• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54 
55 #include "workqueue_internal.h"
56 
57 #include <trace/hooks/wqlockup.h>
58 #include <trace/hooks/workqueue.h>
59 /* events/workqueue.h uses default TRACE_INCLUDE_PATH */
60 #undef TRACE_INCLUDE_PATH
61 
62 enum {
63 	/*
64 	 * worker_pool flags
65 	 *
66 	 * A bound pool is either associated or disassociated with its CPU.
67 	 * While associated (!DISASSOCIATED), all workers are bound to the
68 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
69 	 * is in effect.
70 	 *
71 	 * While DISASSOCIATED, the cpu may be offline and all workers have
72 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
73 	 * be executing on any CPU.  The pool behaves as an unbound one.
74 	 *
75 	 * Note that DISASSOCIATED should be flipped only while holding
76 	 * wq_pool_attach_mutex to avoid changing binding state while
77 	 * worker_attach_to_pool() is in progress.
78 	 */
79 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
80 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
81 
82 	/* worker flags */
83 	WORKER_DIE		= 1 << 1,	/* die die die */
84 	WORKER_IDLE		= 1 << 2,	/* is idle */
85 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
86 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
87 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
88 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
89 
90 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
91 				  WORKER_UNBOUND | WORKER_REBOUND,
92 
93 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
94 
95 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
96 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
97 
98 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
99 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
100 
101 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
102 						/* call for help after 10ms
103 						   (min two ticks) */
104 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
105 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
106 
107 	/*
108 	 * Rescue workers are used only on emergencies and shared by
109 	 * all cpus.  Give MIN_NICE.
110 	 */
111 	RESCUER_NICE_LEVEL	= MIN_NICE,
112 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
113 
114 	WQ_NAME_LEN		= 24,
115 };
116 
117 /*
118  * Structure fields follow one of the following exclusion rules.
119  *
120  * I: Modifiable by initialization/destruction paths and read-only for
121  *    everyone else.
122  *
123  * P: Preemption protected.  Disabling preemption is enough and should
124  *    only be modified and accessed from the local cpu.
125  *
126  * L: pool->lock protected.  Access with pool->lock held.
127  *
128  * X: During normal operation, modification requires pool->lock and should
129  *    be done only from local cpu.  Either disabling preemption on local
130  *    cpu or grabbing pool->lock is enough for read access.  If
131  *    POOL_DISASSOCIATED is set, it's identical to L.
132  *
133  * A: wq_pool_attach_mutex protected.
134  *
135  * PL: wq_pool_mutex protected.
136  *
137  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
138  *
139  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
140  *
141  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
142  *      RCU for reads.
143  *
144  * WQ: wq->mutex protected.
145  *
146  * WR: wq->mutex protected for writes.  RCU protected for reads.
147  *
148  * MD: wq_mayday_lock protected.
149  */
150 
151 /* struct worker is defined in workqueue_internal.h */
152 
153 struct worker_pool {
154 	raw_spinlock_t		lock;		/* the pool lock */
155 	int			cpu;		/* I: the associated cpu */
156 	int			node;		/* I: the associated node ID */
157 	int			id;		/* I: pool ID */
158 	unsigned int		flags;		/* X: flags */
159 
160 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
161 
162 	struct list_head	worklist;	/* L: list of pending works */
163 
164 	int			nr_workers;	/* L: total number of workers */
165 	int			nr_idle;	/* L: currently idle workers */
166 
167 	struct list_head	idle_list;	/* X: list of idle workers */
168 	struct timer_list	idle_timer;	/* L: worker idle timeout */
169 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
170 
171 	/* a workers is either on busy_hash or idle_list, or the manager */
172 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
173 						/* L: hash of busy workers */
174 
175 	struct worker		*manager;	/* L: purely informational */
176 	struct list_head	workers;	/* A: attached workers */
177 	struct completion	*detach_completion; /* all workers detached */
178 
179 	struct ida		worker_ida;	/* worker IDs for task name */
180 
181 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
182 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
183 	int			refcnt;		/* PL: refcnt for unbound pools */
184 
185 	/*
186 	 * The current concurrency level.  As it's likely to be accessed
187 	 * from other CPUs during try_to_wake_up(), put it in a separate
188 	 * cacheline.
189 	 */
190 	atomic_t		nr_running ____cacheline_aligned_in_smp;
191 
192 	/*
193 	 * Destruction of pool is RCU protected to allow dereferences
194 	 * from get_work_pool().
195 	 */
196 	struct rcu_head		rcu;
197 } ____cacheline_aligned_in_smp;
198 
199 /*
200  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
201  * of work_struct->data are used for flags and the remaining high bits
202  * point to the pwq; thus, pwqs need to be aligned at two's power of the
203  * number of flag bits.
204  */
205 struct pool_workqueue {
206 	struct worker_pool	*pool;		/* I: the associated pool */
207 	struct workqueue_struct *wq;		/* I: the owning workqueue */
208 	int			work_color;	/* L: current color */
209 	int			flush_color;	/* L: flushing color */
210 	int			refcnt;		/* L: reference count */
211 	int			nr_in_flight[WORK_NR_COLORS];
212 						/* L: nr of in_flight works */
213 	int			nr_active;	/* L: nr of active works */
214 	int			max_active;	/* L: max active works */
215 	struct list_head	delayed_works;	/* L: delayed works */
216 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
217 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
218 
219 	/*
220 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
221 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
222 	 * itself is also RCU protected so that the first pwq can be
223 	 * determined without grabbing wq->mutex.
224 	 */
225 	struct work_struct	unbound_release_work;
226 	struct rcu_head		rcu;
227 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
228 
229 /*
230  * Structure used to wait for workqueue flush.
231  */
232 struct wq_flusher {
233 	struct list_head	list;		/* WQ: list of flushers */
234 	int			flush_color;	/* WQ: flush color waiting for */
235 	struct completion	done;		/* flush completion */
236 };
237 
238 struct wq_device;
239 
240 /*
241  * The externally visible workqueue.  It relays the issued work items to
242  * the appropriate worker_pool through its pool_workqueues.
243  */
244 struct workqueue_struct {
245 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
246 	struct list_head	list;		/* PR: list of all workqueues */
247 
248 	struct mutex		mutex;		/* protects this wq */
249 	int			work_color;	/* WQ: current work color */
250 	int			flush_color;	/* WQ: current flush color */
251 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
252 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
253 	struct list_head	flusher_queue;	/* WQ: flush waiters */
254 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
255 
256 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
257 	struct worker		*rescuer;	/* MD: rescue worker */
258 
259 	int			nr_drainers;	/* WQ: drain in progress */
260 	int			saved_max_active; /* WQ: saved pwq max_active */
261 
262 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
263 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
264 
265 #ifdef CONFIG_SYSFS
266 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
267 #endif
268 #ifdef CONFIG_LOCKDEP
269 	char			*lock_name;
270 	struct lock_class_key	key;
271 	struct lockdep_map	lockdep_map;
272 #endif
273 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
274 
275 	/*
276 	 * Destruction of workqueue_struct is RCU protected to allow walking
277 	 * the workqueues list without grabbing wq_pool_mutex.
278 	 * This is used to dump all workqueues from sysrq.
279 	 */
280 	struct rcu_head		rcu;
281 
282 	/* hot fields used during command issue, aligned to cacheline */
283 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
284 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
285 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
286 };
287 
288 static struct kmem_cache *pwq_cache;
289 
290 static cpumask_var_t *wq_numa_possible_cpumask;
291 					/* possible CPUs of each node */
292 
293 static bool wq_disable_numa;
294 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
295 
296 /* see the comment above the definition of WQ_POWER_EFFICIENT */
297 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
298 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
299 
300 static bool wq_online;			/* can kworkers be created yet? */
301 
302 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
303 
304 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
305 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
306 
307 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
308 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
309 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
310 /* wait for manager to go away */
311 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
312 
313 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
314 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
315 
316 /* PL: allowable cpus for unbound wqs and work items */
317 static cpumask_var_t wq_unbound_cpumask;
318 
319 /* CPU where unbound work was last round robin scheduled from this CPU */
320 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
321 
322 /*
323  * Local execution of unbound work items is no longer guaranteed.  The
324  * following always forces round-robin CPU selection on unbound work items
325  * to uncover usages which depend on it.
326  */
327 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
328 static bool wq_debug_force_rr_cpu = true;
329 #else
330 static bool wq_debug_force_rr_cpu = false;
331 #endif
332 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
333 
334 /* the per-cpu worker pools */
335 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
336 
337 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
338 
339 /* PL: hash of all unbound pools keyed by pool->attrs */
340 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
341 
342 /* I: attributes used when instantiating standard unbound pools on demand */
343 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
344 
345 /* I: attributes used when instantiating ordered pools on demand */
346 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
347 
348 struct workqueue_struct *system_wq __read_mostly;
349 EXPORT_SYMBOL(system_wq);
350 struct workqueue_struct *system_highpri_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_highpri_wq);
352 struct workqueue_struct *system_long_wq __read_mostly;
353 EXPORT_SYMBOL_GPL(system_long_wq);
354 struct workqueue_struct *system_unbound_wq __read_mostly;
355 EXPORT_SYMBOL_GPL(system_unbound_wq);
356 struct workqueue_struct *system_freezable_wq __read_mostly;
357 EXPORT_SYMBOL_GPL(system_freezable_wq);
358 struct workqueue_struct *system_power_efficient_wq __read_mostly;
359 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
360 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
361 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
362 
363 static int worker_thread(void *__worker);
364 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
365 static void show_pwq(struct pool_workqueue *pwq);
366 
367 #define CREATE_TRACE_POINTS
368 #include <trace/events/workqueue.h>
369 
370 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_start);
371 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_end);
372 
373 #define assert_rcu_or_pool_mutex()					\
374 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
375 			 !lockdep_is_held(&wq_pool_mutex),		\
376 			 "RCU or wq_pool_mutex should be held")
377 
378 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
379 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
380 			 !lockdep_is_held(&wq->mutex) &&		\
381 			 !lockdep_is_held(&wq_pool_mutex),		\
382 			 "RCU, wq->mutex or wq_pool_mutex should be held")
383 
384 #define for_each_cpu_worker_pool(pool, cpu)				\
385 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
386 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
387 	     (pool)++)
388 
389 /**
390  * for_each_pool - iterate through all worker_pools in the system
391  * @pool: iteration cursor
392  * @pi: integer used for iteration
393  *
394  * This must be called either with wq_pool_mutex held or RCU read
395  * locked.  If the pool needs to be used beyond the locking in effect, the
396  * caller is responsible for guaranteeing that the pool stays online.
397  *
398  * The if/else clause exists only for the lockdep assertion and can be
399  * ignored.
400  */
401 #define for_each_pool(pool, pi)						\
402 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
403 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
404 		else
405 
406 /**
407  * for_each_pool_worker - iterate through all workers of a worker_pool
408  * @worker: iteration cursor
409  * @pool: worker_pool to iterate workers of
410  *
411  * This must be called with wq_pool_attach_mutex.
412  *
413  * The if/else clause exists only for the lockdep assertion and can be
414  * ignored.
415  */
416 #define for_each_pool_worker(worker, pool)				\
417 	list_for_each_entry((worker), &(pool)->workers, node)		\
418 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
419 		else
420 
421 /**
422  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
423  * @pwq: iteration cursor
424  * @wq: the target workqueue
425  *
426  * This must be called either with wq->mutex held or RCU read locked.
427  * If the pwq needs to be used beyond the locking in effect, the caller is
428  * responsible for guaranteeing that the pwq stays online.
429  *
430  * The if/else clause exists only for the lockdep assertion and can be
431  * ignored.
432  */
433 #define for_each_pwq(pwq, wq)						\
434 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
435 				 lockdep_is_held(&(wq->mutex)))
436 
437 #ifdef CONFIG_DEBUG_OBJECTS_WORK
438 
439 static const struct debug_obj_descr work_debug_descr;
440 
work_debug_hint(void * addr)441 static void *work_debug_hint(void *addr)
442 {
443 	return ((struct work_struct *) addr)->func;
444 }
445 
work_is_static_object(void * addr)446 static bool work_is_static_object(void *addr)
447 {
448 	struct work_struct *work = addr;
449 
450 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
451 }
452 
453 /*
454  * fixup_init is called when:
455  * - an active object is initialized
456  */
work_fixup_init(void * addr,enum debug_obj_state state)457 static bool work_fixup_init(void *addr, enum debug_obj_state state)
458 {
459 	struct work_struct *work = addr;
460 
461 	switch (state) {
462 	case ODEBUG_STATE_ACTIVE:
463 		cancel_work_sync(work);
464 		debug_object_init(work, &work_debug_descr);
465 		return true;
466 	default:
467 		return false;
468 	}
469 }
470 
471 /*
472  * fixup_free is called when:
473  * - an active object is freed
474  */
work_fixup_free(void * addr,enum debug_obj_state state)475 static bool work_fixup_free(void *addr, enum debug_obj_state state)
476 {
477 	struct work_struct *work = addr;
478 
479 	switch (state) {
480 	case ODEBUG_STATE_ACTIVE:
481 		cancel_work_sync(work);
482 		debug_object_free(work, &work_debug_descr);
483 		return true;
484 	default:
485 		return false;
486 	}
487 }
488 
489 static const struct debug_obj_descr work_debug_descr = {
490 	.name		= "work_struct",
491 	.debug_hint	= work_debug_hint,
492 	.is_static_object = work_is_static_object,
493 	.fixup_init	= work_fixup_init,
494 	.fixup_free	= work_fixup_free,
495 };
496 
debug_work_activate(struct work_struct * work)497 static inline void debug_work_activate(struct work_struct *work)
498 {
499 	debug_object_activate(work, &work_debug_descr);
500 }
501 
debug_work_deactivate(struct work_struct * work)502 static inline void debug_work_deactivate(struct work_struct *work)
503 {
504 	debug_object_deactivate(work, &work_debug_descr);
505 }
506 
__init_work(struct work_struct * work,int onstack)507 void __init_work(struct work_struct *work, int onstack)
508 {
509 	if (onstack)
510 		debug_object_init_on_stack(work, &work_debug_descr);
511 	else
512 		debug_object_init(work, &work_debug_descr);
513 }
514 EXPORT_SYMBOL_GPL(__init_work);
515 
destroy_work_on_stack(struct work_struct * work)516 void destroy_work_on_stack(struct work_struct *work)
517 {
518 	debug_object_free(work, &work_debug_descr);
519 }
520 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
521 
destroy_delayed_work_on_stack(struct delayed_work * work)522 void destroy_delayed_work_on_stack(struct delayed_work *work)
523 {
524 	destroy_timer_on_stack(&work->timer);
525 	debug_object_free(&work->work, &work_debug_descr);
526 }
527 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
528 
529 #else
debug_work_activate(struct work_struct * work)530 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)531 static inline void debug_work_deactivate(struct work_struct *work) { }
532 #endif
533 
534 /**
535  * worker_pool_assign_id - allocate ID and assing it to @pool
536  * @pool: the pool pointer of interest
537  *
538  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
539  * successfully, -errno on failure.
540  */
worker_pool_assign_id(struct worker_pool * pool)541 static int worker_pool_assign_id(struct worker_pool *pool)
542 {
543 	int ret;
544 
545 	lockdep_assert_held(&wq_pool_mutex);
546 
547 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
548 			GFP_KERNEL);
549 	if (ret >= 0) {
550 		pool->id = ret;
551 		return 0;
552 	}
553 	return ret;
554 }
555 
556 /**
557  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
558  * @wq: the target workqueue
559  * @node: the node ID
560  *
561  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
562  * read locked.
563  * If the pwq needs to be used beyond the locking in effect, the caller is
564  * responsible for guaranteeing that the pwq stays online.
565  *
566  * Return: The unbound pool_workqueue for @node.
567  */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)568 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
569 						  int node)
570 {
571 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
572 
573 	/*
574 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
575 	 * delayed item is pending.  The plan is to keep CPU -> NODE
576 	 * mapping valid and stable across CPU on/offlines.  Once that
577 	 * happens, this workaround can be removed.
578 	 */
579 	if (unlikely(node == NUMA_NO_NODE))
580 		return wq->dfl_pwq;
581 
582 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
583 }
584 
work_color_to_flags(int color)585 static unsigned int work_color_to_flags(int color)
586 {
587 	return color << WORK_STRUCT_COLOR_SHIFT;
588 }
589 
get_work_color(struct work_struct * work)590 static int get_work_color(struct work_struct *work)
591 {
592 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
593 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
594 }
595 
work_next_color(int color)596 static int work_next_color(int color)
597 {
598 	return (color + 1) % WORK_NR_COLORS;
599 }
600 
601 /*
602  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
603  * contain the pointer to the queued pwq.  Once execution starts, the flag
604  * is cleared and the high bits contain OFFQ flags and pool ID.
605  *
606  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
607  * and clear_work_data() can be used to set the pwq, pool or clear
608  * work->data.  These functions should only be called while the work is
609  * owned - ie. while the PENDING bit is set.
610  *
611  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
612  * corresponding to a work.  Pool is available once the work has been
613  * queued anywhere after initialization until it is sync canceled.  pwq is
614  * available only while the work item is queued.
615  *
616  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
617  * canceled.  While being canceled, a work item may have its PENDING set
618  * but stay off timer and worklist for arbitrarily long and nobody should
619  * try to steal the PENDING bit.
620  */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)621 static inline void set_work_data(struct work_struct *work, unsigned long data,
622 				 unsigned long flags)
623 {
624 	WARN_ON_ONCE(!work_pending(work));
625 	atomic_long_set(&work->data, data | flags | work_static(work));
626 }
627 
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)628 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
629 			 unsigned long extra_flags)
630 {
631 	set_work_data(work, (unsigned long)pwq,
632 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
633 }
634 
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)635 static void set_work_pool_and_keep_pending(struct work_struct *work,
636 					   int pool_id)
637 {
638 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
639 		      WORK_STRUCT_PENDING);
640 }
641 
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)642 static void set_work_pool_and_clear_pending(struct work_struct *work,
643 					    int pool_id)
644 {
645 	/*
646 	 * The following wmb is paired with the implied mb in
647 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
648 	 * here are visible to and precede any updates by the next PENDING
649 	 * owner.
650 	 */
651 	smp_wmb();
652 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
653 	/*
654 	 * The following mb guarantees that previous clear of a PENDING bit
655 	 * will not be reordered with any speculative LOADS or STORES from
656 	 * work->current_func, which is executed afterwards.  This possible
657 	 * reordering can lead to a missed execution on attempt to queue
658 	 * the same @work.  E.g. consider this case:
659 	 *
660 	 *   CPU#0                         CPU#1
661 	 *   ----------------------------  --------------------------------
662 	 *
663 	 * 1  STORE event_indicated
664 	 * 2  queue_work_on() {
665 	 * 3    test_and_set_bit(PENDING)
666 	 * 4 }                             set_..._and_clear_pending() {
667 	 * 5                                 set_work_data() # clear bit
668 	 * 6                                 smp_mb()
669 	 * 7                               work->current_func() {
670 	 * 8				      LOAD event_indicated
671 	 *				   }
672 	 *
673 	 * Without an explicit full barrier speculative LOAD on line 8 can
674 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
675 	 * CPU#0 observes the PENDING bit is still set and new execution of
676 	 * a @work is not queued in a hope, that CPU#1 will eventually
677 	 * finish the queued @work.  Meanwhile CPU#1 does not see
678 	 * event_indicated is set, because speculative LOAD was executed
679 	 * before actual STORE.
680 	 */
681 	smp_mb();
682 }
683 
clear_work_data(struct work_struct * work)684 static void clear_work_data(struct work_struct *work)
685 {
686 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
687 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
688 }
689 
work_struct_pwq(unsigned long data)690 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
691 {
692 	return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
693 }
694 
get_work_pwq(struct work_struct * work)695 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
696 {
697 	unsigned long data = atomic_long_read(&work->data);
698 
699 	if (data & WORK_STRUCT_PWQ)
700 		return work_struct_pwq(data);
701 	else
702 		return NULL;
703 }
704 
705 /**
706  * get_work_pool - return the worker_pool a given work was associated with
707  * @work: the work item of interest
708  *
709  * Pools are created and destroyed under wq_pool_mutex, and allows read
710  * access under RCU read lock.  As such, this function should be
711  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
712  *
713  * All fields of the returned pool are accessible as long as the above
714  * mentioned locking is in effect.  If the returned pool needs to be used
715  * beyond the critical section, the caller is responsible for ensuring the
716  * returned pool is and stays online.
717  *
718  * Return: The worker_pool @work was last associated with.  %NULL if none.
719  */
get_work_pool(struct work_struct * work)720 static struct worker_pool *get_work_pool(struct work_struct *work)
721 {
722 	unsigned long data = atomic_long_read(&work->data);
723 	int pool_id;
724 
725 	assert_rcu_or_pool_mutex();
726 
727 	if (data & WORK_STRUCT_PWQ)
728 		return work_struct_pwq(data)->pool;
729 
730 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
731 	if (pool_id == WORK_OFFQ_POOL_NONE)
732 		return NULL;
733 
734 	return idr_find(&worker_pool_idr, pool_id);
735 }
736 
737 /**
738  * get_work_pool_id - return the worker pool ID a given work is associated with
739  * @work: the work item of interest
740  *
741  * Return: The worker_pool ID @work was last associated with.
742  * %WORK_OFFQ_POOL_NONE if none.
743  */
get_work_pool_id(struct work_struct * work)744 static int get_work_pool_id(struct work_struct *work)
745 {
746 	unsigned long data = atomic_long_read(&work->data);
747 
748 	if (data & WORK_STRUCT_PWQ)
749 		return work_struct_pwq(data)->pool->id;
750 
751 	return data >> WORK_OFFQ_POOL_SHIFT;
752 }
753 
mark_work_canceling(struct work_struct * work)754 static void mark_work_canceling(struct work_struct *work)
755 {
756 	unsigned long pool_id = get_work_pool_id(work);
757 
758 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
759 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
760 }
761 
work_is_canceling(struct work_struct * work)762 static bool work_is_canceling(struct work_struct *work)
763 {
764 	unsigned long data = atomic_long_read(&work->data);
765 
766 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
767 }
768 
769 /*
770  * Policy functions.  These define the policies on how the global worker
771  * pools are managed.  Unless noted otherwise, these functions assume that
772  * they're being called with pool->lock held.
773  */
774 
__need_more_worker(struct worker_pool * pool)775 static bool __need_more_worker(struct worker_pool *pool)
776 {
777 	return !atomic_read(&pool->nr_running);
778 }
779 
780 /*
781  * Need to wake up a worker?  Called from anything but currently
782  * running workers.
783  *
784  * Note that, because unbound workers never contribute to nr_running, this
785  * function will always return %true for unbound pools as long as the
786  * worklist isn't empty.
787  */
need_more_worker(struct worker_pool * pool)788 static bool need_more_worker(struct worker_pool *pool)
789 {
790 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
791 }
792 
793 /* Can I start working?  Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)794 static bool may_start_working(struct worker_pool *pool)
795 {
796 	return pool->nr_idle;
797 }
798 
799 /* Do I need to keep working?  Called from currently running workers. */
keep_working(struct worker_pool * pool)800 static bool keep_working(struct worker_pool *pool)
801 {
802 	return !list_empty(&pool->worklist) &&
803 		atomic_read(&pool->nr_running) <= 1;
804 }
805 
806 /* Do we need a new worker?  Called from manager. */
need_to_create_worker(struct worker_pool * pool)807 static bool need_to_create_worker(struct worker_pool *pool)
808 {
809 	return need_more_worker(pool) && !may_start_working(pool);
810 }
811 
812 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)813 static bool too_many_workers(struct worker_pool *pool)
814 {
815 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
816 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
817 	int nr_busy = pool->nr_workers - nr_idle;
818 
819 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
820 }
821 
822 /*
823  * Wake up functions.
824  */
825 
826 /* Return the first idle worker.  Safe with preemption disabled */
first_idle_worker(struct worker_pool * pool)827 static struct worker *first_idle_worker(struct worker_pool *pool)
828 {
829 	if (unlikely(list_empty(&pool->idle_list)))
830 		return NULL;
831 
832 	return list_first_entry(&pool->idle_list, struct worker, entry);
833 }
834 
835 /**
836  * wake_up_worker - wake up an idle worker
837  * @pool: worker pool to wake worker from
838  *
839  * Wake up the first idle worker of @pool.
840  *
841  * CONTEXT:
842  * raw_spin_lock_irq(pool->lock).
843  */
wake_up_worker(struct worker_pool * pool)844 static void wake_up_worker(struct worker_pool *pool)
845 {
846 	struct worker *worker = first_idle_worker(pool);
847 
848 	if (likely(worker))
849 		wake_up_process(worker->task);
850 }
851 
852 /**
853  * wq_worker_running - a worker is running again
854  * @task: task waking up
855  *
856  * This function is called when a worker returns from schedule()
857  */
wq_worker_running(struct task_struct * task)858 void wq_worker_running(struct task_struct *task)
859 {
860 	struct worker *worker = kthread_data(task);
861 
862 	if (!worker->sleeping)
863 		return;
864 
865 	/*
866 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
867 	 * and the nr_running increment below, we may ruin the nr_running reset
868 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
869 	 * pool. Protect against such race.
870 	 */
871 	preempt_disable();
872 	if (!(worker->flags & WORKER_NOT_RUNNING))
873 		atomic_inc(&worker->pool->nr_running);
874 	preempt_enable();
875 	worker->sleeping = 0;
876 }
877 
878 /**
879  * wq_worker_sleeping - a worker is going to sleep
880  * @task: task going to sleep
881  *
882  * This function is called from schedule() when a busy worker is
883  * going to sleep. Preemption needs to be disabled to protect ->sleeping
884  * assignment.
885  */
wq_worker_sleeping(struct task_struct * task)886 void wq_worker_sleeping(struct task_struct *task)
887 {
888 	struct worker *next, *worker = kthread_data(task);
889 	struct worker_pool *pool;
890 
891 	/*
892 	 * Rescuers, which may not have all the fields set up like normal
893 	 * workers, also reach here, let's not access anything before
894 	 * checking NOT_RUNNING.
895 	 */
896 	if (worker->flags & WORKER_NOT_RUNNING)
897 		return;
898 
899 	pool = worker->pool;
900 
901 	/* Return if preempted before wq_worker_running() was reached */
902 	if (worker->sleeping)
903 		return;
904 
905 	worker->sleeping = 1;
906 	raw_spin_lock_irq(&pool->lock);
907 
908 	/*
909 	 * The counterpart of the following dec_and_test, implied mb,
910 	 * worklist not empty test sequence is in insert_work().
911 	 * Please read comment there.
912 	 *
913 	 * NOT_RUNNING is clear.  This means that we're bound to and
914 	 * running on the local cpu w/ rq lock held and preemption
915 	 * disabled, which in turn means that none else could be
916 	 * manipulating idle_list, so dereferencing idle_list without pool
917 	 * lock is safe.
918 	 */
919 	if (atomic_dec_and_test(&pool->nr_running) &&
920 	    !list_empty(&pool->worklist)) {
921 		next = first_idle_worker(pool);
922 		if (next)
923 			wake_up_process(next->task);
924 	}
925 	raw_spin_unlock_irq(&pool->lock);
926 }
927 
928 /**
929  * wq_worker_last_func - retrieve worker's last work function
930  * @task: Task to retrieve last work function of.
931  *
932  * Determine the last function a worker executed. This is called from
933  * the scheduler to get a worker's last known identity.
934  *
935  * CONTEXT:
936  * raw_spin_lock_irq(rq->lock)
937  *
938  * This function is called during schedule() when a kworker is going
939  * to sleep. It's used by psi to identify aggregation workers during
940  * dequeuing, to allow periodic aggregation to shut-off when that
941  * worker is the last task in the system or cgroup to go to sleep.
942  *
943  * As this function doesn't involve any workqueue-related locking, it
944  * only returns stable values when called from inside the scheduler's
945  * queuing and dequeuing paths, when @task, which must be a kworker,
946  * is guaranteed to not be processing any works.
947  *
948  * Return:
949  * The last work function %current executed as a worker, NULL if it
950  * hasn't executed any work yet.
951  */
wq_worker_last_func(struct task_struct * task)952 work_func_t wq_worker_last_func(struct task_struct *task)
953 {
954 	struct worker *worker = kthread_data(task);
955 
956 	return worker->last_func;
957 }
958 
959 /**
960  * worker_set_flags - set worker flags and adjust nr_running accordingly
961  * @worker: self
962  * @flags: flags to set
963  *
964  * Set @flags in @worker->flags and adjust nr_running accordingly.
965  *
966  * CONTEXT:
967  * raw_spin_lock_irq(pool->lock)
968  */
worker_set_flags(struct worker * worker,unsigned int flags)969 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
970 {
971 	struct worker_pool *pool = worker->pool;
972 
973 	WARN_ON_ONCE(worker->task != current);
974 
975 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
976 	if ((flags & WORKER_NOT_RUNNING) &&
977 	    !(worker->flags & WORKER_NOT_RUNNING)) {
978 		atomic_dec(&pool->nr_running);
979 	}
980 
981 	worker->flags |= flags;
982 }
983 
984 /**
985  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
986  * @worker: self
987  * @flags: flags to clear
988  *
989  * Clear @flags in @worker->flags and adjust nr_running accordingly.
990  *
991  * CONTEXT:
992  * raw_spin_lock_irq(pool->lock)
993  */
worker_clr_flags(struct worker * worker,unsigned int flags)994 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
995 {
996 	struct worker_pool *pool = worker->pool;
997 	unsigned int oflags = worker->flags;
998 
999 	WARN_ON_ONCE(worker->task != current);
1000 
1001 	worker->flags &= ~flags;
1002 
1003 	/*
1004 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1005 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1006 	 * of multiple flags, not a single flag.
1007 	 */
1008 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1009 		if (!(worker->flags & WORKER_NOT_RUNNING))
1010 			atomic_inc(&pool->nr_running);
1011 }
1012 
1013 /**
1014  * find_worker_executing_work - find worker which is executing a work
1015  * @pool: pool of interest
1016  * @work: work to find worker for
1017  *
1018  * Find a worker which is executing @work on @pool by searching
1019  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1020  * to match, its current execution should match the address of @work and
1021  * its work function.  This is to avoid unwanted dependency between
1022  * unrelated work executions through a work item being recycled while still
1023  * being executed.
1024  *
1025  * This is a bit tricky.  A work item may be freed once its execution
1026  * starts and nothing prevents the freed area from being recycled for
1027  * another work item.  If the same work item address ends up being reused
1028  * before the original execution finishes, workqueue will identify the
1029  * recycled work item as currently executing and make it wait until the
1030  * current execution finishes, introducing an unwanted dependency.
1031  *
1032  * This function checks the work item address and work function to avoid
1033  * false positives.  Note that this isn't complete as one may construct a
1034  * work function which can introduce dependency onto itself through a
1035  * recycled work item.  Well, if somebody wants to shoot oneself in the
1036  * foot that badly, there's only so much we can do, and if such deadlock
1037  * actually occurs, it should be easy to locate the culprit work function.
1038  *
1039  * CONTEXT:
1040  * raw_spin_lock_irq(pool->lock).
1041  *
1042  * Return:
1043  * Pointer to worker which is executing @work if found, %NULL
1044  * otherwise.
1045  */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1046 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1047 						 struct work_struct *work)
1048 {
1049 	struct worker *worker;
1050 
1051 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1052 			       (unsigned long)work)
1053 		if (worker->current_work == work &&
1054 		    worker->current_func == work->func)
1055 			return worker;
1056 
1057 	return NULL;
1058 }
1059 
1060 /**
1061  * move_linked_works - move linked works to a list
1062  * @work: start of series of works to be scheduled
1063  * @head: target list to append @work to
1064  * @nextp: out parameter for nested worklist walking
1065  *
1066  * Schedule linked works starting from @work to @head.  Work series to
1067  * be scheduled starts at @work and includes any consecutive work with
1068  * WORK_STRUCT_LINKED set in its predecessor.
1069  *
1070  * If @nextp is not NULL, it's updated to point to the next work of
1071  * the last scheduled work.  This allows move_linked_works() to be
1072  * nested inside outer list_for_each_entry_safe().
1073  *
1074  * CONTEXT:
1075  * raw_spin_lock_irq(pool->lock).
1076  */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1077 static void move_linked_works(struct work_struct *work, struct list_head *head,
1078 			      struct work_struct **nextp)
1079 {
1080 	struct work_struct *n;
1081 
1082 	/*
1083 	 * Linked worklist will always end before the end of the list,
1084 	 * use NULL for list head.
1085 	 */
1086 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1087 		list_move_tail(&work->entry, head);
1088 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1089 			break;
1090 	}
1091 
1092 	/*
1093 	 * If we're already inside safe list traversal and have moved
1094 	 * multiple works to the scheduled queue, the next position
1095 	 * needs to be updated.
1096 	 */
1097 	if (nextp)
1098 		*nextp = n;
1099 }
1100 
1101 /**
1102  * get_pwq - get an extra reference on the specified pool_workqueue
1103  * @pwq: pool_workqueue to get
1104  *
1105  * Obtain an extra reference on @pwq.  The caller should guarantee that
1106  * @pwq has positive refcnt and be holding the matching pool->lock.
1107  */
get_pwq(struct pool_workqueue * pwq)1108 static void get_pwq(struct pool_workqueue *pwq)
1109 {
1110 	lockdep_assert_held(&pwq->pool->lock);
1111 	WARN_ON_ONCE(pwq->refcnt <= 0);
1112 	pwq->refcnt++;
1113 }
1114 
1115 /**
1116  * put_pwq - put a pool_workqueue reference
1117  * @pwq: pool_workqueue to put
1118  *
1119  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1120  * destruction.  The caller should be holding the matching pool->lock.
1121  */
put_pwq(struct pool_workqueue * pwq)1122 static void put_pwq(struct pool_workqueue *pwq)
1123 {
1124 	lockdep_assert_held(&pwq->pool->lock);
1125 	if (likely(--pwq->refcnt))
1126 		return;
1127 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1128 		return;
1129 	/*
1130 	 * @pwq can't be released under pool->lock, bounce to
1131 	 * pwq_unbound_release_workfn().  This never recurses on the same
1132 	 * pool->lock as this path is taken only for unbound workqueues and
1133 	 * the release work item is scheduled on a per-cpu workqueue.  To
1134 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1135 	 * subclass of 1 in get_unbound_pool().
1136 	 */
1137 	schedule_work(&pwq->unbound_release_work);
1138 }
1139 
1140 /**
1141  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1142  * @pwq: pool_workqueue to put (can be %NULL)
1143  *
1144  * put_pwq() with locking.  This function also allows %NULL @pwq.
1145  */
put_pwq_unlocked(struct pool_workqueue * pwq)1146 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1147 {
1148 	if (pwq) {
1149 		/*
1150 		 * As both pwqs and pools are RCU protected, the
1151 		 * following lock operations are safe.
1152 		 */
1153 		raw_spin_lock_irq(&pwq->pool->lock);
1154 		put_pwq(pwq);
1155 		raw_spin_unlock_irq(&pwq->pool->lock);
1156 	}
1157 }
1158 
pwq_activate_delayed_work(struct work_struct * work)1159 static void pwq_activate_delayed_work(struct work_struct *work)
1160 {
1161 	struct pool_workqueue *pwq = get_work_pwq(work);
1162 
1163 	trace_workqueue_activate_work(work);
1164 	if (list_empty(&pwq->pool->worklist))
1165 		pwq->pool->watchdog_ts = jiffies;
1166 	move_linked_works(work, &pwq->pool->worklist, NULL);
1167 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1168 	pwq->nr_active++;
1169 }
1170 
pwq_activate_first_delayed(struct pool_workqueue * pwq)1171 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1172 {
1173 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1174 						    struct work_struct, entry);
1175 
1176 	pwq_activate_delayed_work(work);
1177 }
1178 
1179 /**
1180  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1181  * @pwq: pwq of interest
1182  * @color: color of work which left the queue
1183  *
1184  * A work either has completed or is removed from pending queue,
1185  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1186  *
1187  * CONTEXT:
1188  * raw_spin_lock_irq(pool->lock).
1189  */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,int color)1190 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1191 {
1192 	/* uncolored work items don't participate in flushing or nr_active */
1193 	if (color == WORK_NO_COLOR)
1194 		goto out_put;
1195 
1196 	pwq->nr_in_flight[color]--;
1197 
1198 	pwq->nr_active--;
1199 	if (!list_empty(&pwq->delayed_works)) {
1200 		/* one down, submit a delayed one */
1201 		if (pwq->nr_active < pwq->max_active)
1202 			pwq_activate_first_delayed(pwq);
1203 	}
1204 
1205 	/* is flush in progress and are we at the flushing tip? */
1206 	if (likely(pwq->flush_color != color))
1207 		goto out_put;
1208 
1209 	/* are there still in-flight works? */
1210 	if (pwq->nr_in_flight[color])
1211 		goto out_put;
1212 
1213 	/* this pwq is done, clear flush_color */
1214 	pwq->flush_color = -1;
1215 
1216 	/*
1217 	 * If this was the last pwq, wake up the first flusher.  It
1218 	 * will handle the rest.
1219 	 */
1220 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1221 		complete(&pwq->wq->first_flusher->done);
1222 out_put:
1223 	put_pwq(pwq);
1224 }
1225 
1226 /**
1227  * try_to_grab_pending - steal work item from worklist and disable irq
1228  * @work: work item to steal
1229  * @is_dwork: @work is a delayed_work
1230  * @flags: place to store irq state
1231  *
1232  * Try to grab PENDING bit of @work.  This function can handle @work in any
1233  * stable state - idle, on timer or on worklist.
1234  *
1235  * Return:
1236  *
1237  *  ========	================================================================
1238  *  1		if @work was pending and we successfully stole PENDING
1239  *  0		if @work was idle and we claimed PENDING
1240  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1241  *  -ENOENT	if someone else is canceling @work, this state may persist
1242  *		for arbitrarily long
1243  *  ========	================================================================
1244  *
1245  * Note:
1246  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1247  * interrupted while holding PENDING and @work off queue, irq must be
1248  * disabled on entry.  This, combined with delayed_work->timer being
1249  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1250  *
1251  * On successful return, >= 0, irq is disabled and the caller is
1252  * responsible for releasing it using local_irq_restore(*@flags).
1253  *
1254  * This function is safe to call from any context including IRQ handler.
1255  */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1256 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1257 			       unsigned long *flags)
1258 {
1259 	struct worker_pool *pool;
1260 	struct pool_workqueue *pwq;
1261 
1262 	local_irq_save(*flags);
1263 
1264 	/* try to steal the timer if it exists */
1265 	if (is_dwork) {
1266 		struct delayed_work *dwork = to_delayed_work(work);
1267 
1268 		/*
1269 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1270 		 * guaranteed that the timer is not queued anywhere and not
1271 		 * running on the local CPU.
1272 		 */
1273 		if (likely(del_timer(&dwork->timer)))
1274 			return 1;
1275 	}
1276 
1277 	/* try to claim PENDING the normal way */
1278 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1279 		return 0;
1280 
1281 	rcu_read_lock();
1282 	/*
1283 	 * The queueing is in progress, or it is already queued. Try to
1284 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1285 	 */
1286 	pool = get_work_pool(work);
1287 	if (!pool)
1288 		goto fail;
1289 
1290 	raw_spin_lock(&pool->lock);
1291 	/*
1292 	 * work->data is guaranteed to point to pwq only while the work
1293 	 * item is queued on pwq->wq, and both updating work->data to point
1294 	 * to pwq on queueing and to pool on dequeueing are done under
1295 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1296 	 * points to pwq which is associated with a locked pool, the work
1297 	 * item is currently queued on that pool.
1298 	 */
1299 	pwq = get_work_pwq(work);
1300 	if (pwq && pwq->pool == pool) {
1301 		debug_work_deactivate(work);
1302 
1303 		/*
1304 		 * A delayed work item cannot be grabbed directly because
1305 		 * it might have linked NO_COLOR work items which, if left
1306 		 * on the delayed_list, will confuse pwq->nr_active
1307 		 * management later on and cause stall.  Make sure the work
1308 		 * item is activated before grabbing.
1309 		 */
1310 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1311 			pwq_activate_delayed_work(work);
1312 
1313 		list_del_init(&work->entry);
1314 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1315 
1316 		/* work->data points to pwq iff queued, point to pool */
1317 		set_work_pool_and_keep_pending(work, pool->id);
1318 
1319 		raw_spin_unlock(&pool->lock);
1320 		rcu_read_unlock();
1321 		return 1;
1322 	}
1323 	raw_spin_unlock(&pool->lock);
1324 fail:
1325 	rcu_read_unlock();
1326 	local_irq_restore(*flags);
1327 	if (work_is_canceling(work))
1328 		return -ENOENT;
1329 	cpu_relax();
1330 	return -EAGAIN;
1331 }
1332 
1333 /**
1334  * insert_work - insert a work into a pool
1335  * @pwq: pwq @work belongs to
1336  * @work: work to insert
1337  * @head: insertion point
1338  * @extra_flags: extra WORK_STRUCT_* flags to set
1339  *
1340  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1341  * work_struct flags.
1342  *
1343  * CONTEXT:
1344  * raw_spin_lock_irq(pool->lock).
1345  */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1346 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1347 			struct list_head *head, unsigned int extra_flags)
1348 {
1349 	struct worker_pool *pool = pwq->pool;
1350 
1351 	/* record the work call stack in order to print it in KASAN reports */
1352 	kasan_record_aux_stack_noalloc(work);
1353 
1354 	/* we own @work, set data and link */
1355 	set_work_pwq(work, pwq, extra_flags);
1356 	list_add_tail(&work->entry, head);
1357 	get_pwq(pwq);
1358 
1359 	/*
1360 	 * Ensure either wq_worker_sleeping() sees the above
1361 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1362 	 * around lazily while there are works to be processed.
1363 	 */
1364 	smp_mb();
1365 
1366 	if (__need_more_worker(pool))
1367 		wake_up_worker(pool);
1368 }
1369 
1370 /*
1371  * Test whether @work is being queued from another work executing on the
1372  * same workqueue.
1373  */
is_chained_work(struct workqueue_struct * wq)1374 static bool is_chained_work(struct workqueue_struct *wq)
1375 {
1376 	struct worker *worker;
1377 
1378 	worker = current_wq_worker();
1379 	/*
1380 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1381 	 * I'm @worker, it's safe to dereference it without locking.
1382 	 */
1383 	return worker && worker->current_pwq->wq == wq;
1384 }
1385 
1386 /*
1387  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1388  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1389  * avoid perturbing sensitive tasks.
1390  */
wq_select_unbound_cpu(int cpu)1391 static int wq_select_unbound_cpu(int cpu)
1392 {
1393 	static bool printed_dbg_warning;
1394 	int new_cpu;
1395 
1396 	if (likely(!wq_debug_force_rr_cpu)) {
1397 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1398 			return cpu;
1399 	} else if (!printed_dbg_warning) {
1400 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1401 		printed_dbg_warning = true;
1402 	}
1403 
1404 	if (cpumask_empty(wq_unbound_cpumask))
1405 		return cpu;
1406 
1407 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1408 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1409 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1410 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1411 		if (unlikely(new_cpu >= nr_cpu_ids))
1412 			return cpu;
1413 	}
1414 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1415 
1416 	return new_cpu;
1417 }
1418 
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1419 static void __queue_work(int cpu, struct workqueue_struct *wq,
1420 			 struct work_struct *work)
1421 {
1422 	struct pool_workqueue *pwq;
1423 	struct worker_pool *last_pool;
1424 	struct list_head *worklist;
1425 	unsigned int work_flags;
1426 	unsigned int req_cpu = cpu;
1427 
1428 	/*
1429 	 * While a work item is PENDING && off queue, a task trying to
1430 	 * steal the PENDING will busy-loop waiting for it to either get
1431 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1432 	 * happen with IRQ disabled.
1433 	 */
1434 	lockdep_assert_irqs_disabled();
1435 
1436 
1437 	/* if draining, only works from the same workqueue are allowed */
1438 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1439 	    WARN_ON_ONCE(!is_chained_work(wq)))
1440 		return;
1441 	rcu_read_lock();
1442 retry:
1443 	/* pwq which will be used unless @work is executing elsewhere */
1444 	if (wq->flags & WQ_UNBOUND) {
1445 		if (req_cpu == WORK_CPU_UNBOUND)
1446 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1447 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1448 	} else {
1449 		if (req_cpu == WORK_CPU_UNBOUND)
1450 			cpu = raw_smp_processor_id();
1451 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1452 	}
1453 
1454 	/*
1455 	 * If @work was previously on a different pool, it might still be
1456 	 * running there, in which case the work needs to be queued on that
1457 	 * pool to guarantee non-reentrancy.
1458 	 */
1459 	last_pool = get_work_pool(work);
1460 	if (last_pool && last_pool != pwq->pool) {
1461 		struct worker *worker;
1462 
1463 		raw_spin_lock(&last_pool->lock);
1464 
1465 		worker = find_worker_executing_work(last_pool, work);
1466 
1467 		if (worker && worker->current_pwq->wq == wq) {
1468 			pwq = worker->current_pwq;
1469 		} else {
1470 			/* meh... not running there, queue here */
1471 			raw_spin_unlock(&last_pool->lock);
1472 			raw_spin_lock(&pwq->pool->lock);
1473 		}
1474 	} else {
1475 		raw_spin_lock(&pwq->pool->lock);
1476 	}
1477 
1478 	/*
1479 	 * pwq is determined and locked.  For unbound pools, we could have
1480 	 * raced with pwq release and it could already be dead.  If its
1481 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1482 	 * without another pwq replacing it in the numa_pwq_tbl or while
1483 	 * work items are executing on it, so the retrying is guaranteed to
1484 	 * make forward-progress.
1485 	 */
1486 	if (unlikely(!pwq->refcnt)) {
1487 		if (wq->flags & WQ_UNBOUND) {
1488 			raw_spin_unlock(&pwq->pool->lock);
1489 			cpu_relax();
1490 			goto retry;
1491 		}
1492 		/* oops */
1493 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1494 			  wq->name, cpu);
1495 	}
1496 
1497 	/* pwq determined, queue */
1498 	trace_workqueue_queue_work(req_cpu, pwq, work);
1499 
1500 	if (WARN_ON(!list_empty(&work->entry)))
1501 		goto out;
1502 
1503 	pwq->nr_in_flight[pwq->work_color]++;
1504 	work_flags = work_color_to_flags(pwq->work_color);
1505 
1506 	if (likely(pwq->nr_active < pwq->max_active)) {
1507 		trace_workqueue_activate_work(work);
1508 		pwq->nr_active++;
1509 		worklist = &pwq->pool->worklist;
1510 		if (list_empty(worklist))
1511 			pwq->pool->watchdog_ts = jiffies;
1512 	} else {
1513 		work_flags |= WORK_STRUCT_DELAYED;
1514 		worklist = &pwq->delayed_works;
1515 	}
1516 
1517 	debug_work_activate(work);
1518 	insert_work(pwq, work, worklist, work_flags);
1519 
1520 out:
1521 	raw_spin_unlock(&pwq->pool->lock);
1522 	rcu_read_unlock();
1523 }
1524 
1525 /**
1526  * queue_work_on - queue work on specific cpu
1527  * @cpu: CPU number to execute work on
1528  * @wq: workqueue to use
1529  * @work: work to queue
1530  *
1531  * We queue the work to a specific CPU, the caller must ensure it
1532  * can't go away.
1533  *
1534  * Return: %false if @work was already on a queue, %true otherwise.
1535  */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1536 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1537 		   struct work_struct *work)
1538 {
1539 	bool ret = false;
1540 	unsigned long flags;
1541 
1542 	local_irq_save(flags);
1543 
1544 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1545 		__queue_work(cpu, wq, work);
1546 		ret = true;
1547 	}
1548 
1549 	local_irq_restore(flags);
1550 	return ret;
1551 }
1552 EXPORT_SYMBOL(queue_work_on);
1553 
1554 /**
1555  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1556  * @node: NUMA node ID that we want to select a CPU from
1557  *
1558  * This function will attempt to find a "random" cpu available on a given
1559  * node. If there are no CPUs available on the given node it will return
1560  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1561  * available CPU if we need to schedule this work.
1562  */
workqueue_select_cpu_near(int node)1563 static int workqueue_select_cpu_near(int node)
1564 {
1565 	int cpu;
1566 
1567 	/* No point in doing this if NUMA isn't enabled for workqueues */
1568 	if (!wq_numa_enabled)
1569 		return WORK_CPU_UNBOUND;
1570 
1571 	/* Delay binding to CPU if node is not valid or online */
1572 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1573 		return WORK_CPU_UNBOUND;
1574 
1575 	/* Use local node/cpu if we are already there */
1576 	cpu = raw_smp_processor_id();
1577 	if (node == cpu_to_node(cpu))
1578 		return cpu;
1579 
1580 	/* Use "random" otherwise know as "first" online CPU of node */
1581 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1582 
1583 	/* If CPU is valid return that, otherwise just defer */
1584 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1585 }
1586 
1587 /**
1588  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1589  * @node: NUMA node that we are targeting the work for
1590  * @wq: workqueue to use
1591  * @work: work to queue
1592  *
1593  * We queue the work to a "random" CPU within a given NUMA node. The basic
1594  * idea here is to provide a way to somehow associate work with a given
1595  * NUMA node.
1596  *
1597  * This function will only make a best effort attempt at getting this onto
1598  * the right NUMA node. If no node is requested or the requested node is
1599  * offline then we just fall back to standard queue_work behavior.
1600  *
1601  * Currently the "random" CPU ends up being the first available CPU in the
1602  * intersection of cpu_online_mask and the cpumask of the node, unless we
1603  * are running on the node. In that case we just use the current CPU.
1604  *
1605  * Return: %false if @work was already on a queue, %true otherwise.
1606  */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)1607 bool queue_work_node(int node, struct workqueue_struct *wq,
1608 		     struct work_struct *work)
1609 {
1610 	unsigned long flags;
1611 	bool ret = false;
1612 
1613 	/*
1614 	 * This current implementation is specific to unbound workqueues.
1615 	 * Specifically we only return the first available CPU for a given
1616 	 * node instead of cycling through individual CPUs within the node.
1617 	 *
1618 	 * If this is used with a per-cpu workqueue then the logic in
1619 	 * workqueue_select_cpu_near would need to be updated to allow for
1620 	 * some round robin type logic.
1621 	 */
1622 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1623 
1624 	local_irq_save(flags);
1625 
1626 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1627 		int cpu = workqueue_select_cpu_near(node);
1628 
1629 		__queue_work(cpu, wq, work);
1630 		ret = true;
1631 	}
1632 
1633 	local_irq_restore(flags);
1634 	return ret;
1635 }
1636 EXPORT_SYMBOL_GPL(queue_work_node);
1637 
delayed_work_timer_fn(struct timer_list * t)1638 void delayed_work_timer_fn(struct timer_list *t)
1639 {
1640 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1641 
1642 	/* should have been called from irqsafe timer with irq already off */
1643 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1644 }
1645 EXPORT_SYMBOL(delayed_work_timer_fn);
1646 
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1647 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1648 				struct delayed_work *dwork, unsigned long delay)
1649 {
1650 	struct timer_list *timer = &dwork->timer;
1651 	struct work_struct *work = &dwork->work;
1652 
1653 	WARN_ON_ONCE(!wq);
1654 	/*
1655 	 * With CFI, timer->function can point to a jump table entry in a module,
1656 	 * which fails the comparison. Disable the warning if CFI and modules are
1657 	 * both enabled.
1658 	 */
1659 	if (!IS_ENABLED(CONFIG_CFI_CLANG) || !IS_ENABLED(CONFIG_MODULES))
1660 		WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1661 
1662 	WARN_ON_ONCE(timer_pending(timer));
1663 	WARN_ON_ONCE(!list_empty(&work->entry));
1664 
1665 	/*
1666 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1667 	 * both optimization and correctness.  The earliest @timer can
1668 	 * expire is on the closest next tick and delayed_work users depend
1669 	 * on that there's no such delay when @delay is 0.
1670 	 */
1671 	if (!delay) {
1672 		__queue_work(cpu, wq, &dwork->work);
1673 		return;
1674 	}
1675 
1676 	dwork->wq = wq;
1677 	dwork->cpu = cpu;
1678 	timer->expires = jiffies + delay;
1679 
1680 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1681 		add_timer_on(timer, cpu);
1682 	else
1683 		add_timer(timer);
1684 }
1685 
1686 /**
1687  * queue_delayed_work_on - queue work on specific CPU after delay
1688  * @cpu: CPU number to execute work on
1689  * @wq: workqueue to use
1690  * @dwork: work to queue
1691  * @delay: number of jiffies to wait before queueing
1692  *
1693  * Return: %false if @work was already on a queue, %true otherwise.  If
1694  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1695  * execution.
1696  */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1697 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1698 			   struct delayed_work *dwork, unsigned long delay)
1699 {
1700 	struct work_struct *work = &dwork->work;
1701 	bool ret = false;
1702 	unsigned long flags;
1703 
1704 	/* read the comment in __queue_work() */
1705 	local_irq_save(flags);
1706 
1707 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1708 		__queue_delayed_work(cpu, wq, dwork, delay);
1709 		ret = true;
1710 	}
1711 
1712 	local_irq_restore(flags);
1713 	return ret;
1714 }
1715 EXPORT_SYMBOL(queue_delayed_work_on);
1716 
1717 /**
1718  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1719  * @cpu: CPU number to execute work on
1720  * @wq: workqueue to use
1721  * @dwork: work to queue
1722  * @delay: number of jiffies to wait before queueing
1723  *
1724  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1725  * modify @dwork's timer so that it expires after @delay.  If @delay is
1726  * zero, @work is guaranteed to be scheduled immediately regardless of its
1727  * current state.
1728  *
1729  * Return: %false if @dwork was idle and queued, %true if @dwork was
1730  * pending and its timer was modified.
1731  *
1732  * This function is safe to call from any context including IRQ handler.
1733  * See try_to_grab_pending() for details.
1734  */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1735 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1736 			 struct delayed_work *dwork, unsigned long delay)
1737 {
1738 	unsigned long flags;
1739 	int ret;
1740 
1741 	do {
1742 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1743 	} while (unlikely(ret == -EAGAIN));
1744 
1745 	if (likely(ret >= 0)) {
1746 		__queue_delayed_work(cpu, wq, dwork, delay);
1747 		local_irq_restore(flags);
1748 	}
1749 
1750 	/* -ENOENT from try_to_grab_pending() becomes %true */
1751 	return ret;
1752 }
1753 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1754 
rcu_work_rcufn(struct rcu_head * rcu)1755 static void rcu_work_rcufn(struct rcu_head *rcu)
1756 {
1757 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1758 
1759 	/* read the comment in __queue_work() */
1760 	local_irq_disable();
1761 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1762 	local_irq_enable();
1763 }
1764 
1765 /**
1766  * queue_rcu_work - queue work after a RCU grace period
1767  * @wq: workqueue to use
1768  * @rwork: work to queue
1769  *
1770  * Return: %false if @rwork was already pending, %true otherwise.  Note
1771  * that a full RCU grace period is guaranteed only after a %true return.
1772  * While @rwork is guaranteed to be executed after a %false return, the
1773  * execution may happen before a full RCU grace period has passed.
1774  */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)1775 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1776 {
1777 	struct work_struct *work = &rwork->work;
1778 
1779 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1780 		rwork->wq = wq;
1781 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1782 		return true;
1783 	}
1784 
1785 	return false;
1786 }
1787 EXPORT_SYMBOL(queue_rcu_work);
1788 
1789 /**
1790  * worker_enter_idle - enter idle state
1791  * @worker: worker which is entering idle state
1792  *
1793  * @worker is entering idle state.  Update stats and idle timer if
1794  * necessary.
1795  *
1796  * LOCKING:
1797  * raw_spin_lock_irq(pool->lock).
1798  */
worker_enter_idle(struct worker * worker)1799 static void worker_enter_idle(struct worker *worker)
1800 {
1801 	struct worker_pool *pool = worker->pool;
1802 
1803 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1804 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1805 			 (worker->hentry.next || worker->hentry.pprev)))
1806 		return;
1807 
1808 	/* can't use worker_set_flags(), also called from create_worker() */
1809 	worker->flags |= WORKER_IDLE;
1810 	pool->nr_idle++;
1811 	worker->last_active = jiffies;
1812 
1813 	/* idle_list is LIFO */
1814 	list_add(&worker->entry, &pool->idle_list);
1815 
1816 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1817 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1818 
1819 	/*
1820 	 * Sanity check nr_running.  Because unbind_workers() releases
1821 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1822 	 * nr_running, the warning may trigger spuriously.  Check iff
1823 	 * unbind is not in progress.
1824 	 */
1825 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1826 		     pool->nr_workers == pool->nr_idle &&
1827 		     atomic_read(&pool->nr_running));
1828 }
1829 
1830 /**
1831  * worker_leave_idle - leave idle state
1832  * @worker: worker which is leaving idle state
1833  *
1834  * @worker is leaving idle state.  Update stats.
1835  *
1836  * LOCKING:
1837  * raw_spin_lock_irq(pool->lock).
1838  */
worker_leave_idle(struct worker * worker)1839 static void worker_leave_idle(struct worker *worker)
1840 {
1841 	struct worker_pool *pool = worker->pool;
1842 
1843 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1844 		return;
1845 	worker_clr_flags(worker, WORKER_IDLE);
1846 	pool->nr_idle--;
1847 	list_del_init(&worker->entry);
1848 }
1849 
alloc_worker(int node)1850 static struct worker *alloc_worker(int node)
1851 {
1852 	struct worker *worker;
1853 
1854 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1855 	if (worker) {
1856 		INIT_LIST_HEAD(&worker->entry);
1857 		INIT_LIST_HEAD(&worker->scheduled);
1858 		INIT_LIST_HEAD(&worker->node);
1859 		/* on creation a worker is in !idle && prep state */
1860 		worker->flags = WORKER_PREP;
1861 	}
1862 	return worker;
1863 }
1864 
1865 /**
1866  * worker_attach_to_pool() - attach a worker to a pool
1867  * @worker: worker to be attached
1868  * @pool: the target pool
1869  *
1870  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1871  * cpu-binding of @worker are kept coordinated with the pool across
1872  * cpu-[un]hotplugs.
1873  */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1874 static void worker_attach_to_pool(struct worker *worker,
1875 				   struct worker_pool *pool)
1876 {
1877 	mutex_lock(&wq_pool_attach_mutex);
1878 
1879 	/*
1880 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1881 	 * stable across this function.  See the comments above the flag
1882 	 * definition for details.
1883 	 */
1884 	if (pool->flags & POOL_DISASSOCIATED)
1885 		worker->flags |= WORKER_UNBOUND;
1886 
1887 	if (worker->rescue_wq)
1888 		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1889 
1890 	list_add_tail(&worker->node, &pool->workers);
1891 	worker->pool = pool;
1892 
1893 	mutex_unlock(&wq_pool_attach_mutex);
1894 }
1895 
1896 /**
1897  * worker_detach_from_pool() - detach a worker from its pool
1898  * @worker: worker which is attached to its pool
1899  *
1900  * Undo the attaching which had been done in worker_attach_to_pool().  The
1901  * caller worker shouldn't access to the pool after detached except it has
1902  * other reference to the pool.
1903  */
worker_detach_from_pool(struct worker * worker)1904 static void worker_detach_from_pool(struct worker *worker)
1905 {
1906 	struct worker_pool *pool = worker->pool;
1907 	struct completion *detach_completion = NULL;
1908 
1909 	mutex_lock(&wq_pool_attach_mutex);
1910 
1911 	list_del(&worker->node);
1912 	worker->pool = NULL;
1913 
1914 	if (list_empty(&pool->workers))
1915 		detach_completion = pool->detach_completion;
1916 	mutex_unlock(&wq_pool_attach_mutex);
1917 
1918 	/* clear leftover flags without pool->lock after it is detached */
1919 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1920 
1921 	if (detach_completion)
1922 		complete(detach_completion);
1923 }
1924 
1925 /**
1926  * create_worker - create a new workqueue worker
1927  * @pool: pool the new worker will belong to
1928  *
1929  * Create and start a new worker which is attached to @pool.
1930  *
1931  * CONTEXT:
1932  * Might sleep.  Does GFP_KERNEL allocations.
1933  *
1934  * Return:
1935  * Pointer to the newly created worker.
1936  */
create_worker(struct worker_pool * pool)1937 static struct worker *create_worker(struct worker_pool *pool)
1938 {
1939 	struct worker *worker = NULL;
1940 	int id = -1;
1941 	char id_buf[16];
1942 
1943 	/* ID is needed to determine kthread name */
1944 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1945 	if (id < 0)
1946 		goto fail;
1947 
1948 	worker = alloc_worker(pool->node);
1949 	if (!worker)
1950 		goto fail;
1951 
1952 	worker->id = id;
1953 
1954 	if (pool->cpu >= 0)
1955 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1956 			 pool->attrs->nice < 0  ? "H" : "");
1957 	else
1958 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1959 
1960 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1961 					      "kworker/%s", id_buf);
1962 	if (IS_ERR(worker->task))
1963 		goto fail;
1964 
1965 	trace_android_vh_create_worker(worker, pool->attrs);
1966 	set_user_nice(worker->task, pool->attrs->nice);
1967 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1968 
1969 	/* successful, attach the worker to the pool */
1970 	worker_attach_to_pool(worker, pool);
1971 
1972 	/* start the newly created worker */
1973 	raw_spin_lock_irq(&pool->lock);
1974 	worker->pool->nr_workers++;
1975 	worker_enter_idle(worker);
1976 	wake_up_process(worker->task);
1977 	raw_spin_unlock_irq(&pool->lock);
1978 
1979 	return worker;
1980 
1981 fail:
1982 	if (id >= 0)
1983 		ida_simple_remove(&pool->worker_ida, id);
1984 	kfree(worker);
1985 	return NULL;
1986 }
1987 
1988 /**
1989  * destroy_worker - destroy a workqueue worker
1990  * @worker: worker to be destroyed
1991  *
1992  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1993  * be idle.
1994  *
1995  * CONTEXT:
1996  * raw_spin_lock_irq(pool->lock).
1997  */
destroy_worker(struct worker * worker)1998 static void destroy_worker(struct worker *worker)
1999 {
2000 	struct worker_pool *pool = worker->pool;
2001 
2002 	lockdep_assert_held(&pool->lock);
2003 
2004 	/* sanity check frenzy */
2005 	if (WARN_ON(worker->current_work) ||
2006 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2007 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2008 		return;
2009 
2010 	pool->nr_workers--;
2011 	pool->nr_idle--;
2012 
2013 	list_del_init(&worker->entry);
2014 	worker->flags |= WORKER_DIE;
2015 	wake_up_process(worker->task);
2016 }
2017 
idle_worker_timeout(struct timer_list * t)2018 static void idle_worker_timeout(struct timer_list *t)
2019 {
2020 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2021 
2022 	raw_spin_lock_irq(&pool->lock);
2023 
2024 	while (too_many_workers(pool)) {
2025 		struct worker *worker;
2026 		unsigned long expires;
2027 
2028 		/* idle_list is kept in LIFO order, check the last one */
2029 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2030 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2031 
2032 		if (time_before(jiffies, expires)) {
2033 			mod_timer(&pool->idle_timer, expires);
2034 			break;
2035 		}
2036 
2037 		destroy_worker(worker);
2038 	}
2039 
2040 	raw_spin_unlock_irq(&pool->lock);
2041 }
2042 
send_mayday(struct work_struct * work)2043 static void send_mayday(struct work_struct *work)
2044 {
2045 	struct pool_workqueue *pwq = get_work_pwq(work);
2046 	struct workqueue_struct *wq = pwq->wq;
2047 
2048 	lockdep_assert_held(&wq_mayday_lock);
2049 
2050 	if (!wq->rescuer)
2051 		return;
2052 
2053 	/* mayday mayday mayday */
2054 	if (list_empty(&pwq->mayday_node)) {
2055 		/*
2056 		 * If @pwq is for an unbound wq, its base ref may be put at
2057 		 * any time due to an attribute change.  Pin @pwq until the
2058 		 * rescuer is done with it.
2059 		 */
2060 		get_pwq(pwq);
2061 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2062 		wake_up_process(wq->rescuer->task);
2063 	}
2064 }
2065 
pool_mayday_timeout(struct timer_list * t)2066 static void pool_mayday_timeout(struct timer_list *t)
2067 {
2068 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2069 	struct work_struct *work;
2070 
2071 	raw_spin_lock_irq(&pool->lock);
2072 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2073 
2074 	if (need_to_create_worker(pool)) {
2075 		/*
2076 		 * We've been trying to create a new worker but
2077 		 * haven't been successful.  We might be hitting an
2078 		 * allocation deadlock.  Send distress signals to
2079 		 * rescuers.
2080 		 */
2081 		list_for_each_entry(work, &pool->worklist, entry)
2082 			send_mayday(work);
2083 	}
2084 
2085 	raw_spin_unlock(&wq_mayday_lock);
2086 	raw_spin_unlock_irq(&pool->lock);
2087 
2088 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2089 }
2090 
2091 /**
2092  * maybe_create_worker - create a new worker if necessary
2093  * @pool: pool to create a new worker for
2094  *
2095  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2096  * have at least one idle worker on return from this function.  If
2097  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2098  * sent to all rescuers with works scheduled on @pool to resolve
2099  * possible allocation deadlock.
2100  *
2101  * On return, need_to_create_worker() is guaranteed to be %false and
2102  * may_start_working() %true.
2103  *
2104  * LOCKING:
2105  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2106  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2107  * manager.
2108  */
maybe_create_worker(struct worker_pool * pool)2109 static void maybe_create_worker(struct worker_pool *pool)
2110 __releases(&pool->lock)
2111 __acquires(&pool->lock)
2112 {
2113 restart:
2114 	raw_spin_unlock_irq(&pool->lock);
2115 
2116 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2117 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2118 
2119 	while (true) {
2120 		if (create_worker(pool) || !need_to_create_worker(pool))
2121 			break;
2122 
2123 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2124 
2125 		if (!need_to_create_worker(pool))
2126 			break;
2127 	}
2128 
2129 	del_timer_sync(&pool->mayday_timer);
2130 	raw_spin_lock_irq(&pool->lock);
2131 	/*
2132 	 * This is necessary even after a new worker was just successfully
2133 	 * created as @pool->lock was dropped and the new worker might have
2134 	 * already become busy.
2135 	 */
2136 	if (need_to_create_worker(pool))
2137 		goto restart;
2138 }
2139 
2140 /**
2141  * manage_workers - manage worker pool
2142  * @worker: self
2143  *
2144  * Assume the manager role and manage the worker pool @worker belongs
2145  * to.  At any given time, there can be only zero or one manager per
2146  * pool.  The exclusion is handled automatically by this function.
2147  *
2148  * The caller can safely start processing works on false return.  On
2149  * true return, it's guaranteed that need_to_create_worker() is false
2150  * and may_start_working() is true.
2151  *
2152  * CONTEXT:
2153  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2154  * multiple times.  Does GFP_KERNEL allocations.
2155  *
2156  * Return:
2157  * %false if the pool doesn't need management and the caller can safely
2158  * start processing works, %true if management function was performed and
2159  * the conditions that the caller verified before calling the function may
2160  * no longer be true.
2161  */
manage_workers(struct worker * worker)2162 static bool manage_workers(struct worker *worker)
2163 {
2164 	struct worker_pool *pool = worker->pool;
2165 
2166 	if (pool->flags & POOL_MANAGER_ACTIVE)
2167 		return false;
2168 
2169 	pool->flags |= POOL_MANAGER_ACTIVE;
2170 	pool->manager = worker;
2171 
2172 	maybe_create_worker(pool);
2173 
2174 	pool->manager = NULL;
2175 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2176 	rcuwait_wake_up(&manager_wait);
2177 	return true;
2178 }
2179 
2180 /**
2181  * process_one_work - process single work
2182  * @worker: self
2183  * @work: work to process
2184  *
2185  * Process @work.  This function contains all the logics necessary to
2186  * process a single work including synchronization against and
2187  * interaction with other workers on the same cpu, queueing and
2188  * flushing.  As long as context requirement is met, any worker can
2189  * call this function to process a work.
2190  *
2191  * CONTEXT:
2192  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2193  */
process_one_work(struct worker * worker,struct work_struct * work)2194 static void process_one_work(struct worker *worker, struct work_struct *work)
2195 __releases(&pool->lock)
2196 __acquires(&pool->lock)
2197 {
2198 	struct pool_workqueue *pwq = get_work_pwq(work);
2199 	struct worker_pool *pool = worker->pool;
2200 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2201 	int work_color;
2202 	struct worker *collision;
2203 #ifdef CONFIG_LOCKDEP
2204 	/*
2205 	 * It is permissible to free the struct work_struct from
2206 	 * inside the function that is called from it, this we need to
2207 	 * take into account for lockdep too.  To avoid bogus "held
2208 	 * lock freed" warnings as well as problems when looking into
2209 	 * work->lockdep_map, make a copy and use that here.
2210 	 */
2211 	struct lockdep_map lockdep_map;
2212 
2213 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2214 #endif
2215 	/* ensure we're on the correct CPU */
2216 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2217 		     raw_smp_processor_id() != pool->cpu);
2218 
2219 	/*
2220 	 * A single work shouldn't be executed concurrently by
2221 	 * multiple workers on a single cpu.  Check whether anyone is
2222 	 * already processing the work.  If so, defer the work to the
2223 	 * currently executing one.
2224 	 */
2225 	collision = find_worker_executing_work(pool, work);
2226 	if (unlikely(collision)) {
2227 		move_linked_works(work, &collision->scheduled, NULL);
2228 		return;
2229 	}
2230 
2231 	/* claim and dequeue */
2232 	debug_work_deactivate(work);
2233 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2234 	worker->current_work = work;
2235 	worker->current_func = work->func;
2236 	worker->current_pwq = pwq;
2237 	work_color = get_work_color(work);
2238 
2239 	/*
2240 	 * Record wq name for cmdline and debug reporting, may get
2241 	 * overridden through set_worker_desc().
2242 	 */
2243 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2244 
2245 	list_del_init(&work->entry);
2246 
2247 	/*
2248 	 * CPU intensive works don't participate in concurrency management.
2249 	 * They're the scheduler's responsibility.  This takes @worker out
2250 	 * of concurrency management and the next code block will chain
2251 	 * execution of the pending work items.
2252 	 */
2253 	if (unlikely(cpu_intensive))
2254 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2255 
2256 	/*
2257 	 * Wake up another worker if necessary.  The condition is always
2258 	 * false for normal per-cpu workers since nr_running would always
2259 	 * be >= 1 at this point.  This is used to chain execution of the
2260 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2261 	 * UNBOUND and CPU_INTENSIVE ones.
2262 	 */
2263 	if (need_more_worker(pool))
2264 		wake_up_worker(pool);
2265 
2266 	/*
2267 	 * Record the last pool and clear PENDING which should be the last
2268 	 * update to @work.  Also, do this inside @pool->lock so that
2269 	 * PENDING and queued state changes happen together while IRQ is
2270 	 * disabled.
2271 	 */
2272 	set_work_pool_and_clear_pending(work, pool->id);
2273 
2274 	raw_spin_unlock_irq(&pool->lock);
2275 
2276 	lock_map_acquire(&pwq->wq->lockdep_map);
2277 	lock_map_acquire(&lockdep_map);
2278 	/*
2279 	 * Strictly speaking we should mark the invariant state without holding
2280 	 * any locks, that is, before these two lock_map_acquire()'s.
2281 	 *
2282 	 * However, that would result in:
2283 	 *
2284 	 *   A(W1)
2285 	 *   WFC(C)
2286 	 *		A(W1)
2287 	 *		C(C)
2288 	 *
2289 	 * Which would create W1->C->W1 dependencies, even though there is no
2290 	 * actual deadlock possible. There are two solutions, using a
2291 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2292 	 * hit the lockdep limitation on recursive locks, or simply discard
2293 	 * these locks.
2294 	 *
2295 	 * AFAICT there is no possible deadlock scenario between the
2296 	 * flush_work() and complete() primitives (except for single-threaded
2297 	 * workqueues), so hiding them isn't a problem.
2298 	 */
2299 	lockdep_invariant_state(true);
2300 	trace_workqueue_execute_start(work);
2301 	worker->current_func(work);
2302 	/*
2303 	 * While we must be careful to not use "work" after this, the trace
2304 	 * point will only record its address.
2305 	 */
2306 	trace_workqueue_execute_end(work, worker->current_func);
2307 	lock_map_release(&lockdep_map);
2308 	lock_map_release(&pwq->wq->lockdep_map);
2309 
2310 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2311 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2312 		       "     last function: %ps\n",
2313 		       current->comm, preempt_count(), task_pid_nr(current),
2314 		       worker->current_func);
2315 		debug_show_held_locks(current);
2316 		dump_stack();
2317 	}
2318 
2319 	/*
2320 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2321 	 * kernels, where a requeueing work item waiting for something to
2322 	 * happen could deadlock with stop_machine as such work item could
2323 	 * indefinitely requeue itself while all other CPUs are trapped in
2324 	 * stop_machine. At the same time, report a quiescent RCU state so
2325 	 * the same condition doesn't freeze RCU.
2326 	 */
2327 	cond_resched();
2328 
2329 	raw_spin_lock_irq(&pool->lock);
2330 
2331 	/* clear cpu intensive status */
2332 	if (unlikely(cpu_intensive))
2333 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2334 
2335 	/* tag the worker for identification in schedule() */
2336 	worker->last_func = worker->current_func;
2337 
2338 	/* we're done with it, release */
2339 	hash_del(&worker->hentry);
2340 	worker->current_work = NULL;
2341 	worker->current_func = NULL;
2342 	worker->current_pwq = NULL;
2343 	pwq_dec_nr_in_flight(pwq, work_color);
2344 }
2345 
2346 /**
2347  * process_scheduled_works - process scheduled works
2348  * @worker: self
2349  *
2350  * Process all scheduled works.  Please note that the scheduled list
2351  * may change while processing a work, so this function repeatedly
2352  * fetches a work from the top and executes it.
2353  *
2354  * CONTEXT:
2355  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2356  * multiple times.
2357  */
process_scheduled_works(struct worker * worker)2358 static void process_scheduled_works(struct worker *worker)
2359 {
2360 	while (!list_empty(&worker->scheduled)) {
2361 		struct work_struct *work = list_first_entry(&worker->scheduled,
2362 						struct work_struct, entry);
2363 		process_one_work(worker, work);
2364 	}
2365 }
2366 
set_pf_worker(bool val)2367 static void set_pf_worker(bool val)
2368 {
2369 	mutex_lock(&wq_pool_attach_mutex);
2370 	if (val)
2371 		current->flags |= PF_WQ_WORKER;
2372 	else
2373 		current->flags &= ~PF_WQ_WORKER;
2374 	mutex_unlock(&wq_pool_attach_mutex);
2375 }
2376 
2377 /**
2378  * worker_thread - the worker thread function
2379  * @__worker: self
2380  *
2381  * The worker thread function.  All workers belong to a worker_pool -
2382  * either a per-cpu one or dynamic unbound one.  These workers process all
2383  * work items regardless of their specific target workqueue.  The only
2384  * exception is work items which belong to workqueues with a rescuer which
2385  * will be explained in rescuer_thread().
2386  *
2387  * Return: 0
2388  */
worker_thread(void * __worker)2389 static int worker_thread(void *__worker)
2390 {
2391 	struct worker *worker = __worker;
2392 	struct worker_pool *pool = worker->pool;
2393 
2394 	/* tell the scheduler that this is a workqueue worker */
2395 	set_pf_worker(true);
2396 woke_up:
2397 	raw_spin_lock_irq(&pool->lock);
2398 
2399 	/* am I supposed to die? */
2400 	if (unlikely(worker->flags & WORKER_DIE)) {
2401 		raw_spin_unlock_irq(&pool->lock);
2402 		WARN_ON_ONCE(!list_empty(&worker->entry));
2403 		set_pf_worker(false);
2404 
2405 		set_task_comm(worker->task, "kworker/dying");
2406 		ida_simple_remove(&pool->worker_ida, worker->id);
2407 		worker_detach_from_pool(worker);
2408 		kfree(worker);
2409 		return 0;
2410 	}
2411 
2412 	worker_leave_idle(worker);
2413 recheck:
2414 	/* no more worker necessary? */
2415 	if (!need_more_worker(pool))
2416 		goto sleep;
2417 
2418 	/* do we need to manage? */
2419 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2420 		goto recheck;
2421 
2422 	/*
2423 	 * ->scheduled list can only be filled while a worker is
2424 	 * preparing to process a work or actually processing it.
2425 	 * Make sure nobody diddled with it while I was sleeping.
2426 	 */
2427 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2428 
2429 	/*
2430 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2431 	 * worker or that someone else has already assumed the manager
2432 	 * role.  This is where @worker starts participating in concurrency
2433 	 * management if applicable and concurrency management is restored
2434 	 * after being rebound.  See rebind_workers() for details.
2435 	 */
2436 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2437 
2438 	do {
2439 		struct work_struct *work =
2440 			list_first_entry(&pool->worklist,
2441 					 struct work_struct, entry);
2442 
2443 		pool->watchdog_ts = jiffies;
2444 
2445 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2446 			/* optimization path, not strictly necessary */
2447 			process_one_work(worker, work);
2448 			if (unlikely(!list_empty(&worker->scheduled)))
2449 				process_scheduled_works(worker);
2450 		} else {
2451 			move_linked_works(work, &worker->scheduled, NULL);
2452 			process_scheduled_works(worker);
2453 		}
2454 	} while (keep_working(pool));
2455 
2456 	worker_set_flags(worker, WORKER_PREP);
2457 sleep:
2458 	/*
2459 	 * pool->lock is held and there's no work to process and no need to
2460 	 * manage, sleep.  Workers are woken up only while holding
2461 	 * pool->lock or from local cpu, so setting the current state
2462 	 * before releasing pool->lock is enough to prevent losing any
2463 	 * event.
2464 	 */
2465 	worker_enter_idle(worker);
2466 	__set_current_state(TASK_IDLE);
2467 	raw_spin_unlock_irq(&pool->lock);
2468 	schedule();
2469 	goto woke_up;
2470 }
2471 
2472 /**
2473  * rescuer_thread - the rescuer thread function
2474  * @__rescuer: self
2475  *
2476  * Workqueue rescuer thread function.  There's one rescuer for each
2477  * workqueue which has WQ_MEM_RECLAIM set.
2478  *
2479  * Regular work processing on a pool may block trying to create a new
2480  * worker which uses GFP_KERNEL allocation which has slight chance of
2481  * developing into deadlock if some works currently on the same queue
2482  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2483  * the problem rescuer solves.
2484  *
2485  * When such condition is possible, the pool summons rescuers of all
2486  * workqueues which have works queued on the pool and let them process
2487  * those works so that forward progress can be guaranteed.
2488  *
2489  * This should happen rarely.
2490  *
2491  * Return: 0
2492  */
rescuer_thread(void * __rescuer)2493 static int rescuer_thread(void *__rescuer)
2494 {
2495 	struct worker *rescuer = __rescuer;
2496 	struct workqueue_struct *wq = rescuer->rescue_wq;
2497 	struct list_head *scheduled = &rescuer->scheduled;
2498 	bool should_stop;
2499 
2500 	set_user_nice(current, RESCUER_NICE_LEVEL);
2501 
2502 	/*
2503 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2504 	 * doesn't participate in concurrency management.
2505 	 */
2506 	set_pf_worker(true);
2507 repeat:
2508 	set_current_state(TASK_IDLE);
2509 
2510 	/*
2511 	 * By the time the rescuer is requested to stop, the workqueue
2512 	 * shouldn't have any work pending, but @wq->maydays may still have
2513 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2514 	 * all the work items before the rescuer got to them.  Go through
2515 	 * @wq->maydays processing before acting on should_stop so that the
2516 	 * list is always empty on exit.
2517 	 */
2518 	should_stop = kthread_should_stop();
2519 
2520 	/* see whether any pwq is asking for help */
2521 	raw_spin_lock_irq(&wq_mayday_lock);
2522 
2523 	while (!list_empty(&wq->maydays)) {
2524 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2525 					struct pool_workqueue, mayday_node);
2526 		struct worker_pool *pool = pwq->pool;
2527 		struct work_struct *work, *n;
2528 		bool first = true;
2529 
2530 		__set_current_state(TASK_RUNNING);
2531 		list_del_init(&pwq->mayday_node);
2532 
2533 		raw_spin_unlock_irq(&wq_mayday_lock);
2534 
2535 		worker_attach_to_pool(rescuer, pool);
2536 
2537 		raw_spin_lock_irq(&pool->lock);
2538 
2539 		/*
2540 		 * Slurp in all works issued via this workqueue and
2541 		 * process'em.
2542 		 */
2543 		WARN_ON_ONCE(!list_empty(scheduled));
2544 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2545 			if (get_work_pwq(work) == pwq) {
2546 				if (first)
2547 					pool->watchdog_ts = jiffies;
2548 				move_linked_works(work, scheduled, &n);
2549 			}
2550 			first = false;
2551 		}
2552 
2553 		if (!list_empty(scheduled)) {
2554 			process_scheduled_works(rescuer);
2555 
2556 			/*
2557 			 * The above execution of rescued work items could
2558 			 * have created more to rescue through
2559 			 * pwq_activate_first_delayed() or chained
2560 			 * queueing.  Let's put @pwq back on mayday list so
2561 			 * that such back-to-back work items, which may be
2562 			 * being used to relieve memory pressure, don't
2563 			 * incur MAYDAY_INTERVAL delay inbetween.
2564 			 */
2565 			if (pwq->nr_active && need_to_create_worker(pool)) {
2566 				raw_spin_lock(&wq_mayday_lock);
2567 				/*
2568 				 * Queue iff we aren't racing destruction
2569 				 * and somebody else hasn't queued it already.
2570 				 */
2571 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2572 					get_pwq(pwq);
2573 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2574 				}
2575 				raw_spin_unlock(&wq_mayday_lock);
2576 			}
2577 		}
2578 
2579 		/*
2580 		 * Put the reference grabbed by send_mayday().  @pool won't
2581 		 * go away while we're still attached to it.
2582 		 */
2583 		put_pwq(pwq);
2584 
2585 		/*
2586 		 * Leave this pool.  If need_more_worker() is %true, notify a
2587 		 * regular worker; otherwise, we end up with 0 concurrency
2588 		 * and stalling the execution.
2589 		 */
2590 		if (need_more_worker(pool))
2591 			wake_up_worker(pool);
2592 
2593 		raw_spin_unlock_irq(&pool->lock);
2594 
2595 		worker_detach_from_pool(rescuer);
2596 
2597 		raw_spin_lock_irq(&wq_mayday_lock);
2598 	}
2599 
2600 	raw_spin_unlock_irq(&wq_mayday_lock);
2601 
2602 	if (should_stop) {
2603 		__set_current_state(TASK_RUNNING);
2604 		set_pf_worker(false);
2605 		return 0;
2606 	}
2607 
2608 	/* rescuers should never participate in concurrency management */
2609 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2610 	schedule();
2611 	goto repeat;
2612 }
2613 
2614 /**
2615  * check_flush_dependency - check for flush dependency sanity
2616  * @target_wq: workqueue being flushed
2617  * @target_work: work item being flushed (NULL for workqueue flushes)
2618  *
2619  * %current is trying to flush the whole @target_wq or @target_work on it.
2620  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2621  * reclaiming memory or running on a workqueue which doesn't have
2622  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2623  * a deadlock.
2624  */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)2625 static void check_flush_dependency(struct workqueue_struct *target_wq,
2626 				   struct work_struct *target_work)
2627 {
2628 	work_func_t target_func = target_work ? target_work->func : NULL;
2629 	struct worker *worker;
2630 
2631 	if (target_wq->flags & WQ_MEM_RECLAIM)
2632 		return;
2633 
2634 	worker = current_wq_worker();
2635 
2636 	WARN_ONCE(current->flags & PF_MEMALLOC,
2637 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2638 		  current->pid, current->comm, target_wq->name, target_func);
2639 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2640 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2641 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2642 		  worker->current_pwq->wq->name, worker->current_func,
2643 		  target_wq->name, target_func);
2644 }
2645 
2646 struct wq_barrier {
2647 	struct work_struct	work;
2648 	struct completion	done;
2649 	struct task_struct	*task;	/* purely informational */
2650 };
2651 
wq_barrier_func(struct work_struct * work)2652 static void wq_barrier_func(struct work_struct *work)
2653 {
2654 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2655 	complete(&barr->done);
2656 }
2657 
2658 /**
2659  * insert_wq_barrier - insert a barrier work
2660  * @pwq: pwq to insert barrier into
2661  * @barr: wq_barrier to insert
2662  * @target: target work to attach @barr to
2663  * @worker: worker currently executing @target, NULL if @target is not executing
2664  *
2665  * @barr is linked to @target such that @barr is completed only after
2666  * @target finishes execution.  Please note that the ordering
2667  * guarantee is observed only with respect to @target and on the local
2668  * cpu.
2669  *
2670  * Currently, a queued barrier can't be canceled.  This is because
2671  * try_to_grab_pending() can't determine whether the work to be
2672  * grabbed is at the head of the queue and thus can't clear LINKED
2673  * flag of the previous work while there must be a valid next work
2674  * after a work with LINKED flag set.
2675  *
2676  * Note that when @worker is non-NULL, @target may be modified
2677  * underneath us, so we can't reliably determine pwq from @target.
2678  *
2679  * CONTEXT:
2680  * raw_spin_lock_irq(pool->lock).
2681  */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2682 static void insert_wq_barrier(struct pool_workqueue *pwq,
2683 			      struct wq_barrier *barr,
2684 			      struct work_struct *target, struct worker *worker)
2685 {
2686 	struct list_head *head;
2687 	unsigned int linked = 0;
2688 
2689 	/*
2690 	 * debugobject calls are safe here even with pool->lock locked
2691 	 * as we know for sure that this will not trigger any of the
2692 	 * checks and call back into the fixup functions where we
2693 	 * might deadlock.
2694 	 */
2695 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2696 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2697 
2698 	init_completion_map(&barr->done, &target->lockdep_map);
2699 
2700 	barr->task = current;
2701 
2702 	/*
2703 	 * If @target is currently being executed, schedule the
2704 	 * barrier to the worker; otherwise, put it after @target.
2705 	 */
2706 	if (worker)
2707 		head = worker->scheduled.next;
2708 	else {
2709 		unsigned long *bits = work_data_bits(target);
2710 
2711 		head = target->entry.next;
2712 		/* there can already be other linked works, inherit and set */
2713 		linked = *bits & WORK_STRUCT_LINKED;
2714 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2715 	}
2716 
2717 	debug_work_activate(&barr->work);
2718 	insert_work(pwq, &barr->work, head,
2719 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2720 }
2721 
2722 /**
2723  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2724  * @wq: workqueue being flushed
2725  * @flush_color: new flush color, < 0 for no-op
2726  * @work_color: new work color, < 0 for no-op
2727  *
2728  * Prepare pwqs for workqueue flushing.
2729  *
2730  * If @flush_color is non-negative, flush_color on all pwqs should be
2731  * -1.  If no pwq has in-flight commands at the specified color, all
2732  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2733  * has in flight commands, its pwq->flush_color is set to
2734  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2735  * wakeup logic is armed and %true is returned.
2736  *
2737  * The caller should have initialized @wq->first_flusher prior to
2738  * calling this function with non-negative @flush_color.  If
2739  * @flush_color is negative, no flush color update is done and %false
2740  * is returned.
2741  *
2742  * If @work_color is non-negative, all pwqs should have the same
2743  * work_color which is previous to @work_color and all will be
2744  * advanced to @work_color.
2745  *
2746  * CONTEXT:
2747  * mutex_lock(wq->mutex).
2748  *
2749  * Return:
2750  * %true if @flush_color >= 0 and there's something to flush.  %false
2751  * otherwise.
2752  */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2753 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2754 				      int flush_color, int work_color)
2755 {
2756 	bool wait = false;
2757 	struct pool_workqueue *pwq;
2758 
2759 	if (flush_color >= 0) {
2760 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2761 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2762 	}
2763 
2764 	for_each_pwq(pwq, wq) {
2765 		struct worker_pool *pool = pwq->pool;
2766 
2767 		raw_spin_lock_irq(&pool->lock);
2768 
2769 		if (flush_color >= 0) {
2770 			WARN_ON_ONCE(pwq->flush_color != -1);
2771 
2772 			if (pwq->nr_in_flight[flush_color]) {
2773 				pwq->flush_color = flush_color;
2774 				atomic_inc(&wq->nr_pwqs_to_flush);
2775 				wait = true;
2776 			}
2777 		}
2778 
2779 		if (work_color >= 0) {
2780 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2781 			pwq->work_color = work_color;
2782 		}
2783 
2784 		raw_spin_unlock_irq(&pool->lock);
2785 	}
2786 
2787 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2788 		complete(&wq->first_flusher->done);
2789 
2790 	return wait;
2791 }
2792 
2793 /**
2794  * flush_workqueue - ensure that any scheduled work has run to completion.
2795  * @wq: workqueue to flush
2796  *
2797  * This function sleeps until all work items which were queued on entry
2798  * have finished execution, but it is not livelocked by new incoming ones.
2799  */
flush_workqueue(struct workqueue_struct * wq)2800 void flush_workqueue(struct workqueue_struct *wq)
2801 {
2802 	struct wq_flusher this_flusher = {
2803 		.list = LIST_HEAD_INIT(this_flusher.list),
2804 		.flush_color = -1,
2805 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2806 	};
2807 	int next_color;
2808 
2809 	if (WARN_ON(!wq_online))
2810 		return;
2811 
2812 	lock_map_acquire(&wq->lockdep_map);
2813 	lock_map_release(&wq->lockdep_map);
2814 
2815 	mutex_lock(&wq->mutex);
2816 
2817 	/*
2818 	 * Start-to-wait phase
2819 	 */
2820 	next_color = work_next_color(wq->work_color);
2821 
2822 	if (next_color != wq->flush_color) {
2823 		/*
2824 		 * Color space is not full.  The current work_color
2825 		 * becomes our flush_color and work_color is advanced
2826 		 * by one.
2827 		 */
2828 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2829 		this_flusher.flush_color = wq->work_color;
2830 		wq->work_color = next_color;
2831 
2832 		if (!wq->first_flusher) {
2833 			/* no flush in progress, become the first flusher */
2834 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2835 
2836 			wq->first_flusher = &this_flusher;
2837 
2838 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2839 						       wq->work_color)) {
2840 				/* nothing to flush, done */
2841 				wq->flush_color = next_color;
2842 				wq->first_flusher = NULL;
2843 				goto out_unlock;
2844 			}
2845 		} else {
2846 			/* wait in queue */
2847 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2848 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2849 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2850 		}
2851 	} else {
2852 		/*
2853 		 * Oops, color space is full, wait on overflow queue.
2854 		 * The next flush completion will assign us
2855 		 * flush_color and transfer to flusher_queue.
2856 		 */
2857 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2858 	}
2859 
2860 	check_flush_dependency(wq, NULL);
2861 
2862 	mutex_unlock(&wq->mutex);
2863 
2864 	wait_for_completion(&this_flusher.done);
2865 
2866 	/*
2867 	 * Wake-up-and-cascade phase
2868 	 *
2869 	 * First flushers are responsible for cascading flushes and
2870 	 * handling overflow.  Non-first flushers can simply return.
2871 	 */
2872 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2873 		return;
2874 
2875 	mutex_lock(&wq->mutex);
2876 
2877 	/* we might have raced, check again with mutex held */
2878 	if (wq->first_flusher != &this_flusher)
2879 		goto out_unlock;
2880 
2881 	WRITE_ONCE(wq->first_flusher, NULL);
2882 
2883 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2884 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2885 
2886 	while (true) {
2887 		struct wq_flusher *next, *tmp;
2888 
2889 		/* complete all the flushers sharing the current flush color */
2890 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2891 			if (next->flush_color != wq->flush_color)
2892 				break;
2893 			list_del_init(&next->list);
2894 			complete(&next->done);
2895 		}
2896 
2897 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2898 			     wq->flush_color != work_next_color(wq->work_color));
2899 
2900 		/* this flush_color is finished, advance by one */
2901 		wq->flush_color = work_next_color(wq->flush_color);
2902 
2903 		/* one color has been freed, handle overflow queue */
2904 		if (!list_empty(&wq->flusher_overflow)) {
2905 			/*
2906 			 * Assign the same color to all overflowed
2907 			 * flushers, advance work_color and append to
2908 			 * flusher_queue.  This is the start-to-wait
2909 			 * phase for these overflowed flushers.
2910 			 */
2911 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2912 				tmp->flush_color = wq->work_color;
2913 
2914 			wq->work_color = work_next_color(wq->work_color);
2915 
2916 			list_splice_tail_init(&wq->flusher_overflow,
2917 					      &wq->flusher_queue);
2918 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2919 		}
2920 
2921 		if (list_empty(&wq->flusher_queue)) {
2922 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2923 			break;
2924 		}
2925 
2926 		/*
2927 		 * Need to flush more colors.  Make the next flusher
2928 		 * the new first flusher and arm pwqs.
2929 		 */
2930 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2931 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2932 
2933 		list_del_init(&next->list);
2934 		wq->first_flusher = next;
2935 
2936 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2937 			break;
2938 
2939 		/*
2940 		 * Meh... this color is already done, clear first
2941 		 * flusher and repeat cascading.
2942 		 */
2943 		wq->first_flusher = NULL;
2944 	}
2945 
2946 out_unlock:
2947 	mutex_unlock(&wq->mutex);
2948 }
2949 EXPORT_SYMBOL(flush_workqueue);
2950 
2951 /**
2952  * drain_workqueue - drain a workqueue
2953  * @wq: workqueue to drain
2954  *
2955  * Wait until the workqueue becomes empty.  While draining is in progress,
2956  * only chain queueing is allowed.  IOW, only currently pending or running
2957  * work items on @wq can queue further work items on it.  @wq is flushed
2958  * repeatedly until it becomes empty.  The number of flushing is determined
2959  * by the depth of chaining and should be relatively short.  Whine if it
2960  * takes too long.
2961  */
drain_workqueue(struct workqueue_struct * wq)2962 void drain_workqueue(struct workqueue_struct *wq)
2963 {
2964 	unsigned int flush_cnt = 0;
2965 	struct pool_workqueue *pwq;
2966 
2967 	/*
2968 	 * __queue_work() needs to test whether there are drainers, is much
2969 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2970 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2971 	 */
2972 	mutex_lock(&wq->mutex);
2973 	if (!wq->nr_drainers++)
2974 		wq->flags |= __WQ_DRAINING;
2975 	mutex_unlock(&wq->mutex);
2976 reflush:
2977 	flush_workqueue(wq);
2978 
2979 	mutex_lock(&wq->mutex);
2980 
2981 	for_each_pwq(pwq, wq) {
2982 		bool drained;
2983 
2984 		raw_spin_lock_irq(&pwq->pool->lock);
2985 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2986 		raw_spin_unlock_irq(&pwq->pool->lock);
2987 
2988 		if (drained)
2989 			continue;
2990 
2991 		if (++flush_cnt == 10 ||
2992 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2993 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2994 				wq->name, flush_cnt);
2995 
2996 		mutex_unlock(&wq->mutex);
2997 		goto reflush;
2998 	}
2999 
3000 	if (!--wq->nr_drainers)
3001 		wq->flags &= ~__WQ_DRAINING;
3002 	mutex_unlock(&wq->mutex);
3003 }
3004 EXPORT_SYMBOL_GPL(drain_workqueue);
3005 
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)3006 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3007 			     bool from_cancel)
3008 {
3009 	struct worker *worker = NULL;
3010 	struct worker_pool *pool;
3011 	struct pool_workqueue *pwq;
3012 
3013 	might_sleep();
3014 
3015 	rcu_read_lock();
3016 	pool = get_work_pool(work);
3017 	if (!pool) {
3018 		rcu_read_unlock();
3019 		return false;
3020 	}
3021 
3022 	raw_spin_lock_irq(&pool->lock);
3023 	/* see the comment in try_to_grab_pending() with the same code */
3024 	pwq = get_work_pwq(work);
3025 	if (pwq) {
3026 		if (unlikely(pwq->pool != pool))
3027 			goto already_gone;
3028 	} else {
3029 		worker = find_worker_executing_work(pool, work);
3030 		if (!worker)
3031 			goto already_gone;
3032 		pwq = worker->current_pwq;
3033 	}
3034 
3035 	check_flush_dependency(pwq->wq, work);
3036 
3037 	insert_wq_barrier(pwq, barr, work, worker);
3038 	raw_spin_unlock_irq(&pool->lock);
3039 
3040 	/*
3041 	 * Force a lock recursion deadlock when using flush_work() inside a
3042 	 * single-threaded or rescuer equipped workqueue.
3043 	 *
3044 	 * For single threaded workqueues the deadlock happens when the work
3045 	 * is after the work issuing the flush_work(). For rescuer equipped
3046 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3047 	 * forward progress.
3048 	 */
3049 	if (!from_cancel &&
3050 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3051 		lock_map_acquire(&pwq->wq->lockdep_map);
3052 		lock_map_release(&pwq->wq->lockdep_map);
3053 	}
3054 	rcu_read_unlock();
3055 	return true;
3056 already_gone:
3057 	raw_spin_unlock_irq(&pool->lock);
3058 	rcu_read_unlock();
3059 	return false;
3060 }
3061 
__flush_work(struct work_struct * work,bool from_cancel)3062 static bool __flush_work(struct work_struct *work, bool from_cancel)
3063 {
3064 	struct wq_barrier barr;
3065 
3066 	if (WARN_ON(!wq_online))
3067 		return false;
3068 
3069 	if (WARN_ON(!work->func))
3070 		return false;
3071 
3072 	lock_map_acquire(&work->lockdep_map);
3073 	lock_map_release(&work->lockdep_map);
3074 
3075 	if (start_flush_work(work, &barr, from_cancel)) {
3076 		wait_for_completion(&barr.done);
3077 		destroy_work_on_stack(&barr.work);
3078 		return true;
3079 	} else {
3080 		return false;
3081 	}
3082 }
3083 
3084 /**
3085  * flush_work - wait for a work to finish executing the last queueing instance
3086  * @work: the work to flush
3087  *
3088  * Wait until @work has finished execution.  @work is guaranteed to be idle
3089  * on return if it hasn't been requeued since flush started.
3090  *
3091  * Return:
3092  * %true if flush_work() waited for the work to finish execution,
3093  * %false if it was already idle.
3094  */
flush_work(struct work_struct * work)3095 bool flush_work(struct work_struct *work)
3096 {
3097 	return __flush_work(work, false);
3098 }
3099 EXPORT_SYMBOL_GPL(flush_work);
3100 
3101 struct cwt_wait {
3102 	wait_queue_entry_t		wait;
3103 	struct work_struct	*work;
3104 };
3105 
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3106 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3107 {
3108 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3109 
3110 	if (cwait->work != key)
3111 		return 0;
3112 	return autoremove_wake_function(wait, mode, sync, key);
3113 }
3114 
__cancel_work_timer(struct work_struct * work,bool is_dwork)3115 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3116 {
3117 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3118 	unsigned long flags;
3119 	int ret;
3120 
3121 	do {
3122 		ret = try_to_grab_pending(work, is_dwork, &flags);
3123 		/*
3124 		 * If someone else is already canceling, wait for it to
3125 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3126 		 * because we may get scheduled between @work's completion
3127 		 * and the other canceling task resuming and clearing
3128 		 * CANCELING - flush_work() will return false immediately
3129 		 * as @work is no longer busy, try_to_grab_pending() will
3130 		 * return -ENOENT as @work is still being canceled and the
3131 		 * other canceling task won't be able to clear CANCELING as
3132 		 * we're hogging the CPU.
3133 		 *
3134 		 * Let's wait for completion using a waitqueue.  As this
3135 		 * may lead to the thundering herd problem, use a custom
3136 		 * wake function which matches @work along with exclusive
3137 		 * wait and wakeup.
3138 		 */
3139 		if (unlikely(ret == -ENOENT)) {
3140 			struct cwt_wait cwait;
3141 
3142 			init_wait(&cwait.wait);
3143 			cwait.wait.func = cwt_wakefn;
3144 			cwait.work = work;
3145 
3146 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3147 						  TASK_UNINTERRUPTIBLE);
3148 			if (work_is_canceling(work))
3149 				schedule();
3150 			finish_wait(&cancel_waitq, &cwait.wait);
3151 		}
3152 	} while (unlikely(ret < 0));
3153 
3154 	/* tell other tasks trying to grab @work to back off */
3155 	mark_work_canceling(work);
3156 	local_irq_restore(flags);
3157 
3158 	/*
3159 	 * This allows canceling during early boot.  We know that @work
3160 	 * isn't executing.
3161 	 */
3162 	if (wq_online)
3163 		__flush_work(work, true);
3164 
3165 	clear_work_data(work);
3166 
3167 	/*
3168 	 * Paired with prepare_to_wait() above so that either
3169 	 * waitqueue_active() is visible here or !work_is_canceling() is
3170 	 * visible there.
3171 	 */
3172 	smp_mb();
3173 	if (waitqueue_active(&cancel_waitq))
3174 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3175 
3176 	return ret;
3177 }
3178 
3179 /**
3180  * cancel_work_sync - cancel a work and wait for it to finish
3181  * @work: the work to cancel
3182  *
3183  * Cancel @work and wait for its execution to finish.  This function
3184  * can be used even if the work re-queues itself or migrates to
3185  * another workqueue.  On return from this function, @work is
3186  * guaranteed to be not pending or executing on any CPU.
3187  *
3188  * cancel_work_sync(&delayed_work->work) must not be used for
3189  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3190  *
3191  * The caller must ensure that the workqueue on which @work was last
3192  * queued can't be destroyed before this function returns.
3193  *
3194  * Return:
3195  * %true if @work was pending, %false otherwise.
3196  */
cancel_work_sync(struct work_struct * work)3197 bool cancel_work_sync(struct work_struct *work)
3198 {
3199 	return __cancel_work_timer(work, false);
3200 }
3201 EXPORT_SYMBOL_GPL(cancel_work_sync);
3202 
3203 /**
3204  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3205  * @dwork: the delayed work to flush
3206  *
3207  * Delayed timer is cancelled and the pending work is queued for
3208  * immediate execution.  Like flush_work(), this function only
3209  * considers the last queueing instance of @dwork.
3210  *
3211  * Return:
3212  * %true if flush_work() waited for the work to finish execution,
3213  * %false if it was already idle.
3214  */
flush_delayed_work(struct delayed_work * dwork)3215 bool flush_delayed_work(struct delayed_work *dwork)
3216 {
3217 	local_irq_disable();
3218 	if (del_timer_sync(&dwork->timer))
3219 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3220 	local_irq_enable();
3221 	return flush_work(&dwork->work);
3222 }
3223 EXPORT_SYMBOL(flush_delayed_work);
3224 
3225 /**
3226  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3227  * @rwork: the rcu work to flush
3228  *
3229  * Return:
3230  * %true if flush_rcu_work() waited for the work to finish execution,
3231  * %false if it was already idle.
3232  */
flush_rcu_work(struct rcu_work * rwork)3233 bool flush_rcu_work(struct rcu_work *rwork)
3234 {
3235 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3236 		rcu_barrier();
3237 		flush_work(&rwork->work);
3238 		return true;
3239 	} else {
3240 		return flush_work(&rwork->work);
3241 	}
3242 }
3243 EXPORT_SYMBOL(flush_rcu_work);
3244 
__cancel_work(struct work_struct * work,bool is_dwork)3245 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3246 {
3247 	unsigned long flags;
3248 	int ret;
3249 
3250 	do {
3251 		ret = try_to_grab_pending(work, is_dwork, &flags);
3252 	} while (unlikely(ret == -EAGAIN));
3253 
3254 	if (unlikely(ret < 0))
3255 		return false;
3256 
3257 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3258 	local_irq_restore(flags);
3259 	return ret;
3260 }
3261 
3262 /*
3263  * See cancel_delayed_work()
3264  */
cancel_work(struct work_struct * work)3265 bool cancel_work(struct work_struct *work)
3266 {
3267 	return __cancel_work(work, false);
3268 }
3269 EXPORT_SYMBOL(cancel_work);
3270 
3271 /**
3272  * cancel_delayed_work - cancel a delayed work
3273  * @dwork: delayed_work to cancel
3274  *
3275  * Kill off a pending delayed_work.
3276  *
3277  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3278  * pending.
3279  *
3280  * Note:
3281  * The work callback function may still be running on return, unless
3282  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3283  * use cancel_delayed_work_sync() to wait on it.
3284  *
3285  * This function is safe to call from any context including IRQ handler.
3286  */
cancel_delayed_work(struct delayed_work * dwork)3287 bool cancel_delayed_work(struct delayed_work *dwork)
3288 {
3289 	return __cancel_work(&dwork->work, true);
3290 }
3291 EXPORT_SYMBOL(cancel_delayed_work);
3292 
3293 /**
3294  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3295  * @dwork: the delayed work cancel
3296  *
3297  * This is cancel_work_sync() for delayed works.
3298  *
3299  * Return:
3300  * %true if @dwork was pending, %false otherwise.
3301  */
cancel_delayed_work_sync(struct delayed_work * dwork)3302 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3303 {
3304 	return __cancel_work_timer(&dwork->work, true);
3305 }
3306 EXPORT_SYMBOL(cancel_delayed_work_sync);
3307 
3308 /**
3309  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3310  * @func: the function to call
3311  *
3312  * schedule_on_each_cpu() executes @func on each online CPU using the
3313  * system workqueue and blocks until all CPUs have completed.
3314  * schedule_on_each_cpu() is very slow.
3315  *
3316  * Return:
3317  * 0 on success, -errno on failure.
3318  */
schedule_on_each_cpu(work_func_t func)3319 int schedule_on_each_cpu(work_func_t func)
3320 {
3321 	int cpu;
3322 	struct work_struct __percpu *works;
3323 
3324 	works = alloc_percpu(struct work_struct);
3325 	if (!works)
3326 		return -ENOMEM;
3327 
3328 	get_online_cpus();
3329 
3330 	for_each_online_cpu(cpu) {
3331 		struct work_struct *work = per_cpu_ptr(works, cpu);
3332 
3333 		INIT_WORK(work, func);
3334 		schedule_work_on(cpu, work);
3335 	}
3336 
3337 	for_each_online_cpu(cpu)
3338 		flush_work(per_cpu_ptr(works, cpu));
3339 
3340 	put_online_cpus();
3341 	free_percpu(works);
3342 	return 0;
3343 }
3344 
3345 /**
3346  * execute_in_process_context - reliably execute the routine with user context
3347  * @fn:		the function to execute
3348  * @ew:		guaranteed storage for the execute work structure (must
3349  *		be available when the work executes)
3350  *
3351  * Executes the function immediately if process context is available,
3352  * otherwise schedules the function for delayed execution.
3353  *
3354  * Return:	0 - function was executed
3355  *		1 - function was scheduled for execution
3356  */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3357 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3358 {
3359 	if (!in_interrupt()) {
3360 		fn(&ew->work);
3361 		return 0;
3362 	}
3363 
3364 	INIT_WORK(&ew->work, fn);
3365 	schedule_work(&ew->work);
3366 
3367 	return 1;
3368 }
3369 EXPORT_SYMBOL_GPL(execute_in_process_context);
3370 
3371 /**
3372  * free_workqueue_attrs - free a workqueue_attrs
3373  * @attrs: workqueue_attrs to free
3374  *
3375  * Undo alloc_workqueue_attrs().
3376  */
free_workqueue_attrs(struct workqueue_attrs * attrs)3377 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3378 {
3379 	if (attrs) {
3380 		free_cpumask_var(attrs->cpumask);
3381 		kfree(attrs);
3382 	}
3383 }
3384 
3385 /**
3386  * alloc_workqueue_attrs - allocate a workqueue_attrs
3387  *
3388  * Allocate a new workqueue_attrs, initialize with default settings and
3389  * return it.
3390  *
3391  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3392  */
alloc_workqueue_attrs(void)3393 struct workqueue_attrs *alloc_workqueue_attrs(void)
3394 {
3395 	struct workqueue_attrs *attrs;
3396 
3397 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3398 	if (!attrs)
3399 		goto fail;
3400 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3401 		goto fail;
3402 
3403 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3404 	return attrs;
3405 fail:
3406 	free_workqueue_attrs(attrs);
3407 	return NULL;
3408 }
3409 
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3410 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3411 				 const struct workqueue_attrs *from)
3412 {
3413 	to->nice = from->nice;
3414 	cpumask_copy(to->cpumask, from->cpumask);
3415 	/*
3416 	 * Unlike hash and equality test, this function doesn't ignore
3417 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3418 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3419 	 */
3420 	to->no_numa = from->no_numa;
3421 }
3422 
3423 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3424 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3425 {
3426 	u32 hash = 0;
3427 
3428 	hash = jhash_1word(attrs->nice, hash);
3429 	hash = jhash(cpumask_bits(attrs->cpumask),
3430 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3431 	return hash;
3432 }
3433 
3434 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3435 static bool wqattrs_equal(const struct workqueue_attrs *a,
3436 			  const struct workqueue_attrs *b)
3437 {
3438 	if (a->nice != b->nice)
3439 		return false;
3440 	if (!cpumask_equal(a->cpumask, b->cpumask))
3441 		return false;
3442 	return true;
3443 }
3444 
3445 /**
3446  * init_worker_pool - initialize a newly zalloc'd worker_pool
3447  * @pool: worker_pool to initialize
3448  *
3449  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3450  *
3451  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3452  * inside @pool proper are initialized and put_unbound_pool() can be called
3453  * on @pool safely to release it.
3454  */
init_worker_pool(struct worker_pool * pool)3455 static int init_worker_pool(struct worker_pool *pool)
3456 {
3457 	raw_spin_lock_init(&pool->lock);
3458 	pool->id = -1;
3459 	pool->cpu = -1;
3460 	pool->node = NUMA_NO_NODE;
3461 	pool->flags |= POOL_DISASSOCIATED;
3462 	pool->watchdog_ts = jiffies;
3463 	INIT_LIST_HEAD(&pool->worklist);
3464 	INIT_LIST_HEAD(&pool->idle_list);
3465 	hash_init(pool->busy_hash);
3466 
3467 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3468 
3469 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3470 
3471 	INIT_LIST_HEAD(&pool->workers);
3472 
3473 	ida_init(&pool->worker_ida);
3474 	INIT_HLIST_NODE(&pool->hash_node);
3475 	pool->refcnt = 1;
3476 
3477 	/* shouldn't fail above this point */
3478 	pool->attrs = alloc_workqueue_attrs();
3479 	if (!pool->attrs)
3480 		return -ENOMEM;
3481 	return 0;
3482 }
3483 
3484 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)3485 static void wq_init_lockdep(struct workqueue_struct *wq)
3486 {
3487 	char *lock_name;
3488 
3489 	lockdep_register_key(&wq->key);
3490 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3491 	if (!lock_name)
3492 		lock_name = wq->name;
3493 
3494 	wq->lock_name = lock_name;
3495 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3496 }
3497 
wq_unregister_lockdep(struct workqueue_struct * wq)3498 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3499 {
3500 	lockdep_unregister_key(&wq->key);
3501 }
3502 
wq_free_lockdep(struct workqueue_struct * wq)3503 static void wq_free_lockdep(struct workqueue_struct *wq)
3504 {
3505 	if (wq->lock_name != wq->name)
3506 		kfree(wq->lock_name);
3507 }
3508 #else
wq_init_lockdep(struct workqueue_struct * wq)3509 static void wq_init_lockdep(struct workqueue_struct *wq)
3510 {
3511 }
3512 
wq_unregister_lockdep(struct workqueue_struct * wq)3513 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3514 {
3515 }
3516 
wq_free_lockdep(struct workqueue_struct * wq)3517 static void wq_free_lockdep(struct workqueue_struct *wq)
3518 {
3519 }
3520 #endif
3521 
rcu_free_wq(struct rcu_head * rcu)3522 static void rcu_free_wq(struct rcu_head *rcu)
3523 {
3524 	struct workqueue_struct *wq =
3525 		container_of(rcu, struct workqueue_struct, rcu);
3526 
3527 	wq_free_lockdep(wq);
3528 
3529 	if (!(wq->flags & WQ_UNBOUND))
3530 		free_percpu(wq->cpu_pwqs);
3531 	else
3532 		free_workqueue_attrs(wq->unbound_attrs);
3533 
3534 	kfree(wq);
3535 }
3536 
rcu_free_pool(struct rcu_head * rcu)3537 static void rcu_free_pool(struct rcu_head *rcu)
3538 {
3539 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3540 
3541 	ida_destroy(&pool->worker_ida);
3542 	free_workqueue_attrs(pool->attrs);
3543 	kfree(pool);
3544 }
3545 
3546 /* This returns with the lock held on success (pool manager is inactive). */
wq_manager_inactive(struct worker_pool * pool)3547 static bool wq_manager_inactive(struct worker_pool *pool)
3548 {
3549 	raw_spin_lock_irq(&pool->lock);
3550 
3551 	if (pool->flags & POOL_MANAGER_ACTIVE) {
3552 		raw_spin_unlock_irq(&pool->lock);
3553 		return false;
3554 	}
3555 	return true;
3556 }
3557 
3558 /**
3559  * put_unbound_pool - put a worker_pool
3560  * @pool: worker_pool to put
3561  *
3562  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3563  * safe manner.  get_unbound_pool() calls this function on its failure path
3564  * and this function should be able to release pools which went through,
3565  * successfully or not, init_worker_pool().
3566  *
3567  * Should be called with wq_pool_mutex held.
3568  */
put_unbound_pool(struct worker_pool * pool)3569 static void put_unbound_pool(struct worker_pool *pool)
3570 {
3571 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3572 	struct worker *worker;
3573 
3574 	lockdep_assert_held(&wq_pool_mutex);
3575 
3576 	if (--pool->refcnt)
3577 		return;
3578 
3579 	/* sanity checks */
3580 	if (WARN_ON(!(pool->cpu < 0)) ||
3581 	    WARN_ON(!list_empty(&pool->worklist)))
3582 		return;
3583 
3584 	/* release id and unhash */
3585 	if (pool->id >= 0)
3586 		idr_remove(&worker_pool_idr, pool->id);
3587 	hash_del(&pool->hash_node);
3588 
3589 	/*
3590 	 * Become the manager and destroy all workers.  This prevents
3591 	 * @pool's workers from blocking on attach_mutex.  We're the last
3592 	 * manager and @pool gets freed with the flag set.
3593 	 * Because of how wq_manager_inactive() works, we will hold the
3594 	 * spinlock after a successful wait.
3595 	 */
3596 	rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3597 			   TASK_UNINTERRUPTIBLE);
3598 	pool->flags |= POOL_MANAGER_ACTIVE;
3599 
3600 	while ((worker = first_idle_worker(pool)))
3601 		destroy_worker(worker);
3602 	WARN_ON(pool->nr_workers || pool->nr_idle);
3603 	raw_spin_unlock_irq(&pool->lock);
3604 
3605 	mutex_lock(&wq_pool_attach_mutex);
3606 	if (!list_empty(&pool->workers))
3607 		pool->detach_completion = &detach_completion;
3608 	mutex_unlock(&wq_pool_attach_mutex);
3609 
3610 	if (pool->detach_completion)
3611 		wait_for_completion(pool->detach_completion);
3612 
3613 	/* shut down the timers */
3614 	del_timer_sync(&pool->idle_timer);
3615 	del_timer_sync(&pool->mayday_timer);
3616 
3617 	/* RCU protected to allow dereferences from get_work_pool() */
3618 	call_rcu(&pool->rcu, rcu_free_pool);
3619 }
3620 
3621 /**
3622  * get_unbound_pool - get a worker_pool with the specified attributes
3623  * @attrs: the attributes of the worker_pool to get
3624  *
3625  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3626  * reference count and return it.  If there already is a matching
3627  * worker_pool, it will be used; otherwise, this function attempts to
3628  * create a new one.
3629  *
3630  * Should be called with wq_pool_mutex held.
3631  *
3632  * Return: On success, a worker_pool with the same attributes as @attrs.
3633  * On failure, %NULL.
3634  */
get_unbound_pool(const struct workqueue_attrs * attrs)3635 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3636 {
3637 	u32 hash = wqattrs_hash(attrs);
3638 	struct worker_pool *pool;
3639 	int node;
3640 	int target_node = NUMA_NO_NODE;
3641 
3642 	lockdep_assert_held(&wq_pool_mutex);
3643 
3644 	/* do we already have a matching pool? */
3645 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3646 		if (wqattrs_equal(pool->attrs, attrs)) {
3647 			pool->refcnt++;
3648 			return pool;
3649 		}
3650 	}
3651 
3652 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3653 	if (wq_numa_enabled) {
3654 		for_each_node(node) {
3655 			if (cpumask_subset(attrs->cpumask,
3656 					   wq_numa_possible_cpumask[node])) {
3657 				target_node = node;
3658 				break;
3659 			}
3660 		}
3661 	}
3662 
3663 	/* nope, create a new one */
3664 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3665 	if (!pool || init_worker_pool(pool) < 0)
3666 		goto fail;
3667 
3668 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3669 	copy_workqueue_attrs(pool->attrs, attrs);
3670 	pool->node = target_node;
3671 
3672 	/*
3673 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3674 	 * 'struct workqueue_attrs' comments for detail.
3675 	 */
3676 	pool->attrs->no_numa = false;
3677 
3678 	if (worker_pool_assign_id(pool) < 0)
3679 		goto fail;
3680 
3681 	/* create and start the initial worker */
3682 	if (wq_online && !create_worker(pool))
3683 		goto fail;
3684 
3685 	/* install */
3686 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3687 
3688 	return pool;
3689 fail:
3690 	if (pool)
3691 		put_unbound_pool(pool);
3692 	return NULL;
3693 }
3694 
rcu_free_pwq(struct rcu_head * rcu)3695 static void rcu_free_pwq(struct rcu_head *rcu)
3696 {
3697 	kmem_cache_free(pwq_cache,
3698 			container_of(rcu, struct pool_workqueue, rcu));
3699 }
3700 
3701 /*
3702  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3703  * and needs to be destroyed.
3704  */
pwq_unbound_release_workfn(struct work_struct * work)3705 static void pwq_unbound_release_workfn(struct work_struct *work)
3706 {
3707 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3708 						  unbound_release_work);
3709 	struct workqueue_struct *wq = pwq->wq;
3710 	struct worker_pool *pool = pwq->pool;
3711 	bool is_last = false;
3712 
3713 	/*
3714 	 * when @pwq is not linked, it doesn't hold any reference to the
3715 	 * @wq, and @wq is invalid to access.
3716 	 */
3717 	if (!list_empty(&pwq->pwqs_node)) {
3718 		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3719 			return;
3720 
3721 		mutex_lock(&wq->mutex);
3722 		list_del_rcu(&pwq->pwqs_node);
3723 		is_last = list_empty(&wq->pwqs);
3724 		mutex_unlock(&wq->mutex);
3725 	}
3726 
3727 	mutex_lock(&wq_pool_mutex);
3728 	put_unbound_pool(pool);
3729 	mutex_unlock(&wq_pool_mutex);
3730 
3731 	call_rcu(&pwq->rcu, rcu_free_pwq);
3732 
3733 	/*
3734 	 * If we're the last pwq going away, @wq is already dead and no one
3735 	 * is gonna access it anymore.  Schedule RCU free.
3736 	 */
3737 	if (is_last) {
3738 		wq_unregister_lockdep(wq);
3739 		call_rcu(&wq->rcu, rcu_free_wq);
3740 	}
3741 }
3742 
3743 /**
3744  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3745  * @pwq: target pool_workqueue
3746  *
3747  * If @pwq isn't freezing, set @pwq->max_active to the associated
3748  * workqueue's saved_max_active and activate delayed work items
3749  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3750  */
pwq_adjust_max_active(struct pool_workqueue * pwq)3751 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3752 {
3753 	struct workqueue_struct *wq = pwq->wq;
3754 	bool freezable = wq->flags & WQ_FREEZABLE;
3755 	unsigned long flags;
3756 
3757 	/* for @wq->saved_max_active */
3758 	lockdep_assert_held(&wq->mutex);
3759 
3760 	/* fast exit for non-freezable wqs */
3761 	if (!freezable && pwq->max_active == wq->saved_max_active)
3762 		return;
3763 
3764 	/* this function can be called during early boot w/ irq disabled */
3765 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3766 
3767 	/*
3768 	 * During [un]freezing, the caller is responsible for ensuring that
3769 	 * this function is called at least once after @workqueue_freezing
3770 	 * is updated and visible.
3771 	 */
3772 	if (!freezable || !workqueue_freezing) {
3773 		bool kick = false;
3774 
3775 		pwq->max_active = wq->saved_max_active;
3776 
3777 		while (!list_empty(&pwq->delayed_works) &&
3778 		       pwq->nr_active < pwq->max_active) {
3779 			pwq_activate_first_delayed(pwq);
3780 			kick = true;
3781 		}
3782 
3783 		/*
3784 		 * Need to kick a worker after thawed or an unbound wq's
3785 		 * max_active is bumped. In realtime scenarios, always kicking a
3786 		 * worker will cause interference on the isolated cpu cores, so
3787 		 * let's kick iff work items were activated.
3788 		 */
3789 		if (kick)
3790 			wake_up_worker(pwq->pool);
3791 	} else {
3792 		pwq->max_active = 0;
3793 	}
3794 
3795 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3796 }
3797 
3798 /* initialize newly alloced @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3799 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3800 		     struct worker_pool *pool)
3801 {
3802 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3803 
3804 	memset(pwq, 0, sizeof(*pwq));
3805 
3806 	pwq->pool = pool;
3807 	pwq->wq = wq;
3808 	pwq->flush_color = -1;
3809 	pwq->refcnt = 1;
3810 	INIT_LIST_HEAD(&pwq->delayed_works);
3811 	INIT_LIST_HEAD(&pwq->pwqs_node);
3812 	INIT_LIST_HEAD(&pwq->mayday_node);
3813 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3814 }
3815 
3816 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3817 static void link_pwq(struct pool_workqueue *pwq)
3818 {
3819 	struct workqueue_struct *wq = pwq->wq;
3820 
3821 	lockdep_assert_held(&wq->mutex);
3822 
3823 	/* may be called multiple times, ignore if already linked */
3824 	if (!list_empty(&pwq->pwqs_node))
3825 		return;
3826 
3827 	/* set the matching work_color */
3828 	pwq->work_color = wq->work_color;
3829 
3830 	/* sync max_active to the current setting */
3831 	pwq_adjust_max_active(pwq);
3832 
3833 	/* link in @pwq */
3834 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3835 }
3836 
3837 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3838 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3839 					const struct workqueue_attrs *attrs)
3840 {
3841 	struct worker_pool *pool;
3842 	struct pool_workqueue *pwq;
3843 
3844 	lockdep_assert_held(&wq_pool_mutex);
3845 
3846 	pool = get_unbound_pool(attrs);
3847 	if (!pool)
3848 		return NULL;
3849 
3850 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3851 	if (!pwq) {
3852 		put_unbound_pool(pool);
3853 		return NULL;
3854 	}
3855 
3856 	init_pwq(pwq, wq, pool);
3857 	return pwq;
3858 }
3859 
3860 /**
3861  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3862  * @attrs: the wq_attrs of the default pwq of the target workqueue
3863  * @node: the target NUMA node
3864  * @cpu_going_down: if >= 0, the CPU to consider as offline
3865  * @cpumask: outarg, the resulting cpumask
3866  *
3867  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3868  * @cpu_going_down is >= 0, that cpu is considered offline during
3869  * calculation.  The result is stored in @cpumask.
3870  *
3871  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3872  * enabled and @node has online CPUs requested by @attrs, the returned
3873  * cpumask is the intersection of the possible CPUs of @node and
3874  * @attrs->cpumask.
3875  *
3876  * The caller is responsible for ensuring that the cpumask of @node stays
3877  * stable.
3878  *
3879  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3880  * %false if equal.
3881  */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3882 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3883 				 int cpu_going_down, cpumask_t *cpumask)
3884 {
3885 	if (!wq_numa_enabled || attrs->no_numa)
3886 		goto use_dfl;
3887 
3888 	/* does @node have any online CPUs @attrs wants? */
3889 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3890 	if (cpu_going_down >= 0)
3891 		cpumask_clear_cpu(cpu_going_down, cpumask);
3892 
3893 	if (cpumask_empty(cpumask))
3894 		goto use_dfl;
3895 
3896 	/* yeap, return possible CPUs in @node that @attrs wants */
3897 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3898 
3899 	if (cpumask_empty(cpumask)) {
3900 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3901 				"possible intersect\n");
3902 		return false;
3903 	}
3904 
3905 	return !cpumask_equal(cpumask, attrs->cpumask);
3906 
3907 use_dfl:
3908 	cpumask_copy(cpumask, attrs->cpumask);
3909 	return false;
3910 }
3911 
3912 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3913 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3914 						   int node,
3915 						   struct pool_workqueue *pwq)
3916 {
3917 	struct pool_workqueue *old_pwq;
3918 
3919 	lockdep_assert_held(&wq_pool_mutex);
3920 	lockdep_assert_held(&wq->mutex);
3921 
3922 	/* link_pwq() can handle duplicate calls */
3923 	link_pwq(pwq);
3924 
3925 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3926 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3927 	return old_pwq;
3928 }
3929 
3930 /* context to store the prepared attrs & pwqs before applying */
3931 struct apply_wqattrs_ctx {
3932 	struct workqueue_struct	*wq;		/* target workqueue */
3933 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3934 	struct list_head	list;		/* queued for batching commit */
3935 	struct pool_workqueue	*dfl_pwq;
3936 	struct pool_workqueue	*pwq_tbl[];
3937 };
3938 
3939 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)3940 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3941 {
3942 	if (ctx) {
3943 		int node;
3944 
3945 		for_each_node(node)
3946 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3947 		put_pwq_unlocked(ctx->dfl_pwq);
3948 
3949 		free_workqueue_attrs(ctx->attrs);
3950 
3951 		kfree(ctx);
3952 	}
3953 }
3954 
3955 /* allocate the attrs and pwqs for later installation */
3956 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3957 apply_wqattrs_prepare(struct workqueue_struct *wq,
3958 		      const struct workqueue_attrs *attrs)
3959 {
3960 	struct apply_wqattrs_ctx *ctx;
3961 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3962 	int node;
3963 
3964 	lockdep_assert_held(&wq_pool_mutex);
3965 
3966 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3967 
3968 	new_attrs = alloc_workqueue_attrs();
3969 	tmp_attrs = alloc_workqueue_attrs();
3970 	if (!ctx || !new_attrs || !tmp_attrs)
3971 		goto out_free;
3972 
3973 	/*
3974 	 * Calculate the attrs of the default pwq.
3975 	 * If the user configured cpumask doesn't overlap with the
3976 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3977 	 */
3978 	copy_workqueue_attrs(new_attrs, attrs);
3979 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3980 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3981 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3982 
3983 	/*
3984 	 * We may create multiple pwqs with differing cpumasks.  Make a
3985 	 * copy of @new_attrs which will be modified and used to obtain
3986 	 * pools.
3987 	 */
3988 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3989 
3990 	/*
3991 	 * If something goes wrong during CPU up/down, we'll fall back to
3992 	 * the default pwq covering whole @attrs->cpumask.  Always create
3993 	 * it even if we don't use it immediately.
3994 	 */
3995 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3996 	if (!ctx->dfl_pwq)
3997 		goto out_free;
3998 
3999 	for_each_node(node) {
4000 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
4001 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4002 			if (!ctx->pwq_tbl[node])
4003 				goto out_free;
4004 		} else {
4005 			ctx->dfl_pwq->refcnt++;
4006 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
4007 		}
4008 	}
4009 
4010 	/* save the user configured attrs and sanitize it. */
4011 	copy_workqueue_attrs(new_attrs, attrs);
4012 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4013 	ctx->attrs = new_attrs;
4014 
4015 	ctx->wq = wq;
4016 	free_workqueue_attrs(tmp_attrs);
4017 	return ctx;
4018 
4019 out_free:
4020 	free_workqueue_attrs(tmp_attrs);
4021 	free_workqueue_attrs(new_attrs);
4022 	apply_wqattrs_cleanup(ctx);
4023 	return NULL;
4024 }
4025 
4026 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)4027 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4028 {
4029 	int node;
4030 
4031 	/* all pwqs have been created successfully, let's install'em */
4032 	mutex_lock(&ctx->wq->mutex);
4033 
4034 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4035 
4036 	/* save the previous pwq and install the new one */
4037 	for_each_node(node)
4038 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4039 							  ctx->pwq_tbl[node]);
4040 
4041 	/* @dfl_pwq might not have been used, ensure it's linked */
4042 	link_pwq(ctx->dfl_pwq);
4043 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4044 
4045 	mutex_unlock(&ctx->wq->mutex);
4046 }
4047 
apply_wqattrs_lock(void)4048 static void apply_wqattrs_lock(void)
4049 {
4050 	/* CPUs should stay stable across pwq creations and installations */
4051 	get_online_cpus();
4052 	mutex_lock(&wq_pool_mutex);
4053 }
4054 
apply_wqattrs_unlock(void)4055 static void apply_wqattrs_unlock(void)
4056 {
4057 	mutex_unlock(&wq_pool_mutex);
4058 	put_online_cpus();
4059 }
4060 
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4061 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4062 					const struct workqueue_attrs *attrs)
4063 {
4064 	struct apply_wqattrs_ctx *ctx;
4065 
4066 	/* only unbound workqueues can change attributes */
4067 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4068 		return -EINVAL;
4069 
4070 	/* creating multiple pwqs breaks ordering guarantee */
4071 	if (!list_empty(&wq->pwqs)) {
4072 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4073 			return -EINVAL;
4074 
4075 		wq->flags &= ~__WQ_ORDERED;
4076 	}
4077 
4078 	ctx = apply_wqattrs_prepare(wq, attrs);
4079 	if (!ctx)
4080 		return -ENOMEM;
4081 
4082 	/* the ctx has been prepared successfully, let's commit it */
4083 	apply_wqattrs_commit(ctx);
4084 	apply_wqattrs_cleanup(ctx);
4085 
4086 	return 0;
4087 }
4088 
4089 /**
4090  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4091  * @wq: the target workqueue
4092  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4093  *
4094  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4095  * machines, this function maps a separate pwq to each NUMA node with
4096  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4097  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4098  * items finish.  Note that a work item which repeatedly requeues itself
4099  * back-to-back will stay on its current pwq.
4100  *
4101  * Performs GFP_KERNEL allocations.
4102  *
4103  * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4104  *
4105  * Return: 0 on success and -errno on failure.
4106  */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4107 int apply_workqueue_attrs(struct workqueue_struct *wq,
4108 			  const struct workqueue_attrs *attrs)
4109 {
4110 	int ret;
4111 
4112 	lockdep_assert_cpus_held();
4113 
4114 	mutex_lock(&wq_pool_mutex);
4115 	ret = apply_workqueue_attrs_locked(wq, attrs);
4116 	mutex_unlock(&wq_pool_mutex);
4117 
4118 	return ret;
4119 }
4120 
4121 /**
4122  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4123  * @wq: the target workqueue
4124  * @cpu: the CPU coming up or going down
4125  * @online: whether @cpu is coming up or going down
4126  *
4127  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4128  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4129  * @wq accordingly.
4130  *
4131  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4132  * falls back to @wq->dfl_pwq which may not be optimal but is always
4133  * correct.
4134  *
4135  * Note that when the last allowed CPU of a NUMA node goes offline for a
4136  * workqueue with a cpumask spanning multiple nodes, the workers which were
4137  * already executing the work items for the workqueue will lose their CPU
4138  * affinity and may execute on any CPU.  This is similar to how per-cpu
4139  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4140  * affinity, it's the user's responsibility to flush the work item from
4141  * CPU_DOWN_PREPARE.
4142  */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)4143 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4144 				   bool online)
4145 {
4146 	int node = cpu_to_node(cpu);
4147 	int cpu_off = online ? -1 : cpu;
4148 	struct pool_workqueue *old_pwq = NULL, *pwq;
4149 	struct workqueue_attrs *target_attrs;
4150 	cpumask_t *cpumask;
4151 
4152 	lockdep_assert_held(&wq_pool_mutex);
4153 
4154 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4155 	    wq->unbound_attrs->no_numa)
4156 		return;
4157 
4158 	/*
4159 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4160 	 * Let's use a preallocated one.  The following buf is protected by
4161 	 * CPU hotplug exclusion.
4162 	 */
4163 	target_attrs = wq_update_unbound_numa_attrs_buf;
4164 	cpumask = target_attrs->cpumask;
4165 
4166 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4167 	pwq = unbound_pwq_by_node(wq, node);
4168 
4169 	/*
4170 	 * Let's determine what needs to be done.  If the target cpumask is
4171 	 * different from the default pwq's, we need to compare it to @pwq's
4172 	 * and create a new one if they don't match.  If the target cpumask
4173 	 * equals the default pwq's, the default pwq should be used.
4174 	 */
4175 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4176 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4177 			return;
4178 	} else {
4179 		goto use_dfl_pwq;
4180 	}
4181 
4182 	/* create a new pwq */
4183 	pwq = alloc_unbound_pwq(wq, target_attrs);
4184 	if (!pwq) {
4185 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4186 			wq->name);
4187 		goto use_dfl_pwq;
4188 	}
4189 
4190 	/* Install the new pwq. */
4191 	mutex_lock(&wq->mutex);
4192 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4193 	goto out_unlock;
4194 
4195 use_dfl_pwq:
4196 	mutex_lock(&wq->mutex);
4197 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4198 	get_pwq(wq->dfl_pwq);
4199 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4200 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4201 out_unlock:
4202 	mutex_unlock(&wq->mutex);
4203 	put_pwq_unlocked(old_pwq);
4204 }
4205 
alloc_and_link_pwqs(struct workqueue_struct * wq)4206 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4207 {
4208 	bool highpri = wq->flags & WQ_HIGHPRI;
4209 	int cpu, ret;
4210 
4211 	if (!(wq->flags & WQ_UNBOUND)) {
4212 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4213 		if (!wq->cpu_pwqs)
4214 			return -ENOMEM;
4215 
4216 		for_each_possible_cpu(cpu) {
4217 			struct pool_workqueue *pwq =
4218 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4219 			struct worker_pool *cpu_pools =
4220 				per_cpu(cpu_worker_pools, cpu);
4221 
4222 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4223 
4224 			mutex_lock(&wq->mutex);
4225 			link_pwq(pwq);
4226 			mutex_unlock(&wq->mutex);
4227 		}
4228 		return 0;
4229 	}
4230 
4231 	get_online_cpus();
4232 	if (wq->flags & __WQ_ORDERED) {
4233 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4234 		/* there should only be single pwq for ordering guarantee */
4235 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4236 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4237 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4238 	} else {
4239 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4240 	}
4241 	put_online_cpus();
4242 
4243 	return ret;
4244 }
4245 
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)4246 static int wq_clamp_max_active(int max_active, unsigned int flags,
4247 			       const char *name)
4248 {
4249 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4250 
4251 	if (max_active < 1 || max_active > lim)
4252 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4253 			max_active, name, 1, lim);
4254 
4255 	return clamp_val(max_active, 1, lim);
4256 }
4257 
4258 /*
4259  * Workqueues which may be used during memory reclaim should have a rescuer
4260  * to guarantee forward progress.
4261  */
init_rescuer(struct workqueue_struct * wq)4262 static int init_rescuer(struct workqueue_struct *wq)
4263 {
4264 	struct worker *rescuer;
4265 	int ret;
4266 
4267 	if (!(wq->flags & WQ_MEM_RECLAIM))
4268 		return 0;
4269 
4270 	rescuer = alloc_worker(NUMA_NO_NODE);
4271 	if (!rescuer)
4272 		return -ENOMEM;
4273 
4274 	rescuer->rescue_wq = wq;
4275 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4276 	if (IS_ERR(rescuer->task)) {
4277 		ret = PTR_ERR(rescuer->task);
4278 		kfree(rescuer);
4279 		return ret;
4280 	}
4281 
4282 	wq->rescuer = rescuer;
4283 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4284 	wake_up_process(rescuer->task);
4285 
4286 	return 0;
4287 }
4288 
4289 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)4290 struct workqueue_struct *alloc_workqueue(const char *fmt,
4291 					 unsigned int flags,
4292 					 int max_active, ...)
4293 {
4294 	size_t tbl_size = 0;
4295 	va_list args;
4296 	struct workqueue_struct *wq;
4297 	struct pool_workqueue *pwq;
4298 
4299 	/*
4300 	 * Unbound && max_active == 1 used to imply ordered, which is no
4301 	 * longer the case on NUMA machines due to per-node pools.  While
4302 	 * alloc_ordered_workqueue() is the right way to create an ordered
4303 	 * workqueue, keep the previous behavior to avoid subtle breakages
4304 	 * on NUMA.
4305 	 */
4306 	if ((flags & WQ_UNBOUND) && max_active == 1)
4307 		flags |= __WQ_ORDERED;
4308 
4309 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4310 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4311 		flags |= WQ_UNBOUND;
4312 
4313 	/* allocate wq and format name */
4314 	if (flags & WQ_UNBOUND)
4315 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4316 
4317 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4318 	if (!wq)
4319 		return NULL;
4320 
4321 	if (flags & WQ_UNBOUND) {
4322 		wq->unbound_attrs = alloc_workqueue_attrs();
4323 		if (!wq->unbound_attrs)
4324 			goto err_free_wq;
4325 	}
4326 
4327 	va_start(args, max_active);
4328 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4329 	va_end(args);
4330 
4331 	max_active = max_active ?: WQ_DFL_ACTIVE;
4332 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4333 
4334 	/* init wq */
4335 	wq->flags = flags;
4336 	wq->saved_max_active = max_active;
4337 	mutex_init(&wq->mutex);
4338 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4339 	INIT_LIST_HEAD(&wq->pwqs);
4340 	INIT_LIST_HEAD(&wq->flusher_queue);
4341 	INIT_LIST_HEAD(&wq->flusher_overflow);
4342 	INIT_LIST_HEAD(&wq->maydays);
4343 
4344 	wq_init_lockdep(wq);
4345 	INIT_LIST_HEAD(&wq->list);
4346 
4347 	if (alloc_and_link_pwqs(wq) < 0)
4348 		goto err_unreg_lockdep;
4349 
4350 	if (wq_online && init_rescuer(wq) < 0)
4351 		goto err_destroy;
4352 
4353 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4354 		goto err_destroy;
4355 
4356 	/*
4357 	 * wq_pool_mutex protects global freeze state and workqueues list.
4358 	 * Grab it, adjust max_active and add the new @wq to workqueues
4359 	 * list.
4360 	 */
4361 	mutex_lock(&wq_pool_mutex);
4362 
4363 	mutex_lock(&wq->mutex);
4364 	for_each_pwq(pwq, wq)
4365 		pwq_adjust_max_active(pwq);
4366 	mutex_unlock(&wq->mutex);
4367 
4368 	list_add_tail_rcu(&wq->list, &workqueues);
4369 
4370 	mutex_unlock(&wq_pool_mutex);
4371 
4372 	return wq;
4373 
4374 err_unreg_lockdep:
4375 	wq_unregister_lockdep(wq);
4376 	wq_free_lockdep(wq);
4377 err_free_wq:
4378 	free_workqueue_attrs(wq->unbound_attrs);
4379 	kfree(wq);
4380 	return NULL;
4381 err_destroy:
4382 	destroy_workqueue(wq);
4383 	return NULL;
4384 }
4385 EXPORT_SYMBOL_GPL(alloc_workqueue);
4386 
pwq_busy(struct pool_workqueue * pwq)4387 static bool pwq_busy(struct pool_workqueue *pwq)
4388 {
4389 	int i;
4390 
4391 	for (i = 0; i < WORK_NR_COLORS; i++)
4392 		if (pwq->nr_in_flight[i])
4393 			return true;
4394 
4395 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4396 		return true;
4397 	if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4398 		return true;
4399 
4400 	return false;
4401 }
4402 
4403 /**
4404  * destroy_workqueue - safely terminate a workqueue
4405  * @wq: target workqueue
4406  *
4407  * Safely destroy a workqueue. All work currently pending will be done first.
4408  */
destroy_workqueue(struct workqueue_struct * wq)4409 void destroy_workqueue(struct workqueue_struct *wq)
4410 {
4411 	struct pool_workqueue *pwq;
4412 	int node;
4413 
4414 	/*
4415 	 * Remove it from sysfs first so that sanity check failure doesn't
4416 	 * lead to sysfs name conflicts.
4417 	 */
4418 	workqueue_sysfs_unregister(wq);
4419 
4420 	/* drain it before proceeding with destruction */
4421 	drain_workqueue(wq);
4422 
4423 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4424 	if (wq->rescuer) {
4425 		struct worker *rescuer = wq->rescuer;
4426 
4427 		/* this prevents new queueing */
4428 		raw_spin_lock_irq(&wq_mayday_lock);
4429 		wq->rescuer = NULL;
4430 		raw_spin_unlock_irq(&wq_mayday_lock);
4431 
4432 		/* rescuer will empty maydays list before exiting */
4433 		kthread_stop(rescuer->task);
4434 		kfree(rescuer);
4435 	}
4436 
4437 	/*
4438 	 * Sanity checks - grab all the locks so that we wait for all
4439 	 * in-flight operations which may do put_pwq().
4440 	 */
4441 	mutex_lock(&wq_pool_mutex);
4442 	mutex_lock(&wq->mutex);
4443 	for_each_pwq(pwq, wq) {
4444 		raw_spin_lock_irq(&pwq->pool->lock);
4445 		if (WARN_ON(pwq_busy(pwq))) {
4446 			pr_warn("%s: %s has the following busy pwq\n",
4447 				__func__, wq->name);
4448 			show_pwq(pwq);
4449 			raw_spin_unlock_irq(&pwq->pool->lock);
4450 			mutex_unlock(&wq->mutex);
4451 			mutex_unlock(&wq_pool_mutex);
4452 			show_workqueue_state();
4453 			return;
4454 		}
4455 		raw_spin_unlock_irq(&pwq->pool->lock);
4456 	}
4457 	mutex_unlock(&wq->mutex);
4458 
4459 	/*
4460 	 * wq list is used to freeze wq, remove from list after
4461 	 * flushing is complete in case freeze races us.
4462 	 */
4463 	list_del_rcu(&wq->list);
4464 	mutex_unlock(&wq_pool_mutex);
4465 
4466 	if (!(wq->flags & WQ_UNBOUND)) {
4467 		wq_unregister_lockdep(wq);
4468 		/*
4469 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4470 		 * schedule RCU free.
4471 		 */
4472 		call_rcu(&wq->rcu, rcu_free_wq);
4473 	} else {
4474 		/*
4475 		 * We're the sole accessor of @wq at this point.  Directly
4476 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4477 		 * @wq will be freed when the last pwq is released.
4478 		 */
4479 		for_each_node(node) {
4480 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4481 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4482 			put_pwq_unlocked(pwq);
4483 		}
4484 
4485 		/*
4486 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4487 		 * put.  Don't access it afterwards.
4488 		 */
4489 		pwq = wq->dfl_pwq;
4490 		wq->dfl_pwq = NULL;
4491 		put_pwq_unlocked(pwq);
4492 	}
4493 }
4494 EXPORT_SYMBOL_GPL(destroy_workqueue);
4495 
4496 /**
4497  * workqueue_set_max_active - adjust max_active of a workqueue
4498  * @wq: target workqueue
4499  * @max_active: new max_active value.
4500  *
4501  * Set max_active of @wq to @max_active.
4502  *
4503  * CONTEXT:
4504  * Don't call from IRQ context.
4505  */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4506 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4507 {
4508 	struct pool_workqueue *pwq;
4509 
4510 	/* disallow meddling with max_active for ordered workqueues */
4511 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4512 		return;
4513 
4514 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4515 
4516 	mutex_lock(&wq->mutex);
4517 
4518 	wq->flags &= ~__WQ_ORDERED;
4519 	wq->saved_max_active = max_active;
4520 
4521 	for_each_pwq(pwq, wq)
4522 		pwq_adjust_max_active(pwq);
4523 
4524 	mutex_unlock(&wq->mutex);
4525 }
4526 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4527 
4528 /**
4529  * current_work - retrieve %current task's work struct
4530  *
4531  * Determine if %current task is a workqueue worker and what it's working on.
4532  * Useful to find out the context that the %current task is running in.
4533  *
4534  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4535  */
current_work(void)4536 struct work_struct *current_work(void)
4537 {
4538 	struct worker *worker = current_wq_worker();
4539 
4540 	return worker ? worker->current_work : NULL;
4541 }
4542 EXPORT_SYMBOL(current_work);
4543 
4544 /**
4545  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4546  *
4547  * Determine whether %current is a workqueue rescuer.  Can be used from
4548  * work functions to determine whether it's being run off the rescuer task.
4549  *
4550  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4551  */
current_is_workqueue_rescuer(void)4552 bool current_is_workqueue_rescuer(void)
4553 {
4554 	struct worker *worker = current_wq_worker();
4555 
4556 	return worker && worker->rescue_wq;
4557 }
4558 
4559 /**
4560  * workqueue_congested - test whether a workqueue is congested
4561  * @cpu: CPU in question
4562  * @wq: target workqueue
4563  *
4564  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4565  * no synchronization around this function and the test result is
4566  * unreliable and only useful as advisory hints or for debugging.
4567  *
4568  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4569  * Note that both per-cpu and unbound workqueues may be associated with
4570  * multiple pool_workqueues which have separate congested states.  A
4571  * workqueue being congested on one CPU doesn't mean the workqueue is also
4572  * contested on other CPUs / NUMA nodes.
4573  *
4574  * Return:
4575  * %true if congested, %false otherwise.
4576  */
workqueue_congested(int cpu,struct workqueue_struct * wq)4577 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4578 {
4579 	struct pool_workqueue *pwq;
4580 	bool ret;
4581 
4582 	rcu_read_lock();
4583 	preempt_disable();
4584 
4585 	if (cpu == WORK_CPU_UNBOUND)
4586 		cpu = smp_processor_id();
4587 
4588 	if (!(wq->flags & WQ_UNBOUND))
4589 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4590 	else
4591 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4592 
4593 	ret = !list_empty(&pwq->delayed_works);
4594 	preempt_enable();
4595 	rcu_read_unlock();
4596 
4597 	return ret;
4598 }
4599 EXPORT_SYMBOL_GPL(workqueue_congested);
4600 
4601 /**
4602  * work_busy - test whether a work is currently pending or running
4603  * @work: the work to be tested
4604  *
4605  * Test whether @work is currently pending or running.  There is no
4606  * synchronization around this function and the test result is
4607  * unreliable and only useful as advisory hints or for debugging.
4608  *
4609  * Return:
4610  * OR'd bitmask of WORK_BUSY_* bits.
4611  */
work_busy(struct work_struct * work)4612 unsigned int work_busy(struct work_struct *work)
4613 {
4614 	struct worker_pool *pool;
4615 	unsigned long flags;
4616 	unsigned int ret = 0;
4617 
4618 	if (work_pending(work))
4619 		ret |= WORK_BUSY_PENDING;
4620 
4621 	rcu_read_lock();
4622 	pool = get_work_pool(work);
4623 	if (pool) {
4624 		raw_spin_lock_irqsave(&pool->lock, flags);
4625 		if (find_worker_executing_work(pool, work))
4626 			ret |= WORK_BUSY_RUNNING;
4627 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4628 	}
4629 	rcu_read_unlock();
4630 
4631 	return ret;
4632 }
4633 EXPORT_SYMBOL_GPL(work_busy);
4634 
4635 /**
4636  * set_worker_desc - set description for the current work item
4637  * @fmt: printf-style format string
4638  * @...: arguments for the format string
4639  *
4640  * This function can be called by a running work function to describe what
4641  * the work item is about.  If the worker task gets dumped, this
4642  * information will be printed out together to help debugging.  The
4643  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4644  */
set_worker_desc(const char * fmt,...)4645 void set_worker_desc(const char *fmt, ...)
4646 {
4647 	struct worker *worker = current_wq_worker();
4648 	va_list args;
4649 
4650 	if (worker) {
4651 		va_start(args, fmt);
4652 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4653 		va_end(args);
4654 	}
4655 }
4656 EXPORT_SYMBOL_GPL(set_worker_desc);
4657 
4658 /**
4659  * print_worker_info - print out worker information and description
4660  * @log_lvl: the log level to use when printing
4661  * @task: target task
4662  *
4663  * If @task is a worker and currently executing a work item, print out the
4664  * name of the workqueue being serviced and worker description set with
4665  * set_worker_desc() by the currently executing work item.
4666  *
4667  * This function can be safely called on any task as long as the
4668  * task_struct itself is accessible.  While safe, this function isn't
4669  * synchronized and may print out mixups or garbages of limited length.
4670  */
print_worker_info(const char * log_lvl,struct task_struct * task)4671 void print_worker_info(const char *log_lvl, struct task_struct *task)
4672 {
4673 	work_func_t *fn = NULL;
4674 	char name[WQ_NAME_LEN] = { };
4675 	char desc[WORKER_DESC_LEN] = { };
4676 	struct pool_workqueue *pwq = NULL;
4677 	struct workqueue_struct *wq = NULL;
4678 	struct worker *worker;
4679 
4680 	if (!(task->flags & PF_WQ_WORKER))
4681 		return;
4682 
4683 	/*
4684 	 * This function is called without any synchronization and @task
4685 	 * could be in any state.  Be careful with dereferences.
4686 	 */
4687 	worker = kthread_probe_data(task);
4688 
4689 	/*
4690 	 * Carefully copy the associated workqueue's workfn, name and desc.
4691 	 * Keep the original last '\0' in case the original is garbage.
4692 	 */
4693 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4694 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4695 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4696 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4697 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4698 
4699 	if (fn || name[0] || desc[0]) {
4700 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4701 		if (strcmp(name, desc))
4702 			pr_cont(" (%s)", desc);
4703 		pr_cont("\n");
4704 	}
4705 }
4706 
pr_cont_pool_info(struct worker_pool * pool)4707 static void pr_cont_pool_info(struct worker_pool *pool)
4708 {
4709 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4710 	if (pool->node != NUMA_NO_NODE)
4711 		pr_cont(" node=%d", pool->node);
4712 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4713 }
4714 
pr_cont_work(bool comma,struct work_struct * work)4715 static void pr_cont_work(bool comma, struct work_struct *work)
4716 {
4717 	if (work->func == wq_barrier_func) {
4718 		struct wq_barrier *barr;
4719 
4720 		barr = container_of(work, struct wq_barrier, work);
4721 
4722 		pr_cont("%s BAR(%d)", comma ? "," : "",
4723 			task_pid_nr(barr->task));
4724 	} else {
4725 		pr_cont("%s %ps", comma ? "," : "", work->func);
4726 	}
4727 }
4728 
show_pwq(struct pool_workqueue * pwq)4729 static void show_pwq(struct pool_workqueue *pwq)
4730 {
4731 	struct worker_pool *pool = pwq->pool;
4732 	struct work_struct *work;
4733 	struct worker *worker;
4734 	bool has_in_flight = false, has_pending = false;
4735 	int bkt;
4736 
4737 	pr_info("  pwq %d:", pool->id);
4738 	pr_cont_pool_info(pool);
4739 
4740 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4741 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4742 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4743 
4744 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4745 		if (worker->current_pwq == pwq) {
4746 			has_in_flight = true;
4747 			break;
4748 		}
4749 	}
4750 	if (has_in_flight) {
4751 		bool comma = false;
4752 
4753 		pr_info("    in-flight:");
4754 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4755 			if (worker->current_pwq != pwq)
4756 				continue;
4757 
4758 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4759 				task_pid_nr(worker->task),
4760 				worker->rescue_wq ? "(RESCUER)" : "",
4761 				worker->current_func);
4762 			list_for_each_entry(work, &worker->scheduled, entry)
4763 				pr_cont_work(false, work);
4764 			comma = true;
4765 		}
4766 		pr_cont("\n");
4767 	}
4768 
4769 	list_for_each_entry(work, &pool->worklist, entry) {
4770 		if (get_work_pwq(work) == pwq) {
4771 			has_pending = true;
4772 			break;
4773 		}
4774 	}
4775 	if (has_pending) {
4776 		bool comma = false;
4777 
4778 		pr_info("    pending:");
4779 		list_for_each_entry(work, &pool->worklist, entry) {
4780 			if (get_work_pwq(work) != pwq)
4781 				continue;
4782 
4783 			pr_cont_work(comma, work);
4784 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4785 		}
4786 		pr_cont("\n");
4787 	}
4788 
4789 	if (!list_empty(&pwq->delayed_works)) {
4790 		bool comma = false;
4791 
4792 		pr_info("    delayed:");
4793 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4794 			pr_cont_work(comma, work);
4795 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4796 		}
4797 		pr_cont("\n");
4798 	}
4799 }
4800 
4801 /**
4802  * show_workqueue_state - dump workqueue state
4803  *
4804  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4805  * all busy workqueues and pools.
4806  */
show_workqueue_state(void)4807 void show_workqueue_state(void)
4808 {
4809 	struct workqueue_struct *wq;
4810 	struct worker_pool *pool;
4811 	unsigned long flags;
4812 	int pi;
4813 
4814 	rcu_read_lock();
4815 
4816 	pr_info("Showing busy workqueues and worker pools:\n");
4817 
4818 	list_for_each_entry_rcu(wq, &workqueues, list) {
4819 		struct pool_workqueue *pwq;
4820 		bool idle = true;
4821 
4822 		for_each_pwq(pwq, wq) {
4823 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4824 				idle = false;
4825 				break;
4826 			}
4827 		}
4828 		if (idle)
4829 			continue;
4830 
4831 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4832 
4833 		for_each_pwq(pwq, wq) {
4834 			raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4835 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4836 				show_pwq(pwq);
4837 			raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4838 			/*
4839 			 * We could be printing a lot from atomic context, e.g.
4840 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4841 			 * hard lockup.
4842 			 */
4843 			touch_nmi_watchdog();
4844 		}
4845 	}
4846 
4847 	for_each_pool(pool, pi) {
4848 		struct worker *worker;
4849 		bool first = true;
4850 
4851 		raw_spin_lock_irqsave(&pool->lock, flags);
4852 		if (pool->nr_workers == pool->nr_idle)
4853 			goto next_pool;
4854 
4855 		pr_info("pool %d:", pool->id);
4856 		pr_cont_pool_info(pool);
4857 		pr_cont(" hung=%us workers=%d",
4858 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4859 			pool->nr_workers);
4860 		if (pool->manager)
4861 			pr_cont(" manager: %d",
4862 				task_pid_nr(pool->manager->task));
4863 		list_for_each_entry(worker, &pool->idle_list, entry) {
4864 			pr_cont(" %s%d", first ? "idle: " : "",
4865 				task_pid_nr(worker->task));
4866 			first = false;
4867 		}
4868 		pr_cont("\n");
4869 	next_pool:
4870 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4871 		/*
4872 		 * We could be printing a lot from atomic context, e.g.
4873 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4874 		 * hard lockup.
4875 		 */
4876 		touch_nmi_watchdog();
4877 	}
4878 
4879 	rcu_read_unlock();
4880 }
4881 
4882 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)4883 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4884 {
4885 	int off;
4886 
4887 	/* always show the actual comm */
4888 	off = strscpy(buf, task->comm, size);
4889 	if (off < 0)
4890 		return;
4891 
4892 	/* stabilize PF_WQ_WORKER and worker pool association */
4893 	mutex_lock(&wq_pool_attach_mutex);
4894 
4895 	if (task->flags & PF_WQ_WORKER) {
4896 		struct worker *worker = kthread_data(task);
4897 		struct worker_pool *pool = worker->pool;
4898 
4899 		if (pool) {
4900 			raw_spin_lock_irq(&pool->lock);
4901 			/*
4902 			 * ->desc tracks information (wq name or
4903 			 * set_worker_desc()) for the latest execution.  If
4904 			 * current, prepend '+', otherwise '-'.
4905 			 */
4906 			if (worker->desc[0] != '\0') {
4907 				if (worker->current_work)
4908 					scnprintf(buf + off, size - off, "+%s",
4909 						  worker->desc);
4910 				else
4911 					scnprintf(buf + off, size - off, "-%s",
4912 						  worker->desc);
4913 			}
4914 			raw_spin_unlock_irq(&pool->lock);
4915 		}
4916 	}
4917 
4918 	mutex_unlock(&wq_pool_attach_mutex);
4919 }
4920 
4921 #ifdef CONFIG_SMP
4922 
4923 /*
4924  * CPU hotplug.
4925  *
4926  * There are two challenges in supporting CPU hotplug.  Firstly, there
4927  * are a lot of assumptions on strong associations among work, pwq and
4928  * pool which make migrating pending and scheduled works very
4929  * difficult to implement without impacting hot paths.  Secondly,
4930  * worker pools serve mix of short, long and very long running works making
4931  * blocked draining impractical.
4932  *
4933  * This is solved by allowing the pools to be disassociated from the CPU
4934  * running as an unbound one and allowing it to be reattached later if the
4935  * cpu comes back online.
4936  */
4937 
unbind_workers(int cpu)4938 static void unbind_workers(int cpu)
4939 {
4940 	struct worker_pool *pool;
4941 	struct worker *worker;
4942 
4943 	for_each_cpu_worker_pool(pool, cpu) {
4944 		mutex_lock(&wq_pool_attach_mutex);
4945 		raw_spin_lock_irq(&pool->lock);
4946 
4947 		/*
4948 		 * We've blocked all attach/detach operations. Make all workers
4949 		 * unbound and set DISASSOCIATED.  Before this, all workers
4950 		 * except for the ones which are still executing works from
4951 		 * before the last CPU down must be on the cpu.  After
4952 		 * this, they may become diasporas.
4953 		 */
4954 		for_each_pool_worker(worker, pool)
4955 			worker->flags |= WORKER_UNBOUND;
4956 
4957 		pool->flags |= POOL_DISASSOCIATED;
4958 
4959 		raw_spin_unlock_irq(&pool->lock);
4960 		mutex_unlock(&wq_pool_attach_mutex);
4961 
4962 		/*
4963 		 * Call schedule() so that we cross rq->lock and thus can
4964 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4965 		 * This is necessary as scheduler callbacks may be invoked
4966 		 * from other cpus.
4967 		 */
4968 		schedule();
4969 
4970 		/*
4971 		 * Sched callbacks are disabled now.  Zap nr_running.
4972 		 * After this, nr_running stays zero and need_more_worker()
4973 		 * and keep_working() are always true as long as the
4974 		 * worklist is not empty.  This pool now behaves as an
4975 		 * unbound (in terms of concurrency management) pool which
4976 		 * are served by workers tied to the pool.
4977 		 */
4978 		atomic_set(&pool->nr_running, 0);
4979 
4980 		/*
4981 		 * With concurrency management just turned off, a busy
4982 		 * worker blocking could lead to lengthy stalls.  Kick off
4983 		 * unbound chain execution of currently pending work items.
4984 		 */
4985 		raw_spin_lock_irq(&pool->lock);
4986 		wake_up_worker(pool);
4987 		raw_spin_unlock_irq(&pool->lock);
4988 	}
4989 }
4990 
4991 /**
4992  * rebind_workers - rebind all workers of a pool to the associated CPU
4993  * @pool: pool of interest
4994  *
4995  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4996  */
rebind_workers(struct worker_pool * pool)4997 static void rebind_workers(struct worker_pool *pool)
4998 {
4999 	struct worker *worker;
5000 
5001 	lockdep_assert_held(&wq_pool_attach_mutex);
5002 
5003 	/*
5004 	 * Restore CPU affinity of all workers.  As all idle workers should
5005 	 * be on the run-queue of the associated CPU before any local
5006 	 * wake-ups for concurrency management happen, restore CPU affinity
5007 	 * of all workers first and then clear UNBOUND.  As we're called
5008 	 * from CPU_ONLINE, the following shouldn't fail.
5009 	 */
5010 	for_each_pool_worker(worker, pool)
5011 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5012 						  pool->attrs->cpumask) < 0);
5013 
5014 	raw_spin_lock_irq(&pool->lock);
5015 
5016 	pool->flags &= ~POOL_DISASSOCIATED;
5017 
5018 	for_each_pool_worker(worker, pool) {
5019 		unsigned int worker_flags = worker->flags;
5020 
5021 		/*
5022 		 * A bound idle worker should actually be on the runqueue
5023 		 * of the associated CPU for local wake-ups targeting it to
5024 		 * work.  Kick all idle workers so that they migrate to the
5025 		 * associated CPU.  Doing this in the same loop as
5026 		 * replacing UNBOUND with REBOUND is safe as no worker will
5027 		 * be bound before @pool->lock is released.
5028 		 */
5029 		if (worker_flags & WORKER_IDLE)
5030 			wake_up_process(worker->task);
5031 
5032 		/*
5033 		 * We want to clear UNBOUND but can't directly call
5034 		 * worker_clr_flags() or adjust nr_running.  Atomically
5035 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5036 		 * @worker will clear REBOUND using worker_clr_flags() when
5037 		 * it initiates the next execution cycle thus restoring
5038 		 * concurrency management.  Note that when or whether
5039 		 * @worker clears REBOUND doesn't affect correctness.
5040 		 *
5041 		 * WRITE_ONCE() is necessary because @worker->flags may be
5042 		 * tested without holding any lock in
5043 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5044 		 * fail incorrectly leading to premature concurrency
5045 		 * management operations.
5046 		 */
5047 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5048 		worker_flags |= WORKER_REBOUND;
5049 		worker_flags &= ~WORKER_UNBOUND;
5050 		WRITE_ONCE(worker->flags, worker_flags);
5051 	}
5052 
5053 	raw_spin_unlock_irq(&pool->lock);
5054 }
5055 
5056 /**
5057  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5058  * @pool: unbound pool of interest
5059  * @cpu: the CPU which is coming up
5060  *
5061  * An unbound pool may end up with a cpumask which doesn't have any online
5062  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5063  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5064  * online CPU before, cpus_allowed of all its workers should be restored.
5065  */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)5066 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5067 {
5068 	static cpumask_t cpumask;
5069 	struct worker *worker;
5070 
5071 	lockdep_assert_held(&wq_pool_attach_mutex);
5072 
5073 	/* is @cpu allowed for @pool? */
5074 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5075 		return;
5076 
5077 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5078 
5079 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5080 	for_each_pool_worker(worker, pool)
5081 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5082 }
5083 
workqueue_prepare_cpu(unsigned int cpu)5084 int workqueue_prepare_cpu(unsigned int cpu)
5085 {
5086 	struct worker_pool *pool;
5087 
5088 	for_each_cpu_worker_pool(pool, cpu) {
5089 		if (pool->nr_workers)
5090 			continue;
5091 		if (!create_worker(pool))
5092 			return -ENOMEM;
5093 	}
5094 	return 0;
5095 }
5096 
workqueue_online_cpu(unsigned int cpu)5097 int workqueue_online_cpu(unsigned int cpu)
5098 {
5099 	struct worker_pool *pool;
5100 	struct workqueue_struct *wq;
5101 	int pi;
5102 
5103 	mutex_lock(&wq_pool_mutex);
5104 
5105 	for_each_pool(pool, pi) {
5106 		mutex_lock(&wq_pool_attach_mutex);
5107 
5108 		if (pool->cpu == cpu)
5109 			rebind_workers(pool);
5110 		else if (pool->cpu < 0)
5111 			restore_unbound_workers_cpumask(pool, cpu);
5112 
5113 		mutex_unlock(&wq_pool_attach_mutex);
5114 	}
5115 
5116 	/* update NUMA affinity of unbound workqueues */
5117 	list_for_each_entry(wq, &workqueues, list)
5118 		wq_update_unbound_numa(wq, cpu, true);
5119 
5120 	mutex_unlock(&wq_pool_mutex);
5121 	return 0;
5122 }
5123 
workqueue_offline_cpu(unsigned int cpu)5124 int workqueue_offline_cpu(unsigned int cpu)
5125 {
5126 	struct workqueue_struct *wq;
5127 
5128 	/* unbinding per-cpu workers should happen on the local CPU */
5129 	if (WARN_ON(cpu != smp_processor_id()))
5130 		return -1;
5131 
5132 	unbind_workers(cpu);
5133 
5134 	/* update NUMA affinity of unbound workqueues */
5135 	mutex_lock(&wq_pool_mutex);
5136 	list_for_each_entry(wq, &workqueues, list)
5137 		wq_update_unbound_numa(wq, cpu, false);
5138 	mutex_unlock(&wq_pool_mutex);
5139 
5140 	return 0;
5141 }
5142 
5143 struct work_for_cpu {
5144 	struct work_struct work;
5145 	long (*fn)(void *);
5146 	void *arg;
5147 	long ret;
5148 };
5149 
work_for_cpu_fn(struct work_struct * work)5150 static void work_for_cpu_fn(struct work_struct *work)
5151 {
5152 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5153 
5154 	wfc->ret = wfc->fn(wfc->arg);
5155 }
5156 
5157 /**
5158  * work_on_cpu - run a function in thread context on a particular cpu
5159  * @cpu: the cpu to run on
5160  * @fn: the function to run
5161  * @arg: the function arg
5162  *
5163  * It is up to the caller to ensure that the cpu doesn't go offline.
5164  * The caller must not hold any locks which would prevent @fn from completing.
5165  *
5166  * Return: The value @fn returns.
5167  */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)5168 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5169 {
5170 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5171 
5172 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5173 	schedule_work_on(cpu, &wfc.work);
5174 	flush_work(&wfc.work);
5175 	destroy_work_on_stack(&wfc.work);
5176 	return wfc.ret;
5177 }
5178 EXPORT_SYMBOL_GPL(work_on_cpu);
5179 
5180 /**
5181  * work_on_cpu_safe - run a function in thread context on a particular cpu
5182  * @cpu: the cpu to run on
5183  * @fn:  the function to run
5184  * @arg: the function argument
5185  *
5186  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5187  * any locks which would prevent @fn from completing.
5188  *
5189  * Return: The value @fn returns.
5190  */
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)5191 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5192 {
5193 	long ret = -ENODEV;
5194 
5195 	get_online_cpus();
5196 	if (cpu_online(cpu))
5197 		ret = work_on_cpu(cpu, fn, arg);
5198 	put_online_cpus();
5199 	return ret;
5200 }
5201 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5202 #endif /* CONFIG_SMP */
5203 
5204 #ifdef CONFIG_FREEZER
5205 
5206 /**
5207  * freeze_workqueues_begin - begin freezing workqueues
5208  *
5209  * Start freezing workqueues.  After this function returns, all freezable
5210  * workqueues will queue new works to their delayed_works list instead of
5211  * pool->worklist.
5212  *
5213  * CONTEXT:
5214  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5215  */
freeze_workqueues_begin(void)5216 void freeze_workqueues_begin(void)
5217 {
5218 	struct workqueue_struct *wq;
5219 	struct pool_workqueue *pwq;
5220 
5221 	mutex_lock(&wq_pool_mutex);
5222 
5223 	WARN_ON_ONCE(workqueue_freezing);
5224 	workqueue_freezing = true;
5225 
5226 	list_for_each_entry(wq, &workqueues, list) {
5227 		mutex_lock(&wq->mutex);
5228 		for_each_pwq(pwq, wq)
5229 			pwq_adjust_max_active(pwq);
5230 		mutex_unlock(&wq->mutex);
5231 	}
5232 
5233 	mutex_unlock(&wq_pool_mutex);
5234 }
5235 
5236 /**
5237  * freeze_workqueues_busy - are freezable workqueues still busy?
5238  *
5239  * Check whether freezing is complete.  This function must be called
5240  * between freeze_workqueues_begin() and thaw_workqueues().
5241  *
5242  * CONTEXT:
5243  * Grabs and releases wq_pool_mutex.
5244  *
5245  * Return:
5246  * %true if some freezable workqueues are still busy.  %false if freezing
5247  * is complete.
5248  */
freeze_workqueues_busy(void)5249 bool freeze_workqueues_busy(void)
5250 {
5251 	bool busy = false;
5252 	struct workqueue_struct *wq;
5253 	struct pool_workqueue *pwq;
5254 
5255 	mutex_lock(&wq_pool_mutex);
5256 
5257 	WARN_ON_ONCE(!workqueue_freezing);
5258 
5259 	list_for_each_entry(wq, &workqueues, list) {
5260 		if (!(wq->flags & WQ_FREEZABLE))
5261 			continue;
5262 		/*
5263 		 * nr_active is monotonically decreasing.  It's safe
5264 		 * to peek without lock.
5265 		 */
5266 		rcu_read_lock();
5267 		for_each_pwq(pwq, wq) {
5268 			WARN_ON_ONCE(pwq->nr_active < 0);
5269 			if (pwq->nr_active) {
5270 				busy = true;
5271 				rcu_read_unlock();
5272 				goto out_unlock;
5273 			}
5274 		}
5275 		rcu_read_unlock();
5276 	}
5277 out_unlock:
5278 	mutex_unlock(&wq_pool_mutex);
5279 	return busy;
5280 }
5281 
5282 /**
5283  * thaw_workqueues - thaw workqueues
5284  *
5285  * Thaw workqueues.  Normal queueing is restored and all collected
5286  * frozen works are transferred to their respective pool worklists.
5287  *
5288  * CONTEXT:
5289  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5290  */
thaw_workqueues(void)5291 void thaw_workqueues(void)
5292 {
5293 	struct workqueue_struct *wq;
5294 	struct pool_workqueue *pwq;
5295 
5296 	mutex_lock(&wq_pool_mutex);
5297 
5298 	if (!workqueue_freezing)
5299 		goto out_unlock;
5300 
5301 	workqueue_freezing = false;
5302 
5303 	/* restore max_active and repopulate worklist */
5304 	list_for_each_entry(wq, &workqueues, list) {
5305 		mutex_lock(&wq->mutex);
5306 		for_each_pwq(pwq, wq)
5307 			pwq_adjust_max_active(pwq);
5308 		mutex_unlock(&wq->mutex);
5309 	}
5310 
5311 out_unlock:
5312 	mutex_unlock(&wq_pool_mutex);
5313 }
5314 #endif /* CONFIG_FREEZER */
5315 
workqueue_apply_unbound_cpumask(void)5316 static int workqueue_apply_unbound_cpumask(void)
5317 {
5318 	LIST_HEAD(ctxs);
5319 	int ret = 0;
5320 	struct workqueue_struct *wq;
5321 	struct apply_wqattrs_ctx *ctx, *n;
5322 
5323 	lockdep_assert_held(&wq_pool_mutex);
5324 
5325 	list_for_each_entry(wq, &workqueues, list) {
5326 		if (!(wq->flags & WQ_UNBOUND))
5327 			continue;
5328 
5329 		/* creating multiple pwqs breaks ordering guarantee */
5330 		if (!list_empty(&wq->pwqs)) {
5331 			if (wq->flags & __WQ_ORDERED_EXPLICIT)
5332 				continue;
5333 			wq->flags &= ~__WQ_ORDERED;
5334 		}
5335 
5336 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5337 		if (!ctx) {
5338 			ret = -ENOMEM;
5339 			break;
5340 		}
5341 
5342 		list_add_tail(&ctx->list, &ctxs);
5343 	}
5344 
5345 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5346 		if (!ret)
5347 			apply_wqattrs_commit(ctx);
5348 		apply_wqattrs_cleanup(ctx);
5349 	}
5350 
5351 	return ret;
5352 }
5353 
5354 /**
5355  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5356  *  @cpumask: the cpumask to set
5357  *
5358  *  The low-level workqueues cpumask is a global cpumask that limits
5359  *  the affinity of all unbound workqueues.  This function check the @cpumask
5360  *  and apply it to all unbound workqueues and updates all pwqs of them.
5361  *
5362  *  Retun:	0	- Success
5363  *  		-EINVAL	- Invalid @cpumask
5364  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5365  */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)5366 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5367 {
5368 	int ret = -EINVAL;
5369 	cpumask_var_t saved_cpumask;
5370 
5371 	/*
5372 	 * Not excluding isolated cpus on purpose.
5373 	 * If the user wishes to include them, we allow that.
5374 	 */
5375 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5376 	if (!cpumask_empty(cpumask)) {
5377 		apply_wqattrs_lock();
5378 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5379 			ret = 0;
5380 			goto out_unlock;
5381 		}
5382 
5383 		if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5384 			ret = -ENOMEM;
5385 			goto out_unlock;
5386 		}
5387 
5388 		/* save the old wq_unbound_cpumask. */
5389 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5390 
5391 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5392 		cpumask_copy(wq_unbound_cpumask, cpumask);
5393 		ret = workqueue_apply_unbound_cpumask();
5394 
5395 		/* restore the wq_unbound_cpumask when failed. */
5396 		if (ret < 0)
5397 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5398 
5399 		free_cpumask_var(saved_cpumask);
5400 out_unlock:
5401 		apply_wqattrs_unlock();
5402 	}
5403 
5404 	return ret;
5405 }
5406 
5407 #ifdef CONFIG_SYSFS
5408 /*
5409  * Workqueues with WQ_SYSFS flag set is visible to userland via
5410  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5411  * following attributes.
5412  *
5413  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5414  *  max_active	RW int	: maximum number of in-flight work items
5415  *
5416  * Unbound workqueues have the following extra attributes.
5417  *
5418  *  pool_ids	RO int	: the associated pool IDs for each node
5419  *  nice	RW int	: nice value of the workers
5420  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5421  *  numa	RW bool	: whether enable NUMA affinity
5422  */
5423 struct wq_device {
5424 	struct workqueue_struct		*wq;
5425 	struct device			dev;
5426 };
5427 
dev_to_wq(struct device * dev)5428 static struct workqueue_struct *dev_to_wq(struct device *dev)
5429 {
5430 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5431 
5432 	return wq_dev->wq;
5433 }
5434 
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)5435 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5436 			    char *buf)
5437 {
5438 	struct workqueue_struct *wq = dev_to_wq(dev);
5439 
5440 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5441 }
5442 static DEVICE_ATTR_RO(per_cpu);
5443 
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)5444 static ssize_t max_active_show(struct device *dev,
5445 			       struct device_attribute *attr, char *buf)
5446 {
5447 	struct workqueue_struct *wq = dev_to_wq(dev);
5448 
5449 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5450 }
5451 
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5452 static ssize_t max_active_store(struct device *dev,
5453 				struct device_attribute *attr, const char *buf,
5454 				size_t count)
5455 {
5456 	struct workqueue_struct *wq = dev_to_wq(dev);
5457 	int val;
5458 
5459 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5460 		return -EINVAL;
5461 
5462 	workqueue_set_max_active(wq, val);
5463 	return count;
5464 }
5465 static DEVICE_ATTR_RW(max_active);
5466 
5467 static struct attribute *wq_sysfs_attrs[] = {
5468 	&dev_attr_per_cpu.attr,
5469 	&dev_attr_max_active.attr,
5470 	NULL,
5471 };
5472 ATTRIBUTE_GROUPS(wq_sysfs);
5473 
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)5474 static ssize_t wq_pool_ids_show(struct device *dev,
5475 				struct device_attribute *attr, char *buf)
5476 {
5477 	struct workqueue_struct *wq = dev_to_wq(dev);
5478 	const char *delim = "";
5479 	int node, written = 0;
5480 
5481 	get_online_cpus();
5482 	rcu_read_lock();
5483 	for_each_node(node) {
5484 		written += scnprintf(buf + written, PAGE_SIZE - written,
5485 				     "%s%d:%d", delim, node,
5486 				     unbound_pwq_by_node(wq, node)->pool->id);
5487 		delim = " ";
5488 	}
5489 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5490 	rcu_read_unlock();
5491 	put_online_cpus();
5492 
5493 	return written;
5494 }
5495 
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)5496 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5497 			    char *buf)
5498 {
5499 	struct workqueue_struct *wq = dev_to_wq(dev);
5500 	int written;
5501 
5502 	mutex_lock(&wq->mutex);
5503 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5504 	mutex_unlock(&wq->mutex);
5505 
5506 	return written;
5507 }
5508 
5509 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)5510 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5511 {
5512 	struct workqueue_attrs *attrs;
5513 
5514 	lockdep_assert_held(&wq_pool_mutex);
5515 
5516 	attrs = alloc_workqueue_attrs();
5517 	if (!attrs)
5518 		return NULL;
5519 
5520 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5521 	return attrs;
5522 }
5523 
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5524 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5525 			     const char *buf, size_t count)
5526 {
5527 	struct workqueue_struct *wq = dev_to_wq(dev);
5528 	struct workqueue_attrs *attrs;
5529 	int ret = -ENOMEM;
5530 
5531 	apply_wqattrs_lock();
5532 
5533 	attrs = wq_sysfs_prep_attrs(wq);
5534 	if (!attrs)
5535 		goto out_unlock;
5536 
5537 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5538 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5539 		ret = apply_workqueue_attrs_locked(wq, attrs);
5540 	else
5541 		ret = -EINVAL;
5542 
5543 out_unlock:
5544 	apply_wqattrs_unlock();
5545 	free_workqueue_attrs(attrs);
5546 	return ret ?: count;
5547 }
5548 
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5549 static ssize_t wq_cpumask_show(struct device *dev,
5550 			       struct device_attribute *attr, char *buf)
5551 {
5552 	struct workqueue_struct *wq = dev_to_wq(dev);
5553 	int written;
5554 
5555 	mutex_lock(&wq->mutex);
5556 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5557 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5558 	mutex_unlock(&wq->mutex);
5559 	return written;
5560 }
5561 
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5562 static ssize_t wq_cpumask_store(struct device *dev,
5563 				struct device_attribute *attr,
5564 				const char *buf, size_t count)
5565 {
5566 	struct workqueue_struct *wq = dev_to_wq(dev);
5567 	struct workqueue_attrs *attrs;
5568 	int ret = -ENOMEM;
5569 
5570 	apply_wqattrs_lock();
5571 
5572 	attrs = wq_sysfs_prep_attrs(wq);
5573 	if (!attrs)
5574 		goto out_unlock;
5575 
5576 	ret = cpumask_parse(buf, attrs->cpumask);
5577 	if (!ret)
5578 		ret = apply_workqueue_attrs_locked(wq, attrs);
5579 
5580 out_unlock:
5581 	apply_wqattrs_unlock();
5582 	free_workqueue_attrs(attrs);
5583 	return ret ?: count;
5584 }
5585 
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5586 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5587 			    char *buf)
5588 {
5589 	struct workqueue_struct *wq = dev_to_wq(dev);
5590 	int written;
5591 
5592 	mutex_lock(&wq->mutex);
5593 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5594 			    !wq->unbound_attrs->no_numa);
5595 	mutex_unlock(&wq->mutex);
5596 
5597 	return written;
5598 }
5599 
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5600 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5601 			     const char *buf, size_t count)
5602 {
5603 	struct workqueue_struct *wq = dev_to_wq(dev);
5604 	struct workqueue_attrs *attrs;
5605 	int v, ret = -ENOMEM;
5606 
5607 	apply_wqattrs_lock();
5608 
5609 	attrs = wq_sysfs_prep_attrs(wq);
5610 	if (!attrs)
5611 		goto out_unlock;
5612 
5613 	ret = -EINVAL;
5614 	if (sscanf(buf, "%d", &v) == 1) {
5615 		attrs->no_numa = !v;
5616 		ret = apply_workqueue_attrs_locked(wq, attrs);
5617 	}
5618 
5619 out_unlock:
5620 	apply_wqattrs_unlock();
5621 	free_workqueue_attrs(attrs);
5622 	return ret ?: count;
5623 }
5624 
5625 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5626 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5627 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5628 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5629 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5630 	__ATTR_NULL,
5631 };
5632 
5633 static struct bus_type wq_subsys = {
5634 	.name				= "workqueue",
5635 	.dev_groups			= wq_sysfs_groups,
5636 };
5637 
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5638 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5639 		struct device_attribute *attr, char *buf)
5640 {
5641 	int written;
5642 
5643 	mutex_lock(&wq_pool_mutex);
5644 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5645 			    cpumask_pr_args(wq_unbound_cpumask));
5646 	mutex_unlock(&wq_pool_mutex);
5647 
5648 	return written;
5649 }
5650 
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5651 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5652 		struct device_attribute *attr, const char *buf, size_t count)
5653 {
5654 	cpumask_var_t cpumask;
5655 	int ret;
5656 
5657 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5658 		return -ENOMEM;
5659 
5660 	ret = cpumask_parse(buf, cpumask);
5661 	if (!ret)
5662 		ret = workqueue_set_unbound_cpumask(cpumask);
5663 
5664 	free_cpumask_var(cpumask);
5665 	return ret ? ret : count;
5666 }
5667 
5668 static struct device_attribute wq_sysfs_cpumask_attr =
5669 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5670 	       wq_unbound_cpumask_store);
5671 
wq_sysfs_init(void)5672 static int __init wq_sysfs_init(void)
5673 {
5674 	int err;
5675 
5676 	err = subsys_virtual_register(&wq_subsys, NULL);
5677 	if (err)
5678 		return err;
5679 
5680 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5681 }
5682 core_initcall(wq_sysfs_init);
5683 
wq_device_release(struct device * dev)5684 static void wq_device_release(struct device *dev)
5685 {
5686 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5687 
5688 	kfree(wq_dev);
5689 }
5690 
5691 /**
5692  * workqueue_sysfs_register - make a workqueue visible in sysfs
5693  * @wq: the workqueue to register
5694  *
5695  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5696  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5697  * which is the preferred method.
5698  *
5699  * Workqueue user should use this function directly iff it wants to apply
5700  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5701  * apply_workqueue_attrs() may race against userland updating the
5702  * attributes.
5703  *
5704  * Return: 0 on success, -errno on failure.
5705  */
workqueue_sysfs_register(struct workqueue_struct * wq)5706 int workqueue_sysfs_register(struct workqueue_struct *wq)
5707 {
5708 	struct wq_device *wq_dev;
5709 	int ret;
5710 
5711 	/*
5712 	 * Adjusting max_active or creating new pwqs by applying
5713 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5714 	 * workqueues.
5715 	 */
5716 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5717 		return -EINVAL;
5718 
5719 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5720 	if (!wq_dev)
5721 		return -ENOMEM;
5722 
5723 	wq_dev->wq = wq;
5724 	wq_dev->dev.bus = &wq_subsys;
5725 	wq_dev->dev.release = wq_device_release;
5726 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5727 
5728 	/*
5729 	 * unbound_attrs are created separately.  Suppress uevent until
5730 	 * everything is ready.
5731 	 */
5732 	dev_set_uevent_suppress(&wq_dev->dev, true);
5733 
5734 	ret = device_register(&wq_dev->dev);
5735 	if (ret) {
5736 		put_device(&wq_dev->dev);
5737 		wq->wq_dev = NULL;
5738 		return ret;
5739 	}
5740 
5741 	if (wq->flags & WQ_UNBOUND) {
5742 		struct device_attribute *attr;
5743 
5744 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5745 			ret = device_create_file(&wq_dev->dev, attr);
5746 			if (ret) {
5747 				device_unregister(&wq_dev->dev);
5748 				wq->wq_dev = NULL;
5749 				return ret;
5750 			}
5751 		}
5752 	}
5753 
5754 	dev_set_uevent_suppress(&wq_dev->dev, false);
5755 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5756 	return 0;
5757 }
5758 
5759 /**
5760  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5761  * @wq: the workqueue to unregister
5762  *
5763  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5764  */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5765 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5766 {
5767 	struct wq_device *wq_dev = wq->wq_dev;
5768 
5769 	if (!wq->wq_dev)
5770 		return;
5771 
5772 	wq->wq_dev = NULL;
5773 	device_unregister(&wq_dev->dev);
5774 }
5775 #else	/* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5776 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5777 #endif	/* CONFIG_SYSFS */
5778 
5779 /*
5780  * Workqueue watchdog.
5781  *
5782  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5783  * flush dependency, a concurrency managed work item which stays RUNNING
5784  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5785  * usual warning mechanisms don't trigger and internal workqueue state is
5786  * largely opaque.
5787  *
5788  * Workqueue watchdog monitors all worker pools periodically and dumps
5789  * state if some pools failed to make forward progress for a while where
5790  * forward progress is defined as the first item on ->worklist changing.
5791  *
5792  * This mechanism is controlled through the kernel parameter
5793  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5794  * corresponding sysfs parameter file.
5795  */
5796 #ifdef CONFIG_WQ_WATCHDOG
5797 
5798 static unsigned long wq_watchdog_thresh = 30;
5799 static struct timer_list wq_watchdog_timer;
5800 
5801 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5802 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5803 
wq_watchdog_reset_touched(void)5804 static void wq_watchdog_reset_touched(void)
5805 {
5806 	int cpu;
5807 
5808 	wq_watchdog_touched = jiffies;
5809 	for_each_possible_cpu(cpu)
5810 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5811 }
5812 
wq_watchdog_timer_fn(struct timer_list * unused)5813 static void wq_watchdog_timer_fn(struct timer_list *unused)
5814 {
5815 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5816 	bool lockup_detected = false;
5817 	unsigned long now = jiffies;
5818 	struct worker_pool *pool;
5819 	int pi;
5820 
5821 	if (!thresh)
5822 		return;
5823 
5824 	rcu_read_lock();
5825 
5826 	for_each_pool(pool, pi) {
5827 		unsigned long pool_ts, touched, ts;
5828 
5829 		if (list_empty(&pool->worklist))
5830 			continue;
5831 
5832 		/*
5833 		 * If a virtual machine is stopped by the host it can look to
5834 		 * the watchdog like a stall.
5835 		 */
5836 		kvm_check_and_clear_guest_paused();
5837 
5838 		/* get the latest of pool and touched timestamps */
5839 		pool_ts = READ_ONCE(pool->watchdog_ts);
5840 		touched = READ_ONCE(wq_watchdog_touched);
5841 
5842 		if (time_after(pool_ts, touched))
5843 			ts = pool_ts;
5844 		else
5845 			ts = touched;
5846 
5847 		if (pool->cpu >= 0) {
5848 			unsigned long cpu_touched =
5849 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5850 						  pool->cpu));
5851 			if (time_after(cpu_touched, ts))
5852 				ts = cpu_touched;
5853 		}
5854 
5855 		/* did we stall? */
5856 		if (time_after(now, ts + thresh)) {
5857 			lockup_detected = true;
5858 			pr_emerg("BUG: workqueue lockup - pool");
5859 			pr_cont_pool_info(pool);
5860 			pr_cont(" stuck for %us!\n",
5861 				jiffies_to_msecs(now - pool_ts) / 1000);
5862 			trace_android_vh_wq_lockup_pool(pool->cpu, pool_ts);
5863 		}
5864 	}
5865 
5866 	rcu_read_unlock();
5867 
5868 	if (lockup_detected)
5869 		show_workqueue_state();
5870 
5871 	wq_watchdog_reset_touched();
5872 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5873 }
5874 
wq_watchdog_touch(int cpu)5875 notrace void wq_watchdog_touch(int cpu)
5876 {
5877 	if (cpu >= 0)
5878 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5879 	else
5880 		wq_watchdog_touched = jiffies;
5881 }
5882 
wq_watchdog_set_thresh(unsigned long thresh)5883 static void wq_watchdog_set_thresh(unsigned long thresh)
5884 {
5885 	wq_watchdog_thresh = 0;
5886 	del_timer_sync(&wq_watchdog_timer);
5887 
5888 	if (thresh) {
5889 		wq_watchdog_thresh = thresh;
5890 		wq_watchdog_reset_touched();
5891 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5892 	}
5893 }
5894 
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)5895 static int wq_watchdog_param_set_thresh(const char *val,
5896 					const struct kernel_param *kp)
5897 {
5898 	unsigned long thresh;
5899 	int ret;
5900 
5901 	ret = kstrtoul(val, 0, &thresh);
5902 	if (ret)
5903 		return ret;
5904 
5905 	if (system_wq)
5906 		wq_watchdog_set_thresh(thresh);
5907 	else
5908 		wq_watchdog_thresh = thresh;
5909 
5910 	return 0;
5911 }
5912 
5913 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5914 	.set	= wq_watchdog_param_set_thresh,
5915 	.get	= param_get_ulong,
5916 };
5917 
5918 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5919 		0644);
5920 
wq_watchdog_init(void)5921 static void wq_watchdog_init(void)
5922 {
5923 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5924 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5925 }
5926 
5927 #else	/* CONFIG_WQ_WATCHDOG */
5928 
wq_watchdog_init(void)5929 static inline void wq_watchdog_init(void) { }
5930 
5931 #endif	/* CONFIG_WQ_WATCHDOG */
5932 
wq_numa_init(void)5933 static void __init wq_numa_init(void)
5934 {
5935 	cpumask_var_t *tbl;
5936 	int node, cpu;
5937 
5938 	if (num_possible_nodes() <= 1)
5939 		return;
5940 
5941 	if (wq_disable_numa) {
5942 		pr_info("workqueue: NUMA affinity support disabled\n");
5943 		return;
5944 	}
5945 
5946 	for_each_possible_cpu(cpu) {
5947 		if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5948 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5949 			return;
5950 		}
5951 	}
5952 
5953 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5954 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5955 
5956 	/*
5957 	 * We want masks of possible CPUs of each node which isn't readily
5958 	 * available.  Build one from cpu_to_node() which should have been
5959 	 * fully initialized by now.
5960 	 */
5961 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5962 	BUG_ON(!tbl);
5963 
5964 	for_each_node(node)
5965 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5966 				node_online(node) ? node : NUMA_NO_NODE));
5967 
5968 	for_each_possible_cpu(cpu) {
5969 		node = cpu_to_node(cpu);
5970 		cpumask_set_cpu(cpu, tbl[node]);
5971 	}
5972 
5973 	wq_numa_possible_cpumask = tbl;
5974 	wq_numa_enabled = true;
5975 }
5976 
5977 /**
5978  * workqueue_init_early - early init for workqueue subsystem
5979  *
5980  * This is the first half of two-staged workqueue subsystem initialization
5981  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5982  * idr are up.  It sets up all the data structures and system workqueues
5983  * and allows early boot code to create workqueues and queue/cancel work
5984  * items.  Actual work item execution starts only after kthreads can be
5985  * created and scheduled right before early initcalls.
5986  */
workqueue_init_early(void)5987 void __init workqueue_init_early(void)
5988 {
5989 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5990 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5991 	int i, cpu;
5992 
5993 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5994 
5995 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5996 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5997 
5998 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5999 
6000 	/* initialize CPU pools */
6001 	for_each_possible_cpu(cpu) {
6002 		struct worker_pool *pool;
6003 
6004 		i = 0;
6005 		for_each_cpu_worker_pool(pool, cpu) {
6006 			BUG_ON(init_worker_pool(pool));
6007 			pool->cpu = cpu;
6008 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6009 			pool->attrs->nice = std_nice[i++];
6010 			pool->node = cpu_to_node(cpu);
6011 
6012 			/* alloc pool ID */
6013 			mutex_lock(&wq_pool_mutex);
6014 			BUG_ON(worker_pool_assign_id(pool));
6015 			mutex_unlock(&wq_pool_mutex);
6016 		}
6017 	}
6018 
6019 	/* create default unbound and ordered wq attrs */
6020 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6021 		struct workqueue_attrs *attrs;
6022 
6023 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6024 		attrs->nice = std_nice[i];
6025 		unbound_std_wq_attrs[i] = attrs;
6026 
6027 		/*
6028 		 * An ordered wq should have only one pwq as ordering is
6029 		 * guaranteed by max_active which is enforced by pwqs.
6030 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
6031 		 */
6032 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6033 		attrs->nice = std_nice[i];
6034 		attrs->no_numa = true;
6035 		ordered_wq_attrs[i] = attrs;
6036 	}
6037 
6038 	system_wq = alloc_workqueue("events", 0, 0);
6039 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6040 	system_long_wq = alloc_workqueue("events_long", 0, 0);
6041 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6042 					    WQ_UNBOUND_MAX_ACTIVE);
6043 	system_freezable_wq = alloc_workqueue("events_freezable",
6044 					      WQ_FREEZABLE, 0);
6045 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6046 					      WQ_POWER_EFFICIENT, 0);
6047 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6048 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6049 					      0);
6050 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6051 	       !system_unbound_wq || !system_freezable_wq ||
6052 	       !system_power_efficient_wq ||
6053 	       !system_freezable_power_efficient_wq);
6054 }
6055 
6056 /**
6057  * workqueue_init - bring workqueue subsystem fully online
6058  *
6059  * This is the latter half of two-staged workqueue subsystem initialization
6060  * and invoked as soon as kthreads can be created and scheduled.
6061  * Workqueues have been created and work items queued on them, but there
6062  * are no kworkers executing the work items yet.  Populate the worker pools
6063  * with the initial workers and enable future kworker creations.
6064  */
workqueue_init(void)6065 void __init workqueue_init(void)
6066 {
6067 	struct workqueue_struct *wq;
6068 	struct worker_pool *pool;
6069 	int cpu, bkt;
6070 
6071 	/*
6072 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6073 	 * CPU to node mapping may not be available that early on some
6074 	 * archs such as power and arm64.  As per-cpu pools created
6075 	 * previously could be missing node hint and unbound pools NUMA
6076 	 * affinity, fix them up.
6077 	 *
6078 	 * Also, while iterating workqueues, create rescuers if requested.
6079 	 */
6080 	wq_numa_init();
6081 
6082 	mutex_lock(&wq_pool_mutex);
6083 
6084 	for_each_possible_cpu(cpu) {
6085 		for_each_cpu_worker_pool(pool, cpu) {
6086 			pool->node = cpu_to_node(cpu);
6087 		}
6088 	}
6089 
6090 	list_for_each_entry(wq, &workqueues, list) {
6091 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6092 		WARN(init_rescuer(wq),
6093 		     "workqueue: failed to create early rescuer for %s",
6094 		     wq->name);
6095 	}
6096 
6097 	mutex_unlock(&wq_pool_mutex);
6098 
6099 	/* create the initial workers */
6100 	for_each_online_cpu(cpu) {
6101 		for_each_cpu_worker_pool(pool, cpu) {
6102 			pool->flags &= ~POOL_DISASSOCIATED;
6103 			BUG_ON(!create_worker(pool));
6104 		}
6105 	}
6106 
6107 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6108 		BUG_ON(!create_worker(pool));
6109 
6110 	wq_online = true;
6111 	wq_watchdog_init();
6112 }
6113