1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple CPU accounting cgroup controller
4 */
5 #include <linux/cpufreq_times.h>
6 #include "sched.h"
7 #include <trace/hooks/sched.h>
8
9 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
10
11 /*
12 * There are no locks covering percpu hardirq/softirq time.
13 * They are only modified in vtime_account, on corresponding CPU
14 * with interrupts disabled. So, writes are safe.
15 * They are read and saved off onto struct rq in update_rq_clock().
16 * This may result in other CPU reading this CPU's irq time and can
17 * race with irq/vtime_account on this CPU. We would either get old
18 * or new value with a side effect of accounting a slice of irq time to wrong
19 * task when irq is in progress while we read rq->clock. That is a worthy
20 * compromise in place of having locks on each irq in account_system_time.
21 */
22 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
23 EXPORT_PER_CPU_SYMBOL_GPL(cpu_irqtime);
24
25 static int sched_clock_irqtime;
26
enable_sched_clock_irqtime(void)27 void enable_sched_clock_irqtime(void)
28 {
29 sched_clock_irqtime = 1;
30 }
31
disable_sched_clock_irqtime(void)32 void disable_sched_clock_irqtime(void)
33 {
34 sched_clock_irqtime = 0;
35 }
36
irqtime_account_delta(struct irqtime * irqtime,u64 delta,enum cpu_usage_stat idx)37 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
38 enum cpu_usage_stat idx)
39 {
40 u64 *cpustat = kcpustat_this_cpu->cpustat;
41
42 u64_stats_update_begin(&irqtime->sync);
43 cpustat[idx] += delta;
44 irqtime->total += delta;
45 irqtime->tick_delta += delta;
46 u64_stats_update_end(&irqtime->sync);
47 }
48
49 /*
50 * Called before incrementing preempt_count on {soft,}irq_enter
51 * and before decrementing preempt_count on {soft,}irq_exit.
52 */
irqtime_account_irq(struct task_struct * curr)53 void irqtime_account_irq(struct task_struct *curr)
54 {
55 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
56 s64 delta;
57 int cpu;
58
59 if (!sched_clock_irqtime)
60 return;
61
62 cpu = smp_processor_id();
63 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
64 irqtime->irq_start_time += delta;
65
66 /*
67 * We do not account for softirq time from ksoftirqd here.
68 * We want to continue accounting softirq time to ksoftirqd thread
69 * in that case, so as not to confuse scheduler with a special task
70 * that do not consume any time, but still wants to run.
71 */
72 if (hardirq_count())
73 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
74 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
75 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
76 }
77 EXPORT_SYMBOL_GPL(irqtime_account_irq);
78
irqtime_tick_accounted(u64 maxtime)79 static u64 irqtime_tick_accounted(u64 maxtime)
80 {
81 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
82 u64 delta;
83
84 delta = min(irqtime->tick_delta, maxtime);
85 irqtime->tick_delta -= delta;
86
87 return delta;
88 }
89
90 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
91
92 #define sched_clock_irqtime (0)
93
irqtime_tick_accounted(u64 dummy)94 static u64 irqtime_tick_accounted(u64 dummy)
95 {
96 return 0;
97 }
98
99 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
100
task_group_account_field(struct task_struct * p,int index,u64 tmp)101 static inline void task_group_account_field(struct task_struct *p, int index,
102 u64 tmp)
103 {
104 /*
105 * Since all updates are sure to touch the root cgroup, we
106 * get ourselves ahead and touch it first. If the root cgroup
107 * is the only cgroup, then nothing else should be necessary.
108 *
109 */
110 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
111
112 cgroup_account_cputime_field(p, index, tmp);
113 }
114
115 /*
116 * Account user CPU time to a process.
117 * @p: the process that the CPU time gets accounted to
118 * @cputime: the CPU time spent in user space since the last update
119 */
account_user_time(struct task_struct * p,u64 cputime)120 void account_user_time(struct task_struct *p, u64 cputime)
121 {
122 int index;
123
124 /* Add user time to process. */
125 p->utime += cputime;
126 account_group_user_time(p, cputime);
127
128 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
129
130 /* Add user time to cpustat. */
131 task_group_account_field(p, index, cputime);
132
133 /* Account for user time used */
134 acct_account_cputime(p);
135
136 /* Account power usage for user time */
137 cpufreq_acct_update_power(p, cputime);
138 }
139
140 /*
141 * Account guest CPU time to a process.
142 * @p: the process that the CPU time gets accounted to
143 * @cputime: the CPU time spent in virtual machine since the last update
144 */
account_guest_time(struct task_struct * p,u64 cputime)145 void account_guest_time(struct task_struct *p, u64 cputime)
146 {
147 u64 *cpustat = kcpustat_this_cpu->cpustat;
148
149 /* Add guest time to process. */
150 p->utime += cputime;
151 account_group_user_time(p, cputime);
152 p->gtime += cputime;
153
154 /* Add guest time to cpustat. */
155 if (task_nice(p) > 0) {
156 task_group_account_field(p, CPUTIME_NICE, cputime);
157 cpustat[CPUTIME_GUEST_NICE] += cputime;
158 } else {
159 task_group_account_field(p, CPUTIME_USER, cputime);
160 cpustat[CPUTIME_GUEST] += cputime;
161 }
162 }
163
164 /*
165 * Account system CPU time to a process and desired cpustat field
166 * @p: the process that the CPU time gets accounted to
167 * @cputime: the CPU time spent in kernel space since the last update
168 * @index: pointer to cpustat field that has to be updated
169 */
account_system_index_time(struct task_struct * p,u64 cputime,enum cpu_usage_stat index)170 void account_system_index_time(struct task_struct *p,
171 u64 cputime, enum cpu_usage_stat index)
172 {
173 /* Add system time to process. */
174 p->stime += cputime;
175 account_group_system_time(p, cputime);
176
177 /* Add system time to cpustat. */
178 task_group_account_field(p, index, cputime);
179
180 /* Account for system time used */
181 acct_account_cputime(p);
182
183 /* Account power usage for system time */
184 cpufreq_acct_update_power(p, cputime);
185 }
186
187 /*
188 * Account system CPU time to a process.
189 * @p: the process that the CPU time gets accounted to
190 * @hardirq_offset: the offset to subtract from hardirq_count()
191 * @cputime: the CPU time spent in kernel space since the last update
192 */
account_system_time(struct task_struct * p,int hardirq_offset,u64 cputime)193 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
194 {
195 int index;
196
197 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
198 account_guest_time(p, cputime);
199 return;
200 }
201
202 if (hardirq_count() - hardirq_offset)
203 index = CPUTIME_IRQ;
204 else if (in_serving_softirq())
205 index = CPUTIME_SOFTIRQ;
206 else
207 index = CPUTIME_SYSTEM;
208
209 account_system_index_time(p, cputime, index);
210 }
211
212 /*
213 * Account for involuntary wait time.
214 * @cputime: the CPU time spent in involuntary wait
215 */
account_steal_time(u64 cputime)216 void account_steal_time(u64 cputime)
217 {
218 u64 *cpustat = kcpustat_this_cpu->cpustat;
219
220 cpustat[CPUTIME_STEAL] += cputime;
221 }
222
223 /*
224 * Account for idle time.
225 * @cputime: the CPU time spent in idle wait
226 */
account_idle_time(u64 cputime)227 void account_idle_time(u64 cputime)
228 {
229 u64 *cpustat = kcpustat_this_cpu->cpustat;
230 struct rq *rq = this_rq();
231
232 if (atomic_read(&rq->nr_iowait) > 0)
233 cpustat[CPUTIME_IOWAIT] += cputime;
234 else
235 cpustat[CPUTIME_IDLE] += cputime;
236 }
237
238 /*
239 * When a guest is interrupted for a longer amount of time, missed clock
240 * ticks are not redelivered later. Due to that, this function may on
241 * occasion account more time than the calling functions think elapsed.
242 */
steal_account_process_time(u64 maxtime)243 static __always_inline u64 steal_account_process_time(u64 maxtime)
244 {
245 #ifdef CONFIG_PARAVIRT
246 if (static_key_false(¶virt_steal_enabled)) {
247 u64 steal;
248
249 steal = paravirt_steal_clock(smp_processor_id());
250 steal -= this_rq()->prev_steal_time;
251 steal = min(steal, maxtime);
252 account_steal_time(steal);
253 this_rq()->prev_steal_time += steal;
254
255 return steal;
256 }
257 #endif
258 return 0;
259 }
260
261 /*
262 * Account how much elapsed time was spent in steal, irq, or softirq time.
263 */
account_other_time(u64 max)264 static inline u64 account_other_time(u64 max)
265 {
266 u64 accounted;
267
268 lockdep_assert_irqs_disabled();
269
270 accounted = steal_account_process_time(max);
271
272 if (accounted < max)
273 accounted += irqtime_tick_accounted(max - accounted);
274
275 return accounted;
276 }
277
278 #ifdef CONFIG_64BIT
read_sum_exec_runtime(struct task_struct * t)279 static inline u64 read_sum_exec_runtime(struct task_struct *t)
280 {
281 return t->se.sum_exec_runtime;
282 }
283 #else
read_sum_exec_runtime(struct task_struct * t)284 static u64 read_sum_exec_runtime(struct task_struct *t)
285 {
286 u64 ns;
287 struct rq_flags rf;
288 struct rq *rq;
289
290 rq = task_rq_lock(t, &rf);
291 ns = t->se.sum_exec_runtime;
292 task_rq_unlock(rq, t, &rf);
293
294 return ns;
295 }
296 #endif
297
298 /*
299 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
300 * tasks (sum on group iteration) belonging to @tsk's group.
301 */
thread_group_cputime(struct task_struct * tsk,struct task_cputime * times)302 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
303 {
304 struct signal_struct *sig = tsk->signal;
305 u64 utime, stime;
306 struct task_struct *t;
307 unsigned int seq, nextseq;
308 unsigned long flags;
309
310 /*
311 * Update current task runtime to account pending time since last
312 * scheduler action or thread_group_cputime() call. This thread group
313 * might have other running tasks on different CPUs, but updating
314 * their runtime can affect syscall performance, so we skip account
315 * those pending times and rely only on values updated on tick or
316 * other scheduler action.
317 */
318 if (same_thread_group(current, tsk))
319 (void) task_sched_runtime(current);
320
321 rcu_read_lock();
322 /* Attempt a lockless read on the first round. */
323 nextseq = 0;
324 do {
325 seq = nextseq;
326 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
327 times->utime = sig->utime;
328 times->stime = sig->stime;
329 times->sum_exec_runtime = sig->sum_sched_runtime;
330
331 for_each_thread(tsk, t) {
332 task_cputime(t, &utime, &stime);
333 times->utime += utime;
334 times->stime += stime;
335 times->sum_exec_runtime += read_sum_exec_runtime(t);
336 }
337 /* If lockless access failed, take the lock. */
338 nextseq = 1;
339 } while (need_seqretry(&sig->stats_lock, seq));
340 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
341 rcu_read_unlock();
342 }
343
344 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
345 /*
346 * Account a tick to a process and cpustat
347 * @p: the process that the CPU time gets accounted to
348 * @user_tick: is the tick from userspace
349 * @rq: the pointer to rq
350 *
351 * Tick demultiplexing follows the order
352 * - pending hardirq update
353 * - pending softirq update
354 * - user_time
355 * - idle_time
356 * - system time
357 * - check for guest_time
358 * - else account as system_time
359 *
360 * Check for hardirq is done both for system and user time as there is
361 * no timer going off while we are on hardirq and hence we may never get an
362 * opportunity to update it solely in system time.
363 * p->stime and friends are only updated on system time and not on irq
364 * softirq as those do not count in task exec_runtime any more.
365 */
irqtime_account_process_tick(struct task_struct * p,int user_tick,int ticks)366 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
367 int ticks)
368 {
369 u64 other, cputime = TICK_NSEC * ticks;
370
371 /*
372 * When returning from idle, many ticks can get accounted at
373 * once, including some ticks of steal, irq, and softirq time.
374 * Subtract those ticks from the amount of time accounted to
375 * idle, or potentially user or system time. Due to rounding,
376 * other time can exceed ticks occasionally.
377 */
378 other = account_other_time(ULONG_MAX);
379 if (other >= cputime)
380 return;
381
382 cputime -= other;
383
384 if (this_cpu_ksoftirqd() == p) {
385 /*
386 * ksoftirqd time do not get accounted in cpu_softirq_time.
387 * So, we have to handle it separately here.
388 * Also, p->stime needs to be updated for ksoftirqd.
389 */
390 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
391 } else if (user_tick) {
392 account_user_time(p, cputime);
393 } else if (p == this_rq()->idle) {
394 account_idle_time(cputime);
395 } else if (p->flags & PF_VCPU) { /* System time or guest time */
396 account_guest_time(p, cputime);
397 } else {
398 account_system_index_time(p, cputime, CPUTIME_SYSTEM);
399 }
400 trace_android_vh_irqtime_account_process_tick(p, this_rq(), user_tick, ticks);
401 }
402
irqtime_account_idle_ticks(int ticks)403 static void irqtime_account_idle_ticks(int ticks)
404 {
405 irqtime_account_process_tick(current, 0, ticks);
406 }
407 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
irqtime_account_idle_ticks(int ticks)408 static inline void irqtime_account_idle_ticks(int ticks) { }
irqtime_account_process_tick(struct task_struct * p,int user_tick,int nr_ticks)409 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
410 int nr_ticks) { }
411 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
412
413 /*
414 * Use precise platform statistics if available:
415 */
416 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
417
418 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH
vtime_task_switch(struct task_struct * prev)419 void vtime_task_switch(struct task_struct *prev)
420 {
421 if (is_idle_task(prev))
422 vtime_account_idle(prev);
423 else
424 vtime_account_kernel(prev);
425
426 vtime_flush(prev);
427 arch_vtime_task_switch(prev);
428 }
429 # endif
430
431 /*
432 * Archs that account the whole time spent in the idle task
433 * (outside irq) as idle time can rely on this and just implement
434 * vtime_account_kernel() and vtime_account_idle(). Archs that
435 * have other meaning of the idle time (s390 only includes the
436 * time spent by the CPU when it's in low power mode) must override
437 * vtime_account().
438 */
439 #ifndef __ARCH_HAS_VTIME_ACCOUNT
vtime_account_irq_enter(struct task_struct * tsk)440 void vtime_account_irq_enter(struct task_struct *tsk)
441 {
442 if (!in_interrupt() && is_idle_task(tsk))
443 vtime_account_idle(tsk);
444 else
445 vtime_account_kernel(tsk);
446 }
447 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
448 #endif /* __ARCH_HAS_VTIME_ACCOUNT */
449
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)450 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
451 u64 *ut, u64 *st)
452 {
453 *ut = curr->utime;
454 *st = curr->stime;
455 }
456
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)457 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
458 {
459 *ut = p->utime;
460 *st = p->stime;
461 }
462 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
463
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)464 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
465 {
466 struct task_cputime cputime;
467
468 thread_group_cputime(p, &cputime);
469
470 *ut = cputime.utime;
471 *st = cputime.stime;
472 }
473 EXPORT_SYMBOL_GPL(thread_group_cputime_adjusted);
474
475 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
476
477 /*
478 * Account a single tick of CPU time.
479 * @p: the process that the CPU time gets accounted to
480 * @user_tick: indicates if the tick is a user or a system tick
481 */
account_process_tick(struct task_struct * p,int user_tick)482 void account_process_tick(struct task_struct *p, int user_tick)
483 {
484 u64 cputime, steal;
485
486 if (vtime_accounting_enabled_this_cpu())
487 return;
488 trace_android_vh_account_task_time(p, this_rq(), user_tick);
489
490 if (sched_clock_irqtime) {
491 irqtime_account_process_tick(p, user_tick, 1);
492 return;
493 }
494
495 cputime = TICK_NSEC;
496 steal = steal_account_process_time(ULONG_MAX);
497
498 if (steal >= cputime)
499 return;
500
501 cputime -= steal;
502
503 if (user_tick)
504 account_user_time(p, cputime);
505 else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
506 account_system_time(p, HARDIRQ_OFFSET, cputime);
507 else
508 account_idle_time(cputime);
509 }
510
511 /*
512 * Account multiple ticks of idle time.
513 * @ticks: number of stolen ticks
514 */
account_idle_ticks(unsigned long ticks)515 void account_idle_ticks(unsigned long ticks)
516 {
517 u64 cputime, steal;
518
519 if (sched_clock_irqtime) {
520 irqtime_account_idle_ticks(ticks);
521 return;
522 }
523
524 cputime = ticks * TICK_NSEC;
525 steal = steal_account_process_time(ULONG_MAX);
526
527 if (steal >= cputime)
528 return;
529
530 cputime -= steal;
531 account_idle_time(cputime);
532 }
533
534 /*
535 * Adjust tick based cputime random precision against scheduler runtime
536 * accounting.
537 *
538 * Tick based cputime accounting depend on random scheduling timeslices of a
539 * task to be interrupted or not by the timer. Depending on these
540 * circumstances, the number of these interrupts may be over or
541 * under-optimistic, matching the real user and system cputime with a variable
542 * precision.
543 *
544 * Fix this by scaling these tick based values against the total runtime
545 * accounted by the CFS scheduler.
546 *
547 * This code provides the following guarantees:
548 *
549 * stime + utime == rtime
550 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
551 *
552 * Assuming that rtime_i+1 >= rtime_i.
553 */
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)554 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
555 u64 *ut, u64 *st)
556 {
557 u64 rtime, stime, utime;
558 unsigned long flags;
559
560 /* Serialize concurrent callers such that we can honour our guarantees */
561 raw_spin_lock_irqsave(&prev->lock, flags);
562 rtime = curr->sum_exec_runtime;
563
564 /*
565 * This is possible under two circumstances:
566 * - rtime isn't monotonic after all (a bug);
567 * - we got reordered by the lock.
568 *
569 * In both cases this acts as a filter such that the rest of the code
570 * can assume it is monotonic regardless of anything else.
571 */
572 if (prev->stime + prev->utime >= rtime)
573 goto out;
574
575 stime = curr->stime;
576 utime = curr->utime;
577
578 /*
579 * If either stime or utime are 0, assume all runtime is userspace.
580 * Once a task gets some ticks, the monotonicy code at 'update:'
581 * will ensure things converge to the observed ratio.
582 */
583 if (stime == 0) {
584 utime = rtime;
585 goto update;
586 }
587
588 if (utime == 0) {
589 stime = rtime;
590 goto update;
591 }
592
593 stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
594
595 update:
596 /*
597 * Make sure stime doesn't go backwards; this preserves monotonicity
598 * for utime because rtime is monotonic.
599 *
600 * utime_i+1 = rtime_i+1 - stime_i
601 * = rtime_i+1 - (rtime_i - utime_i)
602 * = (rtime_i+1 - rtime_i) + utime_i
603 * >= utime_i
604 */
605 if (stime < prev->stime)
606 stime = prev->stime;
607 utime = rtime - stime;
608
609 /*
610 * Make sure utime doesn't go backwards; this still preserves
611 * monotonicity for stime, analogous argument to above.
612 */
613 if (utime < prev->utime) {
614 utime = prev->utime;
615 stime = rtime - utime;
616 }
617
618 prev->stime = stime;
619 prev->utime = utime;
620 out:
621 *ut = prev->utime;
622 *st = prev->stime;
623 raw_spin_unlock_irqrestore(&prev->lock, flags);
624 }
625
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)626 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
627 {
628 struct task_cputime cputime = {
629 .sum_exec_runtime = p->se.sum_exec_runtime,
630 };
631
632 task_cputime(p, &cputime.utime, &cputime.stime);
633 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
634 }
635 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
636
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)637 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
638 {
639 struct task_cputime cputime;
640
641 thread_group_cputime(p, &cputime);
642 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
643 }
644 EXPORT_SYMBOL_GPL(thread_group_cputime_adjusted);
645
646 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
647
648 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
vtime_delta(struct vtime * vtime)649 static u64 vtime_delta(struct vtime *vtime)
650 {
651 unsigned long long clock;
652
653 clock = sched_clock();
654 if (clock < vtime->starttime)
655 return 0;
656
657 return clock - vtime->starttime;
658 }
659
get_vtime_delta(struct vtime * vtime)660 static u64 get_vtime_delta(struct vtime *vtime)
661 {
662 u64 delta = vtime_delta(vtime);
663 u64 other;
664
665 /*
666 * Unlike tick based timing, vtime based timing never has lost
667 * ticks, and no need for steal time accounting to make up for
668 * lost ticks. Vtime accounts a rounded version of actual
669 * elapsed time. Limit account_other_time to prevent rounding
670 * errors from causing elapsed vtime to go negative.
671 */
672 other = account_other_time(delta);
673 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
674 vtime->starttime += delta;
675
676 return delta - other;
677 }
678
vtime_account_system(struct task_struct * tsk,struct vtime * vtime)679 static void vtime_account_system(struct task_struct *tsk,
680 struct vtime *vtime)
681 {
682 vtime->stime += get_vtime_delta(vtime);
683 if (vtime->stime >= TICK_NSEC) {
684 account_system_time(tsk, irq_count(), vtime->stime);
685 vtime->stime = 0;
686 }
687 }
688
vtime_account_guest(struct task_struct * tsk,struct vtime * vtime)689 static void vtime_account_guest(struct task_struct *tsk,
690 struct vtime *vtime)
691 {
692 vtime->gtime += get_vtime_delta(vtime);
693 if (vtime->gtime >= TICK_NSEC) {
694 account_guest_time(tsk, vtime->gtime);
695 vtime->gtime = 0;
696 }
697 }
698
__vtime_account_kernel(struct task_struct * tsk,struct vtime * vtime)699 static void __vtime_account_kernel(struct task_struct *tsk,
700 struct vtime *vtime)
701 {
702 /* We might have scheduled out from guest path */
703 if (vtime->state == VTIME_GUEST)
704 vtime_account_guest(tsk, vtime);
705 else
706 vtime_account_system(tsk, vtime);
707 }
708
vtime_account_kernel(struct task_struct * tsk)709 void vtime_account_kernel(struct task_struct *tsk)
710 {
711 struct vtime *vtime = &tsk->vtime;
712
713 if (!vtime_delta(vtime))
714 return;
715
716 write_seqcount_begin(&vtime->seqcount);
717 __vtime_account_kernel(tsk, vtime);
718 write_seqcount_end(&vtime->seqcount);
719 }
720
vtime_user_enter(struct task_struct * tsk)721 void vtime_user_enter(struct task_struct *tsk)
722 {
723 struct vtime *vtime = &tsk->vtime;
724
725 write_seqcount_begin(&vtime->seqcount);
726 vtime_account_system(tsk, vtime);
727 vtime->state = VTIME_USER;
728 write_seqcount_end(&vtime->seqcount);
729 }
730
vtime_user_exit(struct task_struct * tsk)731 void vtime_user_exit(struct task_struct *tsk)
732 {
733 struct vtime *vtime = &tsk->vtime;
734
735 write_seqcount_begin(&vtime->seqcount);
736 vtime->utime += get_vtime_delta(vtime);
737 if (vtime->utime >= TICK_NSEC) {
738 account_user_time(tsk, vtime->utime);
739 vtime->utime = 0;
740 }
741 vtime->state = VTIME_SYS;
742 write_seqcount_end(&vtime->seqcount);
743 }
744
vtime_guest_enter(struct task_struct * tsk)745 void vtime_guest_enter(struct task_struct *tsk)
746 {
747 struct vtime *vtime = &tsk->vtime;
748 /*
749 * The flags must be updated under the lock with
750 * the vtime_starttime flush and update.
751 * That enforces a right ordering and update sequence
752 * synchronization against the reader (task_gtime())
753 * that can thus safely catch up with a tickless delta.
754 */
755 write_seqcount_begin(&vtime->seqcount);
756 vtime_account_system(tsk, vtime);
757 tsk->flags |= PF_VCPU;
758 vtime->state = VTIME_GUEST;
759 write_seqcount_end(&vtime->seqcount);
760 }
761 EXPORT_SYMBOL_GPL(vtime_guest_enter);
762
vtime_guest_exit(struct task_struct * tsk)763 void vtime_guest_exit(struct task_struct *tsk)
764 {
765 struct vtime *vtime = &tsk->vtime;
766
767 write_seqcount_begin(&vtime->seqcount);
768 vtime_account_guest(tsk, vtime);
769 tsk->flags &= ~PF_VCPU;
770 vtime->state = VTIME_SYS;
771 write_seqcount_end(&vtime->seqcount);
772 }
773 EXPORT_SYMBOL_GPL(vtime_guest_exit);
774
vtime_account_idle(struct task_struct * tsk)775 void vtime_account_idle(struct task_struct *tsk)
776 {
777 account_idle_time(get_vtime_delta(&tsk->vtime));
778 }
779
vtime_task_switch_generic(struct task_struct * prev)780 void vtime_task_switch_generic(struct task_struct *prev)
781 {
782 struct vtime *vtime = &prev->vtime;
783
784 write_seqcount_begin(&vtime->seqcount);
785 if (vtime->state == VTIME_IDLE)
786 vtime_account_idle(prev);
787 else
788 __vtime_account_kernel(prev, vtime);
789 vtime->state = VTIME_INACTIVE;
790 vtime->cpu = -1;
791 write_seqcount_end(&vtime->seqcount);
792
793 vtime = ¤t->vtime;
794
795 write_seqcount_begin(&vtime->seqcount);
796 if (is_idle_task(current))
797 vtime->state = VTIME_IDLE;
798 else if (current->flags & PF_VCPU)
799 vtime->state = VTIME_GUEST;
800 else
801 vtime->state = VTIME_SYS;
802 vtime->starttime = sched_clock();
803 vtime->cpu = smp_processor_id();
804 write_seqcount_end(&vtime->seqcount);
805 }
806
vtime_init_idle(struct task_struct * t,int cpu)807 void vtime_init_idle(struct task_struct *t, int cpu)
808 {
809 struct vtime *vtime = &t->vtime;
810 unsigned long flags;
811
812 local_irq_save(flags);
813 write_seqcount_begin(&vtime->seqcount);
814 vtime->state = VTIME_IDLE;
815 vtime->starttime = sched_clock();
816 vtime->cpu = cpu;
817 write_seqcount_end(&vtime->seqcount);
818 local_irq_restore(flags);
819 }
820
task_gtime(struct task_struct * t)821 u64 task_gtime(struct task_struct *t)
822 {
823 struct vtime *vtime = &t->vtime;
824 unsigned int seq;
825 u64 gtime;
826
827 if (!vtime_accounting_enabled())
828 return t->gtime;
829
830 do {
831 seq = read_seqcount_begin(&vtime->seqcount);
832
833 gtime = t->gtime;
834 if (vtime->state == VTIME_GUEST)
835 gtime += vtime->gtime + vtime_delta(vtime);
836
837 } while (read_seqcount_retry(&vtime->seqcount, seq));
838
839 return gtime;
840 }
841
842 /*
843 * Fetch cputime raw values from fields of task_struct and
844 * add up the pending nohz execution time since the last
845 * cputime snapshot.
846 */
task_cputime(struct task_struct * t,u64 * utime,u64 * stime)847 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
848 {
849 struct vtime *vtime = &t->vtime;
850 unsigned int seq;
851 u64 delta;
852
853 if (!vtime_accounting_enabled()) {
854 *utime = t->utime;
855 *stime = t->stime;
856 return;
857 }
858
859 do {
860 seq = read_seqcount_begin(&vtime->seqcount);
861
862 *utime = t->utime;
863 *stime = t->stime;
864
865 /* Task is sleeping or idle, nothing to add */
866 if (vtime->state < VTIME_SYS)
867 continue;
868
869 delta = vtime_delta(vtime);
870
871 /*
872 * Task runs either in user (including guest) or kernel space,
873 * add pending nohz time to the right place.
874 */
875 if (vtime->state == VTIME_SYS)
876 *stime += vtime->stime + delta;
877 else
878 *utime += vtime->utime + delta;
879 } while (read_seqcount_retry(&vtime->seqcount, seq));
880 }
881
vtime_state_fetch(struct vtime * vtime,int cpu)882 static int vtime_state_fetch(struct vtime *vtime, int cpu)
883 {
884 int state = READ_ONCE(vtime->state);
885
886 /*
887 * We raced against a context switch, fetch the
888 * kcpustat task again.
889 */
890 if (vtime->cpu != cpu && vtime->cpu != -1)
891 return -EAGAIN;
892
893 /*
894 * Two possible things here:
895 * 1) We are seeing the scheduling out task (prev) or any past one.
896 * 2) We are seeing the scheduling in task (next) but it hasn't
897 * passed though vtime_task_switch() yet so the pending
898 * cputime of the prev task may not be flushed yet.
899 *
900 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
901 */
902 if (state == VTIME_INACTIVE)
903 return -EAGAIN;
904
905 return state;
906 }
907
kcpustat_user_vtime(struct vtime * vtime)908 static u64 kcpustat_user_vtime(struct vtime *vtime)
909 {
910 if (vtime->state == VTIME_USER)
911 return vtime->utime + vtime_delta(vtime);
912 else if (vtime->state == VTIME_GUEST)
913 return vtime->gtime + vtime_delta(vtime);
914 return 0;
915 }
916
kcpustat_field_vtime(u64 * cpustat,struct task_struct * tsk,enum cpu_usage_stat usage,int cpu,u64 * val)917 static int kcpustat_field_vtime(u64 *cpustat,
918 struct task_struct *tsk,
919 enum cpu_usage_stat usage,
920 int cpu, u64 *val)
921 {
922 struct vtime *vtime = &tsk->vtime;
923 unsigned int seq;
924
925 do {
926 int state;
927
928 seq = read_seqcount_begin(&vtime->seqcount);
929
930 state = vtime_state_fetch(vtime, cpu);
931 if (state < 0)
932 return state;
933
934 *val = cpustat[usage];
935
936 /*
937 * Nice VS unnice cputime accounting may be inaccurate if
938 * the nice value has changed since the last vtime update.
939 * But proper fix would involve interrupting target on nice
940 * updates which is a no go on nohz_full (although the scheduler
941 * may still interrupt the target if rescheduling is needed...)
942 */
943 switch (usage) {
944 case CPUTIME_SYSTEM:
945 if (state == VTIME_SYS)
946 *val += vtime->stime + vtime_delta(vtime);
947 break;
948 case CPUTIME_USER:
949 if (task_nice(tsk) <= 0)
950 *val += kcpustat_user_vtime(vtime);
951 break;
952 case CPUTIME_NICE:
953 if (task_nice(tsk) > 0)
954 *val += kcpustat_user_vtime(vtime);
955 break;
956 case CPUTIME_GUEST:
957 if (state == VTIME_GUEST && task_nice(tsk) <= 0)
958 *val += vtime->gtime + vtime_delta(vtime);
959 break;
960 case CPUTIME_GUEST_NICE:
961 if (state == VTIME_GUEST && task_nice(tsk) > 0)
962 *val += vtime->gtime + vtime_delta(vtime);
963 break;
964 default:
965 break;
966 }
967 } while (read_seqcount_retry(&vtime->seqcount, seq));
968
969 return 0;
970 }
971
kcpustat_field(struct kernel_cpustat * kcpustat,enum cpu_usage_stat usage,int cpu)972 u64 kcpustat_field(struct kernel_cpustat *kcpustat,
973 enum cpu_usage_stat usage, int cpu)
974 {
975 u64 *cpustat = kcpustat->cpustat;
976 u64 val = cpustat[usage];
977 struct rq *rq;
978 int err;
979
980 if (!vtime_accounting_enabled_cpu(cpu))
981 return val;
982
983 rq = cpu_rq(cpu);
984
985 for (;;) {
986 struct task_struct *curr;
987
988 rcu_read_lock();
989 curr = rcu_dereference(rq->curr);
990 if (WARN_ON_ONCE(!curr)) {
991 rcu_read_unlock();
992 return cpustat[usage];
993 }
994
995 err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
996 rcu_read_unlock();
997
998 if (!err)
999 return val;
1000
1001 cpu_relax();
1002 }
1003 }
1004 EXPORT_SYMBOL_GPL(kcpustat_field);
1005
kcpustat_cpu_fetch_vtime(struct kernel_cpustat * dst,const struct kernel_cpustat * src,struct task_struct * tsk,int cpu)1006 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1007 const struct kernel_cpustat *src,
1008 struct task_struct *tsk, int cpu)
1009 {
1010 struct vtime *vtime = &tsk->vtime;
1011 unsigned int seq;
1012
1013 do {
1014 u64 *cpustat;
1015 u64 delta;
1016 int state;
1017
1018 seq = read_seqcount_begin(&vtime->seqcount);
1019
1020 state = vtime_state_fetch(vtime, cpu);
1021 if (state < 0)
1022 return state;
1023
1024 *dst = *src;
1025 cpustat = dst->cpustat;
1026
1027 /* Task is sleeping, dead or idle, nothing to add */
1028 if (state < VTIME_SYS)
1029 continue;
1030
1031 delta = vtime_delta(vtime);
1032
1033 /*
1034 * Task runs either in user (including guest) or kernel space,
1035 * add pending nohz time to the right place.
1036 */
1037 if (state == VTIME_SYS) {
1038 cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1039 } else if (state == VTIME_USER) {
1040 if (task_nice(tsk) > 0)
1041 cpustat[CPUTIME_NICE] += vtime->utime + delta;
1042 else
1043 cpustat[CPUTIME_USER] += vtime->utime + delta;
1044 } else {
1045 WARN_ON_ONCE(state != VTIME_GUEST);
1046 if (task_nice(tsk) > 0) {
1047 cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1048 cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1049 } else {
1050 cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1051 cpustat[CPUTIME_USER] += vtime->gtime + delta;
1052 }
1053 }
1054 } while (read_seqcount_retry(&vtime->seqcount, seq));
1055
1056 return 0;
1057 }
1058
kcpustat_cpu_fetch(struct kernel_cpustat * dst,int cpu)1059 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1060 {
1061 const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1062 struct rq *rq;
1063 int err;
1064
1065 if (!vtime_accounting_enabled_cpu(cpu)) {
1066 *dst = *src;
1067 return;
1068 }
1069
1070 rq = cpu_rq(cpu);
1071
1072 for (;;) {
1073 struct task_struct *curr;
1074
1075 rcu_read_lock();
1076 curr = rcu_dereference(rq->curr);
1077 if (WARN_ON_ONCE(!curr)) {
1078 rcu_read_unlock();
1079 *dst = *src;
1080 return;
1081 }
1082
1083 err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1084 rcu_read_unlock();
1085
1086 if (!err)
1087 return;
1088
1089 cpu_relax();
1090 }
1091 }
1092 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1093
1094 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
1095