker->current_work == work)
1064 kthread_insert_work(worker, &fwork.work,
1065 worker->work_list.next);
1066 else
1067 noop = true;
1068
1069 raw_spin_unlock_irq(&worker->lock);
1070
1071 if (!noop)
1072 wait_for_completion(&fwork.done);
1073 }
1074 EXPORT_SYMBOL_GPL(kthread_flush_work);
1075
1076 /*
1077 * Make sure that the timer is neither set nor running and could
1078 * not manipulate the work list_head any longer.
1079 *
1080 * The function is called under worker->lock. The lock is temporary
1081 * released but the timer can't be set again in the meantime.
1082 */
kthread_cancel_delayed_work_timer(struct kthread_work * work,unsigned long * flags)1083 static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1084 unsigned long *flags)
1085 {
1086 struct kthread_delayed_work *dwork =
1087 container_of(work, struct kthread_delayed_work, work);
1088 struct kthread_worker *worker = work->worker;
1089
1090 /*
1091 * del_timer_sync() must be called to make sure that the timer
1092 * callback is not running. The lock must be temporary released
1093 * to avoid a deadlock with the callback. In the meantime,
1094 * any queuing is blocked by setting the canceling counter.
1095 */
1096 work->canceling++;
1097 raw_spin_unlock_irqrestore(&worker->lock, *flags);
1098 del_timer_sync(&dwork->timer);
1099 raw_spin_lock_irqsave(&worker->lock, *flags);
1100 work->canceling--;
1101 }
1102
1103 /*
1104 * This function removes the work from the worker queue.
1105 *
1106 * It is called under worker->lock. The caller must make sure that
1107 * the timer used by delayed work is not running, e.g. by calling
1108 * kthread_cancel_delayed_work_timer().
1109 *
1110 * The work might still be in use when this function finishes. See the
1111 * current_work proceed by the worker.
1112 *
1113 * Return: %true if @work was pending and successfully canceled,
1114 * %false if @work was not pending
1115 */
__kthread_cancel_work(struct kthread_work * work)1116 static bool __kthread_cancel_work(struct kthread_work *work)
1117 {
1118 /*
1119 * Try to remove the work from a worker list. It might either
1120 * be from worker->work_list or from worker->delayed_work_list.
1121 */
1122 if (!list_empty(&work->node)) {
1123 list_del_init(&work->node);
1124 return true;
1125 }
1126
1127 return false;
1128 }
1129
1130 /**
1131 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1132 * @worker: kthread worker to use
1133 * @dwork: kthread delayed work to queue
1134 * @delay: number of jiffies to wait before queuing
1135 *
1136 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1137 * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1138 * @work is guaranteed to be queued immediately.
1139 *
1140 * Return: %false if @dwork was idle and queued, %true otherwise.
1141 *
1142 * A special case is when the work is being canceled in parallel.
1143 * It might be caused either by the real kthread_cancel_delayed_work_sync()
1144 * or yet another kthread_mod_delayed_work() call. We let the other command
1145 * win and return %true here. The return value can be used for reference
1146 * counting and the number of queued works stays the same. Anyway, the caller
1147 * is supposed to synchronize these operations a reasonable way.
1148 *
1149 * This function is safe to call from any context including IRQ handler.
1150 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1151 * for details.
1152 */
kthread_mod_delayed_work(struct kthread_worker * worker,struct kthread_delayed_work * dwork,unsigned long delay)1153 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1154 struct kthread_delayed_work *dwork,
1155 unsigned long delay)
1156 {
1157 struct kthread_work *work = &dwork->work;
1158 unsigned long flags;
1159 int ret;
1160
1161 raw_spin_lock_irqsave(&worker->lock, flags);
1162
1163 /* Do not bother with canceling when never queued. */
1164 if (!work->worker) {
1165 ret = false;
1166 goto fast_queue;
1167 }
1168
1169 /* Work must not be used with >1 worker, see kthread_queue_work() */
1170 WARN_ON_ONCE(work->worker != worker);
1171
1172 /*
1173 * Temporary cancel the work but do not fight with another command
1174 * that is canceling the work as well.
1175 *
1176 * It is a bit tricky because of possible races with another
1177 * mod_delayed_work() and cancel_delayed_work() callers.
1178 *
1179 * The timer must be canceled first because worker->lock is released
1180 * when doing so. But the work can be removed from the queue (list)
1181 * only when it can be queued again so that the return value can
1182 * be used for reference counting.
1183 */
1184 kthread_cancel_delayed_work_timer(work, &flags);
1185 if (work->canceling) {
1186 /* The number of works in the queue does not change. */
1187 ret = true;
1188 goto out;
1189 }
1190 ret = __kthread_cancel_work(work);
1191
1192 /*
1193 * Canceling could run in parallel from kthread_cancel_delayed_work_sync
1194 * and change work's canceling count as the spinlock is released and regain
1195 * in __kthread_cancel_work so we need to check the count again. Otherwise,
1196 * we might incorrectly queue the dwork and further cause
1197 * cancel_delayed_work_sync thread waiting for flush dwork endlessly.
1198 */
1199 if (work->canceling) {
1200 ret = false;
1201 goto out;
1202 }
1203
1204 fast_queue:
1205 __kthread_queue_delayed_work(worker, dwork, delay);
1206 out:
1207 raw_spin_unlock_irqrestore(&worker->lock, flags);
1208 return ret;
1209 }
1210 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1211
__kthread_cancel_work_sync(struct kthread_work * work,bool is_dwork)1212 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1213 {
1214 struct kthread_worker *worker = work->worker;
1215 unsigned long flags;
1216 int ret = false;
1217
1218 if (!worker)
1219 goto out;
1220
1221 raw_spin_lock_irqsave(&worker->lock, flags);
1222 /* Work must not be used with >1 worker, see kthread_queue_work(). */
1223 WARN_ON_ONCE(work->worker != worker);
1224
1225 if (is_dwork)
1226 kthread_cancel_delayed_work_timer(work, &flags);
1227
1228 ret = __kthread_cancel_work(work);
1229
1230 if (worker->current_work != work)
1231 goto out_fast;
1232
1233 /*
1234 * The work is in progress and we need to wait with the lock released.
1235 * In the meantime, block any queuing by setting the canceling counter.
1236 */
1237 work->canceling++;
1238 raw_spin_unlock_irqrestore(&worker->lock, flags);
1239 kthread_flush_work(work);
1240 raw_spin_lock_irqsave(&worker->lock, flags);
1241 work->canceling--;
1242
1243 out_fast:
1244 raw_spin_unlock_irqrestore(&worker->lock, flags);
1245 out:
1246 return ret;
1247 }
1248
1249 /**
1250 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1251 * @work: the kthread work to cancel
1252 *
1253 * Cancel @work and wait for its execution to finish. This function
1254 * can be used even if the work re-queues itself. On return from this
1255 * function, @work is guaranteed to be not pending or executing on any CPU.
1256 *
1257 * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1258 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1259 *
1260 * The caller must ensure that the worker on which @work was last
1261 * queued can't be destroyed before this function returns.
1262 *
1263 * Return: %true if @work was pending, %false otherwise.
1264 */
kthread_cancel_work_sync(struct kthread_work * work)1265 bool kthread_cancel_work_sync(struct kthread_work *work)
1266 {
1267 return __kthread_cancel_work_sync(work, false);
1268 }
1269 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1270
1271 /**
1272 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1273 * wait for it to finish.
1274 * @dwork: the kthread delayed work to cancel
1275 *
1276 * This is kthread_cancel_work_sync() for delayed works.
1277 *
1278 * Return: %true if @dwork was pending, %false otherwise.
1279 */
kthread_cancel_delayed_work_sync(struct kthread_delayed_work * dwork)1280 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1281 {
1282 return __kthread_cancel_work_sync(&dwork->work, true);
1283 }
1284 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1285
1286 /**
1287 * kthread_flush_worker - flush all current works on a kthread_worker
1288 * @worker: worker to flush
1289 *
1290 * Wait until all currently executing or pending works on @worker are
1291 * finished.
1292 */
kthread_flush_worker(struct kthread_worker * worker)1293 void kthread_flush_worker(struct kthread_worker *worker)
1294 {
1295 struct kthread_flush_work fwork = {
1296 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1297 COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1298 };
1299
1300 kthread_queue_work(worker, &fwork.work);
1301 wait_for_completion(&fwork.done);
1302 }
1303 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1304
1305 /**
1306 * kthread_destroy_worker - destroy a kthread worker
1307 * @worker: worker to be destroyed
1308 *
1309 * Flush and destroy @worker. The simple flush is enough because the kthread
1310 * worker API is used only in trivial scenarios. There are no multi-step state
1311 * machines needed.
1312 */
kthread_destroy_worker(struct kthread_worker * worker)1313 void kthread_destroy_worker(struct kthread_worker *worker)
1314 {
1315 struct task_struct *task;
1316
1317 task = worker->task;
1318 if (WARN_ON(!task))
1319 return;
1320
1321 kthread_flush_worker(worker);
1322 kthread_stop(task);
1323 WARN_ON(!list_empty(&worker->work_list));
1324 kfree(worker);
1325 }
1326 EXPORT_SYMBOL(kthread_destroy_worker);
1327
1328 /**
1329 * kthread_use_mm - make the calling kthread operate on an address space
1330 * @mm: address space to operate on
1331 */
kthread_use_mm(struct mm_struct * mm)1332 void kthread_use_mm(struct mm_struct *mm)
1333 {
1334 struct mm_struct *active_mm;
1335 struct task_struct *tsk = current;
1336
1337 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1338 WARN_ON_ONCE(tsk->mm);
1339
1340 task_lock(tsk);
1341 /* Hold off tlb flush IPIs while switching mm's */
1342 local_irq_disable();
1343 active_mm = tsk->active_mm;
1344 if (active_mm != mm) {
1345 mmgrab(mm);
1346 tsk->active_mm = mm;
1347 }
1348 tsk->mm = mm;
1349 switch_mm_irqs_off(active_mm, mm, tsk);
1350 local_irq_enable();
1351 task_unlock(tsk);
1352 #ifdef finish_arch_post_lock_switch
1353 finish_arch_post_lock_switch();
1354 #endif
1355
1356 if (active_mm != mm)
1357 mmdrop(active_mm);
1358
1359 to_kthread(tsk)->oldfs = force_uaccess_begin();
1360 }
1361 EXPORT_SYMBOL_GPL(kthread_use_mm);
1362
1363 /**
1364 * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1365 * @mm: address space to operate on
1366 */
kthread_unuse_mm(struct mm_struct * mm)1367 void kthread_unuse_mm(struct mm_struct *mm)
1368 {
1369 struct task_struct *tsk = current;
1370
1371 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1372 WARN_ON_ONCE(!tsk->mm);
1373
1374 force_uaccess_end(to_kthread(tsk)->oldfs);
1375
1376 task_lock(tsk);
1377 sync_mm_rss(mm);
1378 local_irq_disable();
1379 tsk->mm = NULL;
1380 /* active_mm is still 'mm' */
1381 enter_lazy_tlb(mm, tsk);
1382 local_irq_enable();
1383 task_unlock(tsk);
1384 }
1385 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1386
1387 #ifdef CONFIG_BLK_CGROUP
1388 /**
1389 * kthread_associate_blkcg - associate blkcg to current kthread
1390 * @css: the cgroup info
1391 *
1392 * Current thread must be a kthread. The thread is running jobs on behalf of
1393 * other threads. In some cases, we expect the jobs attach cgroup info of
1394 * original threads instead of that of current thread. This function stores
1395 * original thread's cgroup info in current kthread context for later
1396 * retrieval.
1397 */
kthread_associate_blkcg(struct cgroup_subsys_state * css)1398 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1399 {
1400 struct kthread *kthread;
1401
1402 if (!(current->flags & PF_KTHREAD))
1403 return;
1404 kthread = to_kthread(current);
1405 if (!kthread)
1406 return;
1407
1408 if (kthread->blkcg_css) {
1409 css_put(kthread->blkcg_css);
1410 kthread->blkcg_css = NULL;
1411 }
1412 if (css) {
1413 css_get(css);
1414 kthread->blkcg_css = css;
1415 }
1416 }
1417 EXPORT_SYMBOL(kthread_associate_blkcg);
1418
1419 /**
1420 * kthread_blkcg - get associated blkcg css of current kthread
1421 *
1422 * Current thread must be a kthread.
1423 */
kthread_blkcg(void)1424 struct cgroup_subsys_state *kthread_blkcg(void)
1425 {
1426 struct kthread *kthread;
1427
1428 if (current->flags & PF_KTHREAD) {
1429 kthread = to_kthread(current);
1430 if (kthread)
1431 return kthread->blkcg_css;
1432 }
1433 return NULL;
1434 }
1435 EXPORT_SYMBOL(kthread_blkcg);
1436 #endif
1437