1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/locking/mutex.c
4 *
5 * Mutexes: blocking mutual exclusion locks
6 *
7 * Started by Ingo Molnar:
8 *
9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 *
11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12 * David Howells for suggestions and improvements.
13 *
14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15 * from the -rt tree, where it was originally implemented for rtmutexes
16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17 * and Sven Dietrich.
18 *
19 * Also see Documentation/locking/mutex-design.rst.
20 */
21 #include <linux/mutex.h>
22 #include <linux/ww_mutex.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/wake_q.h>
26 #include <linux/sched/debug.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/interrupt.h>
30 #include <linux/debug_locks.h>
31 #include <linux/osq_lock.h>
32
33 #ifdef CONFIG_DEBUG_MUTEXES
34 # include "mutex-debug.h"
35 #else
36 # include "mutex.h"
37 #endif
38
39 #include <trace/hooks/dtask.h>
40
41 void
__mutex_init(struct mutex * lock,const char * name,struct lock_class_key * key)42 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
43 {
44 atomic_long_set(&lock->owner, 0);
45 spin_lock_init(&lock->wait_lock);
46 INIT_LIST_HEAD(&lock->wait_list);
47 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
48 osq_lock_init(&lock->osq);
49 #endif
50
51 debug_mutex_init(lock, name, key);
52 }
53 EXPORT_SYMBOL(__mutex_init);
54
55 /*
56 * @owner: contains: 'struct task_struct *' to the current lock owner,
57 * NULL means not owned. Since task_struct pointers are aligned at
58 * at least L1_CACHE_BYTES, we have low bits to store extra state.
59 *
60 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
61 * Bit1 indicates unlock needs to hand the lock to the top-waiter
62 * Bit2 indicates handoff has been done and we're waiting for pickup.
63 */
64 #define MUTEX_FLAG_WAITERS 0x01
65 #define MUTEX_FLAG_HANDOFF 0x02
66 #define MUTEX_FLAG_PICKUP 0x04
67
68 #define MUTEX_FLAGS 0x07
69
70 /*
71 * Internal helper function; C doesn't allow us to hide it :/
72 *
73 * DO NOT USE (outside of mutex code).
74 */
__mutex_owner(struct mutex * lock)75 static inline struct task_struct *__mutex_owner(struct mutex *lock)
76 {
77 return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
78 }
79
__owner_task(unsigned long owner)80 static inline struct task_struct *__owner_task(unsigned long owner)
81 {
82 return (struct task_struct *)(owner & ~MUTEX_FLAGS);
83 }
84
mutex_is_locked(struct mutex * lock)85 bool mutex_is_locked(struct mutex *lock)
86 {
87 return __mutex_owner(lock) != NULL;
88 }
89 EXPORT_SYMBOL(mutex_is_locked);
90
91 __must_check enum mutex_trylock_recursive_enum
mutex_trylock_recursive(struct mutex * lock)92 mutex_trylock_recursive(struct mutex *lock)
93 {
94 if (unlikely(__mutex_owner(lock) == current))
95 return MUTEX_TRYLOCK_RECURSIVE;
96
97 return mutex_trylock(lock);
98 }
99 EXPORT_SYMBOL(mutex_trylock_recursive);
100
__owner_flags(unsigned long owner)101 static inline unsigned long __owner_flags(unsigned long owner)
102 {
103 return owner & MUTEX_FLAGS;
104 }
105
106 /*
107 * Trylock variant that retuns the owning task on failure.
108 */
__mutex_trylock_or_owner(struct mutex * lock)109 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
110 {
111 unsigned long owner, curr = (unsigned long)current;
112
113 owner = atomic_long_read(&lock->owner);
114 for (;;) { /* must loop, can race against a flag */
115 unsigned long old, flags = __owner_flags(owner);
116 unsigned long task = owner & ~MUTEX_FLAGS;
117
118 if (task) {
119 if (likely(task != curr))
120 break;
121
122 if (likely(!(flags & MUTEX_FLAG_PICKUP)))
123 break;
124
125 flags &= ~MUTEX_FLAG_PICKUP;
126 } else {
127 #ifdef CONFIG_DEBUG_MUTEXES
128 DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
129 #endif
130 }
131
132 /*
133 * We set the HANDOFF bit, we must make sure it doesn't live
134 * past the point where we acquire it. This would be possible
135 * if we (accidentally) set the bit on an unlocked mutex.
136 */
137 flags &= ~MUTEX_FLAG_HANDOFF;
138
139 old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
140 if (old == owner)
141 return NULL;
142
143 owner = old;
144 }
145
146 return __owner_task(owner);
147 }
148
149 /*
150 * Actual trylock that will work on any unlocked state.
151 */
__mutex_trylock(struct mutex * lock)152 static inline bool __mutex_trylock(struct mutex *lock)
153 {
154 return !__mutex_trylock_or_owner(lock);
155 }
156
157 #ifndef CONFIG_DEBUG_LOCK_ALLOC
158 /*
159 * Lockdep annotations are contained to the slow paths for simplicity.
160 * There is nothing that would stop spreading the lockdep annotations outwards
161 * except more code.
162 */
163
164 /*
165 * Optimistic trylock that only works in the uncontended case. Make sure to
166 * follow with a __mutex_trylock() before failing.
167 */
__mutex_trylock_fast(struct mutex * lock)168 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
169 {
170 unsigned long curr = (unsigned long)current;
171 unsigned long zero = 0UL;
172
173 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
174 return true;
175
176 return false;
177 }
178
__mutex_unlock_fast(struct mutex * lock)179 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
180 {
181 unsigned long curr = (unsigned long)current;
182
183 if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
184 return true;
185
186 return false;
187 }
188 #endif
189
__mutex_set_flag(struct mutex * lock,unsigned long flag)190 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
191 {
192 atomic_long_or(flag, &lock->owner);
193 }
194
__mutex_clear_flag(struct mutex * lock,unsigned long flag)195 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
196 {
197 atomic_long_andnot(flag, &lock->owner);
198 }
199
__mutex_waiter_is_first(struct mutex * lock,struct mutex_waiter * waiter)200 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
201 {
202 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
203 }
204
205 /*
206 * Add @waiter to a given location in the lock wait_list and set the
207 * FLAG_WAITERS flag if it's the first waiter.
208 */
209 static void
__mutex_add_waiter(struct mutex * lock,struct mutex_waiter * waiter,struct list_head * list)210 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
211 struct list_head *list)
212 {
213 bool already_on_list = false;
214 debug_mutex_add_waiter(lock, waiter, current);
215
216 trace_android_vh_alter_mutex_list_add(lock, waiter, list, &already_on_list);
217 if (!already_on_list)
218 list_add_tail(&waiter->list, list);
219 if (__mutex_waiter_is_first(lock, waiter))
220 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
221 }
222
223 static void
__mutex_remove_waiter(struct mutex * lock,struct mutex_waiter * waiter)224 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter)
225 {
226 list_del(&waiter->list);
227 if (likely(list_empty(&lock->wait_list)))
228 __mutex_clear_flag(lock, MUTEX_FLAGS);
229
230 debug_mutex_remove_waiter(lock, waiter, current);
231 }
232
233 /*
234 * Give up ownership to a specific task, when @task = NULL, this is equivalent
235 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
236 * WAITERS. Provides RELEASE semantics like a regular unlock, the
237 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
238 */
__mutex_handoff(struct mutex * lock,struct task_struct * task)239 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
240 {
241 unsigned long owner = atomic_long_read(&lock->owner);
242
243 for (;;) {
244 unsigned long old, new;
245
246 #ifdef CONFIG_DEBUG_MUTEXES
247 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
248 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
249 #endif
250
251 new = (owner & MUTEX_FLAG_WAITERS);
252 new |= (unsigned long)task;
253 if (task)
254 new |= MUTEX_FLAG_PICKUP;
255
256 old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
257 if (old == owner)
258 break;
259
260 owner = old;
261 }
262 }
263
264 #ifndef CONFIG_DEBUG_LOCK_ALLOC
265 /*
266 * We split the mutex lock/unlock logic into separate fastpath and
267 * slowpath functions, to reduce the register pressure on the fastpath.
268 * We also put the fastpath first in the kernel image, to make sure the
269 * branch is predicted by the CPU as default-untaken.
270 */
271 static void __sched __mutex_lock_slowpath(struct mutex *lock);
272
273 /**
274 * mutex_lock - acquire the mutex
275 * @lock: the mutex to be acquired
276 *
277 * Lock the mutex exclusively for this task. If the mutex is not
278 * available right now, it will sleep until it can get it.
279 *
280 * The mutex must later on be released by the same task that
281 * acquired it. Recursive locking is not allowed. The task
282 * may not exit without first unlocking the mutex. Also, kernel
283 * memory where the mutex resides must not be freed with
284 * the mutex still locked. The mutex must first be initialized
285 * (or statically defined) before it can be locked. memset()-ing
286 * the mutex to 0 is not allowed.
287 *
288 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
289 * checks that will enforce the restrictions and will also do
290 * deadlock debugging)
291 *
292 * This function is similar to (but not equivalent to) down().
293 */
mutex_lock(struct mutex * lock)294 void __sched mutex_lock(struct mutex *lock)
295 {
296 might_sleep();
297
298 if (!__mutex_trylock_fast(lock))
299 __mutex_lock_slowpath(lock);
300 }
301 EXPORT_SYMBOL(mutex_lock);
302 #endif
303
304 /*
305 * Wait-Die:
306 * The newer transactions are killed when:
307 * It (the new transaction) makes a request for a lock being held
308 * by an older transaction.
309 *
310 * Wound-Wait:
311 * The newer transactions are wounded when:
312 * An older transaction makes a request for a lock being held by
313 * the newer transaction.
314 */
315
316 /*
317 * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
318 * it.
319 */
320 static __always_inline void
ww_mutex_lock_acquired(struct ww_mutex * ww,struct ww_acquire_ctx * ww_ctx)321 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
322 {
323 #ifdef CONFIG_DEBUG_MUTEXES
324 /*
325 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
326 * but released with a normal mutex_unlock in this call.
327 *
328 * This should never happen, always use ww_mutex_unlock.
329 */
330 DEBUG_LOCKS_WARN_ON(ww->ctx);
331
332 /*
333 * Not quite done after calling ww_acquire_done() ?
334 */
335 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
336
337 if (ww_ctx->contending_lock) {
338 /*
339 * After -EDEADLK you tried to
340 * acquire a different ww_mutex? Bad!
341 */
342 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
343
344 /*
345 * You called ww_mutex_lock after receiving -EDEADLK,
346 * but 'forgot' to unlock everything else first?
347 */
348 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
349 ww_ctx->contending_lock = NULL;
350 }
351
352 /*
353 * Naughty, using a different class will lead to undefined behavior!
354 */
355 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
356 #endif
357 ww_ctx->acquired++;
358 ww->ctx = ww_ctx;
359 }
360
361 /*
362 * Determine if context @a is 'after' context @b. IOW, @a is a younger
363 * transaction than @b and depending on algorithm either needs to wait for
364 * @b or die.
365 */
366 static inline bool __sched
__ww_ctx_stamp_after(struct ww_acquire_ctx * a,struct ww_acquire_ctx * b)367 __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
368 {
369
370 return (signed long)(a->stamp - b->stamp) > 0;
371 }
372
373 /*
374 * Wait-Die; wake a younger waiter context (when locks held) such that it can
375 * die.
376 *
377 * Among waiters with context, only the first one can have other locks acquired
378 * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
379 * __ww_mutex_check_kill() wake any but the earliest context.
380 */
381 static bool __sched
__ww_mutex_die(struct mutex * lock,struct mutex_waiter * waiter,struct ww_acquire_ctx * ww_ctx)382 __ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter,
383 struct ww_acquire_ctx *ww_ctx)
384 {
385 if (!ww_ctx->is_wait_die)
386 return false;
387
388 if (waiter->ww_ctx->acquired > 0 &&
389 __ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) {
390 debug_mutex_wake_waiter(lock, waiter);
391 wake_up_process(waiter->task);
392 }
393
394 return true;
395 }
396
397 /*
398 * Wound-Wait; wound a younger @hold_ctx if it holds the lock.
399 *
400 * Wound the lock holder if there are waiters with older transactions than
401 * the lock holders. Even if multiple waiters may wound the lock holder,
402 * it's sufficient that only one does.
403 */
__ww_mutex_wound(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct ww_acquire_ctx * hold_ctx)404 static bool __ww_mutex_wound(struct mutex *lock,
405 struct ww_acquire_ctx *ww_ctx,
406 struct ww_acquire_ctx *hold_ctx)
407 {
408 struct task_struct *owner = __mutex_owner(lock);
409
410 lockdep_assert_held(&lock->wait_lock);
411
412 /*
413 * Possible through __ww_mutex_add_waiter() when we race with
414 * ww_mutex_set_context_fastpath(). In that case we'll get here again
415 * through __ww_mutex_check_waiters().
416 */
417 if (!hold_ctx)
418 return false;
419
420 /*
421 * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
422 * it cannot go away because we'll have FLAG_WAITERS set and hold
423 * wait_lock.
424 */
425 if (!owner)
426 return false;
427
428 if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) {
429 hold_ctx->wounded = 1;
430
431 /*
432 * wake_up_process() paired with set_current_state()
433 * inserts sufficient barriers to make sure @owner either sees
434 * it's wounded in __ww_mutex_check_kill() or has a
435 * wakeup pending to re-read the wounded state.
436 */
437 if (owner != current)
438 wake_up_process(owner);
439
440 return true;
441 }
442
443 return false;
444 }
445
446 /*
447 * We just acquired @lock under @ww_ctx, if there are later contexts waiting
448 * behind us on the wait-list, check if they need to die, or wound us.
449 *
450 * See __ww_mutex_add_waiter() for the list-order construction; basically the
451 * list is ordered by stamp, smallest (oldest) first.
452 *
453 * This relies on never mixing wait-die/wound-wait on the same wait-list;
454 * which is currently ensured by that being a ww_class property.
455 *
456 * The current task must not be on the wait list.
457 */
458 static void __sched
__ww_mutex_check_waiters(struct mutex * lock,struct ww_acquire_ctx * ww_ctx)459 __ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
460 {
461 struct mutex_waiter *cur;
462
463 lockdep_assert_held(&lock->wait_lock);
464
465 list_for_each_entry(cur, &lock->wait_list, list) {
466 if (!cur->ww_ctx)
467 continue;
468
469 if (__ww_mutex_die(lock, cur, ww_ctx) ||
470 __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
471 break;
472 }
473 }
474
475 /*
476 * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
477 * and wake up any waiters so they can recheck.
478 */
479 static __always_inline void
ww_mutex_set_context_fastpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)480 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
481 {
482 ww_mutex_lock_acquired(lock, ctx);
483
484 /*
485 * The lock->ctx update should be visible on all cores before
486 * the WAITERS check is done, otherwise contended waiters might be
487 * missed. The contended waiters will either see ww_ctx == NULL
488 * and keep spinning, or it will acquire wait_lock, add itself
489 * to waiter list and sleep.
490 */
491 smp_mb(); /* See comments above and below. */
492
493 /*
494 * [W] ww->ctx = ctx [W] MUTEX_FLAG_WAITERS
495 * MB MB
496 * [R] MUTEX_FLAG_WAITERS [R] ww->ctx
497 *
498 * The memory barrier above pairs with the memory barrier in
499 * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
500 * and/or !empty list.
501 */
502 if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
503 return;
504
505 /*
506 * Uh oh, we raced in fastpath, check if any of the waiters need to
507 * die or wound us.
508 */
509 spin_lock(&lock->base.wait_lock);
510 __ww_mutex_check_waiters(&lock->base, ctx);
511 spin_unlock(&lock->base.wait_lock);
512 }
513
514 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
515
516 static inline
ww_mutex_spin_on_owner(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)517 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
518 struct mutex_waiter *waiter)
519 {
520 struct ww_mutex *ww;
521
522 ww = container_of(lock, struct ww_mutex, base);
523
524 /*
525 * If ww->ctx is set the contents are undefined, only
526 * by acquiring wait_lock there is a guarantee that
527 * they are not invalid when reading.
528 *
529 * As such, when deadlock detection needs to be
530 * performed the optimistic spinning cannot be done.
531 *
532 * Check this in every inner iteration because we may
533 * be racing against another thread's ww_mutex_lock.
534 */
535 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
536 return false;
537
538 /*
539 * If we aren't on the wait list yet, cancel the spin
540 * if there are waiters. We want to avoid stealing the
541 * lock from a waiter with an earlier stamp, since the
542 * other thread may already own a lock that we also
543 * need.
544 */
545 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
546 return false;
547
548 /*
549 * Similarly, stop spinning if we are no longer the
550 * first waiter.
551 */
552 if (waiter && !__mutex_waiter_is_first(lock, waiter))
553 return false;
554
555 return true;
556 }
557
558 /*
559 * Look out! "owner" is an entirely speculative pointer access and not
560 * reliable.
561 *
562 * "noinline" so that this function shows up on perf profiles.
563 */
564 static noinline
mutex_spin_on_owner(struct mutex * lock,struct task_struct * owner,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)565 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
566 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
567 {
568 bool ret = true;
569
570 rcu_read_lock();
571 while (__mutex_owner(lock) == owner) {
572 /*
573 * Ensure we emit the owner->on_cpu, dereference _after_
574 * checking lock->owner still matches owner. If that fails,
575 * owner might point to freed memory. If it still matches,
576 * the rcu_read_lock() ensures the memory stays valid.
577 */
578 barrier();
579
580 /*
581 * Use vcpu_is_preempted to detect lock holder preemption issue.
582 */
583 if (!owner->on_cpu || need_resched() ||
584 vcpu_is_preempted(task_cpu(owner))) {
585 ret = false;
586 break;
587 }
588
589 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
590 ret = false;
591 break;
592 }
593
594 cpu_relax();
595 }
596 rcu_read_unlock();
597
598 return ret;
599 }
600
601 /*
602 * Initial check for entering the mutex spinning loop
603 */
mutex_can_spin_on_owner(struct mutex * lock)604 static inline int mutex_can_spin_on_owner(struct mutex *lock)
605 {
606 struct task_struct *owner;
607 int retval = 1;
608
609 if (need_resched())
610 return 0;
611
612 rcu_read_lock();
613 owner = __mutex_owner(lock);
614
615 /*
616 * As lock holder preemption issue, we both skip spinning if task is not
617 * on cpu or its cpu is preempted
618 */
619 if (owner)
620 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
621 rcu_read_unlock();
622
623 /*
624 * If lock->owner is not set, the mutex has been released. Return true
625 * such that we'll trylock in the spin path, which is a faster option
626 * than the blocking slow path.
627 */
628 return retval;
629 }
630
631 /*
632 * Optimistic spinning.
633 *
634 * We try to spin for acquisition when we find that the lock owner
635 * is currently running on a (different) CPU and while we don't
636 * need to reschedule. The rationale is that if the lock owner is
637 * running, it is likely to release the lock soon.
638 *
639 * The mutex spinners are queued up using MCS lock so that only one
640 * spinner can compete for the mutex. However, if mutex spinning isn't
641 * going to happen, there is no point in going through the lock/unlock
642 * overhead.
643 *
644 * Returns true when the lock was taken, otherwise false, indicating
645 * that we need to jump to the slowpath and sleep.
646 *
647 * The waiter flag is set to true if the spinner is a waiter in the wait
648 * queue. The waiter-spinner will spin on the lock directly and concurrently
649 * with the spinner at the head of the OSQ, if present, until the owner is
650 * changed to itself.
651 */
652 static __always_inline bool
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)653 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
654 struct mutex_waiter *waiter)
655 {
656 if (!waiter) {
657 /*
658 * The purpose of the mutex_can_spin_on_owner() function is
659 * to eliminate the overhead of osq_lock() and osq_unlock()
660 * in case spinning isn't possible. As a waiter-spinner
661 * is not going to take OSQ lock anyway, there is no need
662 * to call mutex_can_spin_on_owner().
663 */
664 if (!mutex_can_spin_on_owner(lock))
665 goto fail;
666
667 /*
668 * In order to avoid a stampede of mutex spinners trying to
669 * acquire the mutex all at once, the spinners need to take a
670 * MCS (queued) lock first before spinning on the owner field.
671 */
672 if (!osq_lock(&lock->osq))
673 goto fail;
674 }
675
676 for (;;) {
677 struct task_struct *owner;
678
679 /* Try to acquire the mutex... */
680 owner = __mutex_trylock_or_owner(lock);
681 if (!owner)
682 break;
683
684 /*
685 * There's an owner, wait for it to either
686 * release the lock or go to sleep.
687 */
688 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
689 goto fail_unlock;
690
691 /*
692 * The cpu_relax() call is a compiler barrier which forces
693 * everything in this loop to be re-loaded. We don't need
694 * memory barriers as we'll eventually observe the right
695 * values at the cost of a few extra spins.
696 */
697 cpu_relax();
698 }
699
700 if (!waiter)
701 osq_unlock(&lock->osq);
702
703 return true;
704
705
706 fail_unlock:
707 if (!waiter)
708 osq_unlock(&lock->osq);
709
710 fail:
711 /*
712 * If we fell out of the spin path because of need_resched(),
713 * reschedule now, before we try-lock the mutex. This avoids getting
714 * scheduled out right after we obtained the mutex.
715 */
716 if (need_resched()) {
717 /*
718 * We _should_ have TASK_RUNNING here, but just in case
719 * we do not, make it so, otherwise we might get stuck.
720 */
721 __set_current_state(TASK_RUNNING);
722 schedule_preempt_disabled();
723 }
724
725 return false;
726 }
727 #else
728 static __always_inline bool
mutex_optimistic_spin(struct mutex * lock,struct ww_acquire_ctx * ww_ctx,struct mutex_waiter * waiter)729 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
730 struct mutex_waiter *waiter)
731 {
732 return false;
733 }
734 #endif
735
736 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
737
738 /**
739 * mutex_unlock - release the mutex
740 * @lock: the mutex to be released
741 *
742 * Unlock a mutex that has been locked by this task previously.
743 *
744 * This function must not be used in interrupt context. Unlocking
745 * of a not locked mutex is not allowed.
746 *
747 * This function is similar to (but not equivalent to) up().
748 */
mutex_unlock(struct mutex * lock)749 void __sched mutex_unlock(struct mutex *lock)
750 {
751 #ifndef CONFIG_DEBUG_LOCK_ALLOC
752 if (__mutex_unlock_fast(lock))
753 return;
754 #endif
755 __mutex_unlock_slowpath(lock, _RET_IP_);
756 }
757 EXPORT_SYMBOL(mutex_unlock);
758
759 /**
760 * ww_mutex_unlock - release the w/w mutex
761 * @lock: the mutex to be released
762 *
763 * Unlock a mutex that has been locked by this task previously with any of the
764 * ww_mutex_lock* functions (with or without an acquire context). It is
765 * forbidden to release the locks after releasing the acquire context.
766 *
767 * This function must not be used in interrupt context. Unlocking
768 * of a unlocked mutex is not allowed.
769 */
ww_mutex_unlock(struct ww_mutex * lock)770 void __sched ww_mutex_unlock(struct ww_mutex *lock)
771 {
772 /*
773 * The unlocking fastpath is the 0->1 transition from 'locked'
774 * into 'unlocked' state:
775 */
776 if (lock->ctx) {
777 #ifdef CONFIG_DEBUG_MUTEXES
778 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
779 #endif
780 if (lock->ctx->acquired > 0)
781 lock->ctx->acquired--;
782 lock->ctx = NULL;
783 }
784
785 mutex_unlock(&lock->base);
786 }
787 EXPORT_SYMBOL(ww_mutex_unlock);
788
789
790 static __always_inline int __sched
__ww_mutex_kill(struct mutex * lock,struct ww_acquire_ctx * ww_ctx)791 __ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
792 {
793 if (ww_ctx->acquired > 0) {
794 #ifdef CONFIG_DEBUG_MUTEXES
795 struct ww_mutex *ww;
796
797 ww = container_of(lock, struct ww_mutex, base);
798 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
799 ww_ctx->contending_lock = ww;
800 #endif
801 return -EDEADLK;
802 }
803
804 return 0;
805 }
806
807
808 /*
809 * Check the wound condition for the current lock acquire.
810 *
811 * Wound-Wait: If we're wounded, kill ourself.
812 *
813 * Wait-Die: If we're trying to acquire a lock already held by an older
814 * context, kill ourselves.
815 *
816 * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
817 * look at waiters before us in the wait-list.
818 */
819 static inline int __sched
__ww_mutex_check_kill(struct mutex * lock,struct mutex_waiter * waiter,struct ww_acquire_ctx * ctx)820 __ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter,
821 struct ww_acquire_ctx *ctx)
822 {
823 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
824 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
825 struct mutex_waiter *cur;
826
827 if (ctx->acquired == 0)
828 return 0;
829
830 if (!ctx->is_wait_die) {
831 if (ctx->wounded)
832 return __ww_mutex_kill(lock, ctx);
833
834 return 0;
835 }
836
837 if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
838 return __ww_mutex_kill(lock, ctx);
839
840 /*
841 * If there is a waiter in front of us that has a context, then its
842 * stamp is earlier than ours and we must kill ourself.
843 */
844 cur = waiter;
845 list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
846 if (!cur->ww_ctx)
847 continue;
848
849 return __ww_mutex_kill(lock, ctx);
850 }
851
852 return 0;
853 }
854
855 /*
856 * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
857 * first. Such that older contexts are preferred to acquire the lock over
858 * younger contexts.
859 *
860 * Waiters without context are interspersed in FIFO order.
861 *
862 * Furthermore, for Wait-Die kill ourself immediately when possible (there are
863 * older contexts already waiting) to avoid unnecessary waiting and for
864 * Wound-Wait ensure we wound the owning context when it is younger.
865 */
866 static inline int __sched
__ww_mutex_add_waiter(struct mutex_waiter * waiter,struct mutex * lock,struct ww_acquire_ctx * ww_ctx)867 __ww_mutex_add_waiter(struct mutex_waiter *waiter,
868 struct mutex *lock,
869 struct ww_acquire_ctx *ww_ctx)
870 {
871 struct mutex_waiter *cur;
872 struct list_head *pos;
873 bool is_wait_die;
874
875 if (!ww_ctx) {
876 __mutex_add_waiter(lock, waiter, &lock->wait_list);
877 return 0;
878 }
879
880 is_wait_die = ww_ctx->is_wait_die;
881
882 /*
883 * Add the waiter before the first waiter with a higher stamp.
884 * Waiters without a context are skipped to avoid starving
885 * them. Wait-Die waiters may die here. Wound-Wait waiters
886 * never die here, but they are sorted in stamp order and
887 * may wound the lock holder.
888 */
889 pos = &lock->wait_list;
890 list_for_each_entry_reverse(cur, &lock->wait_list, list) {
891 if (!cur->ww_ctx)
892 continue;
893
894 if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
895 /*
896 * Wait-Die: if we find an older context waiting, there
897 * is no point in queueing behind it, as we'd have to
898 * die the moment it would acquire the lock.
899 */
900 if (is_wait_die) {
901 int ret = __ww_mutex_kill(lock, ww_ctx);
902
903 if (ret)
904 return ret;
905 }
906
907 break;
908 }
909
910 pos = &cur->list;
911
912 /* Wait-Die: ensure younger waiters die. */
913 __ww_mutex_die(lock, cur, ww_ctx);
914 }
915
916 __mutex_add_waiter(lock, waiter, pos);
917
918 /*
919 * Wound-Wait: if we're blocking on a mutex owned by a younger context,
920 * wound that such that we might proceed.
921 */
922 if (!is_wait_die) {
923 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
924
925 /*
926 * See ww_mutex_set_context_fastpath(). Orders setting
927 * MUTEX_FLAG_WAITERS vs the ww->ctx load,
928 * such that either we or the fastpath will wound @ww->ctx.
929 */
930 smp_mb();
931 __ww_mutex_wound(lock, ww_ctx, ww->ctx);
932 }
933
934 return 0;
935 }
936
937 /*
938 * Lock a mutex (possibly interruptible), slowpath:
939 */
940 static __always_inline int __sched
__mutex_lock_common(struct mutex * lock,long state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip,struct ww_acquire_ctx * ww_ctx,const bool use_ww_ctx)941 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
942 struct lockdep_map *nest_lock, unsigned long ip,
943 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
944 {
945 struct mutex_waiter waiter;
946 struct ww_mutex *ww;
947 int ret;
948
949 if (!use_ww_ctx)
950 ww_ctx = NULL;
951
952 might_sleep();
953
954 #ifdef CONFIG_DEBUG_MUTEXES
955 DEBUG_LOCKS_WARN_ON(lock->magic != lock);
956 #endif
957
958 ww = container_of(lock, struct ww_mutex, base);
959 if (ww_ctx) {
960 if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
961 return -EALREADY;
962
963 /*
964 * Reset the wounded flag after a kill. No other process can
965 * race and wound us here since they can't have a valid owner
966 * pointer if we don't have any locks held.
967 */
968 if (ww_ctx->acquired == 0)
969 ww_ctx->wounded = 0;
970 }
971
972 preempt_disable();
973 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
974
975 if (__mutex_trylock(lock) ||
976 mutex_optimistic_spin(lock, ww_ctx, NULL)) {
977 /* got the lock, yay! */
978 lock_acquired(&lock->dep_map, ip);
979 if (ww_ctx)
980 ww_mutex_set_context_fastpath(ww, ww_ctx);
981 preempt_enable();
982 return 0;
983 }
984
985 spin_lock(&lock->wait_lock);
986 /*
987 * After waiting to acquire the wait_lock, try again.
988 */
989 if (__mutex_trylock(lock)) {
990 if (ww_ctx)
991 __ww_mutex_check_waiters(lock, ww_ctx);
992
993 goto skip_wait;
994 }
995
996 debug_mutex_lock_common(lock, &waiter);
997
998 lock_contended(&lock->dep_map, ip);
999
1000 if (!use_ww_ctx) {
1001 /* add waiting tasks to the end of the waitqueue (FIFO): */
1002 __mutex_add_waiter(lock, &waiter, &lock->wait_list);
1003
1004
1005 #ifdef CONFIG_DEBUG_MUTEXES
1006 waiter.ww_ctx = MUTEX_POISON_WW_CTX;
1007 #endif
1008 } else {
1009 /*
1010 * Add in stamp order, waking up waiters that must kill
1011 * themselves.
1012 */
1013 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
1014 if (ret)
1015 goto err_early_kill;
1016
1017 waiter.ww_ctx = ww_ctx;
1018 }
1019
1020 waiter.task = current;
1021
1022 trace_android_vh_mutex_wait_start(lock);
1023 set_current_state(state);
1024 for (;;) {
1025 bool first;
1026
1027 /*
1028 * Once we hold wait_lock, we're serialized against
1029 * mutex_unlock() handing the lock off to us, do a trylock
1030 * before testing the error conditions to make sure we pick up
1031 * the handoff.
1032 */
1033 if (__mutex_trylock(lock))
1034 goto acquired;
1035
1036 /*
1037 * Check for signals and kill conditions while holding
1038 * wait_lock. This ensures the lock cancellation is ordered
1039 * against mutex_unlock() and wake-ups do not go missing.
1040 */
1041 if (signal_pending_state(state, current)) {
1042 ret = -EINTR;
1043 goto err;
1044 }
1045
1046 if (ww_ctx) {
1047 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
1048 if (ret)
1049 goto err;
1050 }
1051
1052 spin_unlock(&lock->wait_lock);
1053 schedule_preempt_disabled();
1054
1055 first = __mutex_waiter_is_first(lock, &waiter);
1056 if (first)
1057 __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
1058
1059 set_current_state(state);
1060 /*
1061 * Here we order against unlock; we must either see it change
1062 * state back to RUNNING and fall through the next schedule(),
1063 * or we must see its unlock and acquire.
1064 */
1065 if (__mutex_trylock(lock) ||
1066 (first && mutex_optimistic_spin(lock, ww_ctx, &waiter)))
1067 break;
1068
1069 spin_lock(&lock->wait_lock);
1070 }
1071 spin_lock(&lock->wait_lock);
1072 acquired:
1073 __set_current_state(TASK_RUNNING);
1074 trace_android_vh_mutex_wait_finish(lock);
1075
1076 if (ww_ctx) {
1077 /*
1078 * Wound-Wait; we stole the lock (!first_waiter), check the
1079 * waiters as anyone might want to wound us.
1080 */
1081 if (!ww_ctx->is_wait_die &&
1082 !__mutex_waiter_is_first(lock, &waiter))
1083 __ww_mutex_check_waiters(lock, ww_ctx);
1084 }
1085
1086 __mutex_remove_waiter(lock, &waiter);
1087
1088 debug_mutex_free_waiter(&waiter);
1089
1090 skip_wait:
1091 /* got the lock - cleanup and rejoice! */
1092 lock_acquired(&lock->dep_map, ip);
1093
1094 if (ww_ctx)
1095 ww_mutex_lock_acquired(ww, ww_ctx);
1096
1097 spin_unlock(&lock->wait_lock);
1098 preempt_enable();
1099 return 0;
1100
1101 err:
1102 __set_current_state(TASK_RUNNING);
1103 trace_android_vh_mutex_wait_finish(lock);
1104 __mutex_remove_waiter(lock, &waiter);
1105 err_early_kill:
1106 spin_unlock(&lock->wait_lock);
1107 debug_mutex_free_waiter(&waiter);
1108 mutex_release(&lock->dep_map, ip);
1109 preempt_enable();
1110 return ret;
1111 }
1112
1113 static int __sched
__mutex_lock(struct mutex * lock,long state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip)1114 __mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1115 struct lockdep_map *nest_lock, unsigned long ip)
1116 {
1117 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
1118 }
1119
1120 static int __sched
__ww_mutex_lock(struct mutex * lock,long state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip,struct ww_acquire_ctx * ww_ctx)1121 __ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1122 struct lockdep_map *nest_lock, unsigned long ip,
1123 struct ww_acquire_ctx *ww_ctx)
1124 {
1125 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
1126 }
1127
1128 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1129 void __sched
mutex_lock_nested(struct mutex * lock,unsigned int subclass)1130 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
1131 {
1132 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
1133 }
1134
1135 EXPORT_SYMBOL_GPL(mutex_lock_nested);
1136
1137 void __sched
_mutex_lock_nest_lock(struct mutex * lock,struct lockdep_map * nest)1138 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
1139 {
1140 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
1141 }
1142 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
1143
1144 int __sched
mutex_lock_killable_nested(struct mutex * lock,unsigned int subclass)1145 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
1146 {
1147 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
1148 }
1149 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
1150
1151 int __sched
mutex_lock_interruptible_nested(struct mutex * lock,unsigned int subclass)1152 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
1153 {
1154 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
1155 }
1156 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
1157
1158 void __sched
mutex_lock_io_nested(struct mutex * lock,unsigned int subclass)1159 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
1160 {
1161 int token;
1162
1163 might_sleep();
1164
1165 token = io_schedule_prepare();
1166 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
1167 subclass, NULL, _RET_IP_, NULL, 0);
1168 io_schedule_finish(token);
1169 }
1170 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
1171
1172 static inline int
ww_mutex_deadlock_injection(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1173 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1174 {
1175 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
1176 unsigned tmp;
1177
1178 if (ctx->deadlock_inject_countdown-- == 0) {
1179 tmp = ctx->deadlock_inject_interval;
1180 if (tmp > UINT_MAX/4)
1181 tmp = UINT_MAX;
1182 else
1183 tmp = tmp*2 + tmp + tmp/2;
1184
1185 ctx->deadlock_inject_interval = tmp;
1186 ctx->deadlock_inject_countdown = tmp;
1187 ctx->contending_lock = lock;
1188
1189 ww_mutex_unlock(lock);
1190
1191 return -EDEADLK;
1192 }
1193 #endif
1194
1195 return 0;
1196 }
1197
1198 int __sched
ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1199 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1200 {
1201 int ret;
1202
1203 might_sleep();
1204 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
1205 0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1206 ctx);
1207 if (!ret && ctx && ctx->acquired > 1)
1208 return ww_mutex_deadlock_injection(lock, ctx);
1209
1210 return ret;
1211 }
1212 EXPORT_SYMBOL_GPL(ww_mutex_lock);
1213
1214 int __sched
ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1215 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1216 {
1217 int ret;
1218
1219 might_sleep();
1220 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
1221 0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1222 ctx);
1223
1224 if (!ret && ctx && ctx->acquired > 1)
1225 return ww_mutex_deadlock_injection(lock, ctx);
1226
1227 return ret;
1228 }
1229 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
1230
1231 #endif
1232
1233 /*
1234 * Release the lock, slowpath:
1235 */
__mutex_unlock_slowpath(struct mutex * lock,unsigned long ip)1236 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
1237 {
1238 struct task_struct *next = NULL;
1239 DEFINE_WAKE_Q(wake_q);
1240 unsigned long owner;
1241
1242 mutex_release(&lock->dep_map, ip);
1243
1244 /*
1245 * Release the lock before (potentially) taking the spinlock such that
1246 * other contenders can get on with things ASAP.
1247 *
1248 * Except when HANDOFF, in that case we must not clear the owner field,
1249 * but instead set it to the top waiter.
1250 */
1251 owner = atomic_long_read(&lock->owner);
1252 for (;;) {
1253 unsigned long old;
1254
1255 #ifdef CONFIG_DEBUG_MUTEXES
1256 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
1257 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
1258 #endif
1259
1260 if (owner & MUTEX_FLAG_HANDOFF)
1261 break;
1262
1263 old = atomic_long_cmpxchg_release(&lock->owner, owner,
1264 __owner_flags(owner));
1265 if (old == owner) {
1266 if (owner & MUTEX_FLAG_WAITERS)
1267 break;
1268
1269 return;
1270 }
1271
1272 owner = old;
1273 }
1274
1275 spin_lock(&lock->wait_lock);
1276 debug_mutex_unlock(lock);
1277 if (!list_empty(&lock->wait_list)) {
1278 /* get the first entry from the wait-list: */
1279 struct mutex_waiter *waiter =
1280 list_first_entry(&lock->wait_list,
1281 struct mutex_waiter, list);
1282
1283 next = waiter->task;
1284
1285 debug_mutex_wake_waiter(lock, waiter);
1286 wake_q_add(&wake_q, next);
1287 }
1288
1289 if (owner & MUTEX_FLAG_HANDOFF)
1290 __mutex_handoff(lock, next);
1291
1292 trace_android_vh_mutex_unlock_slowpath(lock);
1293 spin_unlock(&lock->wait_lock);
1294
1295 wake_up_q(&wake_q);
1296 }
1297
1298 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1299 /*
1300 * Here come the less common (and hence less performance-critical) APIs:
1301 * mutex_lock_interruptible() and mutex_trylock().
1302 */
1303 static noinline int __sched
1304 __mutex_lock_killable_slowpath(struct mutex *lock);
1305
1306 static noinline int __sched
1307 __mutex_lock_interruptible_slowpath(struct mutex *lock);
1308
1309 /**
1310 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
1311 * @lock: The mutex to be acquired.
1312 *
1313 * Lock the mutex like mutex_lock(). If a signal is delivered while the
1314 * process is sleeping, this function will return without acquiring the
1315 * mutex.
1316 *
1317 * Context: Process context.
1318 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1319 * signal arrived.
1320 */
mutex_lock_interruptible(struct mutex * lock)1321 int __sched mutex_lock_interruptible(struct mutex *lock)
1322 {
1323 might_sleep();
1324
1325 if (__mutex_trylock_fast(lock))
1326 return 0;
1327
1328 return __mutex_lock_interruptible_slowpath(lock);
1329 }
1330
1331 EXPORT_SYMBOL(mutex_lock_interruptible);
1332
1333 /**
1334 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1335 * @lock: The mutex to be acquired.
1336 *
1337 * Lock the mutex like mutex_lock(). If a signal which will be fatal to
1338 * the current process is delivered while the process is sleeping, this
1339 * function will return without acquiring the mutex.
1340 *
1341 * Context: Process context.
1342 * Return: 0 if the lock was successfully acquired or %-EINTR if a
1343 * fatal signal arrived.
1344 */
mutex_lock_killable(struct mutex * lock)1345 int __sched mutex_lock_killable(struct mutex *lock)
1346 {
1347 might_sleep();
1348
1349 if (__mutex_trylock_fast(lock))
1350 return 0;
1351
1352 return __mutex_lock_killable_slowpath(lock);
1353 }
1354 EXPORT_SYMBOL(mutex_lock_killable);
1355
1356 /**
1357 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1358 * @lock: The mutex to be acquired.
1359 *
1360 * Lock the mutex like mutex_lock(). While the task is waiting for this
1361 * mutex, it will be accounted as being in the IO wait state by the
1362 * scheduler.
1363 *
1364 * Context: Process context.
1365 */
mutex_lock_io(struct mutex * lock)1366 void __sched mutex_lock_io(struct mutex *lock)
1367 {
1368 int token;
1369
1370 token = io_schedule_prepare();
1371 mutex_lock(lock);
1372 io_schedule_finish(token);
1373 }
1374 EXPORT_SYMBOL_GPL(mutex_lock_io);
1375
1376 static noinline void __sched
__mutex_lock_slowpath(struct mutex * lock)1377 __mutex_lock_slowpath(struct mutex *lock)
1378 {
1379 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1380 }
1381
1382 static noinline int __sched
__mutex_lock_killable_slowpath(struct mutex * lock)1383 __mutex_lock_killable_slowpath(struct mutex *lock)
1384 {
1385 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1386 }
1387
1388 static noinline int __sched
__mutex_lock_interruptible_slowpath(struct mutex * lock)1389 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1390 {
1391 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1392 }
1393
1394 static noinline int __sched
__ww_mutex_lock_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1395 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1396 {
1397 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
1398 _RET_IP_, ctx);
1399 }
1400
1401 static noinline int __sched
__ww_mutex_lock_interruptible_slowpath(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1402 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1403 struct ww_acquire_ctx *ctx)
1404 {
1405 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
1406 _RET_IP_, ctx);
1407 }
1408
1409 #endif
1410
1411 /**
1412 * mutex_trylock - try to acquire the mutex, without waiting
1413 * @lock: the mutex to be acquired
1414 *
1415 * Try to acquire the mutex atomically. Returns 1 if the mutex
1416 * has been acquired successfully, and 0 on contention.
1417 *
1418 * NOTE: this function follows the spin_trylock() convention, so
1419 * it is negated from the down_trylock() return values! Be careful
1420 * about this when converting semaphore users to mutexes.
1421 *
1422 * This function must not be used in interrupt context. The
1423 * mutex must be released by the same task that acquired it.
1424 */
mutex_trylock(struct mutex * lock)1425 int __sched mutex_trylock(struct mutex *lock)
1426 {
1427 bool locked;
1428
1429 #ifdef CONFIG_DEBUG_MUTEXES
1430 DEBUG_LOCKS_WARN_ON(lock->magic != lock);
1431 #endif
1432
1433 locked = __mutex_trylock(lock);
1434 if (locked)
1435 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1436
1437 return locked;
1438 }
1439 EXPORT_SYMBOL(mutex_trylock);
1440
1441 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1442 int __sched
ww_mutex_lock(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1443 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1444 {
1445 might_sleep();
1446
1447 if (__mutex_trylock_fast(&lock->base)) {
1448 if (ctx)
1449 ww_mutex_set_context_fastpath(lock, ctx);
1450 return 0;
1451 }
1452
1453 return __ww_mutex_lock_slowpath(lock, ctx);
1454 }
1455 EXPORT_SYMBOL(ww_mutex_lock);
1456
1457 int __sched
ww_mutex_lock_interruptible(struct ww_mutex * lock,struct ww_acquire_ctx * ctx)1458 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1459 {
1460 might_sleep();
1461
1462 if (__mutex_trylock_fast(&lock->base)) {
1463 if (ctx)
1464 ww_mutex_set_context_fastpath(lock, ctx);
1465 return 0;
1466 }
1467
1468 return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1469 }
1470 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1471
1472 #endif
1473
1474 /**
1475 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1476 * @cnt: the atomic which we are to dec
1477 * @lock: the mutex to return holding if we dec to 0
1478 *
1479 * return true and hold lock if we dec to 0, return false otherwise
1480 */
atomic_dec_and_mutex_lock(atomic_t * cnt,struct mutex * lock)1481 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1482 {
1483 /* dec if we can't possibly hit 0 */
1484 if (atomic_add_unless(cnt, -1, 1))
1485 return 0;
1486 /* we might hit 0, so take the lock */
1487 mutex_lock(lock);
1488 if (!atomic_dec_and_test(cnt)) {
1489 /* when we actually did the dec, we didn't hit 0 */
1490 mutex_unlock(lock);
1491 return 0;
1492 }
1493 /* we hit 0, and we hold the lock */
1494 return 1;
1495 }
1496 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1497