• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include "sched.h"
12 
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15 #include <trace/hooks/sched.h>
16 
17 #define IOWAIT_BOOST_MIN	(SCHED_CAPACITY_SCALE / 8)
18 
19 struct sugov_tunables {
20 	struct gov_attr_set	attr_set;
21 	unsigned int		rate_limit_us;
22 };
23 
24 struct sugov_policy {
25 	struct cpufreq_policy	*policy;
26 
27 	struct sugov_tunables	*tunables;
28 	struct list_head	tunables_hook;
29 
30 	raw_spinlock_t		update_lock;	/* For shared policies */
31 	u64			last_freq_update_time;
32 	s64			freq_update_delay_ns;
33 	unsigned int		next_freq;
34 	unsigned int		cached_raw_freq;
35 
36 	/* The next fields are only needed if fast switch cannot be used: */
37 	struct			irq_work irq_work;
38 	struct			kthread_work work;
39 	struct			mutex work_lock;
40 	struct			kthread_worker worker;
41 	struct task_struct	*thread;
42 	bool			work_in_progress;
43 
44 	bool			limits_changed;
45 	bool			need_freq_update;
46 };
47 
48 struct sugov_cpu {
49 	struct update_util_data	update_util;
50 	struct sugov_policy	*sg_policy;
51 	unsigned int		cpu;
52 
53 	bool			iowait_boost_pending;
54 	unsigned int		iowait_boost;
55 	u64			last_update;
56 
57 	unsigned long		bw_dl;
58 	unsigned long		max;
59 
60 	/* The field below is for single-CPU policies only: */
61 #ifdef CONFIG_NO_HZ_COMMON
62 	unsigned long		saved_idle_calls;
63 #endif
64 };
65 
66 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
67 
68 /************************ Governor internals ***********************/
69 
sugov_should_update_freq(struct sugov_policy * sg_policy,u64 time)70 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
71 {
72 	s64 delta_ns;
73 
74 	/*
75 	 * Since cpufreq_update_util() is called with rq->lock held for
76 	 * the @target_cpu, our per-CPU data is fully serialized.
77 	 *
78 	 * However, drivers cannot in general deal with cross-CPU
79 	 * requests, so while get_next_freq() will work, our
80 	 * sugov_update_commit() call may not for the fast switching platforms.
81 	 *
82 	 * Hence stop here for remote requests if they aren't supported
83 	 * by the hardware, as calculating the frequency is pointless if
84 	 * we cannot in fact act on it.
85 	 *
86 	 * This is needed on the slow switching platforms too to prevent CPUs
87 	 * going offline from leaving stale IRQ work items behind.
88 	 */
89 	if (!cpufreq_this_cpu_can_update(sg_policy->policy))
90 		return false;
91 
92 	if (unlikely(sg_policy->limits_changed)) {
93 		sg_policy->limits_changed = false;
94 		sg_policy->need_freq_update = true;
95 		return true;
96 	}
97 
98 	delta_ns = time - sg_policy->last_freq_update_time;
99 
100 	return delta_ns >= sg_policy->freq_update_delay_ns;
101 }
102 
sugov_update_next_freq(struct sugov_policy * sg_policy,u64 time,unsigned int next_freq)103 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
104 				   unsigned int next_freq)
105 {
106 	if (!sg_policy->need_freq_update) {
107 		s64 delta_ns = time - sg_policy->last_freq_update_time;
108 		trace_android_vh_update_next_freq(sg_policy->policy, sg_policy->next_freq,
109 				&next_freq, delta_ns);
110 		if (sg_policy->next_freq == next_freq)
111 			return false;
112 	} else {
113 		sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
114 	}
115 
116 	sg_policy->next_freq = next_freq;
117 	sg_policy->last_freq_update_time = time;
118 
119 	return true;
120 }
121 
sugov_fast_switch(struct sugov_policy * sg_policy,u64 time,unsigned int next_freq)122 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
123 			      unsigned int next_freq)
124 {
125 	if (sugov_update_next_freq(sg_policy, time, next_freq))
126 		cpufreq_driver_fast_switch(sg_policy->policy, next_freq);
127 }
128 
sugov_deferred_update(struct sugov_policy * sg_policy,u64 time,unsigned int next_freq)129 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
130 				  unsigned int next_freq)
131 {
132 	if (!sugov_update_next_freq(sg_policy, time, next_freq))
133 		return;
134 
135 	if (!sg_policy->work_in_progress) {
136 		sg_policy->work_in_progress = true;
137 		irq_work_queue(&sg_policy->irq_work);
138 	}
139 }
140 
141 /**
142  * get_next_freq - Compute a new frequency for a given cpufreq policy.
143  * @sg_policy: schedutil policy object to compute the new frequency for.
144  * @util: Current CPU utilization.
145  * @max: CPU capacity.
146  *
147  * If the utilization is frequency-invariant, choose the new frequency to be
148  * proportional to it, that is
149  *
150  * next_freq = C * max_freq * util / max
151  *
152  * Otherwise, approximate the would-be frequency-invariant utilization by
153  * util_raw * (curr_freq / max_freq) which leads to
154  *
155  * next_freq = C * curr_freq * util_raw / max
156  *
157  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
158  *
159  * The lowest driver-supported frequency which is equal or greater than the raw
160  * next_freq (as calculated above) is returned, subject to policy min/max and
161  * cpufreq driver limitations.
162  */
get_next_freq(struct sugov_policy * sg_policy,unsigned long util,unsigned long max)163 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
164 				  unsigned long util, unsigned long max)
165 {
166 	struct cpufreq_policy *policy = sg_policy->policy;
167 	unsigned int freq = arch_scale_freq_invariant() ?
168 				policy->cpuinfo.max_freq : policy->cur;
169 	unsigned long next_freq = 0;
170 
171 	trace_android_vh_map_util_freq(util, freq, max, &next_freq, policy,
172 			&sg_policy->need_freq_update);
173 	if (next_freq)
174 		freq = next_freq;
175 	else
176 		freq = map_util_freq(util, freq, max);
177 
178 	if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
179 		return sg_policy->next_freq;
180 
181 	sg_policy->cached_raw_freq = freq;
182 	return cpufreq_driver_resolve_freq(policy, freq);
183 }
184 
185 /*
186  * This function computes an effective utilization for the given CPU, to be
187  * used for frequency selection given the linear relation: f = u * f_max.
188  *
189  * The scheduler tracks the following metrics:
190  *
191  *   cpu_util_{cfs,rt,dl,irq}()
192  *   cpu_bw_dl()
193  *
194  * Where the cfs,rt and dl util numbers are tracked with the same metric and
195  * synchronized windows and are thus directly comparable.
196  *
197  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
198  * which excludes things like IRQ and steal-time. These latter are then accrued
199  * in the irq utilization.
200  *
201  * The DL bandwidth number otoh is not a measured metric but a value computed
202  * based on the task model parameters and gives the minimal utilization
203  * required to meet deadlines.
204  */
schedutil_cpu_util(int cpu,unsigned long util_cfs,unsigned long max,enum schedutil_type type,struct task_struct * p)205 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
206 				 unsigned long max, enum schedutil_type type,
207 				 struct task_struct *p)
208 {
209 	unsigned long dl_util, util, irq;
210 	struct rq *rq = cpu_rq(cpu);
211 
212 	if (!uclamp_is_used() &&
213 	    type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
214 		return max;
215 	}
216 
217 	/*
218 	 * Early check to see if IRQ/steal time saturates the CPU, can be
219 	 * because of inaccuracies in how we track these -- see
220 	 * update_irq_load_avg().
221 	 */
222 	irq = cpu_util_irq(rq);
223 	if (unlikely(irq >= max))
224 		return max;
225 
226 	/*
227 	 * Because the time spend on RT/DL tasks is visible as 'lost' time to
228 	 * CFS tasks and we use the same metric to track the effective
229 	 * utilization (PELT windows are synchronized) we can directly add them
230 	 * to obtain the CPU's actual utilization.
231 	 *
232 	 * CFS and RT utilization can be boosted or capped, depending on
233 	 * utilization clamp constraints requested by currently RUNNABLE
234 	 * tasks.
235 	 * When there are no CFS RUNNABLE tasks, clamps are released and
236 	 * frequency will be gracefully reduced with the utilization decay.
237 	 */
238 	util = util_cfs + cpu_util_rt(rq);
239 	if (type == FREQUENCY_UTIL)
240 		util = uclamp_rq_util_with(rq, util, p);
241 
242 	dl_util = cpu_util_dl(rq);
243 
244 	/*
245 	 * For frequency selection we do not make cpu_util_dl() a permanent part
246 	 * of this sum because we want to use cpu_bw_dl() later on, but we need
247 	 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
248 	 * that we select f_max when there is no idle time.
249 	 *
250 	 * NOTE: numerical errors or stop class might cause us to not quite hit
251 	 * saturation when we should -- something for later.
252 	 */
253 	if (util + dl_util >= max)
254 		return max;
255 
256 	/*
257 	 * OTOH, for energy computation we need the estimated running time, so
258 	 * include util_dl and ignore dl_bw.
259 	 */
260 	if (type == ENERGY_UTIL)
261 		util += dl_util;
262 
263 	/*
264 	 * There is still idle time; further improve the number by using the
265 	 * irq metric. Because IRQ/steal time is hidden from the task clock we
266 	 * need to scale the task numbers:
267 	 *
268 	 *              max - irq
269 	 *   U' = irq + --------- * U
270 	 *                 max
271 	 */
272 	util = scale_irq_capacity(util, irq, max);
273 	util += irq;
274 
275 	/*
276 	 * Bandwidth required by DEADLINE must always be granted while, for
277 	 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
278 	 * to gracefully reduce the frequency when no tasks show up for longer
279 	 * periods of time.
280 	 *
281 	 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
282 	 * bw_dl as requested freq. However, cpufreq is not yet ready for such
283 	 * an interface. So, we only do the latter for now.
284 	 */
285 	if (type == FREQUENCY_UTIL)
286 		util += cpu_bw_dl(rq);
287 
288 	return min(max, util);
289 }
290 EXPORT_SYMBOL_GPL(schedutil_cpu_util);
291 
sched_cpu_util(int cpu,unsigned long max)292 unsigned long sched_cpu_util(int cpu, unsigned long max)
293 {
294 	return schedutil_cpu_util(cpu, cpu_util_cfs(cpu_rq(cpu)), max,
295 				  ENERGY_UTIL, NULL);
296 }
297 
sugov_get_util(struct sugov_cpu * sg_cpu)298 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
299 {
300 	struct rq *rq = cpu_rq(sg_cpu->cpu);
301 	unsigned long util = cpu_util_cfs(rq);
302 	unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
303 	unsigned long ret = 0;
304 
305 	trace_android_vh_sugov_get_util(sg_cpu->cpu, &ret);
306 	if (ret)
307 		return ret;
308 
309 	sg_cpu->max = max;
310 	sg_cpu->bw_dl = cpu_bw_dl(rq);
311 
312 	return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL);
313 }
314 
315 /**
316  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
317  * @sg_cpu: the sugov data for the CPU to boost
318  * @time: the update time from the caller
319  * @set_iowait_boost: true if an IO boost has been requested
320  *
321  * The IO wait boost of a task is disabled after a tick since the last update
322  * of a CPU. If a new IO wait boost is requested after more then a tick, then
323  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
324  * efficiency by ignoring sporadic wakeups from IO.
325  */
sugov_iowait_reset(struct sugov_cpu * sg_cpu,u64 time,bool set_iowait_boost)326 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
327 			       bool set_iowait_boost)
328 {
329 	s64 delta_ns = time - sg_cpu->last_update;
330 
331 	/* Reset boost only if a tick has elapsed since last request */
332 	if (delta_ns <= TICK_NSEC)
333 		return false;
334 
335 	sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
336 	sg_cpu->iowait_boost_pending = set_iowait_boost;
337 
338 	return true;
339 }
340 
341 /**
342  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
343  * @sg_cpu: the sugov data for the CPU to boost
344  * @time: the update time from the caller
345  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
346  *
347  * Each time a task wakes up after an IO operation, the CPU utilization can be
348  * boosted to a certain utilization which doubles at each "frequent and
349  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
350  * of the maximum OPP.
351  *
352  * To keep doubling, an IO boost has to be requested at least once per tick,
353  * otherwise we restart from the utilization of the minimum OPP.
354  */
sugov_iowait_boost(struct sugov_cpu * sg_cpu,u64 time,unsigned int flags)355 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
356 			       unsigned int flags)
357 {
358 	bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
359 
360 	/* Reset boost if the CPU appears to have been idle enough */
361 	if (sg_cpu->iowait_boost &&
362 	    sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
363 		return;
364 
365 	/* Boost only tasks waking up after IO */
366 	if (!set_iowait_boost)
367 		return;
368 
369 	/* Ensure boost doubles only one time at each request */
370 	if (sg_cpu->iowait_boost_pending)
371 		return;
372 	sg_cpu->iowait_boost_pending = true;
373 
374 	/* Double the boost at each request */
375 	if (sg_cpu->iowait_boost) {
376 		sg_cpu->iowait_boost =
377 			min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
378 		return;
379 	}
380 
381 	/* First wakeup after IO: start with minimum boost */
382 	sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
383 }
384 
385 /**
386  * sugov_iowait_apply() - Apply the IO boost to a CPU.
387  * @sg_cpu: the sugov data for the cpu to boost
388  * @time: the update time from the caller
389  * @util: the utilization to (eventually) boost
390  * @max: the maximum value the utilization can be boosted to
391  *
392  * A CPU running a task which woken up after an IO operation can have its
393  * utilization boosted to speed up the completion of those IO operations.
394  * The IO boost value is increased each time a task wakes up from IO, in
395  * sugov_iowait_apply(), and it's instead decreased by this function,
396  * each time an increase has not been requested (!iowait_boost_pending).
397  *
398  * A CPU which also appears to have been idle for at least one tick has also
399  * its IO boost utilization reset.
400  *
401  * This mechanism is designed to boost high frequently IO waiting tasks, while
402  * being more conservative on tasks which does sporadic IO operations.
403  */
sugov_iowait_apply(struct sugov_cpu * sg_cpu,u64 time,unsigned long util,unsigned long max)404 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
405 					unsigned long util, unsigned long max)
406 {
407 	unsigned long boost;
408 
409 	/* No boost currently required */
410 	if (!sg_cpu->iowait_boost)
411 		return util;
412 
413 	/* Reset boost if the CPU appears to have been idle enough */
414 	if (sugov_iowait_reset(sg_cpu, time, false))
415 		return util;
416 
417 	if (!sg_cpu->iowait_boost_pending) {
418 		/*
419 		 * No boost pending; reduce the boost value.
420 		 */
421 		sg_cpu->iowait_boost >>= 1;
422 		if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
423 			sg_cpu->iowait_boost = 0;
424 			return util;
425 		}
426 	}
427 
428 	sg_cpu->iowait_boost_pending = false;
429 
430 	/*
431 	 * @util is already in capacity scale; convert iowait_boost
432 	 * into the same scale so we can compare.
433 	 */
434 	boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
435 	return max(boost, util);
436 }
437 
438 #ifdef CONFIG_NO_HZ_COMMON
sugov_cpu_is_busy(struct sugov_cpu * sg_cpu)439 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
440 {
441 	unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
442 	bool ret = idle_calls == sg_cpu->saved_idle_calls;
443 
444 	sg_cpu->saved_idle_calls = idle_calls;
445 	return ret;
446 }
447 #else
sugov_cpu_is_busy(struct sugov_cpu * sg_cpu)448 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
449 #endif /* CONFIG_NO_HZ_COMMON */
450 
451 /*
452  * Make sugov_should_update_freq() ignore the rate limit when DL
453  * has increased the utilization.
454  */
ignore_dl_rate_limit(struct sugov_cpu * sg_cpu,struct sugov_policy * sg_policy)455 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
456 {
457 	if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
458 		sg_policy->limits_changed = true;
459 }
460 
sugov_update_single(struct update_util_data * hook,u64 time,unsigned int flags)461 static void sugov_update_single(struct update_util_data *hook, u64 time,
462 				unsigned int flags)
463 {
464 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
465 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
466 	unsigned long util, max;
467 	unsigned int next_f;
468 	unsigned int cached_freq = sg_policy->cached_raw_freq;
469 
470 	sugov_iowait_boost(sg_cpu, time, flags);
471 	sg_cpu->last_update = time;
472 
473 	ignore_dl_rate_limit(sg_cpu, sg_policy);
474 
475 	if (!sugov_should_update_freq(sg_policy, time))
476 		return;
477 
478 	util = sugov_get_util(sg_cpu);
479 	max = sg_cpu->max;
480 	util = sugov_iowait_apply(sg_cpu, time, util, max);
481 	next_f = get_next_freq(sg_policy, util, max);
482 	/*
483 	 * Do not reduce the frequency if the CPU has not been idle
484 	 * recently, as the reduction is likely to be premature then.
485 	 */
486 	if (sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
487 		next_f = sg_policy->next_freq;
488 
489 		/* Restore cached freq as next_freq has changed */
490 		sg_policy->cached_raw_freq = cached_freq;
491 	}
492 
493 	/*
494 	 * This code runs under rq->lock for the target CPU, so it won't run
495 	 * concurrently on two different CPUs for the same target and it is not
496 	 * necessary to acquire the lock in the fast switch case.
497 	 */
498 	if (sg_policy->policy->fast_switch_enabled) {
499 		sugov_fast_switch(sg_policy, time, next_f);
500 	} else {
501 		raw_spin_lock(&sg_policy->update_lock);
502 		sugov_deferred_update(sg_policy, time, next_f);
503 		raw_spin_unlock(&sg_policy->update_lock);
504 	}
505 }
506 
sugov_next_freq_shared(struct sugov_cpu * sg_cpu,u64 time)507 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
508 {
509 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
510 	struct cpufreq_policy *policy = sg_policy->policy;
511 	unsigned long util = 0, max = 1;
512 	unsigned int j;
513 
514 	for_each_cpu(j, policy->cpus) {
515 		struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
516 		unsigned long j_util, j_max;
517 
518 		j_util = sugov_get_util(j_sg_cpu);
519 		j_max = j_sg_cpu->max;
520 		j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
521 
522 		if (j_util * max > j_max * util) {
523 			util = j_util;
524 			max = j_max;
525 		}
526 	}
527 
528 	return get_next_freq(sg_policy, util, max);
529 }
530 
531 static void
sugov_update_shared(struct update_util_data * hook,u64 time,unsigned int flags)532 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
533 {
534 	struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
535 	struct sugov_policy *sg_policy = sg_cpu->sg_policy;
536 	unsigned int next_f;
537 
538 	raw_spin_lock(&sg_policy->update_lock);
539 
540 	sugov_iowait_boost(sg_cpu, time, flags);
541 	sg_cpu->last_update = time;
542 
543 	ignore_dl_rate_limit(sg_cpu, sg_policy);
544 
545 	if (sugov_should_update_freq(sg_policy, time)) {
546 		next_f = sugov_next_freq_shared(sg_cpu, time);
547 
548 		if (sg_policy->policy->fast_switch_enabled)
549 			sugov_fast_switch(sg_policy, time, next_f);
550 		else
551 			sugov_deferred_update(sg_policy, time, next_f);
552 	}
553 
554 	raw_spin_unlock(&sg_policy->update_lock);
555 }
556 
sugov_work(struct kthread_work * work)557 static void sugov_work(struct kthread_work *work)
558 {
559 	struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
560 	unsigned int freq;
561 	unsigned long flags;
562 
563 	/*
564 	 * Hold sg_policy->update_lock shortly to handle the case where:
565 	 * incase sg_policy->next_freq is read here, and then updated by
566 	 * sugov_deferred_update() just before work_in_progress is set to false
567 	 * here, we may miss queueing the new update.
568 	 *
569 	 * Note: If a work was queued after the update_lock is released,
570 	 * sugov_work() will just be called again by kthread_work code; and the
571 	 * request will be proceed before the sugov thread sleeps.
572 	 */
573 	raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
574 	freq = sg_policy->next_freq;
575 	sg_policy->work_in_progress = false;
576 	raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
577 
578 	mutex_lock(&sg_policy->work_lock);
579 	__cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
580 	mutex_unlock(&sg_policy->work_lock);
581 }
582 
sugov_irq_work(struct irq_work * irq_work)583 static void sugov_irq_work(struct irq_work *irq_work)
584 {
585 	struct sugov_policy *sg_policy;
586 
587 	sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
588 
589 	kthread_queue_work(&sg_policy->worker, &sg_policy->work);
590 }
591 
592 /************************** sysfs interface ************************/
593 
594 static struct sugov_tunables *global_tunables;
595 static DEFINE_MUTEX(global_tunables_lock);
596 
to_sugov_tunables(struct gov_attr_set * attr_set)597 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
598 {
599 	return container_of(attr_set, struct sugov_tunables, attr_set);
600 }
601 
rate_limit_us_show(struct gov_attr_set * attr_set,char * buf)602 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
603 {
604 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
605 
606 	return sprintf(buf, "%u\n", tunables->rate_limit_us);
607 }
608 
609 static ssize_t
rate_limit_us_store(struct gov_attr_set * attr_set,const char * buf,size_t count)610 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
611 {
612 	struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
613 	struct sugov_policy *sg_policy;
614 	unsigned int rate_limit_us;
615 
616 	if (kstrtouint(buf, 10, &rate_limit_us))
617 		return -EINVAL;
618 
619 	tunables->rate_limit_us = rate_limit_us;
620 
621 	list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
622 		sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
623 
624 	return count;
625 }
626 
627 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
628 
629 static struct attribute *sugov_attrs[] = {
630 	&rate_limit_us.attr,
631 	NULL
632 };
633 ATTRIBUTE_GROUPS(sugov);
634 
sugov_tunables_free(struct kobject * kobj)635 static void sugov_tunables_free(struct kobject *kobj)
636 {
637 	struct gov_attr_set *attr_set = container_of(kobj, struct gov_attr_set, kobj);
638 
639 	kfree(to_sugov_tunables(attr_set));
640 }
641 
642 static struct kobj_type sugov_tunables_ktype = {
643 	.default_groups = sugov_groups,
644 	.sysfs_ops = &governor_sysfs_ops,
645 	.release = &sugov_tunables_free,
646 };
647 
648 /********************** cpufreq governor interface *********************/
649 
650 struct cpufreq_governor schedutil_gov;
651 
sugov_policy_alloc(struct cpufreq_policy * policy)652 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
653 {
654 	struct sugov_policy *sg_policy;
655 
656 	sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
657 	if (!sg_policy)
658 		return NULL;
659 
660 	sg_policy->policy = policy;
661 	raw_spin_lock_init(&sg_policy->update_lock);
662 	return sg_policy;
663 }
664 
sugov_policy_free(struct sugov_policy * sg_policy)665 static void sugov_policy_free(struct sugov_policy *sg_policy)
666 {
667 	kfree(sg_policy);
668 }
669 
sugov_kthread_create(struct sugov_policy * sg_policy)670 static int sugov_kthread_create(struct sugov_policy *sg_policy)
671 {
672 	struct task_struct *thread;
673 	struct sched_attr attr = {
674 		.size		= sizeof(struct sched_attr),
675 		.sched_policy	= SCHED_DEADLINE,
676 		.sched_flags	= SCHED_FLAG_SUGOV,
677 		.sched_nice	= 0,
678 		.sched_priority	= 0,
679 		/*
680 		 * Fake (unused) bandwidth; workaround to "fix"
681 		 * priority inheritance.
682 		 */
683 		.sched_runtime	=  1000000,
684 		.sched_deadline = 10000000,
685 		.sched_period	= 10000000,
686 	};
687 	struct cpufreq_policy *policy = sg_policy->policy;
688 	int ret;
689 
690 	/* kthread only required for slow path */
691 	if (policy->fast_switch_enabled)
692 		return 0;
693 
694 	kthread_init_work(&sg_policy->work, sugov_work);
695 	kthread_init_worker(&sg_policy->worker);
696 	thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
697 				"sugov:%d",
698 				cpumask_first(policy->related_cpus));
699 	if (IS_ERR(thread)) {
700 		pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
701 		return PTR_ERR(thread);
702 	}
703 
704 	ret = sched_setattr_nocheck(thread, &attr);
705 	if (ret) {
706 		kthread_stop(thread);
707 		pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
708 		return ret;
709 	}
710 
711 	sg_policy->thread = thread;
712 	kthread_bind_mask(thread, policy->related_cpus);
713 	init_irq_work(&sg_policy->irq_work, sugov_irq_work);
714 	mutex_init(&sg_policy->work_lock);
715 
716 	wake_up_process(thread);
717 
718 	return 0;
719 }
720 
sugov_kthread_stop(struct sugov_policy * sg_policy)721 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
722 {
723 	/* kthread only required for slow path */
724 	if (sg_policy->policy->fast_switch_enabled)
725 		return;
726 
727 	kthread_flush_worker(&sg_policy->worker);
728 	kthread_stop(sg_policy->thread);
729 	mutex_destroy(&sg_policy->work_lock);
730 }
731 
sugov_tunables_alloc(struct sugov_policy * sg_policy)732 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
733 {
734 	struct sugov_tunables *tunables;
735 
736 	tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
737 	if (tunables) {
738 		gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
739 		if (!have_governor_per_policy())
740 			global_tunables = tunables;
741 	}
742 	return tunables;
743 }
744 
sugov_clear_global_tunables(void)745 static void sugov_clear_global_tunables(void)
746 {
747 	if (!have_governor_per_policy())
748 		global_tunables = NULL;
749 }
750 
sugov_init(struct cpufreq_policy * policy)751 static int sugov_init(struct cpufreq_policy *policy)
752 {
753 	struct sugov_policy *sg_policy;
754 	struct sugov_tunables *tunables;
755 	int ret = 0;
756 
757 	/* State should be equivalent to EXIT */
758 	if (policy->governor_data)
759 		return -EBUSY;
760 
761 	cpufreq_enable_fast_switch(policy);
762 
763 	sg_policy = sugov_policy_alloc(policy);
764 	if (!sg_policy) {
765 		ret = -ENOMEM;
766 		goto disable_fast_switch;
767 	}
768 
769 	ret = sugov_kthread_create(sg_policy);
770 	if (ret)
771 		goto free_sg_policy;
772 
773 	mutex_lock(&global_tunables_lock);
774 
775 	if (global_tunables) {
776 		if (WARN_ON(have_governor_per_policy())) {
777 			ret = -EINVAL;
778 			goto stop_kthread;
779 		}
780 		policy->governor_data = sg_policy;
781 		sg_policy->tunables = global_tunables;
782 
783 		gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
784 		goto out;
785 	}
786 
787 	tunables = sugov_tunables_alloc(sg_policy);
788 	if (!tunables) {
789 		ret = -ENOMEM;
790 		goto stop_kthread;
791 	}
792 
793 	tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
794 
795 	policy->governor_data = sg_policy;
796 	sg_policy->tunables = tunables;
797 
798 	ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
799 				   get_governor_parent_kobj(policy), "%s",
800 				   schedutil_gov.name);
801 	if (ret)
802 		goto fail;
803 
804 out:
805 	mutex_unlock(&global_tunables_lock);
806 	return 0;
807 
808 fail:
809 	kobject_put(&tunables->attr_set.kobj);
810 	policy->governor_data = NULL;
811 	sugov_clear_global_tunables();
812 
813 stop_kthread:
814 	sugov_kthread_stop(sg_policy);
815 	mutex_unlock(&global_tunables_lock);
816 
817 free_sg_policy:
818 	sugov_policy_free(sg_policy);
819 
820 disable_fast_switch:
821 	cpufreq_disable_fast_switch(policy);
822 
823 	pr_err("initialization failed (error %d)\n", ret);
824 	return ret;
825 }
826 
sugov_exit(struct cpufreq_policy * policy)827 static void sugov_exit(struct cpufreq_policy *policy)
828 {
829 	struct sugov_policy *sg_policy = policy->governor_data;
830 	struct sugov_tunables *tunables = sg_policy->tunables;
831 	unsigned int count;
832 
833 	mutex_lock(&global_tunables_lock);
834 
835 	count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
836 	policy->governor_data = NULL;
837 	if (!count)
838 		sugov_clear_global_tunables();
839 
840 	mutex_unlock(&global_tunables_lock);
841 
842 	sugov_kthread_stop(sg_policy);
843 	sugov_policy_free(sg_policy);
844 	cpufreq_disable_fast_switch(policy);
845 }
846 
sugov_start(struct cpufreq_policy * policy)847 static int sugov_start(struct cpufreq_policy *policy)
848 {
849 	struct sugov_policy *sg_policy = policy->governor_data;
850 	unsigned int cpu;
851 
852 	sg_policy->freq_update_delay_ns	= sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
853 	sg_policy->last_freq_update_time	= 0;
854 	sg_policy->next_freq			= 0;
855 	sg_policy->work_in_progress		= false;
856 	sg_policy->limits_changed		= false;
857 	sg_policy->cached_raw_freq		= 0;
858 
859 	sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
860 
861 	for_each_cpu(cpu, policy->cpus) {
862 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
863 
864 		memset(sg_cpu, 0, sizeof(*sg_cpu));
865 		sg_cpu->cpu			= cpu;
866 		sg_cpu->sg_policy		= sg_policy;
867 	}
868 
869 	for_each_cpu(cpu, policy->cpus) {
870 		struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
871 
872 		cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
873 					     policy_is_shared(policy) ?
874 							sugov_update_shared :
875 							sugov_update_single);
876 	}
877 	return 0;
878 }
879 
sugov_stop(struct cpufreq_policy * policy)880 static void sugov_stop(struct cpufreq_policy *policy)
881 {
882 	struct sugov_policy *sg_policy = policy->governor_data;
883 	unsigned int cpu;
884 
885 	for_each_cpu(cpu, policy->cpus)
886 		cpufreq_remove_update_util_hook(cpu);
887 
888 	synchronize_rcu();
889 
890 	if (!policy->fast_switch_enabled) {
891 		irq_work_sync(&sg_policy->irq_work);
892 		kthread_cancel_work_sync(&sg_policy->work);
893 	}
894 }
895 
sugov_limits(struct cpufreq_policy * policy)896 static void sugov_limits(struct cpufreq_policy *policy)
897 {
898 	struct sugov_policy *sg_policy = policy->governor_data;
899 
900 	if (!policy->fast_switch_enabled) {
901 		mutex_lock(&sg_policy->work_lock);
902 		cpufreq_policy_apply_limits(policy);
903 		mutex_unlock(&sg_policy->work_lock);
904 	}
905 
906 	sg_policy->limits_changed = true;
907 }
908 
909 struct cpufreq_governor schedutil_gov = {
910 	.name			= "schedutil",
911 	.owner			= THIS_MODULE,
912 	.flags			= CPUFREQ_GOV_DYNAMIC_SWITCHING,
913 	.init			= sugov_init,
914 	.exit			= sugov_exit,
915 	.start			= sugov_start,
916 	.stop			= sugov_stop,
917 	.limits			= sugov_limits,
918 };
919 
920 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
cpufreq_default_governor(void)921 struct cpufreq_governor *cpufreq_default_governor(void)
922 {
923 	return &schedutil_gov;
924 }
925 #endif
926 
927 cpufreq_governor_init(schedutil_gov);
928