1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Per Entity Load Tracking
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 *
23 * Move PELT related code from fair.c into this pelt.c file
24 * Author: Vincent Guittot <vincent.guittot@linaro.org>
25 */
26
27 #include <linux/sched.h>
28 #include "sched.h"
29 #include "pelt.h"
30
31 int pelt_load_avg_period = PELT32_LOAD_AVG_PERIOD;
32 int pelt_load_avg_max = PELT32_LOAD_AVG_MAX;
33 EXPORT_SYMBOL_GPL(pelt_load_avg_max);
34 const u32 *pelt_runnable_avg_yN_inv = pelt32_runnable_avg_yN_inv;
35
set_pelt(char * str)36 static int __init set_pelt(char *str)
37 {
38 int rc, num;
39
40 rc = kstrtoint(str, 0, &num);
41 if (rc) {
42 pr_err("%s: kstrtoint failed. rc=%d\n", __func__, rc);
43 return 0;
44 }
45
46 switch (num) {
47 case PELT8_LOAD_AVG_PERIOD:
48 pelt_load_avg_period = PELT8_LOAD_AVG_PERIOD;
49 pelt_load_avg_max = PELT8_LOAD_AVG_MAX;
50 pelt_runnable_avg_yN_inv = pelt8_runnable_avg_yN_inv;
51 pr_info("PELT half life is set to %dms\n", num);
52 break;
53 case PELT32_LOAD_AVG_PERIOD:
54 pelt_load_avg_period = PELT32_LOAD_AVG_PERIOD;
55 pelt_load_avg_max = PELT32_LOAD_AVG_MAX;
56 pelt_runnable_avg_yN_inv = pelt32_runnable_avg_yN_inv;
57 pr_info("PELT half life is set to %dms\n", num);
58 break;
59 default:
60 pr_err("Default PELT half life is 32ms\n");
61 }
62
63 return 0;
64 }
65
66 early_param("pelt", set_pelt);
67
68 /*
69 * Approximate:
70 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
71 */
decay_load(u64 val,u64 n)72 static u64 decay_load(u64 val, u64 n)
73 {
74 unsigned int local_n;
75
76 if (unlikely(n > LOAD_AVG_PERIOD * 63))
77 return 0;
78
79 /* after bounds checking we can collapse to 32-bit */
80 local_n = n;
81
82 /*
83 * As y^PERIOD = 1/2, we can combine
84 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
85 * With a look-up table which covers y^n (n<PERIOD)
86 *
87 * To achieve constant time decay_load.
88 */
89 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
90 val >>= local_n / LOAD_AVG_PERIOD;
91 local_n %= LOAD_AVG_PERIOD;
92 }
93
94 val = mul_u64_u32_shr(val, pelt_runnable_avg_yN_inv[local_n], 32);
95 return val;
96 }
97
__accumulate_pelt_segments(u64 periods,u32 d1,u32 d3)98 static u32 __accumulate_pelt_segments(u64 periods, u32 d1, u32 d3)
99 {
100 u32 c1, c2, c3 = d3; /* y^0 == 1 */
101
102 /*
103 * c1 = d1 y^p
104 */
105 c1 = decay_load((u64)d1, periods);
106
107 /*
108 * p-1
109 * c2 = 1024 \Sum y^n
110 * n=1
111 *
112 * inf inf
113 * = 1024 ( \Sum y^n - \Sum y^n - y^0 )
114 * n=0 n=p
115 */
116 c2 = LOAD_AVG_MAX - decay_load(LOAD_AVG_MAX, periods) - 1024;
117
118 return c1 + c2 + c3;
119 }
120
121 /*
122 * Accumulate the three separate parts of the sum; d1 the remainder
123 * of the last (incomplete) period, d2 the span of full periods and d3
124 * the remainder of the (incomplete) current period.
125 *
126 * d1 d2 d3
127 * ^ ^ ^
128 * | | |
129 * |<->|<----------------->|<--->|
130 * ... |---x---|------| ... |------|-----x (now)
131 *
132 * p-1
133 * u' = (u + d1) y^p + 1024 \Sum y^n + d3 y^0
134 * n=1
135 *
136 * = u y^p + (Step 1)
137 *
138 * p-1
139 * d1 y^p + 1024 \Sum y^n + d3 y^0 (Step 2)
140 * n=1
141 */
142 static __always_inline u32
accumulate_sum(u64 delta,struct sched_avg * sa,unsigned long load,unsigned long runnable,int running)143 accumulate_sum(u64 delta, struct sched_avg *sa,
144 unsigned long load, unsigned long runnable, int running)
145 {
146 u32 contrib = (u32)delta; /* p == 0 -> delta < 1024 */
147 u64 periods;
148
149 delta += sa->period_contrib;
150 periods = delta / 1024; /* A period is 1024us (~1ms) */
151
152 /*
153 * Step 1: decay old *_sum if we crossed period boundaries.
154 */
155 if (periods) {
156 sa->load_sum = decay_load(sa->load_sum, periods);
157 sa->runnable_sum =
158 decay_load(sa->runnable_sum, periods);
159 sa->util_sum = decay_load((u64)(sa->util_sum), periods);
160
161 /*
162 * Step 2
163 */
164 delta %= 1024;
165 if (load) {
166 /*
167 * This relies on the:
168 *
169 * if (!load)
170 * runnable = running = 0;
171 *
172 * clause from ___update_load_sum(); this results in
173 * the below usage of @contrib to dissapear entirely,
174 * so no point in calculating it.
175 */
176 contrib = __accumulate_pelt_segments(periods,
177 1024 - sa->period_contrib, delta);
178 }
179 }
180 sa->period_contrib = delta;
181
182 if (load)
183 sa->load_sum += load * contrib;
184 if (runnable)
185 sa->runnable_sum += runnable * contrib << SCHED_CAPACITY_SHIFT;
186 if (running)
187 sa->util_sum += contrib << SCHED_CAPACITY_SHIFT;
188
189 return periods;
190 }
191
192 /*
193 * We can represent the historical contribution to runnable average as the
194 * coefficients of a geometric series. To do this we sub-divide our runnable
195 * history into segments of approximately 1ms (1024us); label the segment that
196 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
197 *
198 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
199 * p0 p1 p2
200 * (now) (~1ms ago) (~2ms ago)
201 *
202 * Let u_i denote the fraction of p_i that the entity was runnable.
203 *
204 * We then designate the fractions u_i as our co-efficients, yielding the
205 * following representation of historical load:
206 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
207 *
208 * We choose y based on the with of a reasonably scheduling period, fixing:
209 * y^32 = 0.5
210 *
211 * This means that the contribution to load ~32ms ago (u_32) will be weighted
212 * approximately half as much as the contribution to load within the last ms
213 * (u_0).
214 *
215 * When a period "rolls over" and we have new u_0`, multiplying the previous
216 * sum again by y is sufficient to update:
217 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
218 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
219 */
___update_load_sum(u64 now,struct sched_avg * sa,unsigned long load,unsigned long runnable,int running)220 int ___update_load_sum(u64 now, struct sched_avg *sa,
221 unsigned long load, unsigned long runnable, int running)
222 {
223 u64 delta;
224
225 delta = now - sa->last_update_time;
226 /*
227 * This should only happen when time goes backwards, which it
228 * unfortunately does during sched clock init when we swap over to TSC.
229 */
230 if ((s64)delta < 0) {
231 sa->last_update_time = now;
232 return 0;
233 }
234
235 /*
236 * Use 1024ns as the unit of measurement since it's a reasonable
237 * approximation of 1us and fast to compute.
238 */
239 delta >>= 10;
240 if (!delta)
241 return 0;
242
243 sa->last_update_time += delta << 10;
244
245 /*
246 * running is a subset of runnable (weight) so running can't be set if
247 * runnable is clear. But there are some corner cases where the current
248 * se has been already dequeued but cfs_rq->curr still points to it.
249 * This means that weight will be 0 but not running for a sched_entity
250 * but also for a cfs_rq if the latter becomes idle. As an example,
251 * this happens during idle_balance() which calls
252 * update_blocked_averages().
253 *
254 * Also see the comment in accumulate_sum().
255 */
256 if (!load)
257 runnable = running = 0;
258
259 /*
260 * Now we know we crossed measurement unit boundaries. The *_avg
261 * accrues by two steps:
262 *
263 * Step 1: accumulate *_sum since last_update_time. If we haven't
264 * crossed period boundaries, finish.
265 */
266 if (!accumulate_sum(delta, sa, load, runnable, running))
267 return 0;
268
269 return 1;
270 }
271 EXPORT_SYMBOL_GPL(___update_load_sum);
272
273 /*
274 * When syncing *_avg with *_sum, we must take into account the current
275 * position in the PELT segment otherwise the remaining part of the segment
276 * will be considered as idle time whereas it's not yet elapsed and this will
277 * generate unwanted oscillation in the range [1002..1024[.
278 *
279 * The max value of *_sum varies with the position in the time segment and is
280 * equals to :
281 *
282 * LOAD_AVG_MAX*y + sa->period_contrib
283 *
284 * which can be simplified into:
285 *
286 * LOAD_AVG_MAX - 1024 + sa->period_contrib
287 *
288 * because LOAD_AVG_MAX*y == LOAD_AVG_MAX-1024
289 *
290 * The same care must be taken when a sched entity is added, updated or
291 * removed from a cfs_rq and we need to update sched_avg. Scheduler entities
292 * and the cfs rq, to which they are attached, have the same position in the
293 * time segment because they use the same clock. This means that we can use
294 * the period_contrib of cfs_rq when updating the sched_avg of a sched_entity
295 * if it's more convenient.
296 */
___update_load_avg(struct sched_avg * sa,unsigned long load)297 void ___update_load_avg(struct sched_avg *sa, unsigned long load)
298 {
299 u32 divider = get_pelt_divider(sa);
300
301 /*
302 * Step 2: update *_avg.
303 */
304 sa->load_avg = div_u64(load * sa->load_sum, divider);
305 sa->runnable_avg = div_u64(sa->runnable_sum, divider);
306 WRITE_ONCE(sa->util_avg, sa->util_sum / divider);
307 }
308 EXPORT_SYMBOL_GPL(___update_load_avg);
309
310 /*
311 * sched_entity:
312 *
313 * task:
314 * se_weight() = se->load.weight
315 * se_runnable() = !!on_rq
316 *
317 * group: [ see update_cfs_group() ]
318 * se_weight() = tg->weight * grq->load_avg / tg->load_avg
319 * se_runnable() = grq->h_nr_running
320 *
321 * runnable_sum = se_runnable() * runnable = grq->runnable_sum
322 * runnable_avg = runnable_sum
323 *
324 * load_sum := runnable
325 * load_avg = se_weight(se) * load_sum
326 *
327 * cfq_rq:
328 *
329 * runnable_sum = \Sum se->avg.runnable_sum
330 * runnable_avg = \Sum se->avg.runnable_avg
331 *
332 * load_sum = \Sum se_weight(se) * se->avg.load_sum
333 * load_avg = \Sum se->avg.load_avg
334 */
335
__update_load_avg_blocked_se(u64 now,struct sched_entity * se)336 int __update_load_avg_blocked_se(u64 now, struct sched_entity *se)
337 {
338 if (___update_load_sum(now, &se->avg, 0, 0, 0)) {
339 ___update_load_avg(&se->avg, se_weight(se));
340 trace_pelt_se_tp(se);
341 return 1;
342 }
343
344 return 0;
345 }
346 EXPORT_SYMBOL_GPL(__update_load_avg_blocked_se);
347
__update_load_avg_se(u64 now,struct cfs_rq * cfs_rq,struct sched_entity * se)348 int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se)
349 {
350 if (___update_load_sum(now, &se->avg, !!se->on_rq, se_runnable(se),
351 cfs_rq->curr == se)) {
352
353 ___update_load_avg(&se->avg, se_weight(se));
354 cfs_se_util_change(&se->avg);
355 trace_pelt_se_tp(se);
356 return 1;
357 }
358
359 return 0;
360 }
361
__update_load_avg_cfs_rq(u64 now,struct cfs_rq * cfs_rq)362 int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq)
363 {
364 if (___update_load_sum(now, &cfs_rq->avg,
365 scale_load_down(cfs_rq->load.weight),
366 cfs_rq->h_nr_running,
367 cfs_rq->curr != NULL)) {
368
369 ___update_load_avg(&cfs_rq->avg, 1);
370 trace_pelt_cfs_tp(cfs_rq);
371 return 1;
372 }
373
374 return 0;
375 }
376
377 /*
378 * rt_rq:
379 *
380 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
381 * util_sum = cpu_scale * load_sum
382 * runnable_sum = util_sum
383 *
384 * load_avg and runnable_avg are not supported and meaningless.
385 *
386 */
387
update_rt_rq_load_avg(u64 now,struct rq * rq,int running)388 int update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
389 {
390 if (___update_load_sum(now, &rq->avg_rt,
391 running,
392 running,
393 running)) {
394
395 ___update_load_avg(&rq->avg_rt, 1);
396 trace_pelt_rt_tp(rq);
397 return 1;
398 }
399
400 return 0;
401 }
402
403 /*
404 * dl_rq:
405 *
406 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
407 * util_sum = cpu_scale * load_sum
408 * runnable_sum = util_sum
409 *
410 * load_avg and runnable_avg are not supported and meaningless.
411 *
412 */
413
update_dl_rq_load_avg(u64 now,struct rq * rq,int running)414 int update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
415 {
416 if (___update_load_sum(now, &rq->avg_dl,
417 running,
418 running,
419 running)) {
420
421 ___update_load_avg(&rq->avg_dl, 1);
422 trace_pelt_dl_tp(rq);
423 return 1;
424 }
425
426 return 0;
427 }
428
429 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
430 /*
431 * thermal:
432 *
433 * load_sum = \Sum se->avg.load_sum but se->avg.load_sum is not tracked
434 *
435 * util_avg and runnable_load_avg are not supported and meaningless.
436 *
437 * Unlike rt/dl utilization tracking that track time spent by a cpu
438 * running a rt/dl task through util_avg, the average thermal pressure is
439 * tracked through load_avg. This is because thermal pressure signal is
440 * time weighted "delta" capacity unlike util_avg which is binary.
441 * "delta capacity" = actual capacity -
442 * capped capacity a cpu due to a thermal event.
443 */
444
update_thermal_load_avg(u64 now,struct rq * rq,u64 capacity)445 int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
446 {
447 if (___update_load_sum(now, &rq->avg_thermal,
448 capacity,
449 capacity,
450 capacity)) {
451 ___update_load_avg(&rq->avg_thermal, 1);
452 trace_pelt_thermal_tp(rq);
453 return 1;
454 }
455
456 return 0;
457 }
458 #endif
459
460 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
461 /*
462 * irq:
463 *
464 * util_sum = \Sum se->avg.util_sum but se->avg.util_sum is not tracked
465 * util_sum = cpu_scale * load_sum
466 * runnable_sum = util_sum
467 *
468 * load_avg and runnable_avg are not supported and meaningless.
469 *
470 */
471
update_irq_load_avg(struct rq * rq,u64 running)472 int update_irq_load_avg(struct rq *rq, u64 running)
473 {
474 int ret = 0;
475
476 /*
477 * We can't use clock_pelt because irq time is not accounted in
478 * clock_task. Instead we directly scale the running time to
479 * reflect the real amount of computation
480 */
481 running = cap_scale(running, arch_scale_freq_capacity(cpu_of(rq)));
482 running = cap_scale(running, arch_scale_cpu_capacity(cpu_of(rq)));
483
484 /*
485 * We know the time that has been used by interrupt since last update
486 * but we don't when. Let be pessimistic and assume that interrupt has
487 * happened just before the update. This is not so far from reality
488 * because interrupt will most probably wake up task and trig an update
489 * of rq clock during which the metric is updated.
490 * We start to decay with normal context time and then we add the
491 * interrupt context time.
492 * We can safely remove running from rq->clock because
493 * rq->clock += delta with delta >= running
494 */
495 ret = ___update_load_sum(rq->clock - running, &rq->avg_irq,
496 0,
497 0,
498 0);
499 ret += ___update_load_sum(rq->clock, &rq->avg_irq,
500 1,
501 1,
502 1);
503
504 if (ret) {
505 ___update_load_avg(&rq->avg_irq, 1);
506 trace_pelt_irq_tp(rq);
507 }
508
509 return ret;
510 }
511 #endif
512
513 DEFINE_PER_CPU(u64, clock_task_mult);
514
515 unsigned int sysctl_sched_pelt_multiplier = 1;
516 __read_mostly unsigned int sched_pelt_lshift;
517
sched_pelt_multiplier(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)518 int sched_pelt_multiplier(struct ctl_table *table, int write, void *buffer,
519 size_t *lenp, loff_t *ppos)
520 {
521 static DEFINE_MUTEX(mutex);
522 unsigned int old;
523 int ret;
524
525 mutex_lock(&mutex);
526
527 old = sysctl_sched_pelt_multiplier;
528 ret = proc_dointvec(table, write, buffer, lenp, ppos);
529 if (ret)
530 goto undo;
531 if (!write)
532 goto done;
533
534 switch (sysctl_sched_pelt_multiplier) {
535 case 1:
536 fallthrough;
537 case 2:
538 fallthrough;
539 case 4:
540 WRITE_ONCE(sched_pelt_lshift,
541 sysctl_sched_pelt_multiplier >> 1);
542 goto done;
543 default:
544 ret = -EINVAL;
545 }
546
547 undo:
548 sysctl_sched_pelt_multiplier = old;
549 done:
550 mutex_unlock(&mutex);
551
552 return ret;
553 }
554