1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * This file contains the functions which manage clocksource drivers.
4 *
5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17
18 #include "tick-internal.h"
19 #include "timekeeping_internal.h"
20
21 /**
22 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
23 * @mult: pointer to mult variable
24 * @shift: pointer to shift variable
25 * @from: frequency to convert from
26 * @to: frequency to convert to
27 * @maxsec: guaranteed runtime conversion range in seconds
28 *
29 * The function evaluates the shift/mult pair for the scaled math
30 * operations of clocksources and clockevents.
31 *
32 * @to and @from are frequency values in HZ. For clock sources @to is
33 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
34 * event @to is the counter frequency and @from is NSEC_PER_SEC.
35 *
36 * The @maxsec conversion range argument controls the time frame in
37 * seconds which must be covered by the runtime conversion with the
38 * calculated mult and shift factors. This guarantees that no 64bit
39 * overflow happens when the input value of the conversion is
40 * multiplied with the calculated mult factor. Larger ranges may
41 * reduce the conversion accuracy by chosing smaller mult and shift
42 * factors.
43 */
44 void
clocks_calc_mult_shift(u32 * mult,u32 * shift,u32 from,u32 to,u32 maxsec)45 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
46 {
47 u64 tmp;
48 u32 sft, sftacc= 32;
49
50 /*
51 * Calculate the shift factor which is limiting the conversion
52 * range:
53 */
54 tmp = ((u64)maxsec * from) >> 32;
55 while (tmp) {
56 tmp >>=1;
57 sftacc--;
58 }
59
60 /*
61 * Find the conversion shift/mult pair which has the best
62 * accuracy and fits the maxsec conversion range:
63 */
64 for (sft = 32; sft > 0; sft--) {
65 tmp = (u64) to << sft;
66 tmp += from / 2;
67 do_div(tmp, from);
68 if ((tmp >> sftacc) == 0)
69 break;
70 }
71 *mult = tmp;
72 *shift = sft;
73 }
74 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
75
76 /*[Clocksource internal variables]---------
77 * curr_clocksource:
78 * currently selected clocksource.
79 * suspend_clocksource:
80 * used to calculate the suspend time.
81 * clocksource_list:
82 * linked list with the registered clocksources
83 * clocksource_mutex:
84 * protects manipulations to curr_clocksource and the clocksource_list
85 * override_name:
86 * Name of the user-specified clocksource.
87 */
88 static struct clocksource *curr_clocksource;
89 static struct clocksource *suspend_clocksource;
90 static LIST_HEAD(clocksource_list);
91 static DEFINE_MUTEX(clocksource_mutex);
92 static char override_name[CS_NAME_LEN];
93 static int finished_booting;
94 static u64 suspend_start;
95
96 /*
97 * Threshold: 0.0312s, when doubled: 0.0625s.
98 * Also a default for cs->uncertainty_margin when registering clocks.
99 */
100 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
101
102 /*
103 * Maximum permissible delay between two readouts of the watchdog
104 * clocksource surrounding a read of the clocksource being validated.
105 * This delay could be due to SMIs, NMIs, or to VCPU preemptions. Used as
106 * a lower bound for cs->uncertainty_margin values when registering clocks.
107 */
108 #define WATCHDOG_MAX_SKEW (100 * NSEC_PER_USEC)
109
110 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
111 static void clocksource_watchdog_work(struct work_struct *work);
112 static void clocksource_select(void);
113
114 static LIST_HEAD(watchdog_list);
115 static struct clocksource *watchdog;
116 static struct timer_list watchdog_timer;
117 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
118 static DEFINE_SPINLOCK(watchdog_lock);
119 static int watchdog_running;
120 static atomic_t watchdog_reset_pending;
121 static int64_t watchdog_max_interval;
122
clocksource_watchdog_lock(unsigned long * flags)123 static inline void clocksource_watchdog_lock(unsigned long *flags)
124 {
125 spin_lock_irqsave(&watchdog_lock, *flags);
126 }
127
clocksource_watchdog_unlock(unsigned long * flags)128 static inline void clocksource_watchdog_unlock(unsigned long *flags)
129 {
130 spin_unlock_irqrestore(&watchdog_lock, *flags);
131 }
132
133 static int clocksource_watchdog_kthread(void *data);
134 static void __clocksource_change_rating(struct clocksource *cs, int rating);
135
136 /*
137 * Interval: 0.5sec.
138 */
139 #define WATCHDOG_INTERVAL (HZ >> 1)
140 #define WATCHDOG_INTERVAL_MAX_NS ((2 * WATCHDOG_INTERVAL) * (NSEC_PER_SEC / HZ))
141
clocksource_watchdog_work(struct work_struct * work)142 static void clocksource_watchdog_work(struct work_struct *work)
143 {
144 /*
145 * We cannot directly run clocksource_watchdog_kthread() here, because
146 * clocksource_select() calls timekeeping_notify() which uses
147 * stop_machine(). One cannot use stop_machine() from a workqueue() due
148 * lock inversions wrt CPU hotplug.
149 *
150 * Also, we only ever run this work once or twice during the lifetime
151 * of the kernel, so there is no point in creating a more permanent
152 * kthread for this.
153 *
154 * If kthread_run fails the next watchdog scan over the
155 * watchdog_list will find the unstable clock again.
156 */
157 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
158 }
159
__clocksource_unstable(struct clocksource * cs)160 static void __clocksource_unstable(struct clocksource *cs)
161 {
162 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
163 cs->flags |= CLOCK_SOURCE_UNSTABLE;
164
165 /*
166 * If the clocksource is registered clocksource_watchdog_kthread() will
167 * re-rate and re-select.
168 */
169 if (list_empty(&cs->list)) {
170 cs->rating = 0;
171 return;
172 }
173
174 if (cs->mark_unstable)
175 cs->mark_unstable(cs);
176
177 /* kick clocksource_watchdog_kthread() */
178 if (finished_booting)
179 schedule_work(&watchdog_work);
180 }
181
182 /**
183 * clocksource_mark_unstable - mark clocksource unstable via watchdog
184 * @cs: clocksource to be marked unstable
185 *
186 * This function is called by the x86 TSC code to mark clocksources as unstable;
187 * it defers demotion and re-selection to a kthread.
188 */
clocksource_mark_unstable(struct clocksource * cs)189 void clocksource_mark_unstable(struct clocksource *cs)
190 {
191 unsigned long flags;
192
193 spin_lock_irqsave(&watchdog_lock, flags);
194 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
195 if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
196 list_add(&cs->wd_list, &watchdog_list);
197 __clocksource_unstable(cs);
198 }
199 spin_unlock_irqrestore(&watchdog_lock, flags);
200 }
201
202 static ulong max_cswd_read_retries = 3;
203 module_param(max_cswd_read_retries, ulong, 0644);
204
205 enum wd_read_status {
206 WD_READ_SUCCESS,
207 WD_READ_UNSTABLE,
208 WD_READ_SKIP
209 };
210
cs_watchdog_read(struct clocksource * cs,u64 * csnow,u64 * wdnow)211 static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
212 {
213 unsigned int nretries;
214 u64 wd_end, wd_end2, wd_delta;
215 int64_t wd_delay, wd_seq_delay;
216
217 for (nretries = 0; nretries <= max_cswd_read_retries; nretries++) {
218 local_irq_disable();
219 *wdnow = watchdog->read(watchdog);
220 *csnow = cs->read(cs);
221 wd_end = watchdog->read(watchdog);
222 wd_end2 = watchdog->read(watchdog);
223 local_irq_enable();
224
225 wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
226 wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
227 watchdog->shift);
228 if (wd_delay <= WATCHDOG_MAX_SKEW) {
229 if (nretries > 1 || nretries >= max_cswd_read_retries) {
230 pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
231 smp_processor_id(), watchdog->name, nretries);
232 }
233 return WD_READ_SUCCESS;
234 }
235
236 /*
237 * Now compute delay in consecutive watchdog read to see if
238 * there is too much external interferences that cause
239 * significant delay in reading both clocksource and watchdog.
240 *
241 * If consecutive WD read-back delay > WATCHDOG_MAX_SKEW/2,
242 * report system busy, reinit the watchdog and skip the current
243 * watchdog test.
244 */
245 wd_delta = clocksource_delta(wd_end2, wd_end, watchdog->mask);
246 wd_seq_delay = clocksource_cyc2ns(wd_delta, watchdog->mult, watchdog->shift);
247 if (wd_seq_delay > WATCHDOG_MAX_SKEW/2)
248 goto skip_test;
249 }
250
251 pr_warn("timekeeping watchdog on CPU%d: %s read-back delay of %lldns, attempt %d, marking unstable\n",
252 smp_processor_id(), watchdog->name, wd_delay, nretries);
253 return WD_READ_UNSTABLE;
254
255 skip_test:
256 pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
257 smp_processor_id(), watchdog->name, wd_seq_delay);
258 pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
259 cs->name, wd_delay);
260 return WD_READ_SKIP;
261 }
262
263 static u64 csnow_mid;
264 static cpumask_t cpus_ahead;
265 static cpumask_t cpus_behind;
266
clocksource_verify_one_cpu(void * csin)267 static void clocksource_verify_one_cpu(void *csin)
268 {
269 struct clocksource *cs = (struct clocksource *)csin;
270
271 csnow_mid = cs->read(cs);
272 }
273
clocksource_verify_percpu(struct clocksource * cs)274 static void clocksource_verify_percpu(struct clocksource *cs)
275 {
276 int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
277 u64 csnow_begin, csnow_end;
278 int cpu, testcpu;
279 s64 delta;
280
281 cpumask_clear(&cpus_ahead);
282 cpumask_clear(&cpus_behind);
283 preempt_disable();
284 testcpu = smp_processor_id();
285 pr_warn("Checking clocksource %s synchronization from CPU %d.\n", cs->name, testcpu);
286 for_each_online_cpu(cpu) {
287 if (cpu == testcpu)
288 continue;
289 csnow_begin = cs->read(cs);
290 smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
291 csnow_end = cs->read(cs);
292 delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
293 if (delta < 0)
294 cpumask_set_cpu(cpu, &cpus_behind);
295 delta = (csnow_end - csnow_mid) & cs->mask;
296 if (delta < 0)
297 cpumask_set_cpu(cpu, &cpus_ahead);
298 delta = clocksource_delta(csnow_end, csnow_begin, cs->mask);
299 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
300 if (cs_nsec > cs_nsec_max)
301 cs_nsec_max = cs_nsec;
302 if (cs_nsec < cs_nsec_min)
303 cs_nsec_min = cs_nsec;
304 }
305 preempt_enable();
306 if (!cpumask_empty(&cpus_ahead))
307 pr_warn(" CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
308 cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
309 if (!cpumask_empty(&cpus_behind))
310 pr_warn(" CPUs %*pbl behind CPU %d for clocksource %s.\n",
311 cpumask_pr_args(&cpus_behind), testcpu, cs->name);
312 if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
313 pr_warn(" CPU %d check durations %lldns - %lldns for clocksource %s.\n",
314 testcpu, cs_nsec_min, cs_nsec_max, cs->name);
315 }
316
clocksource_reset_watchdog(void)317 static inline void clocksource_reset_watchdog(void)
318 {
319 struct clocksource *cs;
320
321 list_for_each_entry(cs, &watchdog_list, wd_list)
322 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
323 }
324
325
clocksource_watchdog(struct timer_list * unused)326 static void clocksource_watchdog(struct timer_list *unused)
327 {
328 u64 csnow, wdnow, cslast, wdlast, delta;
329 int64_t wd_nsec, cs_nsec, interval;
330 int next_cpu, reset_pending;
331 struct clocksource *cs;
332 enum wd_read_status read_ret;
333 unsigned long extra_wait = 0;
334 u32 md;
335
336 spin_lock(&watchdog_lock);
337 if (!watchdog_running)
338 goto out;
339
340 reset_pending = atomic_read(&watchdog_reset_pending);
341
342 list_for_each_entry(cs, &watchdog_list, wd_list) {
343
344 /* Clocksource already marked unstable? */
345 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
346 if (finished_booting)
347 schedule_work(&watchdog_work);
348 continue;
349 }
350
351 read_ret = cs_watchdog_read(cs, &csnow, &wdnow);
352
353 if (read_ret == WD_READ_UNSTABLE) {
354 /* Clock readout unreliable, so give it up. */
355 __clocksource_unstable(cs);
356 continue;
357 }
358
359 /*
360 * When WD_READ_SKIP is returned, it means the system is likely
361 * under very heavy load, where the latency of reading
362 * watchdog/clocksource is very big, and affect the accuracy of
363 * watchdog check. So give system some space and suspend the
364 * watchdog check for 5 minutes.
365 */
366 if (read_ret == WD_READ_SKIP) {
367 /*
368 * As the watchdog timer will be suspended, and
369 * cs->last could keep unchanged for 5 minutes, reset
370 * the counters.
371 */
372 clocksource_reset_watchdog();
373 extra_wait = HZ * 300;
374 break;
375 }
376
377 /* Clocksource initialized ? */
378 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
379 atomic_read(&watchdog_reset_pending)) {
380 cs->flags |= CLOCK_SOURCE_WATCHDOG;
381 cs->wd_last = wdnow;
382 cs->cs_last = csnow;
383 continue;
384 }
385
386 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
387 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
388 watchdog->shift);
389
390 delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
391 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
392 wdlast = cs->wd_last; /* save these in case we print them */
393 cslast = cs->cs_last;
394 cs->cs_last = csnow;
395 cs->wd_last = wdnow;
396
397 if (atomic_read(&watchdog_reset_pending))
398 continue;
399
400 /*
401 * The processing of timer softirqs can get delayed (usually
402 * on account of ksoftirqd not getting to run in a timely
403 * manner), which causes the watchdog interval to stretch.
404 * Skew detection may fail for longer watchdog intervals
405 * on account of fixed margins being used.
406 * Some clocksources, e.g. acpi_pm, cannot tolerate
407 * watchdog intervals longer than a few seconds.
408 */
409 interval = max(cs_nsec, wd_nsec);
410 if (unlikely(interval > WATCHDOG_INTERVAL_MAX_NS)) {
411 if (system_state > SYSTEM_SCHEDULING &&
412 interval > 2 * watchdog_max_interval) {
413 watchdog_max_interval = interval;
414 pr_warn("Long readout interval, skipping watchdog check: cs_nsec: %lld wd_nsec: %lld\n",
415 cs_nsec, wd_nsec);
416 }
417 watchdog_timer.expires = jiffies;
418 continue;
419 }
420
421 /* Check the deviation from the watchdog clocksource. */
422 md = cs->uncertainty_margin + watchdog->uncertainty_margin;
423 if (abs(cs_nsec - wd_nsec) > md) {
424 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
425 smp_processor_id(), cs->name);
426 pr_warn(" '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
427 watchdog->name, wdnow, wdlast, watchdog->mask);
428 pr_warn(" '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
429 cs->name, csnow, cslast, cs->mask);
430 __clocksource_unstable(cs);
431 continue;
432 }
433
434 if (cs == curr_clocksource && cs->tick_stable)
435 cs->tick_stable(cs);
436
437 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
438 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
439 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
440 /* Mark it valid for high-res. */
441 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
442
443 /*
444 * clocksource_done_booting() will sort it if
445 * finished_booting is not set yet.
446 */
447 if (!finished_booting)
448 continue;
449
450 /*
451 * If this is not the current clocksource let
452 * the watchdog thread reselect it. Due to the
453 * change to high res this clocksource might
454 * be preferred now. If it is the current
455 * clocksource let the tick code know about
456 * that change.
457 */
458 if (cs != curr_clocksource) {
459 cs->flags |= CLOCK_SOURCE_RESELECT;
460 schedule_work(&watchdog_work);
461 } else {
462 tick_clock_notify();
463 }
464 }
465 }
466
467 /*
468 * We only clear the watchdog_reset_pending, when we did a
469 * full cycle through all clocksources.
470 */
471 if (reset_pending)
472 atomic_dec(&watchdog_reset_pending);
473
474 /*
475 * Cycle through CPUs to check if the CPUs stay synchronized
476 * to each other.
477 */
478 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
479 if (next_cpu >= nr_cpu_ids)
480 next_cpu = cpumask_first(cpu_online_mask);
481
482 /*
483 * Arm timer if not already pending: could race with concurrent
484 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
485 */
486 if (!timer_pending(&watchdog_timer)) {
487 watchdog_timer.expires += WATCHDOG_INTERVAL + extra_wait;
488 add_timer_on(&watchdog_timer, next_cpu);
489 }
490 out:
491 spin_unlock(&watchdog_lock);
492 }
493
clocksource_start_watchdog(void)494 static inline void clocksource_start_watchdog(void)
495 {
496 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
497 return;
498 timer_setup(&watchdog_timer, clocksource_watchdog, 0);
499 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
500 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
501 watchdog_running = 1;
502 }
503
clocksource_stop_watchdog(void)504 static inline void clocksource_stop_watchdog(void)
505 {
506 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
507 return;
508 del_timer(&watchdog_timer);
509 watchdog_running = 0;
510 }
511
clocksource_resume_watchdog(void)512 static void clocksource_resume_watchdog(void)
513 {
514 atomic_inc(&watchdog_reset_pending);
515 }
516
clocksource_enqueue_watchdog(struct clocksource * cs)517 static void clocksource_enqueue_watchdog(struct clocksource *cs)
518 {
519 INIT_LIST_HEAD(&cs->wd_list);
520
521 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
522 /* cs is a clocksource to be watched. */
523 list_add(&cs->wd_list, &watchdog_list);
524 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
525 } else {
526 /* cs is a watchdog. */
527 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
528 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
529 }
530 }
531
clocksource_select_watchdog(bool fallback)532 static void clocksource_select_watchdog(bool fallback)
533 {
534 struct clocksource *cs, *old_wd;
535 unsigned long flags;
536
537 spin_lock_irqsave(&watchdog_lock, flags);
538 /* save current watchdog */
539 old_wd = watchdog;
540 if (fallback)
541 watchdog = NULL;
542
543 list_for_each_entry(cs, &clocksource_list, list) {
544 /* cs is a clocksource to be watched. */
545 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
546 continue;
547
548 /* Skip current if we were requested for a fallback. */
549 if (fallback && cs == old_wd)
550 continue;
551
552 /* Pick the best watchdog. */
553 if (!watchdog || cs->rating > watchdog->rating)
554 watchdog = cs;
555 }
556 /* If we failed to find a fallback restore the old one. */
557 if (!watchdog)
558 watchdog = old_wd;
559
560 /* If we changed the watchdog we need to reset cycles. */
561 if (watchdog != old_wd)
562 clocksource_reset_watchdog();
563
564 /* Check if the watchdog timer needs to be started. */
565 clocksource_start_watchdog();
566 spin_unlock_irqrestore(&watchdog_lock, flags);
567 }
568
clocksource_dequeue_watchdog(struct clocksource * cs)569 static void clocksource_dequeue_watchdog(struct clocksource *cs)
570 {
571 if (cs != watchdog) {
572 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
573 /* cs is a watched clocksource. */
574 list_del_init(&cs->wd_list);
575 /* Check if the watchdog timer needs to be stopped. */
576 clocksource_stop_watchdog();
577 }
578 }
579 }
580
__clocksource_watchdog_kthread(void)581 static int __clocksource_watchdog_kthread(void)
582 {
583 struct clocksource *cs, *tmp;
584 unsigned long flags;
585 int select = 0;
586
587 /* Do any required per-CPU skew verification. */
588 if (curr_clocksource &&
589 curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
590 curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
591 clocksource_verify_percpu(curr_clocksource);
592
593 spin_lock_irqsave(&watchdog_lock, flags);
594 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
595 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
596 list_del_init(&cs->wd_list);
597 __clocksource_change_rating(cs, 0);
598 select = 1;
599 }
600 if (cs->flags & CLOCK_SOURCE_RESELECT) {
601 cs->flags &= ~CLOCK_SOURCE_RESELECT;
602 select = 1;
603 }
604 }
605 /* Check if the watchdog timer needs to be stopped. */
606 clocksource_stop_watchdog();
607 spin_unlock_irqrestore(&watchdog_lock, flags);
608
609 return select;
610 }
611
clocksource_watchdog_kthread(void * data)612 static int clocksource_watchdog_kthread(void *data)
613 {
614 mutex_lock(&clocksource_mutex);
615 if (__clocksource_watchdog_kthread())
616 clocksource_select();
617 mutex_unlock(&clocksource_mutex);
618 return 0;
619 }
620
clocksource_is_watchdog(struct clocksource * cs)621 static bool clocksource_is_watchdog(struct clocksource *cs)
622 {
623 return cs == watchdog;
624 }
625
626 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
627
clocksource_enqueue_watchdog(struct clocksource * cs)628 static void clocksource_enqueue_watchdog(struct clocksource *cs)
629 {
630 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
631 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
632 }
633
clocksource_select_watchdog(bool fallback)634 static void clocksource_select_watchdog(bool fallback) { }
clocksource_dequeue_watchdog(struct clocksource * cs)635 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
clocksource_resume_watchdog(void)636 static inline void clocksource_resume_watchdog(void) { }
__clocksource_watchdog_kthread(void)637 static inline int __clocksource_watchdog_kthread(void) { return 0; }
clocksource_is_watchdog(struct clocksource * cs)638 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
clocksource_mark_unstable(struct clocksource * cs)639 void clocksource_mark_unstable(struct clocksource *cs) { }
640
clocksource_watchdog_lock(unsigned long * flags)641 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
clocksource_watchdog_unlock(unsigned long * flags)642 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
643
644 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
645
clocksource_is_suspend(struct clocksource * cs)646 static bool clocksource_is_suspend(struct clocksource *cs)
647 {
648 return cs == suspend_clocksource;
649 }
650
__clocksource_suspend_select(struct clocksource * cs)651 static void __clocksource_suspend_select(struct clocksource *cs)
652 {
653 /*
654 * Skip the clocksource which will be stopped in suspend state.
655 */
656 if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
657 return;
658
659 /*
660 * The nonstop clocksource can be selected as the suspend clocksource to
661 * calculate the suspend time, so it should not supply suspend/resume
662 * interfaces to suspend the nonstop clocksource when system suspends.
663 */
664 if (cs->suspend || cs->resume) {
665 pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
666 cs->name);
667 }
668
669 /* Pick the best rating. */
670 if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
671 suspend_clocksource = cs;
672 }
673
674 /**
675 * clocksource_suspend_select - Select the best clocksource for suspend timing
676 * @fallback: if select a fallback clocksource
677 */
clocksource_suspend_select(bool fallback)678 static void clocksource_suspend_select(bool fallback)
679 {
680 struct clocksource *cs, *old_suspend;
681
682 old_suspend = suspend_clocksource;
683 if (fallback)
684 suspend_clocksource = NULL;
685
686 list_for_each_entry(cs, &clocksource_list, list) {
687 /* Skip current if we were requested for a fallback. */
688 if (fallback && cs == old_suspend)
689 continue;
690
691 __clocksource_suspend_select(cs);
692 }
693 }
694
695 /**
696 * clocksource_start_suspend_timing - Start measuring the suspend timing
697 * @cs: current clocksource from timekeeping
698 * @start_cycles: current cycles from timekeeping
699 *
700 * This function will save the start cycle values of suspend timer to calculate
701 * the suspend time when resuming system.
702 *
703 * This function is called late in the suspend process from timekeeping_suspend(),
704 * that means processes are freezed, non-boot cpus and interrupts are disabled
705 * now. It is therefore possible to start the suspend timer without taking the
706 * clocksource mutex.
707 */
clocksource_start_suspend_timing(struct clocksource * cs,u64 start_cycles)708 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
709 {
710 if (!suspend_clocksource)
711 return;
712
713 /*
714 * If current clocksource is the suspend timer, we should use the
715 * tkr_mono.cycle_last value as suspend_start to avoid same reading
716 * from suspend timer.
717 */
718 if (clocksource_is_suspend(cs)) {
719 suspend_start = start_cycles;
720 return;
721 }
722
723 if (suspend_clocksource->enable &&
724 suspend_clocksource->enable(suspend_clocksource)) {
725 pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
726 return;
727 }
728
729 suspend_start = suspend_clocksource->read(suspend_clocksource);
730 }
731
732 /**
733 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
734 * @cs: current clocksource from timekeeping
735 * @cycle_now: current cycles from timekeeping
736 *
737 * This function will calculate the suspend time from suspend timer.
738 *
739 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
740 *
741 * This function is called early in the resume process from timekeeping_resume(),
742 * that means there is only one cpu, no processes are running and the interrupts
743 * are disabled. It is therefore possible to stop the suspend timer without
744 * taking the clocksource mutex.
745 */
clocksource_stop_suspend_timing(struct clocksource * cs,u64 cycle_now)746 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
747 {
748 u64 now, delta, nsec = 0;
749
750 if (!suspend_clocksource)
751 return 0;
752
753 /*
754 * If current clocksource is the suspend timer, we should use the
755 * tkr_mono.cycle_last value from timekeeping as current cycle to
756 * avoid same reading from suspend timer.
757 */
758 if (clocksource_is_suspend(cs))
759 now = cycle_now;
760 else
761 now = suspend_clocksource->read(suspend_clocksource);
762
763 if (now > suspend_start) {
764 delta = clocksource_delta(now, suspend_start,
765 suspend_clocksource->mask);
766 nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
767 suspend_clocksource->shift);
768 }
769
770 /*
771 * Disable the suspend timer to save power if current clocksource is
772 * not the suspend timer.
773 */
774 if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
775 suspend_clocksource->disable(suspend_clocksource);
776
777 return nsec;
778 }
779
780 /**
781 * clocksource_suspend - suspend the clocksource(s)
782 */
clocksource_suspend(void)783 void clocksource_suspend(void)
784 {
785 struct clocksource *cs;
786
787 list_for_each_entry_reverse(cs, &clocksource_list, list)
788 if (cs->suspend)
789 cs->suspend(cs);
790 }
791
792 /**
793 * clocksource_resume - resume the clocksource(s)
794 */
clocksource_resume(void)795 void clocksource_resume(void)
796 {
797 struct clocksource *cs;
798
799 list_for_each_entry(cs, &clocksource_list, list)
800 if (cs->resume)
801 cs->resume(cs);
802
803 clocksource_resume_watchdog();
804 }
805
806 /**
807 * clocksource_touch_watchdog - Update watchdog
808 *
809 * Update the watchdog after exception contexts such as kgdb so as not
810 * to incorrectly trip the watchdog. This might fail when the kernel
811 * was stopped in code which holds watchdog_lock.
812 */
clocksource_touch_watchdog(void)813 void clocksource_touch_watchdog(void)
814 {
815 clocksource_resume_watchdog();
816 }
817
818 /**
819 * clocksource_max_adjustment- Returns max adjustment amount
820 * @cs: Pointer to clocksource
821 *
822 */
clocksource_max_adjustment(struct clocksource * cs)823 static u32 clocksource_max_adjustment(struct clocksource *cs)
824 {
825 u64 ret;
826 /*
827 * We won't try to correct for more than 11% adjustments (110,000 ppm),
828 */
829 ret = (u64)cs->mult * 11;
830 do_div(ret,100);
831 return (u32)ret;
832 }
833
834 /**
835 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
836 * @mult: cycle to nanosecond multiplier
837 * @shift: cycle to nanosecond divisor (power of two)
838 * @maxadj: maximum adjustment value to mult (~11%)
839 * @mask: bitmask for two's complement subtraction of non 64 bit counters
840 * @max_cyc: maximum cycle value before potential overflow (does not include
841 * any safety margin)
842 *
843 * NOTE: This function includes a safety margin of 50%, in other words, we
844 * return half the number of nanoseconds the hardware counter can technically
845 * cover. This is done so that we can potentially detect problems caused by
846 * delayed timers or bad hardware, which might result in time intervals that
847 * are larger than what the math used can handle without overflows.
848 */
clocks_calc_max_nsecs(u32 mult,u32 shift,u32 maxadj,u64 mask,u64 * max_cyc)849 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
850 {
851 u64 max_nsecs, max_cycles;
852
853 /*
854 * Calculate the maximum number of cycles that we can pass to the
855 * cyc2ns() function without overflowing a 64-bit result.
856 */
857 max_cycles = ULLONG_MAX;
858 do_div(max_cycles, mult+maxadj);
859
860 /*
861 * The actual maximum number of cycles we can defer the clocksource is
862 * determined by the minimum of max_cycles and mask.
863 * Note: Here we subtract the maxadj to make sure we don't sleep for
864 * too long if there's a large negative adjustment.
865 */
866 max_cycles = min(max_cycles, mask);
867 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
868
869 /* return the max_cycles value as well if requested */
870 if (max_cyc)
871 *max_cyc = max_cycles;
872
873 /* Return 50% of the actual maximum, so we can detect bad values */
874 max_nsecs >>= 1;
875
876 return max_nsecs;
877 }
878
879 /**
880 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
881 * @cs: Pointer to clocksource to be updated
882 *
883 */
clocksource_update_max_deferment(struct clocksource * cs)884 static inline void clocksource_update_max_deferment(struct clocksource *cs)
885 {
886 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
887 cs->maxadj, cs->mask,
888 &cs->max_cycles);
889 }
890
891 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
892
clocksource_find_best(bool oneshot,bool skipcur)893 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
894 {
895 struct clocksource *cs;
896
897 if (!finished_booting || list_empty(&clocksource_list))
898 return NULL;
899
900 /*
901 * We pick the clocksource with the highest rating. If oneshot
902 * mode is active, we pick the highres valid clocksource with
903 * the best rating.
904 */
905 list_for_each_entry(cs, &clocksource_list, list) {
906 if (skipcur && cs == curr_clocksource)
907 continue;
908 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
909 continue;
910 return cs;
911 }
912 return NULL;
913 }
914
__clocksource_select(bool skipcur)915 static void __clocksource_select(bool skipcur)
916 {
917 bool oneshot = tick_oneshot_mode_active();
918 struct clocksource *best, *cs;
919
920 /* Find the best suitable clocksource */
921 best = clocksource_find_best(oneshot, skipcur);
922 if (!best)
923 return;
924
925 if (!strlen(override_name))
926 goto found;
927
928 /* Check for the override clocksource. */
929 list_for_each_entry(cs, &clocksource_list, list) {
930 if (skipcur && cs == curr_clocksource)
931 continue;
932 if (strcmp(cs->name, override_name) != 0)
933 continue;
934 /*
935 * Check to make sure we don't switch to a non-highres
936 * capable clocksource if the tick code is in oneshot
937 * mode (highres or nohz)
938 */
939 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
940 /* Override clocksource cannot be used. */
941 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
942 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
943 cs->name);
944 override_name[0] = 0;
945 } else {
946 /*
947 * The override cannot be currently verified.
948 * Deferring to let the watchdog check.
949 */
950 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
951 cs->name);
952 }
953 } else
954 /* Override clocksource can be used. */
955 best = cs;
956 break;
957 }
958
959 found:
960 if (curr_clocksource != best && !timekeeping_notify(best)) {
961 pr_info("Switched to clocksource %s\n", best->name);
962 curr_clocksource = best;
963 }
964 }
965
966 /**
967 * clocksource_select - Select the best clocksource available
968 *
969 * Private function. Must hold clocksource_mutex when called.
970 *
971 * Select the clocksource with the best rating, or the clocksource,
972 * which is selected by userspace override.
973 */
clocksource_select(void)974 static void clocksource_select(void)
975 {
976 __clocksource_select(false);
977 }
978
clocksource_select_fallback(void)979 static void clocksource_select_fallback(void)
980 {
981 __clocksource_select(true);
982 }
983
984 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
clocksource_select(void)985 static inline void clocksource_select(void) { }
clocksource_select_fallback(void)986 static inline void clocksource_select_fallback(void) { }
987
988 #endif
989
990 /*
991 * clocksource_done_booting - Called near the end of core bootup
992 *
993 * Hack to avoid lots of clocksource churn at boot time.
994 * We use fs_initcall because we want this to start before
995 * device_initcall but after subsys_initcall.
996 */
clocksource_done_booting(void)997 static int __init clocksource_done_booting(void)
998 {
999 mutex_lock(&clocksource_mutex);
1000 curr_clocksource = clocksource_default_clock();
1001 finished_booting = 1;
1002 /*
1003 * Run the watchdog first to eliminate unstable clock sources
1004 */
1005 __clocksource_watchdog_kthread();
1006 clocksource_select();
1007 mutex_unlock(&clocksource_mutex);
1008 return 0;
1009 }
1010 fs_initcall(clocksource_done_booting);
1011
1012 /*
1013 * Enqueue the clocksource sorted by rating
1014 */
clocksource_enqueue(struct clocksource * cs)1015 static void clocksource_enqueue(struct clocksource *cs)
1016 {
1017 struct list_head *entry = &clocksource_list;
1018 struct clocksource *tmp;
1019
1020 list_for_each_entry(tmp, &clocksource_list, list) {
1021 /* Keep track of the place, where to insert */
1022 if (tmp->rating < cs->rating)
1023 break;
1024 entry = &tmp->list;
1025 }
1026 list_add(&cs->list, entry);
1027 }
1028
1029 /**
1030 * __clocksource_update_freq_scale - Used update clocksource with new freq
1031 * @cs: clocksource to be registered
1032 * @scale: Scale factor multiplied against freq to get clocksource hz
1033 * @freq: clocksource frequency (cycles per second) divided by scale
1034 *
1035 * This should only be called from the clocksource->enable() method.
1036 *
1037 * This *SHOULD NOT* be called directly! Please use the
1038 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1039 * functions.
1040 */
__clocksource_update_freq_scale(struct clocksource * cs,u32 scale,u32 freq)1041 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1042 {
1043 u64 sec;
1044
1045 /*
1046 * Default clocksources are *special* and self-define their mult/shift.
1047 * But, you're not special, so you should specify a freq value.
1048 */
1049 if (freq) {
1050 /*
1051 * Calc the maximum number of seconds which we can run before
1052 * wrapping around. For clocksources which have a mask > 32-bit
1053 * we need to limit the max sleep time to have a good
1054 * conversion precision. 10 minutes is still a reasonable
1055 * amount. That results in a shift value of 24 for a
1056 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1057 * ~ 0.06ppm granularity for NTP.
1058 */
1059 sec = cs->mask;
1060 do_div(sec, freq);
1061 do_div(sec, scale);
1062 if (!sec)
1063 sec = 1;
1064 else if (sec > 600 && cs->mask > UINT_MAX)
1065 sec = 600;
1066
1067 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1068 NSEC_PER_SEC / scale, sec * scale);
1069 }
1070
1071 /*
1072 * If the uncertainty margin is not specified, calculate it.
1073 * If both scale and freq are non-zero, calculate the clock
1074 * period, but bound below at 2*WATCHDOG_MAX_SKEW. However,
1075 * if either of scale or freq is zero, be very conservative and
1076 * take the tens-of-milliseconds WATCHDOG_THRESHOLD value for the
1077 * uncertainty margin. Allow stupidly small uncertainty margins
1078 * to be specified by the caller for testing purposes, but warn
1079 * to discourage production use of this capability.
1080 */
1081 if (scale && freq && !cs->uncertainty_margin) {
1082 cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1083 if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1084 cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1085 } else if (!cs->uncertainty_margin) {
1086 cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1087 }
1088 WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1089
1090 /*
1091 * Ensure clocksources that have large 'mult' values don't overflow
1092 * when adjusted.
1093 */
1094 cs->maxadj = clocksource_max_adjustment(cs);
1095 while (freq && ((cs->mult + cs->maxadj < cs->mult)
1096 || (cs->mult - cs->maxadj > cs->mult))) {
1097 cs->mult >>= 1;
1098 cs->shift--;
1099 cs->maxadj = clocksource_max_adjustment(cs);
1100 }
1101
1102 /*
1103 * Only warn for *special* clocksources that self-define
1104 * their mult/shift values and don't specify a freq.
1105 */
1106 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1107 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1108 cs->name);
1109
1110 clocksource_update_max_deferment(cs);
1111
1112 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1113 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1114 }
1115 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1116
1117 /**
1118 * __clocksource_register_scale - Used to install new clocksources
1119 * @cs: clocksource to be registered
1120 * @scale: Scale factor multiplied against freq to get clocksource hz
1121 * @freq: clocksource frequency (cycles per second) divided by scale
1122 *
1123 * Returns -EBUSY if registration fails, zero otherwise.
1124 *
1125 * This *SHOULD NOT* be called directly! Please use the
1126 * clocksource_register_hz() or clocksource_register_khz helper functions.
1127 */
__clocksource_register_scale(struct clocksource * cs,u32 scale,u32 freq)1128 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1129 {
1130 unsigned long flags;
1131
1132 clocksource_arch_init(cs);
1133
1134 if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1135 cs->id = CSID_GENERIC;
1136 if (cs->vdso_clock_mode < 0 ||
1137 cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1138 pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1139 cs->name, cs->vdso_clock_mode);
1140 cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1141 }
1142
1143 /* Initialize mult/shift and max_idle_ns */
1144 __clocksource_update_freq_scale(cs, scale, freq);
1145
1146 /* Add clocksource to the clocksource list */
1147 mutex_lock(&clocksource_mutex);
1148
1149 clocksource_watchdog_lock(&flags);
1150 clocksource_enqueue(cs);
1151 clocksource_enqueue_watchdog(cs);
1152 clocksource_watchdog_unlock(&flags);
1153
1154 clocksource_select();
1155 clocksource_select_watchdog(false);
1156 __clocksource_suspend_select(cs);
1157 mutex_unlock(&clocksource_mutex);
1158 return 0;
1159 }
1160 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1161
__clocksource_change_rating(struct clocksource * cs,int rating)1162 static void __clocksource_change_rating(struct clocksource *cs, int rating)
1163 {
1164 list_del(&cs->list);
1165 cs->rating = rating;
1166 clocksource_enqueue(cs);
1167 }
1168
1169 /**
1170 * clocksource_change_rating - Change the rating of a registered clocksource
1171 * @cs: clocksource to be changed
1172 * @rating: new rating
1173 */
clocksource_change_rating(struct clocksource * cs,int rating)1174 void clocksource_change_rating(struct clocksource *cs, int rating)
1175 {
1176 unsigned long flags;
1177
1178 mutex_lock(&clocksource_mutex);
1179 clocksource_watchdog_lock(&flags);
1180 __clocksource_change_rating(cs, rating);
1181 clocksource_watchdog_unlock(&flags);
1182
1183 clocksource_select();
1184 clocksource_select_watchdog(false);
1185 clocksource_suspend_select(false);
1186 mutex_unlock(&clocksource_mutex);
1187 }
1188 EXPORT_SYMBOL(clocksource_change_rating);
1189
1190 /*
1191 * Unbind clocksource @cs. Called with clocksource_mutex held
1192 */
clocksource_unbind(struct clocksource * cs)1193 static int clocksource_unbind(struct clocksource *cs)
1194 {
1195 unsigned long flags;
1196
1197 if (clocksource_is_watchdog(cs)) {
1198 /* Select and try to install a replacement watchdog. */
1199 clocksource_select_watchdog(true);
1200 if (clocksource_is_watchdog(cs))
1201 return -EBUSY;
1202 }
1203
1204 if (cs == curr_clocksource) {
1205 /* Select and try to install a replacement clock source */
1206 clocksource_select_fallback();
1207 if (curr_clocksource == cs)
1208 return -EBUSY;
1209 }
1210
1211 if (clocksource_is_suspend(cs)) {
1212 /*
1213 * Select and try to install a replacement suspend clocksource.
1214 * If no replacement suspend clocksource, we will just let the
1215 * clocksource go and have no suspend clocksource.
1216 */
1217 clocksource_suspend_select(true);
1218 }
1219
1220 clocksource_watchdog_lock(&flags);
1221 clocksource_dequeue_watchdog(cs);
1222 list_del_init(&cs->list);
1223 clocksource_watchdog_unlock(&flags);
1224
1225 return 0;
1226 }
1227
1228 /**
1229 * clocksource_unregister - remove a registered clocksource
1230 * @cs: clocksource to be unregistered
1231 */
clocksource_unregister(struct clocksource * cs)1232 int clocksource_unregister(struct clocksource *cs)
1233 {
1234 int ret = 0;
1235
1236 mutex_lock(&clocksource_mutex);
1237 if (!list_empty(&cs->list))
1238 ret = clocksource_unbind(cs);
1239 mutex_unlock(&clocksource_mutex);
1240 return ret;
1241 }
1242 EXPORT_SYMBOL(clocksource_unregister);
1243
1244 #ifdef CONFIG_SYSFS
1245 /**
1246 * current_clocksource_show - sysfs interface for current clocksource
1247 * @dev: unused
1248 * @attr: unused
1249 * @buf: char buffer to be filled with clocksource list
1250 *
1251 * Provides sysfs interface for listing current clocksource.
1252 */
current_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1253 static ssize_t current_clocksource_show(struct device *dev,
1254 struct device_attribute *attr,
1255 char *buf)
1256 {
1257 ssize_t count = 0;
1258
1259 mutex_lock(&clocksource_mutex);
1260 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1261 mutex_unlock(&clocksource_mutex);
1262
1263 return count;
1264 }
1265
sysfs_get_uname(const char * buf,char * dst,size_t cnt)1266 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1267 {
1268 size_t ret = cnt;
1269
1270 /* strings from sysfs write are not 0 terminated! */
1271 if (!cnt || cnt >= CS_NAME_LEN)
1272 return -EINVAL;
1273
1274 /* strip of \n: */
1275 if (buf[cnt-1] == '\n')
1276 cnt--;
1277 if (cnt > 0)
1278 memcpy(dst, buf, cnt);
1279 dst[cnt] = 0;
1280 return ret;
1281 }
1282
1283 /**
1284 * current_clocksource_store - interface for manually overriding clocksource
1285 * @dev: unused
1286 * @attr: unused
1287 * @buf: name of override clocksource
1288 * @count: length of buffer
1289 *
1290 * Takes input from sysfs interface for manually overriding the default
1291 * clocksource selection.
1292 */
current_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1293 static ssize_t current_clocksource_store(struct device *dev,
1294 struct device_attribute *attr,
1295 const char *buf, size_t count)
1296 {
1297 ssize_t ret;
1298
1299 mutex_lock(&clocksource_mutex);
1300
1301 ret = sysfs_get_uname(buf, override_name, count);
1302 if (ret >= 0)
1303 clocksource_select();
1304
1305 mutex_unlock(&clocksource_mutex);
1306
1307 return ret;
1308 }
1309 static DEVICE_ATTR_RW(current_clocksource);
1310
1311 /**
1312 * unbind_clocksource_store - interface for manually unbinding clocksource
1313 * @dev: unused
1314 * @attr: unused
1315 * @buf: unused
1316 * @count: length of buffer
1317 *
1318 * Takes input from sysfs interface for manually unbinding a clocksource.
1319 */
unbind_clocksource_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1320 static ssize_t unbind_clocksource_store(struct device *dev,
1321 struct device_attribute *attr,
1322 const char *buf, size_t count)
1323 {
1324 struct clocksource *cs;
1325 char name[CS_NAME_LEN];
1326 ssize_t ret;
1327
1328 ret = sysfs_get_uname(buf, name, count);
1329 if (ret < 0)
1330 return ret;
1331
1332 ret = -ENODEV;
1333 mutex_lock(&clocksource_mutex);
1334 list_for_each_entry(cs, &clocksource_list, list) {
1335 if (strcmp(cs->name, name))
1336 continue;
1337 ret = clocksource_unbind(cs);
1338 break;
1339 }
1340 mutex_unlock(&clocksource_mutex);
1341
1342 return ret ? ret : count;
1343 }
1344 static DEVICE_ATTR_WO(unbind_clocksource);
1345
1346 /**
1347 * available_clocksource_show - sysfs interface for listing clocksource
1348 * @dev: unused
1349 * @attr: unused
1350 * @buf: char buffer to be filled with clocksource list
1351 *
1352 * Provides sysfs interface for listing registered clocksources
1353 */
available_clocksource_show(struct device * dev,struct device_attribute * attr,char * buf)1354 static ssize_t available_clocksource_show(struct device *dev,
1355 struct device_attribute *attr,
1356 char *buf)
1357 {
1358 struct clocksource *src;
1359 ssize_t count = 0;
1360
1361 mutex_lock(&clocksource_mutex);
1362 list_for_each_entry(src, &clocksource_list, list) {
1363 /*
1364 * Don't show non-HRES clocksource if the tick code is
1365 * in one shot mode (highres=on or nohz=on)
1366 */
1367 if (!tick_oneshot_mode_active() ||
1368 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1369 count += snprintf(buf + count,
1370 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1371 "%s ", src->name);
1372 }
1373 mutex_unlock(&clocksource_mutex);
1374
1375 count += snprintf(buf + count,
1376 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1377
1378 return count;
1379 }
1380 static DEVICE_ATTR_RO(available_clocksource);
1381
1382 static struct attribute *clocksource_attrs[] = {
1383 &dev_attr_current_clocksource.attr,
1384 &dev_attr_unbind_clocksource.attr,
1385 &dev_attr_available_clocksource.attr,
1386 NULL
1387 };
1388 ATTRIBUTE_GROUPS(clocksource);
1389
1390 static struct bus_type clocksource_subsys = {
1391 .name = "clocksource",
1392 .dev_name = "clocksource",
1393 };
1394
1395 static struct device device_clocksource = {
1396 .id = 0,
1397 .bus = &clocksource_subsys,
1398 .groups = clocksource_groups,
1399 };
1400
init_clocksource_sysfs(void)1401 static int __init init_clocksource_sysfs(void)
1402 {
1403 int error = subsys_system_register(&clocksource_subsys, NULL);
1404
1405 if (!error)
1406 error = device_register(&device_clocksource);
1407
1408 return error;
1409 }
1410
1411 device_initcall(init_clocksource_sysfs);
1412 #endif /* CONFIG_SYSFS */
1413
1414 /**
1415 * boot_override_clocksource - boot clock override
1416 * @str: override name
1417 *
1418 * Takes a clocksource= boot argument and uses it
1419 * as the clocksource override name.
1420 */
boot_override_clocksource(char * str)1421 static int __init boot_override_clocksource(char* str)
1422 {
1423 mutex_lock(&clocksource_mutex);
1424 if (str)
1425 strlcpy(override_name, str, sizeof(override_name));
1426 mutex_unlock(&clocksource_mutex);
1427 return 1;
1428 }
1429
1430 __setup("clocksource=", boot_override_clocksource);
1431
1432 /**
1433 * boot_override_clock - Compatibility layer for deprecated boot option
1434 * @str: override name
1435 *
1436 * DEPRECATED! Takes a clock= boot argument and uses it
1437 * as the clocksource override name
1438 */
boot_override_clock(char * str)1439 static int __init boot_override_clock(char* str)
1440 {
1441 if (!strcmp(str, "pmtmr")) {
1442 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1443 return boot_override_clocksource("acpi_pm");
1444 }
1445 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1446 return boot_override_clocksource(str);
1447 }
1448
1449 __setup("clock=", boot_override_clock);
1450