• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/kernel.h>
3 #include <linux/errno.h>
4 #include <linux/err.h>
5 #include <linux/spinlock.h>
6 
7 #include <linux/mm.h>
8 #include <linux/memremap.h>
9 #include <linux/pagemap.h>
10 #include <linux/rmap.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 
14 #include <linux/sched/signal.h>
15 #include <linux/rwsem.h>
16 #include <linux/hugetlb.h>
17 #include <linux/migrate.h>
18 #include <linux/mm_inline.h>
19 #include <linux/sched/mm.h>
20 
21 #include <linux/page_pinner.h>
22 
23 #include <asm/mmu_context.h>
24 #include <asm/tlbflush.h>
25 
26 #include "internal.h"
27 
28 #undef CREATE_TRACE_POINTS
29 #include <trace/hooks/gup.h>
30 
31 struct follow_page_context {
32 	struct dev_pagemap *pgmap;
33 	unsigned int page_mask;
34 };
35 
hpage_pincount_add(struct page * page,int refs)36 static void hpage_pincount_add(struct page *page, int refs)
37 {
38 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
39 	VM_BUG_ON_PAGE(page != compound_head(page), page);
40 
41 	atomic_add(refs, compound_pincount_ptr(page));
42 }
43 
hpage_pincount_sub(struct page * page,int refs)44 static void hpage_pincount_sub(struct page *page, int refs)
45 {
46 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
47 	VM_BUG_ON_PAGE(page != compound_head(page), page);
48 
49 	atomic_sub(refs, compound_pincount_ptr(page));
50 }
51 
52 /* Equivalent to calling put_page() @refs times. */
put_page_refs(struct page * page,int refs)53 static void put_page_refs(struct page *page, int refs)
54 {
55 #ifdef CONFIG_DEBUG_VM
56 	if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
57 		return;
58 #endif
59 
60 	/*
61 	 * Calling put_page() for each ref is unnecessarily slow. Only the last
62 	 * ref needs a put_page().
63 	 */
64 	if (refs > 1)
65 		page_ref_sub(page, refs - 1);
66 	put_page(page);
67 }
68 
69 /*
70  * Return the compound head page with ref appropriately incremented,
71  * or NULL if that failed.
72  */
try_get_compound_head(struct page * page,int refs)73 static inline struct page *try_get_compound_head(struct page *page, int refs)
74 {
75 	struct page *head = compound_head(page);
76 
77 	if (WARN_ON_ONCE(page_ref_count(head) < 0))
78 		return NULL;
79 	if (unlikely(!page_cache_add_speculative(head, refs)))
80 		return NULL;
81 
82 	/*
83 	 * At this point we have a stable reference to the head page; but it
84 	 * could be that between the compound_head() lookup and the refcount
85 	 * increment, the compound page was split, in which case we'd end up
86 	 * holding a reference on a page that has nothing to do with the page
87 	 * we were given anymore.
88 	 * So now that the head page is stable, recheck that the pages still
89 	 * belong together.
90 	 */
91 	if (unlikely(compound_head(page) != head)) {
92 		put_page_refs(head, refs);
93 		return NULL;
94 	}
95 
96 	return head;
97 }
98 
99 /*
100  * try_grab_compound_head() - attempt to elevate a page's refcount, by a
101  * flags-dependent amount.
102  *
103  * "grab" names in this file mean, "look at flags to decide whether to use
104  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
105  *
106  * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
107  * same time. (That's true throughout the get_user_pages*() and
108  * pin_user_pages*() APIs.) Cases:
109  *
110  *    FOLL_GET: page's refcount will be incremented by 1.
111  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
112  *
113  * Return: head page (with refcount appropriately incremented) for success, or
114  * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
115  * considered failure, and furthermore, a likely bug in the caller, so a warning
116  * is also emitted.
117  */
try_grab_compound_head(struct page * page,int refs,unsigned int flags)118 static __maybe_unused struct page *try_grab_compound_head(struct page *page,
119 							  int refs,
120 							  unsigned int flags)
121 {
122 	bool vendor_ret = false;
123 
124 	trace_android_vh_try_grab_compound_head(page, refs, flags, &vendor_ret);
125 	if (vendor_ret)
126 		return NULL;
127 
128 	if (flags & FOLL_GET) {
129 		return try_get_compound_head(page, refs);
130 	} else if (flags & FOLL_PIN) {
131 		int orig_refs = refs;
132 
133 		/*
134 		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
135 		 * path, so fail and let the caller fall back to the slow path.
136 		 */
137 		if (unlikely(flags & FOLL_LONGTERM) &&
138 				is_migrate_cma_page(page))
139 			return NULL;
140 
141 		/*
142 		 * CAUTION: Don't use compound_head() on the page before this
143 		 * point, the result won't be stable.
144 		 */
145 		page = try_get_compound_head(page, refs);
146 		if (!page)
147 			return NULL;
148 
149 		/*
150 		 * When pinning a compound page of order > 1 (which is what
151 		 * hpage_pincount_available() checks for), use an exact count to
152 		 * track it, via hpage_pincount_add/_sub().
153 		 *
154 		 * However, be sure to *also* increment the normal page refcount
155 		 * field at least once, so that the page really is pinned.
156 		 */
157 		if (hpage_pincount_available(page))
158 			hpage_pincount_add(page, refs);
159 		else
160 			page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
161 
162 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
163 				    orig_refs);
164 
165 		return page;
166 	}
167 
168 	WARN_ON_ONCE(1);
169 	return NULL;
170 }
171 
put_compound_head(struct page * page,int refs,unsigned int flags)172 static void put_compound_head(struct page *page, int refs, unsigned int flags)
173 {
174 	if (flags & FOLL_PIN) {
175 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
176 				    refs);
177 
178 		if (hpage_pincount_available(page))
179 			hpage_pincount_sub(page, refs);
180 		else
181 			refs *= GUP_PIN_COUNTING_BIAS;
182 	}
183 
184 	put_page_refs(page, refs);
185 }
186 
187 /**
188  * try_grab_page() - elevate a page's refcount by a flag-dependent amount
189  *
190  * This might not do anything at all, depending on the flags argument.
191  *
192  * "grab" names in this file mean, "look at flags to decide whether to use
193  * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
194  *
195  * @page:    pointer to page to be grabbed
196  * @flags:   gup flags: these are the FOLL_* flag values.
197  *
198  * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
199  * time. Cases:
200  *
201  *    FOLL_GET: page's refcount will be incremented by 1.
202  *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
203  *
204  * Return: true for success, or if no action was required (if neither FOLL_PIN
205  * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
206  * FOLL_PIN was set, but the page could not be grabbed.
207  */
try_grab_page(struct page * page,unsigned int flags)208 bool __must_check try_grab_page(struct page *page, unsigned int flags)
209 {
210 	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
211 
212 	if (flags & FOLL_GET) {
213 		return try_get_page(page);
214 	} else if (flags & FOLL_PIN) {
215 		int refs = 1;
216 
217 		page = compound_head(page);
218 
219 		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
220 			return false;
221 
222 		if (hpage_pincount_available(page))
223 			hpage_pincount_add(page, 1);
224 		else
225 			refs = GUP_PIN_COUNTING_BIAS;
226 
227 		/*
228 		 * Similar to try_grab_compound_head(): even if using the
229 		 * hpage_pincount_add/_sub() routines, be sure to
230 		 * *also* increment the normal page refcount field at least
231 		 * once, so that the page really is pinned.
232 		 */
233 		page_ref_add(page, refs);
234 
235 		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
236 	}
237 
238 	return true;
239 }
240 
241 /**
242  * unpin_user_page() - release a dma-pinned page
243  * @page:            pointer to page to be released
244  *
245  * Pages that were pinned via pin_user_pages*() must be released via either
246  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
247  * that such pages can be separately tracked and uniquely handled. In
248  * particular, interactions with RDMA and filesystems need special handling.
249  */
unpin_user_page(struct page * page)250 void unpin_user_page(struct page *page)
251 {
252 	put_compound_head(compound_head(page), 1, FOLL_PIN);
253 }
254 EXPORT_SYMBOL(unpin_user_page);
255 
256 /**
257  * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
258  * @pages:  array of pages to be maybe marked dirty, and definitely released.
259  * @npages: number of pages in the @pages array.
260  * @make_dirty: whether to mark the pages dirty
261  *
262  * "gup-pinned page" refers to a page that has had one of the get_user_pages()
263  * variants called on that page.
264  *
265  * For each page in the @pages array, make that page (or its head page, if a
266  * compound page) dirty, if @make_dirty is true, and if the page was previously
267  * listed as clean. In any case, releases all pages using unpin_user_page(),
268  * possibly via unpin_user_pages(), for the non-dirty case.
269  *
270  * Please see the unpin_user_page() documentation for details.
271  *
272  * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
273  * required, then the caller should a) verify that this is really correct,
274  * because _lock() is usually required, and b) hand code it:
275  * set_page_dirty_lock(), unpin_user_page().
276  *
277  */
unpin_user_pages_dirty_lock(struct page ** pages,unsigned long npages,bool make_dirty)278 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
279 				 bool make_dirty)
280 {
281 	unsigned long index;
282 
283 	/*
284 	 * TODO: this can be optimized for huge pages: if a series of pages is
285 	 * physically contiguous and part of the same compound page, then a
286 	 * single operation to the head page should suffice.
287 	 */
288 
289 	if (!make_dirty) {
290 		unpin_user_pages(pages, npages);
291 		return;
292 	}
293 
294 	for (index = 0; index < npages; index++) {
295 		struct page *page = compound_head(pages[index]);
296 		/*
297 		 * Checking PageDirty at this point may race with
298 		 * clear_page_dirty_for_io(), but that's OK. Two key
299 		 * cases:
300 		 *
301 		 * 1) This code sees the page as already dirty, so it
302 		 * skips the call to set_page_dirty(). That could happen
303 		 * because clear_page_dirty_for_io() called
304 		 * page_mkclean(), followed by set_page_dirty().
305 		 * However, now the page is going to get written back,
306 		 * which meets the original intention of setting it
307 		 * dirty, so all is well: clear_page_dirty_for_io() goes
308 		 * on to call TestClearPageDirty(), and write the page
309 		 * back.
310 		 *
311 		 * 2) This code sees the page as clean, so it calls
312 		 * set_page_dirty(). The page stays dirty, despite being
313 		 * written back, so it gets written back again in the
314 		 * next writeback cycle. This is harmless.
315 		 */
316 		if (!PageDirty(page))
317 			set_page_dirty_lock(page);
318 		unpin_user_page(page);
319 	}
320 }
321 EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
322 
323 /**
324  * unpin_user_pages() - release an array of gup-pinned pages.
325  * @pages:  array of pages to be marked dirty and released.
326  * @npages: number of pages in the @pages array.
327  *
328  * For each page in the @pages array, release the page using unpin_user_page().
329  *
330  * Please see the unpin_user_page() documentation for details.
331  */
unpin_user_pages(struct page ** pages,unsigned long npages)332 void unpin_user_pages(struct page **pages, unsigned long npages)
333 {
334 	unsigned long index;
335 
336 	/*
337 	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
338 	 * leaving them pinned), but probably not. More likely, gup/pup returned
339 	 * a hard -ERRNO error to the caller, who erroneously passed it here.
340 	 */
341 	if (WARN_ON(IS_ERR_VALUE(npages)))
342 		return;
343 	/*
344 	 * TODO: this can be optimized for huge pages: if a series of pages is
345 	 * physically contiguous and part of the same compound page, then a
346 	 * single operation to the head page should suffice.
347 	 */
348 	for (index = 0; index < npages; index++)
349 		unpin_user_page(pages[index]);
350 }
351 EXPORT_SYMBOL(unpin_user_pages);
352 
353 #ifdef CONFIG_MMU
no_page_table(struct vm_area_struct * vma,unsigned int flags)354 static struct page *no_page_table(struct vm_area_struct *vma,
355 		unsigned int flags)
356 {
357 	/*
358 	 * When core dumping an enormous anonymous area that nobody
359 	 * has touched so far, we don't want to allocate unnecessary pages or
360 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
361 	 * then get_dump_page() will return NULL to leave a hole in the dump.
362 	 * But we can only make this optimization where a hole would surely
363 	 * be zero-filled if handle_mm_fault() actually did handle it.
364 	 */
365 	if ((flags & FOLL_DUMP) &&
366 			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
367 		return ERR_PTR(-EFAULT);
368 	return NULL;
369 }
370 
follow_pfn_pte(struct vm_area_struct * vma,unsigned long address,pte_t * pte,unsigned int flags)371 static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
372 		pte_t *pte, unsigned int flags)
373 {
374 	/* No page to get reference */
375 	if (flags & FOLL_GET)
376 		return -EFAULT;
377 
378 	if (flags & FOLL_TOUCH) {
379 		pte_t entry = *pte;
380 
381 		if (flags & FOLL_WRITE)
382 			entry = pte_mkdirty(entry);
383 		entry = pte_mkyoung(entry);
384 
385 		if (!pte_same(*pte, entry)) {
386 			set_pte_at(vma->vm_mm, address, pte, entry);
387 			update_mmu_cache(vma, address, pte);
388 		}
389 	}
390 
391 	/* Proper page table entry exists, but no corresponding struct page */
392 	return -EEXIST;
393 }
394 
395 /*
396  * FOLL_FORCE can write to even unwritable pte's, but only
397  * after we've gone through a COW cycle and they are dirty.
398  */
can_follow_write_pte(pte_t pte,unsigned int flags)399 static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
400 {
401 	return pte_write(pte) ||
402 		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
403 }
404 
follow_page_pte(struct vm_area_struct * vma,unsigned long address,pmd_t * pmd,unsigned int flags,struct dev_pagemap ** pgmap)405 static struct page *follow_page_pte(struct vm_area_struct *vma,
406 		unsigned long address, pmd_t *pmd, unsigned int flags,
407 		struct dev_pagemap **pgmap)
408 {
409 	struct mm_struct *mm = vma->vm_mm;
410 	struct page *page;
411 	spinlock_t *ptl;
412 	pte_t *ptep, pte;
413 	int ret;
414 
415 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
416 	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
417 			 (FOLL_PIN | FOLL_GET)))
418 		return ERR_PTR(-EINVAL);
419 
420 	/*
421 	 * Considering PTE level hugetlb, like continuous-PTE hugetlb on
422 	 * ARM64 architecture.
423 	 */
424 	if (is_vm_hugetlb_page(vma)) {
425 		page = follow_huge_pmd_pte(vma, address, flags);
426 		if (page)
427 			return page;
428 		return no_page_table(vma, flags);
429 	}
430 
431 retry:
432 	if (unlikely(pmd_bad(*pmd)))
433 		return no_page_table(vma, flags);
434 
435 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
436 	pte = *ptep;
437 	if (!pte_present(pte)) {
438 		swp_entry_t entry;
439 		/*
440 		 * KSM's break_ksm() relies upon recognizing a ksm page
441 		 * even while it is being migrated, so for that case we
442 		 * need migration_entry_wait().
443 		 */
444 		if (likely(!(flags & FOLL_MIGRATION)))
445 			goto no_page;
446 		if (pte_none(pte))
447 			goto no_page;
448 		entry = pte_to_swp_entry(pte);
449 		if (!is_migration_entry(entry))
450 			goto no_page;
451 		pte_unmap_unlock(ptep, ptl);
452 		migration_entry_wait(mm, pmd, address);
453 		goto retry;
454 	}
455 	if ((flags & FOLL_NUMA) && pte_protnone(pte))
456 		goto no_page;
457 	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
458 		pte_unmap_unlock(ptep, ptl);
459 		return NULL;
460 	}
461 
462 	page = vm_normal_page(vma, address, pte);
463 	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
464 		/*
465 		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
466 		 * case since they are only valid while holding the pgmap
467 		 * reference.
468 		 */
469 		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
470 		if (*pgmap)
471 			page = pte_page(pte);
472 		else
473 			goto no_page;
474 	} else if (unlikely(!page)) {
475 		if (flags & FOLL_DUMP) {
476 			/* Avoid special (like zero) pages in core dumps */
477 			page = ERR_PTR(-EFAULT);
478 			goto out;
479 		}
480 
481 		if (is_zero_pfn(pte_pfn(pte))) {
482 			page = pte_page(pte);
483 		} else {
484 			ret = follow_pfn_pte(vma, address, ptep, flags);
485 			page = ERR_PTR(ret);
486 			goto out;
487 		}
488 	}
489 
490 	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
491 		get_page(page);
492 		pte_unmap_unlock(ptep, ptl);
493 		lock_page(page);
494 		ret = split_huge_page(page);
495 		unlock_page(page);
496 		put_page(page);
497 		if (ret)
498 			return ERR_PTR(ret);
499 		goto retry;
500 	}
501 
502 	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
503 	if (unlikely(!try_grab_page(page, flags))) {
504 		page = ERR_PTR(-ENOMEM);
505 		goto out;
506 	}
507 	/*
508 	 * We need to make the page accessible if and only if we are going
509 	 * to access its content (the FOLL_PIN case).  Please see
510 	 * Documentation/core-api/pin_user_pages.rst for details.
511 	 */
512 	if (flags & FOLL_PIN) {
513 		ret = arch_make_page_accessible(page);
514 		if (ret) {
515 			unpin_user_page(page);
516 			page = ERR_PTR(ret);
517 			goto out;
518 		}
519 	}
520 	if (flags & FOLL_TOUCH) {
521 		if ((flags & FOLL_WRITE) &&
522 		    !pte_dirty(pte) && !PageDirty(page))
523 			set_page_dirty(page);
524 		/*
525 		 * pte_mkyoung() would be more correct here, but atomic care
526 		 * is needed to avoid losing the dirty bit: it is easier to use
527 		 * mark_page_accessed().
528 		 */
529 		mark_page_accessed(page);
530 	}
531 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
532 		/* Do not mlock pte-mapped THP */
533 		if (PageTransCompound(page))
534 			goto out;
535 
536 		/*
537 		 * The preliminary mapping check is mainly to avoid the
538 		 * pointless overhead of lock_page on the ZERO_PAGE
539 		 * which might bounce very badly if there is contention.
540 		 *
541 		 * If the page is already locked, we don't need to
542 		 * handle it now - vmscan will handle it later if and
543 		 * when it attempts to reclaim the page.
544 		 */
545 		if (page->mapping && trylock_page(page)) {
546 			lru_add_drain();  /* push cached pages to LRU */
547 			/*
548 			 * Because we lock page here, and migration is
549 			 * blocked by the pte's page reference, and we
550 			 * know the page is still mapped, we don't even
551 			 * need to check for file-cache page truncation.
552 			 */
553 			mlock_vma_page(page);
554 			unlock_page(page);
555 		}
556 	}
557 out:
558 	pte_unmap_unlock(ptep, ptl);
559 	return page;
560 no_page:
561 	pte_unmap_unlock(ptep, ptl);
562 	if (!pte_none(pte))
563 		return NULL;
564 	return no_page_table(vma, flags);
565 }
566 
follow_pmd_mask(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,unsigned int flags,struct follow_page_context * ctx)567 static struct page *follow_pmd_mask(struct vm_area_struct *vma,
568 				    unsigned long address, pud_t *pudp,
569 				    unsigned int flags,
570 				    struct follow_page_context *ctx)
571 {
572 	pmd_t *pmd, pmdval;
573 	spinlock_t *ptl;
574 	struct page *page;
575 	struct mm_struct *mm = vma->vm_mm;
576 
577 	pmd = pmd_offset(pudp, address);
578 	/*
579 	 * The READ_ONCE() will stabilize the pmdval in a register or
580 	 * on the stack so that it will stop changing under the code.
581 	 */
582 	pmdval = READ_ONCE(*pmd);
583 	if (pmd_none(pmdval))
584 		return no_page_table(vma, flags);
585 	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
586 		page = follow_huge_pmd_pte(vma, address, flags);
587 		if (page)
588 			return page;
589 		return no_page_table(vma, flags);
590 	}
591 	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
592 		page = follow_huge_pd(vma, address,
593 				      __hugepd(pmd_val(pmdval)), flags,
594 				      PMD_SHIFT);
595 		if (page)
596 			return page;
597 		return no_page_table(vma, flags);
598 	}
599 retry:
600 	if (!pmd_present(pmdval)) {
601 		if (likely(!(flags & FOLL_MIGRATION)))
602 			return no_page_table(vma, flags);
603 		VM_BUG_ON(thp_migration_supported() &&
604 				  !is_pmd_migration_entry(pmdval));
605 		if (is_pmd_migration_entry(pmdval))
606 			pmd_migration_entry_wait(mm, pmd);
607 		pmdval = READ_ONCE(*pmd);
608 		/*
609 		 * MADV_DONTNEED may convert the pmd to null because
610 		 * mmap_lock is held in read mode
611 		 */
612 		if (pmd_none(pmdval))
613 			return no_page_table(vma, flags);
614 		goto retry;
615 	}
616 	if (pmd_devmap(pmdval)) {
617 		ptl = pmd_lock(mm, pmd);
618 		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
619 		spin_unlock(ptl);
620 		if (page)
621 			return page;
622 	}
623 	if (likely(!pmd_trans_huge(pmdval)))
624 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
625 
626 	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
627 		return no_page_table(vma, flags);
628 
629 retry_locked:
630 	ptl = pmd_lock(mm, pmd);
631 	if (unlikely(pmd_none(*pmd))) {
632 		spin_unlock(ptl);
633 		return no_page_table(vma, flags);
634 	}
635 	if (unlikely(!pmd_present(*pmd))) {
636 		spin_unlock(ptl);
637 		if (likely(!(flags & FOLL_MIGRATION)))
638 			return no_page_table(vma, flags);
639 		pmd_migration_entry_wait(mm, pmd);
640 		goto retry_locked;
641 	}
642 	if (unlikely(!pmd_trans_huge(*pmd))) {
643 		spin_unlock(ptl);
644 		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
645 	}
646 	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
647 		int ret;
648 		page = pmd_page(*pmd);
649 		if (is_huge_zero_page(page)) {
650 			spin_unlock(ptl);
651 			ret = 0;
652 			split_huge_pmd(vma, pmd, address);
653 			if (pmd_trans_unstable(pmd))
654 				ret = -EBUSY;
655 		} else if (flags & FOLL_SPLIT) {
656 			if (unlikely(!try_get_page(page))) {
657 				spin_unlock(ptl);
658 				return ERR_PTR(-ENOMEM);
659 			}
660 			spin_unlock(ptl);
661 			lock_page(page);
662 			ret = split_huge_page(page);
663 			unlock_page(page);
664 			put_page(page);
665 			if (pmd_none(*pmd))
666 				return no_page_table(vma, flags);
667 		} else {  /* flags & FOLL_SPLIT_PMD */
668 			spin_unlock(ptl);
669 			split_huge_pmd(vma, pmd, address);
670 			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
671 		}
672 
673 		return ret ? ERR_PTR(ret) :
674 			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
675 	}
676 	page = follow_trans_huge_pmd(vma, address, pmd, flags);
677 	spin_unlock(ptl);
678 	ctx->page_mask = HPAGE_PMD_NR - 1;
679 	return page;
680 }
681 
follow_pud_mask(struct vm_area_struct * vma,unsigned long address,p4d_t * p4dp,unsigned int flags,struct follow_page_context * ctx)682 static struct page *follow_pud_mask(struct vm_area_struct *vma,
683 				    unsigned long address, p4d_t *p4dp,
684 				    unsigned int flags,
685 				    struct follow_page_context *ctx)
686 {
687 	pud_t *pud;
688 	spinlock_t *ptl;
689 	struct page *page;
690 	struct mm_struct *mm = vma->vm_mm;
691 
692 	pud = pud_offset(p4dp, address);
693 	if (pud_none(*pud))
694 		return no_page_table(vma, flags);
695 	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
696 		page = follow_huge_pud(mm, address, pud, flags);
697 		if (page)
698 			return page;
699 		return no_page_table(vma, flags);
700 	}
701 	if (is_hugepd(__hugepd(pud_val(*pud)))) {
702 		page = follow_huge_pd(vma, address,
703 				      __hugepd(pud_val(*pud)), flags,
704 				      PUD_SHIFT);
705 		if (page)
706 			return page;
707 		return no_page_table(vma, flags);
708 	}
709 	if (pud_devmap(*pud)) {
710 		ptl = pud_lock(mm, pud);
711 		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
712 		spin_unlock(ptl);
713 		if (page)
714 			return page;
715 	}
716 	if (unlikely(pud_bad(*pud)))
717 		return no_page_table(vma, flags);
718 
719 	return follow_pmd_mask(vma, address, pud, flags, ctx);
720 }
721 
follow_p4d_mask(struct vm_area_struct * vma,unsigned long address,pgd_t * pgdp,unsigned int flags,struct follow_page_context * ctx)722 static struct page *follow_p4d_mask(struct vm_area_struct *vma,
723 				    unsigned long address, pgd_t *pgdp,
724 				    unsigned int flags,
725 				    struct follow_page_context *ctx)
726 {
727 	p4d_t *p4d;
728 	struct page *page;
729 
730 	p4d = p4d_offset(pgdp, address);
731 	if (p4d_none(*p4d))
732 		return no_page_table(vma, flags);
733 	BUILD_BUG_ON(p4d_huge(*p4d));
734 	if (unlikely(p4d_bad(*p4d)))
735 		return no_page_table(vma, flags);
736 
737 	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
738 		page = follow_huge_pd(vma, address,
739 				      __hugepd(p4d_val(*p4d)), flags,
740 				      P4D_SHIFT);
741 		if (page)
742 			return page;
743 		return no_page_table(vma, flags);
744 	}
745 	return follow_pud_mask(vma, address, p4d, flags, ctx);
746 }
747 
748 /**
749  * follow_page_mask - look up a page descriptor from a user-virtual address
750  * @vma: vm_area_struct mapping @address
751  * @address: virtual address to look up
752  * @flags: flags modifying lookup behaviour
753  * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
754  *       pointer to output page_mask
755  *
756  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
757  *
758  * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
759  * the device's dev_pagemap metadata to avoid repeating expensive lookups.
760  *
761  * On output, the @ctx->page_mask is set according to the size of the page.
762  *
763  * Return: the mapped (struct page *), %NULL if no mapping exists, or
764  * an error pointer if there is a mapping to something not represented
765  * by a page descriptor (see also vm_normal_page()).
766  */
follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct follow_page_context * ctx)767 static struct page *follow_page_mask(struct vm_area_struct *vma,
768 			      unsigned long address, unsigned int flags,
769 			      struct follow_page_context *ctx)
770 {
771 	pgd_t *pgd;
772 	struct page *page;
773 	struct mm_struct *mm = vma->vm_mm;
774 
775 	ctx->page_mask = 0;
776 
777 	/* make this handle hugepd */
778 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
779 	if (!IS_ERR(page)) {
780 		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
781 		return page;
782 	}
783 
784 	pgd = pgd_offset(mm, address);
785 
786 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
787 		return no_page_table(vma, flags);
788 
789 	if (pgd_huge(*pgd)) {
790 		page = follow_huge_pgd(mm, address, pgd, flags);
791 		if (page)
792 			return page;
793 		return no_page_table(vma, flags);
794 	}
795 	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
796 		page = follow_huge_pd(vma, address,
797 				      __hugepd(pgd_val(*pgd)), flags,
798 				      PGDIR_SHIFT);
799 		if (page)
800 			return page;
801 		return no_page_table(vma, flags);
802 	}
803 
804 	return follow_p4d_mask(vma, address, pgd, flags, ctx);
805 }
806 
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)807 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
808 			 unsigned int foll_flags)
809 {
810 	struct follow_page_context ctx = { NULL };
811 	struct page *page;
812 
813 	page = follow_page_mask(vma, address, foll_flags, &ctx);
814 	if (ctx.pgmap)
815 		put_dev_pagemap(ctx.pgmap);
816 	return page;
817 }
818 
get_gate_page(struct mm_struct * mm,unsigned long address,unsigned int gup_flags,struct vm_area_struct ** vma,struct page ** page)819 static int get_gate_page(struct mm_struct *mm, unsigned long address,
820 		unsigned int gup_flags, struct vm_area_struct **vma,
821 		struct page **page)
822 {
823 	pgd_t *pgd;
824 	p4d_t *p4d;
825 	pud_t *pud;
826 	pmd_t *pmd;
827 	pte_t *pte;
828 	int ret = -EFAULT;
829 
830 	/* user gate pages are read-only */
831 	if (gup_flags & FOLL_WRITE)
832 		return -EFAULT;
833 	if (address > TASK_SIZE)
834 		pgd = pgd_offset_k(address);
835 	else
836 		pgd = pgd_offset_gate(mm, address);
837 	if (pgd_none(*pgd))
838 		return -EFAULT;
839 	p4d = p4d_offset(pgd, address);
840 	if (p4d_none(*p4d))
841 		return -EFAULT;
842 	pud = pud_offset(p4d, address);
843 	if (pud_none(*pud))
844 		return -EFAULT;
845 	pmd = pmd_offset(pud, address);
846 	if (!pmd_present(*pmd))
847 		return -EFAULT;
848 	VM_BUG_ON(pmd_trans_huge(*pmd));
849 	pte = pte_offset_map(pmd, address);
850 	if (pte_none(*pte))
851 		goto unmap;
852 	*vma = get_gate_vma(mm);
853 	if (!page)
854 		goto out;
855 	*page = vm_normal_page(*vma, address, *pte);
856 	if (!*page) {
857 		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
858 			goto unmap;
859 		*page = pte_page(*pte);
860 	}
861 	if (unlikely(!try_grab_page(*page, gup_flags))) {
862 		ret = -ENOMEM;
863 		goto unmap;
864 	}
865 out:
866 	ret = 0;
867 unmap:
868 	pte_unmap(pte);
869 	return ret;
870 }
871 
872 /*
873  * mmap_lock must be held on entry.  If @locked != NULL and *@flags
874  * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
875  * is, *@locked will be set to 0 and -EBUSY returned.
876  */
faultin_page(struct vm_area_struct * vma,unsigned long address,unsigned int * flags,int * locked)877 static int faultin_page(struct vm_area_struct *vma,
878 		unsigned long address, unsigned int *flags, int *locked)
879 {
880 	unsigned int fault_flags = 0;
881 	vm_fault_t ret;
882 
883 	/* mlock all present pages, but do not fault in new pages */
884 	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
885 		return -ENOENT;
886 	if (*flags & FOLL_WRITE)
887 		fault_flags |= FAULT_FLAG_WRITE;
888 	if (*flags & FOLL_REMOTE)
889 		fault_flags |= FAULT_FLAG_REMOTE;
890 	if (locked)
891 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
892 	if (*flags & FOLL_NOWAIT)
893 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
894 	if (*flags & FOLL_TRIED) {
895 		/*
896 		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
897 		 * can co-exist
898 		 */
899 		fault_flags |= FAULT_FLAG_TRIED;
900 	}
901 
902 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
903 	if (ret & VM_FAULT_ERROR) {
904 		int err = vm_fault_to_errno(ret, *flags);
905 
906 		if (err)
907 			return err;
908 		BUG();
909 	}
910 
911 	if (ret & VM_FAULT_RETRY) {
912 		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
913 			*locked = 0;
914 		return -EBUSY;
915 	}
916 
917 	/*
918 	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
919 	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
920 	 * can thus safely do subsequent page lookups as if they were reads.
921 	 * But only do so when looping for pte_write is futile: in some cases
922 	 * userspace may also be wanting to write to the gotten user page,
923 	 * which a read fault here might prevent (a readonly page might get
924 	 * reCOWed by userspace write).
925 	 */
926 	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
927 		*flags |= FOLL_COW;
928 	return 0;
929 }
930 
check_vma_flags(struct vm_area_struct * vma,unsigned long gup_flags)931 static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
932 {
933 	vm_flags_t vm_flags = vma->vm_flags;
934 	int write = (gup_flags & FOLL_WRITE);
935 	int foreign = (gup_flags & FOLL_REMOTE);
936 
937 	if (vm_flags & (VM_IO | VM_PFNMAP))
938 		return -EFAULT;
939 
940 	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
941 		return -EFAULT;
942 
943 	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
944 		return -EOPNOTSUPP;
945 
946 	if (write) {
947 		if (!(vm_flags & VM_WRITE)) {
948 			if (!(gup_flags & FOLL_FORCE))
949 				return -EFAULT;
950 			/*
951 			 * We used to let the write,force case do COW in a
952 			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
953 			 * set a breakpoint in a read-only mapping of an
954 			 * executable, without corrupting the file (yet only
955 			 * when that file had been opened for writing!).
956 			 * Anon pages in shared mappings are surprising: now
957 			 * just reject it.
958 			 */
959 			if (!is_cow_mapping(vm_flags))
960 				return -EFAULT;
961 		}
962 	} else if (!(vm_flags & VM_READ)) {
963 		if (!(gup_flags & FOLL_FORCE))
964 			return -EFAULT;
965 		/*
966 		 * Is there actually any vma we can reach here which does not
967 		 * have VM_MAYREAD set?
968 		 */
969 		if (!(vm_flags & VM_MAYREAD))
970 			return -EFAULT;
971 	}
972 	/*
973 	 * gups are always data accesses, not instruction
974 	 * fetches, so execute=false here
975 	 */
976 	if (!arch_vma_access_permitted(vma, write, false, foreign))
977 		return -EFAULT;
978 	return 0;
979 }
980 
981 /**
982  * __get_user_pages() - pin user pages in memory
983  * @mm:		mm_struct of target mm
984  * @start:	starting user address
985  * @nr_pages:	number of pages from start to pin
986  * @gup_flags:	flags modifying pin behaviour
987  * @pages:	array that receives pointers to the pages pinned.
988  *		Should be at least nr_pages long. Or NULL, if caller
989  *		only intends to ensure the pages are faulted in.
990  * @vmas:	array of pointers to vmas corresponding to each page.
991  *		Or NULL if the caller does not require them.
992  * @locked:     whether we're still with the mmap_lock held
993  *
994  * Returns either number of pages pinned (which may be less than the
995  * number requested), or an error. Details about the return value:
996  *
997  * -- If nr_pages is 0, returns 0.
998  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
999  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1000  *    pages pinned. Again, this may be less than nr_pages.
1001  * -- 0 return value is possible when the fault would need to be retried.
1002  *
1003  * The caller is responsible for releasing returned @pages, via put_page().
1004  *
1005  * @vmas are valid only as long as mmap_lock is held.
1006  *
1007  * Must be called with mmap_lock held.  It may be released.  See below.
1008  *
1009  * __get_user_pages walks a process's page tables and takes a reference to
1010  * each struct page that each user address corresponds to at a given
1011  * instant. That is, it takes the page that would be accessed if a user
1012  * thread accesses the given user virtual address at that instant.
1013  *
1014  * This does not guarantee that the page exists in the user mappings when
1015  * __get_user_pages returns, and there may even be a completely different
1016  * page there in some cases (eg. if mmapped pagecache has been invalidated
1017  * and subsequently re faulted). However it does guarantee that the page
1018  * won't be freed completely. And mostly callers simply care that the page
1019  * contains data that was valid *at some point in time*. Typically, an IO
1020  * or similar operation cannot guarantee anything stronger anyway because
1021  * locks can't be held over the syscall boundary.
1022  *
1023  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1024  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1025  * appropriate) must be called after the page is finished with, and
1026  * before put_page is called.
1027  *
1028  * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1029  * released by an up_read().  That can happen if @gup_flags does not
1030  * have FOLL_NOWAIT.
1031  *
1032  * A caller using such a combination of @locked and @gup_flags
1033  * must therefore hold the mmap_lock for reading only, and recognize
1034  * when it's been released.  Otherwise, it must be held for either
1035  * reading or writing and will not be released.
1036  *
1037  * In most cases, get_user_pages or get_user_pages_fast should be used
1038  * instead of __get_user_pages. __get_user_pages should be used only if
1039  * you need some special @gup_flags.
1040  */
__get_user_pages(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)1041 static long __get_user_pages(struct mm_struct *mm,
1042 		unsigned long start, unsigned long nr_pages,
1043 		unsigned int gup_flags, struct page **pages,
1044 		struct vm_area_struct **vmas, int *locked)
1045 {
1046 	long ret = 0, i = 0;
1047 	struct vm_area_struct *vma = NULL;
1048 	struct follow_page_context ctx = { NULL };
1049 
1050 	if (!nr_pages)
1051 		return 0;
1052 
1053 	start = untagged_addr(start);
1054 
1055 	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1056 
1057 	/*
1058 	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1059 	 * fault information is unrelated to the reference behaviour of a task
1060 	 * using the address space
1061 	 */
1062 	if (!(gup_flags & FOLL_FORCE))
1063 		gup_flags |= FOLL_NUMA;
1064 
1065 	do {
1066 		struct page *page;
1067 		unsigned int foll_flags = gup_flags;
1068 		unsigned int page_increm;
1069 
1070 		/* first iteration or cross vma bound */
1071 		if (!vma || start >= vma->vm_end) {
1072 			vma = find_extend_vma(mm, start);
1073 			if (!vma && in_gate_area(mm, start)) {
1074 				ret = get_gate_page(mm, start & PAGE_MASK,
1075 						gup_flags, &vma,
1076 						pages ? &pages[i] : NULL);
1077 				if (ret)
1078 					goto out;
1079 				ctx.page_mask = 0;
1080 				goto next_page;
1081 			}
1082 
1083 			if (!vma) {
1084 				ret = -EFAULT;
1085 				goto out;
1086 			}
1087 			ret = check_vma_flags(vma, gup_flags);
1088 			if (ret)
1089 				goto out;
1090 
1091 			if (is_vm_hugetlb_page(vma)) {
1092 				i = follow_hugetlb_page(mm, vma, pages, vmas,
1093 						&start, &nr_pages, i,
1094 						gup_flags, locked);
1095 				if (locked && *locked == 0) {
1096 					/*
1097 					 * We've got a VM_FAULT_RETRY
1098 					 * and we've lost mmap_lock.
1099 					 * We must stop here.
1100 					 */
1101 					BUG_ON(gup_flags & FOLL_NOWAIT);
1102 					BUG_ON(ret != 0);
1103 					goto out;
1104 				}
1105 				continue;
1106 			}
1107 		}
1108 retry:
1109 		/*
1110 		 * If we have a pending SIGKILL, don't keep faulting pages and
1111 		 * potentially allocating memory.
1112 		 */
1113 		if (fatal_signal_pending(current)) {
1114 			ret = -EINTR;
1115 			goto out;
1116 		}
1117 		cond_resched();
1118 
1119 		page = follow_page_mask(vma, start, foll_flags, &ctx);
1120 		if (!page) {
1121 			ret = faultin_page(vma, start, &foll_flags, locked);
1122 			switch (ret) {
1123 			case 0:
1124 				goto retry;
1125 			case -EBUSY:
1126 				ret = 0;
1127 				fallthrough;
1128 			case -EFAULT:
1129 			case -ENOMEM:
1130 			case -EHWPOISON:
1131 				goto out;
1132 			case -ENOENT:
1133 				goto next_page;
1134 			}
1135 			BUG();
1136 		} else if (PTR_ERR(page) == -EEXIST) {
1137 			/*
1138 			 * Proper page table entry exists, but no corresponding
1139 			 * struct page.
1140 			 */
1141 			goto next_page;
1142 		} else if (IS_ERR(page)) {
1143 			ret = PTR_ERR(page);
1144 			goto out;
1145 		}
1146 		if (pages) {
1147 			pages[i] = page;
1148 			flush_anon_page(vma, page, start);
1149 			flush_dcache_page(page);
1150 			ctx.page_mask = 0;
1151 		}
1152 next_page:
1153 		if (vmas) {
1154 			vmas[i] = vma;
1155 			ctx.page_mask = 0;
1156 		}
1157 		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1158 		if (page_increm > nr_pages)
1159 			page_increm = nr_pages;
1160 		i += page_increm;
1161 		start += page_increm * PAGE_SIZE;
1162 		nr_pages -= page_increm;
1163 	} while (nr_pages);
1164 out:
1165 	if (ctx.pgmap)
1166 		put_dev_pagemap(ctx.pgmap);
1167 	return i ? i : ret;
1168 }
1169 
vma_permits_fault(struct vm_area_struct * vma,unsigned int fault_flags)1170 static bool vma_permits_fault(struct vm_area_struct *vma,
1171 			      unsigned int fault_flags)
1172 {
1173 	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1174 	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1175 	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1176 
1177 	if (!(vm_flags & vma->vm_flags))
1178 		return false;
1179 
1180 	/*
1181 	 * The architecture might have a hardware protection
1182 	 * mechanism other than read/write that can deny access.
1183 	 *
1184 	 * gup always represents data access, not instruction
1185 	 * fetches, so execute=false here:
1186 	 */
1187 	if (!arch_vma_access_permitted(vma, write, false, foreign))
1188 		return false;
1189 
1190 	return true;
1191 }
1192 
1193 /**
1194  * fixup_user_fault() - manually resolve a user page fault
1195  * @mm:		mm_struct of target mm
1196  * @address:	user address
1197  * @fault_flags:flags to pass down to handle_mm_fault()
1198  * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1199  *		does not allow retry. If NULL, the caller must guarantee
1200  *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1201  *
1202  * This is meant to be called in the specific scenario where for locking reasons
1203  * we try to access user memory in atomic context (within a pagefault_disable()
1204  * section), this returns -EFAULT, and we want to resolve the user fault before
1205  * trying again.
1206  *
1207  * Typically this is meant to be used by the futex code.
1208  *
1209  * The main difference with get_user_pages() is that this function will
1210  * unconditionally call handle_mm_fault() which will in turn perform all the
1211  * necessary SW fixup of the dirty and young bits in the PTE, while
1212  * get_user_pages() only guarantees to update these in the struct page.
1213  *
1214  * This is important for some architectures where those bits also gate the
1215  * access permission to the page because they are maintained in software.  On
1216  * such architectures, gup() will not be enough to make a subsequent access
1217  * succeed.
1218  *
1219  * This function will not return with an unlocked mmap_lock. So it has not the
1220  * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1221  */
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1222 int fixup_user_fault(struct mm_struct *mm,
1223 		     unsigned long address, unsigned int fault_flags,
1224 		     bool *unlocked)
1225 {
1226 	struct vm_area_struct *vma;
1227 	vm_fault_t ret, major = 0;
1228 
1229 	address = untagged_addr(address);
1230 
1231 	if (unlocked)
1232 		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1233 
1234 retry:
1235 	vma = find_extend_vma(mm, address);
1236 	if (!vma || address < vma->vm_start)
1237 		return -EFAULT;
1238 
1239 	if (!vma_permits_fault(vma, fault_flags))
1240 		return -EFAULT;
1241 
1242 	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1243 	    fatal_signal_pending(current))
1244 		return -EINTR;
1245 
1246 	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1247 	major |= ret & VM_FAULT_MAJOR;
1248 	if (ret & VM_FAULT_ERROR) {
1249 		int err = vm_fault_to_errno(ret, 0);
1250 
1251 		if (err)
1252 			return err;
1253 		BUG();
1254 	}
1255 
1256 	if (ret & VM_FAULT_RETRY) {
1257 		mmap_read_lock(mm);
1258 		*unlocked = true;
1259 		fault_flags |= FAULT_FLAG_TRIED;
1260 		goto retry;
1261 	}
1262 
1263 	return 0;
1264 }
1265 EXPORT_SYMBOL_GPL(fixup_user_fault);
1266 
1267 /*
1268  * Please note that this function, unlike __get_user_pages will not
1269  * return 0 for nr_pages > 0 without FOLL_NOWAIT
1270  */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,int * locked,unsigned int flags)1271 static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1272 						unsigned long start,
1273 						unsigned long nr_pages,
1274 						struct page **pages,
1275 						struct vm_area_struct **vmas,
1276 						int *locked,
1277 						unsigned int flags)
1278 {
1279 	long ret, pages_done;
1280 	bool lock_dropped;
1281 
1282 	if (locked) {
1283 		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1284 		BUG_ON(vmas);
1285 		/* check caller initialized locked */
1286 		BUG_ON(*locked != 1);
1287 	}
1288 
1289 	if (flags & FOLL_PIN)
1290 		atomic_set(&mm->has_pinned, 1);
1291 
1292 	/*
1293 	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1294 	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1295 	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1296 	 * for FOLL_GET, not for the newer FOLL_PIN.
1297 	 *
1298 	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1299 	 * that here, as any failures will be obvious enough.
1300 	 */
1301 	if (pages && !(flags & FOLL_PIN))
1302 		flags |= FOLL_GET;
1303 
1304 	pages_done = 0;
1305 	lock_dropped = false;
1306 	for (;;) {
1307 		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1308 				       vmas, locked);
1309 		if (!locked)
1310 			/* VM_FAULT_RETRY couldn't trigger, bypass */
1311 			return ret;
1312 
1313 		/* VM_FAULT_RETRY cannot return errors */
1314 		if (!*locked) {
1315 			BUG_ON(ret < 0);
1316 			BUG_ON(ret >= nr_pages);
1317 		}
1318 
1319 		if (ret > 0) {
1320 			nr_pages -= ret;
1321 			pages_done += ret;
1322 			if (!nr_pages)
1323 				break;
1324 		}
1325 		if (*locked) {
1326 			/*
1327 			 * VM_FAULT_RETRY didn't trigger or it was a
1328 			 * FOLL_NOWAIT.
1329 			 */
1330 			if (!pages_done)
1331 				pages_done = ret;
1332 			break;
1333 		}
1334 		/*
1335 		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1336 		 * For the prefault case (!pages) we only update counts.
1337 		 */
1338 		if (likely(pages))
1339 			pages += ret;
1340 		start += ret << PAGE_SHIFT;
1341 		lock_dropped = true;
1342 
1343 retry:
1344 		/*
1345 		 * Repeat on the address that fired VM_FAULT_RETRY
1346 		 * with both FAULT_FLAG_ALLOW_RETRY and
1347 		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1348 		 * by fatal signals, so we need to check it before we
1349 		 * start trying again otherwise it can loop forever.
1350 		 */
1351 
1352 		if (fatal_signal_pending(current)) {
1353 			if (!pages_done)
1354 				pages_done = -EINTR;
1355 			break;
1356 		}
1357 
1358 		ret = mmap_read_lock_killable(mm);
1359 		if (ret) {
1360 			BUG_ON(ret > 0);
1361 			if (!pages_done)
1362 				pages_done = ret;
1363 			break;
1364 		}
1365 
1366 		*locked = 1;
1367 		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1368 				       pages, NULL, locked);
1369 		if (!*locked) {
1370 			/* Continue to retry until we succeeded */
1371 			BUG_ON(ret != 0);
1372 			goto retry;
1373 		}
1374 		if (ret != 1) {
1375 			BUG_ON(ret > 1);
1376 			if (!pages_done)
1377 				pages_done = ret;
1378 			break;
1379 		}
1380 		nr_pages--;
1381 		pages_done++;
1382 		if (!nr_pages)
1383 			break;
1384 		if (likely(pages))
1385 			pages++;
1386 		start += PAGE_SIZE;
1387 	}
1388 	if (lock_dropped && *locked) {
1389 		/*
1390 		 * We must let the caller know we temporarily dropped the lock
1391 		 * and so the critical section protected by it was lost.
1392 		 */
1393 		mmap_read_unlock(mm);
1394 		*locked = 0;
1395 	}
1396 	return pages_done;
1397 }
1398 
1399 /**
1400  * populate_vma_page_range() -  populate a range of pages in the vma.
1401  * @vma:   target vma
1402  * @start: start address
1403  * @end:   end address
1404  * @locked: whether the mmap_lock is still held
1405  *
1406  * This takes care of mlocking the pages too if VM_LOCKED is set.
1407  *
1408  * Return either number of pages pinned in the vma, or a negative error
1409  * code on error.
1410  *
1411  * vma->vm_mm->mmap_lock must be held.
1412  *
1413  * If @locked is NULL, it may be held for read or write and will
1414  * be unperturbed.
1415  *
1416  * If @locked is non-NULL, it must held for read only and may be
1417  * released.  If it's released, *@locked will be set to 0.
1418  */
populate_vma_page_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,int * locked)1419 long populate_vma_page_range(struct vm_area_struct *vma,
1420 		unsigned long start, unsigned long end, int *locked)
1421 {
1422 	struct mm_struct *mm = vma->vm_mm;
1423 	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1424 	int gup_flags;
1425 
1426 	VM_BUG_ON(start & ~PAGE_MASK);
1427 	VM_BUG_ON(end   & ~PAGE_MASK);
1428 	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1429 	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1430 	mmap_assert_locked(mm);
1431 
1432 	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1433 	if (vma->vm_flags & VM_LOCKONFAULT)
1434 		gup_flags &= ~FOLL_POPULATE;
1435 	/*
1436 	 * We want to touch writable mappings with a write fault in order
1437 	 * to break COW, except for shared mappings because these don't COW
1438 	 * and we would not want to dirty them for nothing.
1439 	 */
1440 	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1441 		gup_flags |= FOLL_WRITE;
1442 
1443 	/*
1444 	 * We want mlock to succeed for regions that have any permissions
1445 	 * other than PROT_NONE.
1446 	 */
1447 	if (vma_is_accessible(vma))
1448 		gup_flags |= FOLL_FORCE;
1449 
1450 	/*
1451 	 * We made sure addr is within a VMA, so the following will
1452 	 * not result in a stack expansion that recurses back here.
1453 	 */
1454 	return __get_user_pages(mm, start, nr_pages, gup_flags,
1455 				NULL, NULL, locked);
1456 }
1457 
1458 /*
1459  * __mm_populate - populate and/or mlock pages within a range of address space.
1460  *
1461  * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1462  * flags. VMAs must be already marked with the desired vm_flags, and
1463  * mmap_lock must not be held.
1464  */
__mm_populate(unsigned long start,unsigned long len,int ignore_errors)1465 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1466 {
1467 	struct mm_struct *mm = current->mm;
1468 	unsigned long end, nstart, nend;
1469 	struct vm_area_struct *vma = NULL;
1470 	int locked = 0;
1471 	long ret = 0;
1472 
1473 	end = start + len;
1474 
1475 	for (nstart = start; nstart < end; nstart = nend) {
1476 		/*
1477 		 * We want to fault in pages for [nstart; end) address range.
1478 		 * Find first corresponding VMA.
1479 		 */
1480 		if (!locked) {
1481 			locked = 1;
1482 			mmap_read_lock(mm);
1483 			vma = find_vma(mm, nstart);
1484 		} else if (nstart >= vma->vm_end)
1485 			vma = vma->vm_next;
1486 		if (!vma || vma->vm_start >= end)
1487 			break;
1488 		/*
1489 		 * Set [nstart; nend) to intersection of desired address
1490 		 * range with the first VMA. Also, skip undesirable VMA types.
1491 		 */
1492 		nend = min(end, vma->vm_end);
1493 		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1494 			continue;
1495 		if (nstart < vma->vm_start)
1496 			nstart = vma->vm_start;
1497 		/*
1498 		 * Now fault in a range of pages. populate_vma_page_range()
1499 		 * double checks the vma flags, so that it won't mlock pages
1500 		 * if the vma was already munlocked.
1501 		 */
1502 		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1503 		if (ret < 0) {
1504 			if (ignore_errors) {
1505 				ret = 0;
1506 				continue;	/* continue at next VMA */
1507 			}
1508 			break;
1509 		}
1510 		nend = nstart + ret * PAGE_SIZE;
1511 		ret = 0;
1512 	}
1513 	if (locked)
1514 		mmap_read_unlock(mm);
1515 	return ret;	/* 0 or negative error code */
1516 }
1517 #else /* CONFIG_MMU */
__get_user_pages_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,int * locked,unsigned int foll_flags)1518 static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1519 		unsigned long nr_pages, struct page **pages,
1520 		struct vm_area_struct **vmas, int *locked,
1521 		unsigned int foll_flags)
1522 {
1523 	struct vm_area_struct *vma;
1524 	unsigned long vm_flags;
1525 	int i;
1526 
1527 	/* calculate required read or write permissions.
1528 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1529 	 */
1530 	vm_flags  = (foll_flags & FOLL_WRITE) ?
1531 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1532 	vm_flags &= (foll_flags & FOLL_FORCE) ?
1533 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1534 
1535 	for (i = 0; i < nr_pages; i++) {
1536 		vma = find_vma(mm, start);
1537 		if (!vma)
1538 			goto finish_or_fault;
1539 
1540 		/* protect what we can, including chardevs */
1541 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1542 		    !(vm_flags & vma->vm_flags))
1543 			goto finish_or_fault;
1544 
1545 		if (pages) {
1546 			pages[i] = virt_to_page(start);
1547 			if (pages[i])
1548 				get_page(pages[i]);
1549 		}
1550 		if (vmas)
1551 			vmas[i] = vma;
1552 		start = (start + PAGE_SIZE) & PAGE_MASK;
1553 	}
1554 
1555 	return i;
1556 
1557 finish_or_fault:
1558 	return i ? : -EFAULT;
1559 }
1560 #endif /* !CONFIG_MMU */
1561 
1562 /**
1563  * get_dump_page() - pin user page in memory while writing it to core dump
1564  * @addr: user address
1565  *
1566  * Returns struct page pointer of user page pinned for dump,
1567  * to be freed afterwards by put_page().
1568  *
1569  * Returns NULL on any kind of failure - a hole must then be inserted into
1570  * the corefile, to preserve alignment with its headers; and also returns
1571  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1572  * allowing a hole to be left in the corefile to save diskspace.
1573  *
1574  * Called without mmap_lock (takes and releases the mmap_lock by itself).
1575  */
1576 #ifdef CONFIG_ELF_CORE
get_dump_page(unsigned long addr)1577 struct page *get_dump_page(unsigned long addr)
1578 {
1579 	struct mm_struct *mm = current->mm;
1580 	struct page *page;
1581 	int locked = 1;
1582 	int ret;
1583 
1584 	if (mmap_read_lock_killable(mm))
1585 		return NULL;
1586 	ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1587 				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1588 	if (locked)
1589 		mmap_read_unlock(mm);
1590 	return (ret == 1) ? page : NULL;
1591 }
1592 #endif /* CONFIG_ELF_CORE */
1593 
1594 #ifdef CONFIG_CMA
check_and_migrate_cma_pages(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,unsigned int gup_flags)1595 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1596 					unsigned long start,
1597 					unsigned long nr_pages,
1598 					struct page **pages,
1599 					struct vm_area_struct **vmas,
1600 					unsigned int gup_flags)
1601 {
1602 	unsigned long i, isolation_error_count;
1603 	bool drain_allow;
1604 	LIST_HEAD(cma_page_list);
1605 	long ret = nr_pages;
1606 	struct page *prev_head, *head;
1607 	struct migration_target_control mtc = {
1608 		.nid = NUMA_NO_NODE,
1609 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1610 	};
1611 
1612 check_again:
1613 	prev_head = NULL;
1614 	isolation_error_count = 0;
1615 	drain_allow = true;
1616 	for (i = 0; i < nr_pages; i++) {
1617 		head = compound_head(pages[i]);
1618 		if (head == prev_head)
1619 			continue;
1620 		prev_head = head;
1621 		/*
1622 		 * If we get a page from the CMA zone, since we are going to
1623 		 * be pinning these entries, we might as well move them out
1624 		 * of the CMA zone if possible.
1625 		 */
1626 		if (is_migrate_cma_page(head)) {
1627 			if (PageHuge(head)) {
1628 				if (isolate_hugetlb(head, &cma_page_list))
1629 					isolation_error_count++;
1630 			} else {
1631 				if (!PageLRU(head) && drain_allow) {
1632 					lru_add_drain_all();
1633 					drain_allow = false;
1634 				}
1635 
1636 				if (isolate_lru_page(head)) {
1637 					isolation_error_count++;
1638 					continue;
1639 				}
1640 				list_add_tail(&head->lru, &cma_page_list);
1641 				mod_node_page_state(page_pgdat(head),
1642 						    NR_ISOLATED_ANON +
1643 						    page_is_file_lru(head),
1644 						    thp_nr_pages(head));
1645 			}
1646 		}
1647 	}
1648 
1649 	/*
1650 	 * If list is empty, and no isolation errors, means that all pages are
1651 	 * in the correct zone.
1652 	 */
1653 	if (list_empty(&cma_page_list) && !isolation_error_count)
1654 		return ret;
1655 
1656 	if (!list_empty(&cma_page_list)) {
1657 		/*
1658 		 * drop the above get_user_pages reference.
1659 		 */
1660 		if (gup_flags & FOLL_PIN)
1661 			unpin_user_pages(pages, nr_pages);
1662 		else
1663 			for (i = 0; i < nr_pages; i++)
1664 				put_page(pages[i]);
1665 
1666 		ret = migrate_pages(&cma_page_list, alloc_migration_target,
1667 				    NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1668 				    MR_CONTIG_RANGE);
1669 		if (ret) {
1670 			if (!list_empty(&cma_page_list))
1671 				putback_movable_pages(&cma_page_list);
1672 			return ret > 0 ? -ENOMEM : ret;
1673 		}
1674 
1675 		/* We unpinned pages before migration, pin them again */
1676 		ret = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1677 					      NULL, gup_flags);
1678 		if (ret <= 0)
1679 			return ret;
1680 		nr_pages = ret;
1681 	}
1682 
1683 	/*
1684 	 * check again because pages were unpinned, and we also might have
1685 	 * had isolation errors and need more pages to migrate.
1686 	 */
1687 	goto check_again;
1688 }
1689 #else
check_and_migrate_cma_pages(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,unsigned int gup_flags)1690 static long check_and_migrate_cma_pages(struct mm_struct *mm,
1691 					unsigned long start,
1692 					unsigned long nr_pages,
1693 					struct page **pages,
1694 					struct vm_area_struct **vmas,
1695 					unsigned int gup_flags)
1696 {
1697 	return nr_pages;
1698 }
1699 #endif /* CONFIG_CMA */
1700 
1701 /*
1702  * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1703  * allows us to process the FOLL_LONGTERM flag.
1704  */
__gup_longterm_locked(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,struct page ** pages,struct vm_area_struct ** vmas,unsigned int gup_flags)1705 static long __gup_longterm_locked(struct mm_struct *mm,
1706 				  unsigned long start,
1707 				  unsigned long nr_pages,
1708 				  struct page **pages,
1709 				  struct vm_area_struct **vmas,
1710 				  unsigned int gup_flags)
1711 {
1712 	unsigned long flags = 0;
1713 	long rc;
1714 
1715 	if (gup_flags & FOLL_LONGTERM)
1716 		flags = memalloc_nocma_save();
1717 
1718 	rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, NULL,
1719 				     gup_flags);
1720 
1721 	if (gup_flags & FOLL_LONGTERM) {
1722 		if (rc > 0)
1723 			rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1724 							 vmas, gup_flags);
1725 		memalloc_nocma_restore(flags);
1726 	}
1727 	return rc;
1728 }
1729 
is_valid_gup_flags(unsigned int gup_flags)1730 static bool is_valid_gup_flags(unsigned int gup_flags)
1731 {
1732 	/*
1733 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1734 	 * never directly by the caller, so enforce that with an assertion:
1735 	 */
1736 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1737 		return false;
1738 	/*
1739 	 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1740 	 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1741 	 * FOLL_PIN.
1742 	 */
1743 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1744 		return false;
1745 
1746 	return true;
1747 }
1748 
1749 #ifdef CONFIG_MMU
__get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)1750 static long __get_user_pages_remote(struct mm_struct *mm,
1751 				    unsigned long start, unsigned long nr_pages,
1752 				    unsigned int gup_flags, struct page **pages,
1753 				    struct vm_area_struct **vmas, int *locked)
1754 {
1755 	unsigned int orig_gup_flags = gup_flags;
1756 
1757 	trace_android_vh___get_user_pages_remote(locked, &gup_flags, pages);
1758 
1759 	/*
1760 	 * Parts of FOLL_LONGTERM behavior are incompatible with
1761 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1762 	 * vmas. However, this only comes up if locked is set, and there are
1763 	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1764 	 * allow what we can.
1765 	 */
1766 retry:
1767 	if (gup_flags & FOLL_LONGTERM) {
1768 		long ret;
1769 
1770 		if (WARN_ON_ONCE(locked))
1771 			return -EINVAL;
1772 		/*
1773 		 * This will check the vmas (even if our vmas arg is NULL)
1774 		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1775 		 */
1776 		ret = __gup_longterm_locked(mm, start, nr_pages, pages,
1777 					     vmas, gup_flags | FOLL_TOUCH |
1778 					     FOLL_REMOTE);
1779 		if (ret < 0 && orig_gup_flags != gup_flags) {
1780 			gup_flags = orig_gup_flags;
1781 			goto retry;
1782 		} else
1783 			return ret;
1784 	}
1785 
1786 	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1787 				       locked,
1788 				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1789 }
1790 
1791 /**
1792  * get_user_pages_remote() - pin user pages in memory
1793  * @mm:		mm_struct of target mm
1794  * @start:	starting user address
1795  * @nr_pages:	number of pages from start to pin
1796  * @gup_flags:	flags modifying lookup behaviour
1797  * @pages:	array that receives pointers to the pages pinned.
1798  *		Should be at least nr_pages long. Or NULL, if caller
1799  *		only intends to ensure the pages are faulted in.
1800  * @vmas:	array of pointers to vmas corresponding to each page.
1801  *		Or NULL if the caller does not require them.
1802  * @locked:	pointer to lock flag indicating whether lock is held and
1803  *		subsequently whether VM_FAULT_RETRY functionality can be
1804  *		utilised. Lock must initially be held.
1805  *
1806  * Returns either number of pages pinned (which may be less than the
1807  * number requested), or an error. Details about the return value:
1808  *
1809  * -- If nr_pages is 0, returns 0.
1810  * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1811  * -- If nr_pages is >0, and some pages were pinned, returns the number of
1812  *    pages pinned. Again, this may be less than nr_pages.
1813  *
1814  * The caller is responsible for releasing returned @pages, via put_page().
1815  *
1816  * @vmas are valid only as long as mmap_lock is held.
1817  *
1818  * Must be called with mmap_lock held for read or write.
1819  *
1820  * get_user_pages_remote walks a process's page tables and takes a reference
1821  * to each struct page that each user address corresponds to at a given
1822  * instant. That is, it takes the page that would be accessed if a user
1823  * thread accesses the given user virtual address at that instant.
1824  *
1825  * This does not guarantee that the page exists in the user mappings when
1826  * get_user_pages_remote returns, and there may even be a completely different
1827  * page there in some cases (eg. if mmapped pagecache has been invalidated
1828  * and subsequently re faulted). However it does guarantee that the page
1829  * won't be freed completely. And mostly callers simply care that the page
1830  * contains data that was valid *at some point in time*. Typically, an IO
1831  * or similar operation cannot guarantee anything stronger anyway because
1832  * locks can't be held over the syscall boundary.
1833  *
1834  * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1835  * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1836  * be called after the page is finished with, and before put_page is called.
1837  *
1838  * get_user_pages_remote is typically used for fewer-copy IO operations,
1839  * to get a handle on the memory by some means other than accesses
1840  * via the user virtual addresses. The pages may be submitted for
1841  * DMA to devices or accessed via their kernel linear mapping (via the
1842  * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1843  *
1844  * See also get_user_pages_fast, for performance critical applications.
1845  *
1846  * get_user_pages_remote should be phased out in favor of
1847  * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1848  * should use get_user_pages_remote because it cannot pass
1849  * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1850  */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)1851 long get_user_pages_remote(struct mm_struct *mm,
1852 		unsigned long start, unsigned long nr_pages,
1853 		unsigned int gup_flags, struct page **pages,
1854 		struct vm_area_struct **vmas, int *locked)
1855 {
1856 	if (!is_valid_gup_flags(gup_flags))
1857 		return -EINVAL;
1858 
1859 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1860 				       pages, vmas, locked);
1861 }
1862 EXPORT_SYMBOL(get_user_pages_remote);
1863 
1864 #else /* CONFIG_MMU */
get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)1865 long get_user_pages_remote(struct mm_struct *mm,
1866 			   unsigned long start, unsigned long nr_pages,
1867 			   unsigned int gup_flags, struct page **pages,
1868 			   struct vm_area_struct **vmas, int *locked)
1869 {
1870 	return 0;
1871 }
1872 
__get_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)1873 static long __get_user_pages_remote(struct mm_struct *mm,
1874 				    unsigned long start, unsigned long nr_pages,
1875 				    unsigned int gup_flags, struct page **pages,
1876 				    struct vm_area_struct **vmas, int *locked)
1877 {
1878 	return 0;
1879 }
1880 #endif /* !CONFIG_MMU */
1881 
1882 /**
1883  * get_user_pages() - pin user pages in memory
1884  * @start:      starting user address
1885  * @nr_pages:   number of pages from start to pin
1886  * @gup_flags:  flags modifying lookup behaviour
1887  * @pages:      array that receives pointers to the pages pinned.
1888  *              Should be at least nr_pages long. Or NULL, if caller
1889  *              only intends to ensure the pages are faulted in.
1890  * @vmas:       array of pointers to vmas corresponding to each page.
1891  *              Or NULL if the caller does not require them.
1892  *
1893  * This is the same as get_user_pages_remote(), just with a less-flexible
1894  * calling convention where we assume that the mm being operated on belongs to
1895  * the current task, and doesn't allow passing of a locked parameter.  We also
1896  * obviously don't pass FOLL_REMOTE in here.
1897  */
get_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)1898 long get_user_pages(unsigned long start, unsigned long nr_pages,
1899 		unsigned int gup_flags, struct page **pages,
1900 		struct vm_area_struct **vmas)
1901 {
1902 	long ret;
1903 	unsigned int orig_gup_flags;
1904 
1905 	if (!is_valid_gup_flags(gup_flags))
1906 		return -EINVAL;
1907 
1908 	orig_gup_flags = gup_flags;
1909 	trace_android_vh_get_user_pages(&gup_flags, pages);
1910 retry:
1911 	ret = __gup_longterm_locked(current->mm, start, nr_pages,
1912 				     pages, vmas, gup_flags | FOLL_TOUCH);
1913 	if (ret < 0 && orig_gup_flags != gup_flags) {
1914 		gup_flags = orig_gup_flags;
1915 		goto retry;
1916 	}
1917 
1918 	return ret;
1919 }
1920 EXPORT_SYMBOL(get_user_pages);
1921 
1922 /**
1923  * get_user_pages_locked() is suitable to replace the form:
1924  *
1925  *      mmap_read_lock(mm);
1926  *      do_something()
1927  *      get_user_pages(mm, ..., pages, NULL);
1928  *      mmap_read_unlock(mm);
1929  *
1930  *  to:
1931  *
1932  *      int locked = 1;
1933  *      mmap_read_lock(mm);
1934  *      do_something()
1935  *      get_user_pages_locked(mm, ..., pages, &locked);
1936  *      if (locked)
1937  *          mmap_read_unlock(mm);
1938  *
1939  * @start:      starting user address
1940  * @nr_pages:   number of pages from start to pin
1941  * @gup_flags:  flags modifying lookup behaviour
1942  * @pages:      array that receives pointers to the pages pinned.
1943  *              Should be at least nr_pages long. Or NULL, if caller
1944  *              only intends to ensure the pages are faulted in.
1945  * @locked:     pointer to lock flag indicating whether lock is held and
1946  *              subsequently whether VM_FAULT_RETRY functionality can be
1947  *              utilised. Lock must initially be held.
1948  *
1949  * We can leverage the VM_FAULT_RETRY functionality in the page fault
1950  * paths better by using either get_user_pages_locked() or
1951  * get_user_pages_unlocked().
1952  *
1953  */
get_user_pages_locked(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)1954 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1955 			   unsigned int gup_flags, struct page **pages,
1956 			   int *locked)
1957 {
1958 	/*
1959 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1960 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1961 	 * vmas.  As there are no users of this flag in this call we simply
1962 	 * disallow this option for now.
1963 	 */
1964 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1965 		return -EINVAL;
1966 	/*
1967 	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1968 	 * never directly by the caller, so enforce that:
1969 	 */
1970 	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1971 		return -EINVAL;
1972 
1973 	return __get_user_pages_locked(current->mm, start, nr_pages,
1974 				       pages, NULL, locked,
1975 				       gup_flags | FOLL_TOUCH);
1976 }
1977 EXPORT_SYMBOL(get_user_pages_locked);
1978 
1979 /*
1980  * get_user_pages_unlocked() is suitable to replace the form:
1981  *
1982  *      mmap_read_lock(mm);
1983  *      get_user_pages(mm, ..., pages, NULL);
1984  *      mmap_read_unlock(mm);
1985  *
1986  *  with:
1987  *
1988  *      get_user_pages_unlocked(mm, ..., pages);
1989  *
1990  * It is functionally equivalent to get_user_pages_fast so
1991  * get_user_pages_fast should be used instead if specific gup_flags
1992  * (e.g. FOLL_FORCE) are not required.
1993  */
get_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)1994 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1995 			     struct page **pages, unsigned int gup_flags)
1996 {
1997 	struct mm_struct *mm = current->mm;
1998 	int locked = 1;
1999 	long ret;
2000 
2001 	/*
2002 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2003 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2004 	 * vmas.  As there are no users of this flag in this call we simply
2005 	 * disallow this option for now.
2006 	 */
2007 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2008 		return -EINVAL;
2009 
2010 	mmap_read_lock(mm);
2011 	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
2012 				      &locked, gup_flags | FOLL_TOUCH);
2013 	if (locked)
2014 		mmap_read_unlock(mm);
2015 	return ret;
2016 }
2017 EXPORT_SYMBOL(get_user_pages_unlocked);
2018 
2019 /*
2020  * Fast GUP
2021  *
2022  * get_user_pages_fast attempts to pin user pages by walking the page
2023  * tables directly and avoids taking locks. Thus the walker needs to be
2024  * protected from page table pages being freed from under it, and should
2025  * block any THP splits.
2026  *
2027  * One way to achieve this is to have the walker disable interrupts, and
2028  * rely on IPIs from the TLB flushing code blocking before the page table
2029  * pages are freed. This is unsuitable for architectures that do not need
2030  * to broadcast an IPI when invalidating TLBs.
2031  *
2032  * Another way to achieve this is to batch up page table containing pages
2033  * belonging to more than one mm_user, then rcu_sched a callback to free those
2034  * pages. Disabling interrupts will allow the fast_gup walker to both block
2035  * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2036  * (which is a relatively rare event). The code below adopts this strategy.
2037  *
2038  * Before activating this code, please be aware that the following assumptions
2039  * are currently made:
2040  *
2041  *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2042  *  free pages containing page tables or TLB flushing requires IPI broadcast.
2043  *
2044  *  *) ptes can be read atomically by the architecture.
2045  *
2046  *  *) access_ok is sufficient to validate userspace address ranges.
2047  *
2048  * The last two assumptions can be relaxed by the addition of helper functions.
2049  *
2050  * This code is based heavily on the PowerPC implementation by Nick Piggin.
2051  */
2052 #ifdef CONFIG_HAVE_FAST_GUP
2053 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
2054 
2055 /*
2056  * WARNING: only to be used in the get_user_pages_fast() implementation.
2057  *
2058  * With get_user_pages_fast(), we walk down the pagetables without taking any
2059  * locks.  For this we would like to load the pointers atomically, but sometimes
2060  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
2061  * we do have is the guarantee that a PTE will only either go from not present
2062  * to present, or present to not present or both -- it will not switch to a
2063  * completely different present page without a TLB flush in between; something
2064  * that we are blocking by holding interrupts off.
2065  *
2066  * Setting ptes from not present to present goes:
2067  *
2068  *   ptep->pte_high = h;
2069  *   smp_wmb();
2070  *   ptep->pte_low = l;
2071  *
2072  * And present to not present goes:
2073  *
2074  *   ptep->pte_low = 0;
2075  *   smp_wmb();
2076  *   ptep->pte_high = 0;
2077  *
2078  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2079  * We load pte_high *after* loading pte_low, which ensures we don't see an older
2080  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
2081  * picked up a changed pte high. We might have gotten rubbish values from
2082  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2083  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2084  * operates on present ptes we're safe.
2085  */
gup_get_pte(pte_t * ptep)2086 static inline pte_t gup_get_pte(pte_t *ptep)
2087 {
2088 	pte_t pte;
2089 
2090 	do {
2091 		pte.pte_low = ptep->pte_low;
2092 		smp_rmb();
2093 		pte.pte_high = ptep->pte_high;
2094 		smp_rmb();
2095 	} while (unlikely(pte.pte_low != ptep->pte_low));
2096 
2097 	return pte;
2098 }
2099 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2100 /*
2101  * We require that the PTE can be read atomically.
2102  */
gup_get_pte(pte_t * ptep)2103 static inline pte_t gup_get_pte(pte_t *ptep)
2104 {
2105 	return ptep_get(ptep);
2106 }
2107 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2108 
undo_dev_pagemap(int * nr,int nr_start,unsigned int flags,struct page ** pages)2109 static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2110 					    unsigned int flags,
2111 					    struct page **pages)
2112 {
2113 	while ((*nr) - nr_start) {
2114 		struct page *page = pages[--(*nr)];
2115 
2116 		ClearPageReferenced(page);
2117 		if (flags & FOLL_PIN)
2118 			unpin_user_page(page);
2119 		else
2120 			put_page(page);
2121 	}
2122 }
2123 
2124 #ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2125 /*
2126  * Fast-gup relies on pte change detection to avoid concurrent pgtable
2127  * operations.
2128  *
2129  * To pin the page, fast-gup needs to do below in order:
2130  * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2131  *
2132  * For the rest of pgtable operations where pgtable updates can be racy
2133  * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2134  * is pinned.
2135  *
2136  * Above will work for all pte-level operations, including THP split.
2137  *
2138  * For THP collapse, it's a bit more complicated because fast-gup may be
2139  * walking a pgtable page that is being freed (pte is still valid but pmd
2140  * can be cleared already).  To avoid race in such condition, we need to
2141  * also check pmd here to make sure pmd doesn't change (corresponds to
2142  * pmdp_collapse_flush() in the THP collapse code path).
2143  */
gup_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2144 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2145 			 unsigned long end, unsigned int flags,
2146 			 struct page **pages, int *nr)
2147 {
2148 	struct dev_pagemap *pgmap = NULL;
2149 	int nr_start = *nr, ret = 0;
2150 	pte_t *ptep, *ptem;
2151 
2152 	ptem = ptep = pte_offset_map(&pmd, addr);
2153 	do {
2154 		pte_t pte = gup_get_pte(ptep);
2155 		struct page *head, *page;
2156 
2157 		/*
2158 		 * Similar to the PMD case below, NUMA hinting must take slow
2159 		 * path using the pte_protnone check.
2160 		 */
2161 		if (pte_protnone(pte))
2162 			goto pte_unmap;
2163 
2164 		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2165 			goto pte_unmap;
2166 
2167 		if (pte_devmap(pte)) {
2168 			if (unlikely(flags & FOLL_LONGTERM))
2169 				goto pte_unmap;
2170 
2171 			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2172 			if (unlikely(!pgmap)) {
2173 				undo_dev_pagemap(nr, nr_start, flags, pages);
2174 				goto pte_unmap;
2175 			}
2176 		} else if (pte_special(pte))
2177 			goto pte_unmap;
2178 
2179 		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2180 		page = pte_page(pte);
2181 
2182 		head = try_grab_compound_head(page, 1, flags);
2183 		if (!head)
2184 			goto pte_unmap;
2185 
2186 		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2187 		    unlikely(pte_val(pte) != pte_val(*ptep))) {
2188 			put_compound_head(head, 1, flags);
2189 			goto pte_unmap;
2190 		}
2191 
2192 		VM_BUG_ON_PAGE(compound_head(page) != head, page);
2193 
2194 		/*
2195 		 * We need to make the page accessible if and only if we are
2196 		 * going to access its content (the FOLL_PIN case).  Please
2197 		 * see Documentation/core-api/pin_user_pages.rst for
2198 		 * details.
2199 		 */
2200 		if (flags & FOLL_PIN) {
2201 			ret = arch_make_page_accessible(page);
2202 			if (ret) {
2203 				unpin_user_page(page);
2204 				goto pte_unmap;
2205 			}
2206 		}
2207 		SetPageReferenced(page);
2208 		pages[*nr] = page;
2209 		(*nr)++;
2210 
2211 	} while (ptep++, addr += PAGE_SIZE, addr != end);
2212 
2213 	ret = 1;
2214 
2215 pte_unmap:
2216 	if (pgmap)
2217 		put_dev_pagemap(pgmap);
2218 	pte_unmap(ptem);
2219 	return ret;
2220 }
2221 #else
2222 
2223 /*
2224  * If we can't determine whether or not a pte is special, then fail immediately
2225  * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2226  * to be special.
2227  *
2228  * For a futex to be placed on a THP tail page, get_futex_key requires a
2229  * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2230  * useful to have gup_huge_pmd even if we can't operate on ptes.
2231  */
gup_pte_range(pmd_t pmd,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2232 static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2233 			 unsigned long end, unsigned int flags,
2234 			 struct page **pages, int *nr)
2235 {
2236 	return 0;
2237 }
2238 #endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2239 
2240 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
__gup_device_huge(unsigned long pfn,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2241 static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2242 			     unsigned long end, unsigned int flags,
2243 			     struct page **pages, int *nr)
2244 {
2245 	int nr_start = *nr;
2246 	struct dev_pagemap *pgmap = NULL;
2247 
2248 	do {
2249 		struct page *page = pfn_to_page(pfn);
2250 
2251 		pgmap = get_dev_pagemap(pfn, pgmap);
2252 		if (unlikely(!pgmap)) {
2253 			undo_dev_pagemap(nr, nr_start, flags, pages);
2254 			return 0;
2255 		}
2256 		SetPageReferenced(page);
2257 		pages[*nr] = page;
2258 		if (unlikely(!try_grab_page(page, flags))) {
2259 			undo_dev_pagemap(nr, nr_start, flags, pages);
2260 			return 0;
2261 		}
2262 		(*nr)++;
2263 		pfn++;
2264 	} while (addr += PAGE_SIZE, addr != end);
2265 
2266 	if (pgmap)
2267 		put_dev_pagemap(pgmap);
2268 	return 1;
2269 }
2270 
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2271 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2272 				 unsigned long end, unsigned int flags,
2273 				 struct page **pages, int *nr)
2274 {
2275 	unsigned long fault_pfn;
2276 	int nr_start = *nr;
2277 
2278 	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2279 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2280 		return 0;
2281 
2282 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2283 		undo_dev_pagemap(nr, nr_start, flags, pages);
2284 		return 0;
2285 	}
2286 	return 1;
2287 }
2288 
__gup_device_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2289 static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2290 				 unsigned long end, unsigned int flags,
2291 				 struct page **pages, int *nr)
2292 {
2293 	unsigned long fault_pfn;
2294 	int nr_start = *nr;
2295 
2296 	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2297 	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2298 		return 0;
2299 
2300 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2301 		undo_dev_pagemap(nr, nr_start, flags, pages);
2302 		return 0;
2303 	}
2304 	return 1;
2305 }
2306 #else
__gup_device_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2307 static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2308 				 unsigned long end, unsigned int flags,
2309 				 struct page **pages, int *nr)
2310 {
2311 	BUILD_BUG();
2312 	return 0;
2313 }
2314 
__gup_device_huge_pud(pud_t pud,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2315 static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2316 				 unsigned long end, unsigned int flags,
2317 				 struct page **pages, int *nr)
2318 {
2319 	BUILD_BUG();
2320 	return 0;
2321 }
2322 #endif
2323 
record_subpages(struct page * page,unsigned long addr,unsigned long end,struct page ** pages)2324 static int record_subpages(struct page *page, unsigned long addr,
2325 			   unsigned long end, struct page **pages)
2326 {
2327 	int nr;
2328 
2329 	for (nr = 0; addr != end; addr += PAGE_SIZE)
2330 		pages[nr++] = page++;
2331 
2332 	return nr;
2333 }
2334 
2335 #ifdef CONFIG_ARCH_HAS_HUGEPD
hugepte_addr_end(unsigned long addr,unsigned long end,unsigned long sz)2336 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2337 				      unsigned long sz)
2338 {
2339 	unsigned long __boundary = (addr + sz) & ~(sz-1);
2340 	return (__boundary - 1 < end - 1) ? __boundary : end;
2341 }
2342 
gup_hugepte(pte_t * ptep,unsigned long sz,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2343 static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2344 		       unsigned long end, unsigned int flags,
2345 		       struct page **pages, int *nr)
2346 {
2347 	unsigned long pte_end;
2348 	struct page *head, *page;
2349 	pte_t pte;
2350 	int refs;
2351 
2352 	pte_end = (addr + sz) & ~(sz-1);
2353 	if (pte_end < end)
2354 		end = pte_end;
2355 
2356 	pte = huge_ptep_get(ptep);
2357 
2358 	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2359 		return 0;
2360 
2361 	/* hugepages are never "special" */
2362 	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2363 
2364 	head = pte_page(pte);
2365 	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2366 	refs = record_subpages(page, addr, end, pages + *nr);
2367 
2368 	head = try_grab_compound_head(head, refs, flags);
2369 	if (!head)
2370 		return 0;
2371 
2372 	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2373 		put_compound_head(head, refs, flags);
2374 		return 0;
2375 	}
2376 
2377 	*nr += refs;
2378 	SetPageReferenced(head);
2379 	return 1;
2380 }
2381 
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned int pdshift,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2382 static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2383 		unsigned int pdshift, unsigned long end, unsigned int flags,
2384 		struct page **pages, int *nr)
2385 {
2386 	pte_t *ptep;
2387 	unsigned long sz = 1UL << hugepd_shift(hugepd);
2388 	unsigned long next;
2389 
2390 	ptep = hugepte_offset(hugepd, addr, pdshift);
2391 	do {
2392 		next = hugepte_addr_end(addr, end, sz);
2393 		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2394 			return 0;
2395 	} while (ptep++, addr = next, addr != end);
2396 
2397 	return 1;
2398 }
2399 #else
gup_huge_pd(hugepd_t hugepd,unsigned long addr,unsigned int pdshift,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2400 static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2401 		unsigned int pdshift, unsigned long end, unsigned int flags,
2402 		struct page **pages, int *nr)
2403 {
2404 	return 0;
2405 }
2406 #endif /* CONFIG_ARCH_HAS_HUGEPD */
2407 
gup_huge_pmd(pmd_t orig,pmd_t * pmdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2408 static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2409 			unsigned long end, unsigned int flags,
2410 			struct page **pages, int *nr)
2411 {
2412 	struct page *head, *page;
2413 	int refs;
2414 
2415 	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2416 		return 0;
2417 
2418 	if (pmd_devmap(orig)) {
2419 		if (unlikely(flags & FOLL_LONGTERM))
2420 			return 0;
2421 		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2422 					     pages, nr);
2423 	}
2424 
2425 	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2426 	refs = record_subpages(page, addr, end, pages + *nr);
2427 
2428 	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2429 	if (!head)
2430 		return 0;
2431 
2432 	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2433 		put_compound_head(head, refs, flags);
2434 		return 0;
2435 	}
2436 
2437 	*nr += refs;
2438 	SetPageReferenced(head);
2439 	return 1;
2440 }
2441 
gup_huge_pud(pud_t orig,pud_t * pudp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2442 static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2443 			unsigned long end, unsigned int flags,
2444 			struct page **pages, int *nr)
2445 {
2446 	struct page *head, *page;
2447 	int refs;
2448 
2449 	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2450 		return 0;
2451 
2452 	if (pud_devmap(orig)) {
2453 		if (unlikely(flags & FOLL_LONGTERM))
2454 			return 0;
2455 		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2456 					     pages, nr);
2457 	}
2458 
2459 	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2460 	refs = record_subpages(page, addr, end, pages + *nr);
2461 
2462 	head = try_grab_compound_head(pud_page(orig), refs, flags);
2463 	if (!head)
2464 		return 0;
2465 
2466 	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2467 		put_compound_head(head, refs, flags);
2468 		return 0;
2469 	}
2470 
2471 	*nr += refs;
2472 	SetPageReferenced(head);
2473 	return 1;
2474 }
2475 
gup_huge_pgd(pgd_t orig,pgd_t * pgdp,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2476 static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2477 			unsigned long end, unsigned int flags,
2478 			struct page **pages, int *nr)
2479 {
2480 	int refs;
2481 	struct page *head, *page;
2482 
2483 	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2484 		return 0;
2485 
2486 	BUILD_BUG_ON(pgd_devmap(orig));
2487 
2488 	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2489 	refs = record_subpages(page, addr, end, pages + *nr);
2490 
2491 	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2492 	if (!head)
2493 		return 0;
2494 
2495 	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2496 		put_compound_head(head, refs, flags);
2497 		return 0;
2498 	}
2499 
2500 	*nr += refs;
2501 	SetPageReferenced(head);
2502 	return 1;
2503 }
2504 
gup_pmd_range(pud_t * pudp,pud_t pud,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2505 static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2506 		unsigned int flags, struct page **pages, int *nr)
2507 {
2508 	unsigned long next;
2509 	pmd_t *pmdp;
2510 
2511 	pmdp = pmd_offset_lockless(pudp, pud, addr);
2512 	do {
2513 		pmd_t pmd = READ_ONCE(*pmdp);
2514 
2515 		next = pmd_addr_end(addr, end);
2516 		if (!pmd_present(pmd))
2517 			return 0;
2518 
2519 		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2520 			     pmd_devmap(pmd))) {
2521 			/*
2522 			 * NUMA hinting faults need to be handled in the GUP
2523 			 * slowpath for accounting purposes and so that they
2524 			 * can be serialised against THP migration.
2525 			 */
2526 			if (pmd_protnone(pmd))
2527 				return 0;
2528 
2529 			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2530 				pages, nr))
2531 				return 0;
2532 
2533 		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2534 			/*
2535 			 * architecture have different format for hugetlbfs
2536 			 * pmd format and THP pmd format
2537 			 */
2538 			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2539 					 PMD_SHIFT, next, flags, pages, nr))
2540 				return 0;
2541 		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
2542 			return 0;
2543 	} while (pmdp++, addr = next, addr != end);
2544 
2545 	return 1;
2546 }
2547 
gup_pud_range(p4d_t * p4dp,p4d_t p4d,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2548 static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2549 			 unsigned int flags, struct page **pages, int *nr)
2550 {
2551 	unsigned long next;
2552 	pud_t *pudp;
2553 
2554 	pudp = pud_offset_lockless(p4dp, p4d, addr);
2555 	do {
2556 		pud_t pud = READ_ONCE(*pudp);
2557 
2558 		next = pud_addr_end(addr, end);
2559 		if (unlikely(!pud_present(pud)))
2560 			return 0;
2561 		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
2562 			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2563 					  pages, nr))
2564 				return 0;
2565 		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2566 			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2567 					 PUD_SHIFT, next, flags, pages, nr))
2568 				return 0;
2569 		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2570 			return 0;
2571 	} while (pudp++, addr = next, addr != end);
2572 
2573 	return 1;
2574 }
2575 
gup_p4d_range(pgd_t * pgdp,pgd_t pgd,unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2576 static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2577 			 unsigned int flags, struct page **pages, int *nr)
2578 {
2579 	unsigned long next;
2580 	p4d_t *p4dp;
2581 
2582 	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2583 	do {
2584 		p4d_t p4d = READ_ONCE(*p4dp);
2585 
2586 		next = p4d_addr_end(addr, end);
2587 		if (p4d_none(p4d))
2588 			return 0;
2589 		BUILD_BUG_ON(p4d_huge(p4d));
2590 		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2591 			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2592 					 P4D_SHIFT, next, flags, pages, nr))
2593 				return 0;
2594 		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2595 			return 0;
2596 	} while (p4dp++, addr = next, addr != end);
2597 
2598 	return 1;
2599 }
2600 
gup_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2601 static void gup_pgd_range(unsigned long addr, unsigned long end,
2602 		unsigned int flags, struct page **pages, int *nr)
2603 {
2604 	unsigned long next;
2605 	pgd_t *pgdp;
2606 
2607 	pgdp = pgd_offset(current->mm, addr);
2608 	do {
2609 		pgd_t pgd = READ_ONCE(*pgdp);
2610 
2611 		next = pgd_addr_end(addr, end);
2612 		if (pgd_none(pgd))
2613 			return;
2614 		if (unlikely(pgd_huge(pgd))) {
2615 			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2616 					  pages, nr))
2617 				return;
2618 		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2619 			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2620 					 PGDIR_SHIFT, next, flags, pages, nr))
2621 				return;
2622 		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2623 			return;
2624 	} while (pgdp++, addr = next, addr != end);
2625 }
2626 #else
gup_pgd_range(unsigned long addr,unsigned long end,unsigned int flags,struct page ** pages,int * nr)2627 static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2628 		unsigned int flags, struct page **pages, int *nr)
2629 {
2630 }
2631 #endif /* CONFIG_HAVE_FAST_GUP */
2632 
2633 #ifndef gup_fast_permitted
2634 /*
2635  * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2636  * we need to fall back to the slow version:
2637  */
gup_fast_permitted(unsigned long start,unsigned long end)2638 static bool gup_fast_permitted(unsigned long start, unsigned long end)
2639 {
2640 	return true;
2641 }
2642 #endif
2643 
__gup_longterm_unlocked(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2644 static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2645 				   unsigned int gup_flags, struct page **pages)
2646 {
2647 	int ret;
2648 
2649 	/*
2650 	 * FIXME: FOLL_LONGTERM does not work with
2651 	 * get_user_pages_unlocked() (see comments in that function)
2652 	 */
2653 	if (gup_flags & FOLL_LONGTERM) {
2654 		mmap_read_lock(current->mm);
2655 		ret = __gup_longterm_locked(current->mm,
2656 					    start, nr_pages,
2657 					    pages, NULL, gup_flags);
2658 		mmap_read_unlock(current->mm);
2659 	} else {
2660 		ret = get_user_pages_unlocked(start, nr_pages,
2661 					      pages, gup_flags);
2662 	}
2663 
2664 	return ret;
2665 }
2666 
lockless_pages_from_mm(unsigned long start,unsigned long end,unsigned int gup_flags,struct page ** pages)2667 static unsigned long lockless_pages_from_mm(unsigned long start,
2668 					    unsigned long end,
2669 					    unsigned int gup_flags,
2670 					    struct page **pages)
2671 {
2672 	unsigned long flags;
2673 	int nr_pinned = 0;
2674 	unsigned seq;
2675 
2676 	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2677 	    !gup_fast_permitted(start, end))
2678 		return 0;
2679 
2680 	if (gup_flags & FOLL_PIN) {
2681 		seq = raw_read_seqcount(&current->mm->write_protect_seq);
2682 		if (seq & 1)
2683 			return 0;
2684 	}
2685 
2686 	/*
2687 	 * Disable interrupts. The nested form is used, in order to allow full,
2688 	 * general purpose use of this routine.
2689 	 *
2690 	 * With interrupts disabled, we block page table pages from being freed
2691 	 * from under us. See struct mmu_table_batch comments in
2692 	 * include/asm-generic/tlb.h for more details.
2693 	 *
2694 	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2695 	 * that come from THPs splitting.
2696 	 */
2697 	local_irq_save(flags);
2698 	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2699 	local_irq_restore(flags);
2700 
2701 	/*
2702 	 * When pinning pages for DMA there could be a concurrent write protect
2703 	 * from fork() via copy_page_range(), in this case always fail fast GUP.
2704 	 */
2705 	if (gup_flags & FOLL_PIN) {
2706 		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2707 			unpin_user_pages(pages, nr_pinned);
2708 			return 0;
2709 		}
2710 	}
2711 	return nr_pinned;
2712 }
2713 
internal_get_user_pages_fast(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages)2714 static int internal_get_user_pages_fast(unsigned long start,
2715 					unsigned long nr_pages,
2716 					unsigned int gup_flags,
2717 					struct page **pages)
2718 {
2719 	unsigned long len, end;
2720 	unsigned long nr_pinned;
2721 	int ret;
2722 	unsigned long orig_gup_flags = gup_flags;
2723 
2724 	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2725 				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2726 				       FOLL_FAST_ONLY)))
2727 		return -EINVAL;
2728 
2729 	if (gup_flags & FOLL_PIN)
2730 		atomic_set(&current->mm->has_pinned, 1);
2731 
2732 	if (!(gup_flags & FOLL_FAST_ONLY))
2733 		might_lock_read(&current->mm->mmap_lock);
2734 
2735 	start = untagged_addr(start) & PAGE_MASK;
2736 	len = nr_pages << PAGE_SHIFT;
2737 	if (check_add_overflow(start, len, &end))
2738 		return 0;
2739 	if (unlikely(!access_ok((void __user *)start, len)))
2740 		return -EFAULT;
2741 
2742 	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2743 	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2744 		return nr_pinned;
2745 
2746 	/* Slow path: try to get the remaining pages with get_user_pages */
2747 	start += nr_pinned << PAGE_SHIFT;
2748 	pages += nr_pinned;
2749 	trace_android_vh_internal_get_user_pages_fast(&gup_flags, pages);
2750 retry:
2751 	ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2752 				      pages);
2753 	if (ret < 0 && orig_gup_flags != gup_flags) {
2754 		gup_flags = orig_gup_flags;
2755 		goto retry;
2756 	}
2757 
2758 	if (ret < 0) {
2759 		/*
2760 		 * The caller has to unpin the pages we already pinned so
2761 		 * returning -errno is not an option
2762 		 */
2763 		if (nr_pinned)
2764 			return nr_pinned;
2765 		return ret;
2766 	}
2767 	return ret + nr_pinned;
2768 }
2769 
2770 /**
2771  * get_user_pages_fast_only() - pin user pages in memory
2772  * @start:      starting user address
2773  * @nr_pages:   number of pages from start to pin
2774  * @gup_flags:  flags modifying pin behaviour
2775  * @pages:      array that receives pointers to the pages pinned.
2776  *              Should be at least nr_pages long.
2777  *
2778  * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2779  * the regular GUP.
2780  * Note a difference with get_user_pages_fast: this always returns the
2781  * number of pages pinned, 0 if no pages were pinned.
2782  *
2783  * If the architecture does not support this function, simply return with no
2784  * pages pinned.
2785  *
2786  * Careful, careful! COW breaking can go either way, so a non-write
2787  * access can get ambiguous page results. If you call this function without
2788  * 'write' set, you'd better be sure that you're ok with that ambiguity.
2789  */
get_user_pages_fast_only(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2790 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2791 			     unsigned int gup_flags, struct page **pages)
2792 {
2793 	int nr_pinned;
2794 	/*
2795 	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2796 	 * because gup fast is always a "pin with a +1 page refcount" request.
2797 	 *
2798 	 * FOLL_FAST_ONLY is required in order to match the API description of
2799 	 * this routine: no fall back to regular ("slow") GUP.
2800 	 */
2801 	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2802 
2803 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2804 						 pages);
2805 
2806 	/*
2807 	 * As specified in the API description above, this routine is not
2808 	 * allowed to return negative values. However, the common core
2809 	 * routine internal_get_user_pages_fast() *can* return -errno.
2810 	 * Therefore, correct for that here:
2811 	 */
2812 	if (nr_pinned < 0)
2813 		nr_pinned = 0;
2814 
2815 	return nr_pinned;
2816 }
2817 EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2818 
2819 /**
2820  * get_user_pages_fast() - pin user pages in memory
2821  * @start:      starting user address
2822  * @nr_pages:   number of pages from start to pin
2823  * @gup_flags:  flags modifying pin behaviour
2824  * @pages:      array that receives pointers to the pages pinned.
2825  *              Should be at least nr_pages long.
2826  *
2827  * Attempt to pin user pages in memory without taking mm->mmap_lock.
2828  * If not successful, it will fall back to taking the lock and
2829  * calling get_user_pages().
2830  *
2831  * Returns number of pages pinned. This may be fewer than the number requested.
2832  * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2833  * -errno.
2834  */
get_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2835 int get_user_pages_fast(unsigned long start, int nr_pages,
2836 			unsigned int gup_flags, struct page **pages)
2837 {
2838 	if (!is_valid_gup_flags(gup_flags))
2839 		return -EINVAL;
2840 
2841 	/*
2842 	 * The caller may or may not have explicitly set FOLL_GET; either way is
2843 	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2844 	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2845 	 * request.
2846 	 */
2847 	gup_flags |= FOLL_GET;
2848 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2849 }
2850 EXPORT_SYMBOL_GPL(get_user_pages_fast);
2851 
2852 /**
2853  * pin_user_pages_fast() - pin user pages in memory without taking locks
2854  *
2855  * @start:      starting user address
2856  * @nr_pages:   number of pages from start to pin
2857  * @gup_flags:  flags modifying pin behaviour
2858  * @pages:      array that receives pointers to the pages pinned.
2859  *              Should be at least nr_pages long.
2860  *
2861  * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2862  * get_user_pages_fast() for documentation on the function arguments, because
2863  * the arguments here are identical.
2864  *
2865  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2866  * see Documentation/core-api/pin_user_pages.rst for further details.
2867  */
pin_user_pages_fast(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2868 int pin_user_pages_fast(unsigned long start, int nr_pages,
2869 			unsigned int gup_flags, struct page **pages)
2870 {
2871 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2872 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2873 		return -EINVAL;
2874 
2875 	gup_flags |= FOLL_PIN;
2876 	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2877 }
2878 EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2879 
2880 /*
2881  * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2882  * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2883  *
2884  * The API rules are the same, too: no negative values may be returned.
2885  */
pin_user_pages_fast_only(unsigned long start,int nr_pages,unsigned int gup_flags,struct page ** pages)2886 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2887 			     unsigned int gup_flags, struct page **pages)
2888 {
2889 	int nr_pinned;
2890 
2891 	/*
2892 	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2893 	 * rules require returning 0, rather than -errno:
2894 	 */
2895 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2896 		return 0;
2897 	/*
2898 	 * FOLL_FAST_ONLY is required in order to match the API description of
2899 	 * this routine: no fall back to regular ("slow") GUP.
2900 	 */
2901 	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2902 	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2903 						 pages);
2904 	/*
2905 	 * This routine is not allowed to return negative values. However,
2906 	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2907 	 * correct for that here:
2908 	 */
2909 	if (nr_pinned < 0)
2910 		nr_pinned = 0;
2911 
2912 	return nr_pinned;
2913 }
2914 EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2915 
2916 /**
2917  * pin_user_pages_remote() - pin pages of a remote process
2918  *
2919  * @mm:		mm_struct of target mm
2920  * @start:	starting user address
2921  * @nr_pages:	number of pages from start to pin
2922  * @gup_flags:	flags modifying lookup behaviour
2923  * @pages:	array that receives pointers to the pages pinned.
2924  *		Should be at least nr_pages long. Or NULL, if caller
2925  *		only intends to ensure the pages are faulted in.
2926  * @vmas:	array of pointers to vmas corresponding to each page.
2927  *		Or NULL if the caller does not require them.
2928  * @locked:	pointer to lock flag indicating whether lock is held and
2929  *		subsequently whether VM_FAULT_RETRY functionality can be
2930  *		utilised. Lock must initially be held.
2931  *
2932  * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2933  * get_user_pages_remote() for documentation on the function arguments, because
2934  * the arguments here are identical.
2935  *
2936  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2937  * see Documentation/core-api/pin_user_pages.rst for details.
2938  */
pin_user_pages_remote(struct mm_struct * mm,unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas,int * locked)2939 long pin_user_pages_remote(struct mm_struct *mm,
2940 			   unsigned long start, unsigned long nr_pages,
2941 			   unsigned int gup_flags, struct page **pages,
2942 			   struct vm_area_struct **vmas, int *locked)
2943 {
2944 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2945 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2946 		return -EINVAL;
2947 
2948 	gup_flags |= FOLL_PIN;
2949 	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2950 				       pages, vmas, locked);
2951 }
2952 EXPORT_SYMBOL(pin_user_pages_remote);
2953 
2954 /**
2955  * pin_user_pages() - pin user pages in memory for use by other devices
2956  *
2957  * @start:	starting user address
2958  * @nr_pages:	number of pages from start to pin
2959  * @gup_flags:	flags modifying lookup behaviour
2960  * @pages:	array that receives pointers to the pages pinned.
2961  *		Should be at least nr_pages long. Or NULL, if caller
2962  *		only intends to ensure the pages are faulted in.
2963  * @vmas:	array of pointers to vmas corresponding to each page.
2964  *		Or NULL if the caller does not require them.
2965  *
2966  * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2967  * FOLL_PIN is set.
2968  *
2969  * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2970  * see Documentation/core-api/pin_user_pages.rst for details.
2971  */
pin_user_pages(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,struct vm_area_struct ** vmas)2972 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2973 		    unsigned int gup_flags, struct page **pages,
2974 		    struct vm_area_struct **vmas)
2975 {
2976 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2977 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2978 		return -EINVAL;
2979 
2980 	gup_flags |= FOLL_PIN;
2981 	trace_android_vh_pin_user_pages(&gup_flags, pages);
2982 	return __gup_longterm_locked(current->mm, start, nr_pages,
2983 				     pages, vmas, gup_flags);
2984 }
2985 EXPORT_SYMBOL(pin_user_pages);
2986 
2987 /*
2988  * pin_user_pages_unlocked() is the FOLL_PIN variant of
2989  * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2990  * FOLL_PIN and rejects FOLL_GET.
2991  */
pin_user_pages_unlocked(unsigned long start,unsigned long nr_pages,struct page ** pages,unsigned int gup_flags)2992 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2993 			     struct page **pages, unsigned int gup_flags)
2994 {
2995 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2996 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2997 		return -EINVAL;
2998 
2999 	gup_flags |= FOLL_PIN;
3000 	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3001 }
3002 EXPORT_SYMBOL(pin_user_pages_unlocked);
3003 
3004 /*
3005  * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
3006  * Behavior is the same, except that this one sets FOLL_PIN and rejects
3007  * FOLL_GET.
3008  */
pin_user_pages_locked(unsigned long start,unsigned long nr_pages,unsigned int gup_flags,struct page ** pages,int * locked)3009 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3010 			   unsigned int gup_flags, struct page **pages,
3011 			   int *locked)
3012 {
3013 	/*
3014 	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3015 	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3016 	 * vmas.  As there are no users of this flag in this call we simply
3017 	 * disallow this option for now.
3018 	 */
3019 	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3020 		return -EINVAL;
3021 
3022 	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
3023 	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3024 		return -EINVAL;
3025 
3026 	gup_flags |= FOLL_PIN;
3027 	return __get_user_pages_locked(current->mm, start, nr_pages,
3028 				       pages, NULL, locked,
3029 				       gup_flags | FOLL_TOUCH);
3030 }
3031 EXPORT_SYMBOL(pin_user_pages_locked);
3032