• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  */
11 
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/linkage.h>
17 #include <linux/memblock.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/printk.h>
22 #include <linux/sched.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/slab.h>
25 #include <linux/stacktrace.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <linux/bug.h>
29 
30 #include "kasan.h"
31 #include "../slab.h"
32 
kasan_save_stack(gfp_t flags,bool can_alloc)33 depot_stack_handle_t kasan_save_stack(gfp_t flags, bool can_alloc)
34 {
35 	unsigned long entries[KASAN_STACK_DEPTH];
36 	unsigned int nr_entries;
37 
38 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
39 	return __stack_depot_save(entries, nr_entries, flags, can_alloc);
40 }
41 
kasan_set_track(struct kasan_track * track,gfp_t flags)42 void kasan_set_track(struct kasan_track *track, gfp_t flags)
43 {
44 	track->pid = current->pid;
45 	track->stack = kasan_save_stack(flags, true);
46 }
47 
48 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
kasan_enable_current(void)49 void kasan_enable_current(void)
50 {
51 	current->kasan_depth++;
52 }
53 
kasan_disable_current(void)54 void kasan_disable_current(void)
55 {
56 	current->kasan_depth--;
57 }
58 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
59 
__kasan_unpoison_range(const void * address,size_t size)60 void __kasan_unpoison_range(const void *address, size_t size)
61 {
62 	kasan_unpoison(address, size, false);
63 }
64 
65 #ifdef CONFIG_KASAN_STACK
66 /* Unpoison the entire stack for a task. */
kasan_unpoison_task_stack(struct task_struct * task)67 void kasan_unpoison_task_stack(struct task_struct *task)
68 {
69 	void *base = task_stack_page(task);
70 
71 	kasan_unpoison(base, THREAD_SIZE, false);
72 }
73 
74 /* Unpoison the stack for the current task beyond a watermark sp value. */
kasan_unpoison_task_stack_below(const void * watermark)75 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
76 {
77 	/*
78 	 * Calculate the task stack base address.  Avoid using 'current'
79 	 * because this function is called by early resume code which hasn't
80 	 * yet set up the percpu register (%gs).
81 	 */
82 	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
83 
84 	kasan_unpoison(base, watermark - base, false);
85 }
86 #endif /* CONFIG_KASAN_STACK */
87 
88 /*
89  * Only allow cache merging when stack collection is disabled and no metadata
90  * is present.
91  */
__kasan_never_merge(void)92 slab_flags_t __kasan_never_merge(void)
93 {
94 	if (kasan_stack_collection_enabled())
95 		return SLAB_KASAN;
96 	return 0;
97 }
98 
__kasan_unpoison_pages(struct page * page,unsigned int order,bool init)99 void __kasan_unpoison_pages(struct page *page, unsigned int order, bool init)
100 {
101 	u8 tag;
102 	unsigned long i;
103 
104 	if (unlikely(PageHighMem(page)))
105 		return;
106 
107 	tag = kasan_random_tag();
108 	for (i = 0; i < (1 << order); i++)
109 		page_kasan_tag_set(page + i, tag);
110 	kasan_unpoison(page_address(page), PAGE_SIZE << order, init);
111 }
112 
__kasan_poison_pages(struct page * page,unsigned int order,bool init)113 void __kasan_poison_pages(struct page *page, unsigned int order, bool init)
114 {
115 	if (likely(!PageHighMem(page)))
116 		kasan_poison(page_address(page), PAGE_SIZE << order,
117 			     KASAN_FREE_PAGE, init);
118 }
119 
120 /*
121  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
122  * For larger allocations larger redzones are used.
123  */
optimal_redzone(unsigned int object_size)124 static inline unsigned int optimal_redzone(unsigned int object_size)
125 {
126 	return
127 		object_size <= 64        - 16   ? 16 :
128 		object_size <= 128       - 32   ? 32 :
129 		object_size <= 512       - 64   ? 64 :
130 		object_size <= 4096      - 128  ? 128 :
131 		object_size <= (1 << 14) - 256  ? 256 :
132 		object_size <= (1 << 15) - 512  ? 512 :
133 		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
134 }
135 
__kasan_cache_create(struct kmem_cache * cache,unsigned int * size,slab_flags_t * flags)136 void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
137 			  slab_flags_t *flags)
138 {
139 	unsigned int ok_size;
140 	unsigned int optimal_size;
141 
142 	/*
143 	 * SLAB_KASAN is used to mark caches as ones that are sanitized by
144 	 * KASAN. Currently this flag is used in two places:
145 	 * 1. In slab_ksize() when calculating the size of the accessible
146 	 *    memory within the object.
147 	 * 2. In slab_common.c to prevent merging of sanitized caches.
148 	 */
149 	*flags |= SLAB_KASAN;
150 
151 	if (!kasan_stack_collection_enabled())
152 		return;
153 
154 	ok_size = *size;
155 
156 	/* Add alloc meta into redzone. */
157 	cache->kasan_info.alloc_meta_offset = *size;
158 	*size += sizeof(struct kasan_alloc_meta);
159 
160 	/*
161 	 * If alloc meta doesn't fit, don't add it.
162 	 * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal
163 	 * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for
164 	 * larger sizes.
165 	 */
166 	if (*size > KMALLOC_MAX_SIZE) {
167 		cache->kasan_info.alloc_meta_offset = 0;
168 		*size = ok_size;
169 		/* Continue, since free meta might still fit. */
170 	}
171 
172 	/* Only the generic mode uses free meta or flexible redzones. */
173 	if (!IS_ENABLED(CONFIG_KASAN_GENERIC)) {
174 		cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
175 		return;
176 	}
177 
178 	/*
179 	 * Add free meta into redzone when it's not possible to store
180 	 * it in the object. This is the case when:
181 	 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
182 	 *    be touched after it was freed, or
183 	 * 2. Object has a constructor, which means it's expected to
184 	 *    retain its content until the next allocation, or
185 	 * 3. Object is too small.
186 	 * Otherwise cache->kasan_info.free_meta_offset = 0 is implied.
187 	 */
188 	if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
189 	    cache->object_size < sizeof(struct kasan_free_meta)) {
190 		ok_size = *size;
191 
192 		cache->kasan_info.free_meta_offset = *size;
193 		*size += sizeof(struct kasan_free_meta);
194 
195 		/* If free meta doesn't fit, don't add it. */
196 		if (*size > KMALLOC_MAX_SIZE) {
197 			cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
198 			*size = ok_size;
199 		}
200 	}
201 
202 	/* Calculate size with optimal redzone. */
203 	optimal_size = cache->object_size + optimal_redzone(cache->object_size);
204 	/* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */
205 	if (optimal_size > KMALLOC_MAX_SIZE)
206 		optimal_size = KMALLOC_MAX_SIZE;
207 	/* Use optimal size if the size with added metas is not large enough. */
208 	if (*size < optimal_size)
209 		*size = optimal_size;
210 }
211 
__kasan_cache_create_kmalloc(struct kmem_cache * cache)212 void __kasan_cache_create_kmalloc(struct kmem_cache *cache)
213 {
214 	cache->kasan_info.is_kmalloc = true;
215 }
216 
__kasan_metadata_size(struct kmem_cache * cache)217 size_t __kasan_metadata_size(struct kmem_cache *cache)
218 {
219 	if (!kasan_stack_collection_enabled())
220 		return 0;
221 	return (cache->kasan_info.alloc_meta_offset ?
222 		sizeof(struct kasan_alloc_meta) : 0) +
223 		(cache->kasan_info.free_meta_offset ?
224 		sizeof(struct kasan_free_meta) : 0);
225 }
226 
kasan_get_alloc_meta(struct kmem_cache * cache,const void * object)227 struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
228 					      const void *object)
229 {
230 	if (!cache->kasan_info.alloc_meta_offset)
231 		return NULL;
232 	return kasan_reset_tag(object) + cache->kasan_info.alloc_meta_offset;
233 }
234 
235 #ifdef CONFIG_KASAN_GENERIC
kasan_get_free_meta(struct kmem_cache * cache,const void * object)236 struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
237 					    const void *object)
238 {
239 	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
240 	if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
241 		return NULL;
242 	return kasan_reset_tag(object) + cache->kasan_info.free_meta_offset;
243 }
244 #endif
245 
__kasan_poison_slab(struct page * page)246 void __kasan_poison_slab(struct page *page)
247 {
248 	unsigned long i;
249 
250 	for (i = 0; i < compound_nr(page); i++)
251 		page_kasan_tag_reset(page + i);
252 	kasan_poison(page_address(page), page_size(page),
253 		     KASAN_KMALLOC_REDZONE, false);
254 }
255 
__kasan_unpoison_object_data(struct kmem_cache * cache,void * object)256 void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
257 {
258 	kasan_unpoison(object, cache->object_size, false);
259 }
260 
__kasan_poison_object_data(struct kmem_cache * cache,void * object)261 void __kasan_poison_object_data(struct kmem_cache *cache, void *object)
262 {
263 	kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
264 			KASAN_KMALLOC_REDZONE, false);
265 }
266 
267 /*
268  * This function assigns a tag to an object considering the following:
269  * 1. A cache might have a constructor, which might save a pointer to a slab
270  *    object somewhere (e.g. in the object itself). We preassign a tag for
271  *    each object in caches with constructors during slab creation and reuse
272  *    the same tag each time a particular object is allocated.
273  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
274  *    accessed after being freed. We preassign tags for objects in these
275  *    caches as well.
276  * 3. For SLAB allocator we can't preassign tags randomly since the freelist
277  *    is stored as an array of indexes instead of a linked list. Assign tags
278  *    based on objects indexes, so that objects that are next to each other
279  *    get different tags.
280  */
assign_tag(struct kmem_cache * cache,const void * object,bool init)281 static inline u8 assign_tag(struct kmem_cache *cache,
282 					const void *object, bool init)
283 {
284 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
285 		return 0xff;
286 
287 	/*
288 	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
289 	 * set, assign a tag when the object is being allocated (init == false).
290 	 */
291 	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
292 		return init ? KASAN_TAG_KERNEL : kasan_random_tag();
293 
294 	/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
295 #ifdef CONFIG_SLAB
296 	/* For SLAB assign tags based on the object index in the freelist. */
297 	return (u8)obj_to_index(cache, virt_to_head_page(object), (void *)object);
298 #else
299 	/*
300 	 * For SLUB assign a random tag during slab creation, otherwise reuse
301 	 * the already assigned tag.
302 	 */
303 	return init ? kasan_random_tag() : get_tag(object);
304 #endif
305 }
306 
__kasan_init_slab_obj(struct kmem_cache * cache,const void * object)307 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
308 						const void *object)
309 {
310 	struct kasan_alloc_meta *alloc_meta;
311 
312 	if (kasan_stack_collection_enabled()) {
313 		alloc_meta = kasan_get_alloc_meta(cache, object);
314 		if (alloc_meta)
315 			__memset(alloc_meta, 0, sizeof(*alloc_meta));
316 	}
317 
318 	/* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
319 	object = set_tag(object, assign_tag(cache, object, true));
320 
321 	return (void *)object;
322 }
323 
____kasan_slab_free(struct kmem_cache * cache,void * object,unsigned long ip,bool quarantine,bool init)324 static inline bool ____kasan_slab_free(struct kmem_cache *cache, void *object,
325 				unsigned long ip, bool quarantine, bool init)
326 {
327 	u8 tag;
328 	void *tagged_object;
329 
330 	if (!kasan_arch_is_ready())
331 		return false;
332 
333 	tag = get_tag(object);
334 	tagged_object = object;
335 	object = kasan_reset_tag(object);
336 
337 	if (is_kfence_address(object))
338 		return false;
339 
340 	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
341 	    object)) {
342 		kasan_report_invalid_free(tagged_object, ip);
343 		return true;
344 	}
345 
346 	/* RCU slabs could be legally used after free within the RCU period */
347 	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
348 		return false;
349 
350 	if (!kasan_byte_accessible(tagged_object)) {
351 		kasan_report_invalid_free(tagged_object, ip);
352 		return true;
353 	}
354 
355 	kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
356 			KASAN_KMALLOC_FREE, init);
357 
358 	if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine))
359 		return false;
360 
361 	if (kasan_stack_collection_enabled())
362 		kasan_set_free_info(cache, object, tag);
363 
364 	return kasan_quarantine_put(cache, object);
365 }
366 
__kasan_slab_free(struct kmem_cache * cache,void * object,unsigned long ip,bool init)367 bool __kasan_slab_free(struct kmem_cache *cache, void *object,
368 				unsigned long ip, bool init)
369 {
370 	return ____kasan_slab_free(cache, object, ip, true, init);
371 }
372 
____kasan_kfree_large(void * ptr,unsigned long ip)373 static inline bool ____kasan_kfree_large(void *ptr, unsigned long ip)
374 {
375 	if (ptr != page_address(virt_to_head_page(ptr))) {
376 		kasan_report_invalid_free(ptr, ip);
377 		return true;
378 	}
379 
380 	if (!kasan_byte_accessible(ptr)) {
381 		kasan_report_invalid_free(ptr, ip);
382 		return true;
383 	}
384 
385 	/*
386 	 * The object will be poisoned by kasan_poison_pages() or
387 	 * kasan_slab_free_mempool().
388 	 */
389 
390 	return false;
391 }
392 
__kasan_kfree_large(void * ptr,unsigned long ip)393 void __kasan_kfree_large(void *ptr, unsigned long ip)
394 {
395 	____kasan_kfree_large(ptr, ip);
396 }
397 
__kasan_slab_free_mempool(void * ptr,unsigned long ip)398 void __kasan_slab_free_mempool(void *ptr, unsigned long ip)
399 {
400 	struct page *page;
401 
402 	page = virt_to_head_page(ptr);
403 
404 	/*
405 	 * Even though this function is only called for kmem_cache_alloc and
406 	 * kmalloc backed mempool allocations, those allocations can still be
407 	 * !PageSlab() when the size provided to kmalloc is larger than
408 	 * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc.
409 	 */
410 	if (unlikely(!PageSlab(page))) {
411 		if (____kasan_kfree_large(ptr, ip))
412 			return;
413 		kasan_poison(ptr, page_size(page), KASAN_FREE_PAGE, false);
414 	} else {
415 		____kasan_slab_free(page->slab_cache, ptr, ip, false, false);
416 	}
417 }
418 
set_alloc_info(struct kmem_cache * cache,void * object,gfp_t flags,bool is_kmalloc)419 static void set_alloc_info(struct kmem_cache *cache, void *object,
420 				gfp_t flags, bool is_kmalloc)
421 {
422 	struct kasan_alloc_meta *alloc_meta;
423 
424 	/* Don't save alloc info for kmalloc caches in kasan_slab_alloc(). */
425 	if (cache->kasan_info.is_kmalloc && !is_kmalloc)
426 		return;
427 
428 	alloc_meta = kasan_get_alloc_meta(cache, object);
429 	if (alloc_meta)
430 		kasan_set_track(&alloc_meta->alloc_track, flags);
431 }
432 
__kasan_slab_alloc(struct kmem_cache * cache,void * object,gfp_t flags,bool init)433 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
434 					void *object, gfp_t flags, bool init)
435 {
436 	u8 tag;
437 	void *tagged_object;
438 
439 	if (gfpflags_allow_blocking(flags))
440 		kasan_quarantine_reduce();
441 
442 	if (unlikely(object == NULL))
443 		return NULL;
444 
445 	if (is_kfence_address(object))
446 		return (void *)object;
447 
448 	/*
449 	 * Generate and assign random tag for tag-based modes.
450 	 * Tag is ignored in set_tag() for the generic mode.
451 	 */
452 	tag = assign_tag(cache, object, false);
453 	tagged_object = set_tag(object, tag);
454 
455 	/*
456 	 * Unpoison the whole object.
457 	 * For kmalloc() allocations, kasan_kmalloc() will do precise poisoning.
458 	 */
459 	kasan_unpoison(tagged_object, cache->object_size, init);
460 
461 	/* Save alloc info (if possible) for non-kmalloc() allocations. */
462 	if (kasan_stack_collection_enabled())
463 		set_alloc_info(cache, (void *)object, flags, false);
464 
465 	return tagged_object;
466 }
467 
____kasan_kmalloc(struct kmem_cache * cache,const void * object,size_t size,gfp_t flags)468 static inline void *____kasan_kmalloc(struct kmem_cache *cache,
469 				const void *object, size_t size, gfp_t flags)
470 {
471 	unsigned long redzone_start;
472 	unsigned long redzone_end;
473 
474 	if (gfpflags_allow_blocking(flags))
475 		kasan_quarantine_reduce();
476 
477 	if (unlikely(object == NULL))
478 		return NULL;
479 
480 	if (is_kfence_address(kasan_reset_tag(object)))
481 		return (void *)object;
482 
483 	/*
484 	 * The object has already been unpoisoned by kasan_slab_alloc() for
485 	 * kmalloc() or by kasan_krealloc() for krealloc().
486 	 */
487 
488 	/*
489 	 * The redzone has byte-level precision for the generic mode.
490 	 * Partially poison the last object granule to cover the unaligned
491 	 * part of the redzone.
492 	 */
493 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
494 		kasan_poison_last_granule((void *)object, size);
495 
496 	/* Poison the aligned part of the redzone. */
497 	redzone_start = round_up((unsigned long)(object + size),
498 				KASAN_GRANULE_SIZE);
499 	redzone_end = round_up((unsigned long)(object + cache->object_size),
500 				KASAN_GRANULE_SIZE);
501 	kasan_poison((void *)redzone_start, redzone_end - redzone_start,
502 			   KASAN_KMALLOC_REDZONE, false);
503 
504 	/*
505 	 * Save alloc info (if possible) for kmalloc() allocations.
506 	 * This also rewrites the alloc info when called from kasan_krealloc().
507 	 */
508 	if (kasan_stack_collection_enabled())
509 		set_alloc_info(cache, (void *)object, flags, true);
510 
511 	/* Keep the tag that was set by kasan_slab_alloc(). */
512 	return (void *)object;
513 }
514 
__kasan_kmalloc(struct kmem_cache * cache,const void * object,size_t size,gfp_t flags)515 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
516 					size_t size, gfp_t flags)
517 {
518 	return ____kasan_kmalloc(cache, object, size, flags);
519 }
520 EXPORT_SYMBOL(__kasan_kmalloc);
521 
__kasan_kmalloc_large(const void * ptr,size_t size,gfp_t flags)522 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
523 						gfp_t flags)
524 {
525 	unsigned long redzone_start;
526 	unsigned long redzone_end;
527 
528 	if (gfpflags_allow_blocking(flags))
529 		kasan_quarantine_reduce();
530 
531 	if (unlikely(ptr == NULL))
532 		return NULL;
533 
534 	/*
535 	 * The object has already been unpoisoned by kasan_unpoison_pages() for
536 	 * alloc_pages() or by kasan_krealloc() for krealloc().
537 	 */
538 
539 	/*
540 	 * The redzone has byte-level precision for the generic mode.
541 	 * Partially poison the last object granule to cover the unaligned
542 	 * part of the redzone.
543 	 */
544 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
545 		kasan_poison_last_granule(ptr, size);
546 
547 	/* Poison the aligned part of the redzone. */
548 	redzone_start = round_up((unsigned long)(ptr + size),
549 				KASAN_GRANULE_SIZE);
550 	redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr));
551 	kasan_poison((void *)redzone_start, redzone_end - redzone_start,
552 		     KASAN_PAGE_REDZONE, false);
553 
554 	return (void *)ptr;
555 }
556 
__kasan_krealloc(const void * object,size_t size,gfp_t flags)557 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
558 {
559 	struct page *page;
560 
561 	if (unlikely(object == ZERO_SIZE_PTR))
562 		return (void *)object;
563 
564 	/*
565 	 * Unpoison the object's data.
566 	 * Part of it might already have been unpoisoned, but it's unknown
567 	 * how big that part is.
568 	 */
569 	kasan_unpoison(object, size, false);
570 
571 	page = virt_to_head_page(object);
572 
573 	/* Piggy-back on kmalloc() instrumentation to poison the redzone. */
574 	if (unlikely(!PageSlab(page)))
575 		return __kasan_kmalloc_large(object, size, flags);
576 	else
577 		return ____kasan_kmalloc(page->slab_cache, object, size, flags);
578 }
579 
__kasan_check_byte(const void * address,unsigned long ip)580 bool __kasan_check_byte(const void *address, unsigned long ip)
581 {
582 	if (!kasan_byte_accessible(address)) {
583 		kasan_report((unsigned long)address, 1, false, ip);
584 		return false;
585 	}
586 	return true;
587 }
588