1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/kmemleak.c
4 *
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 *
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
10 *
11 * Notes on locking
12 * ----------------
13 *
14 * The following locks and mutexes are used by kmemleak:
15 *
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
17 * accesses to the object_tree_root. The object_list is the main list
18 * holding the metadata (struct kmemleak_object) for the allocated memory
19 * blocks. The object_tree_root is a red black tree used to look-up
20 * metadata based on a pointer to the corresponding memory block. The
21 * kmemleak_object structures are added to the object_list and
22 * object_tree_root in the create_object() function called from the
23 * kmemleak_alloc() callback and removed in delete_object() called from the
24 * kmemleak_free() callback
25 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
26 * Accesses to the metadata (e.g. count) are protected by this lock. Note
27 * that some members of this structure may be protected by other means
28 * (atomic or kmemleak_lock). This lock is also held when scanning the
29 * corresponding memory block to avoid the kernel freeing it via the
30 * kmemleak_free() callback. This is less heavyweight than holding a global
31 * lock like kmemleak_lock during scanning.
32 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33 * unreferenced objects at a time. The gray_list contains the objects which
34 * are already referenced or marked as false positives and need to be
35 * scanned. This list is only modified during a scanning episode when the
36 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
37 * Note that the kmemleak_object.use_count is incremented when an object is
38 * added to the gray_list and therefore cannot be freed. This mutex also
39 * prevents multiple users of the "kmemleak" debugfs file together with
40 * modifications to the memory scanning parameters including the scan_thread
41 * pointer
42 *
43 * Locks and mutexes are acquired/nested in the following order:
44 *
45 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46 *
47 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48 * regions.
49 *
50 * The kmemleak_object structures have a use_count incremented or decremented
51 * using the get_object()/put_object() functions. When the use_count becomes
52 * 0, this count can no longer be incremented and put_object() schedules the
53 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54 * function must be protected by rcu_read_lock() to avoid accessing a freed
55 * structure.
56 */
57
58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/sched/signal.h>
64 #include <linux/sched/task.h>
65 #include <linux/sched/task_stack.h>
66 #include <linux/jiffies.h>
67 #include <linux/delay.h>
68 #include <linux/export.h>
69 #include <linux/kthread.h>
70 #include <linux/rbtree.h>
71 #include <linux/fs.h>
72 #include <linux/debugfs.h>
73 #include <linux/seq_file.h>
74 #include <linux/cpumask.h>
75 #include <linux/spinlock.h>
76 #include <linux/module.h>
77 #include <linux/mutex.h>
78 #include <linux/rcupdate.h>
79 #include <linux/stacktrace.h>
80 #include <linux/cache.h>
81 #include <linux/percpu.h>
82 #include <linux/memblock.h>
83 #include <linux/pfn.h>
84 #include <linux/mmzone.h>
85 #include <linux/slab.h>
86 #include <linux/thread_info.h>
87 #include <linux/err.h>
88 #include <linux/uaccess.h>
89 #include <linux/string.h>
90 #include <linux/nodemask.h>
91 #include <linux/mm.h>
92 #include <linux/workqueue.h>
93 #include <linux/crc32.h>
94
95 #include <asm/sections.h>
96 #include <asm/processor.h>
97 #include <linux/atomic.h>
98
99 #include <linux/kasan.h>
100 #include <linux/kfence.h>
101 #include <linux/kmemleak.h>
102 #include <linux/memory_hotplug.h>
103
104 /*
105 * Kmemleak configuration and common defines.
106 */
107 #define MAX_TRACE 16 /* stack trace length */
108 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
109 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
110 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
111 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
112
113 #define BYTES_PER_POINTER sizeof(void *)
114
115 /* GFP bitmask for kmemleak internal allocations */
116 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
117 __GFP_NORETRY | __GFP_NOMEMALLOC | \
118 __GFP_NOWARN)
119
120 /* scanning area inside a memory block */
121 struct kmemleak_scan_area {
122 struct hlist_node node;
123 unsigned long start;
124 size_t size;
125 };
126
127 #define KMEMLEAK_GREY 0
128 #define KMEMLEAK_BLACK -1
129
130 /*
131 * Structure holding the metadata for each allocated memory block.
132 * Modifications to such objects should be made while holding the
133 * object->lock. Insertions or deletions from object_list, gray_list or
134 * rb_node are already protected by the corresponding locks or mutex (see
135 * the notes on locking above). These objects are reference-counted
136 * (use_count) and freed using the RCU mechanism.
137 */
138 struct kmemleak_object {
139 raw_spinlock_t lock;
140 unsigned int flags; /* object status flags */
141 struct list_head object_list;
142 struct list_head gray_list;
143 struct rb_node rb_node;
144 struct rcu_head rcu; /* object_list lockless traversal */
145 /* object usage count; object freed when use_count == 0 */
146 atomic_t use_count;
147 unsigned long pointer;
148 size_t size;
149 /* pass surplus references to this pointer */
150 unsigned long excess_ref;
151 /* minimum number of a pointers found before it is considered leak */
152 int min_count;
153 /* the total number of pointers found pointing to this object */
154 int count;
155 /* checksum for detecting modified objects */
156 u32 checksum;
157 /* memory ranges to be scanned inside an object (empty for all) */
158 struct hlist_head area_list;
159 unsigned long trace[MAX_TRACE];
160 unsigned int trace_len;
161 unsigned long jiffies; /* creation timestamp */
162 pid_t pid; /* pid of the current task */
163 char comm[TASK_COMM_LEN]; /* executable name */
164 };
165
166 /* flag representing the memory block allocation status */
167 #define OBJECT_ALLOCATED (1 << 0)
168 /* flag set after the first reporting of an unreference object */
169 #define OBJECT_REPORTED (1 << 1)
170 /* flag set to not scan the object */
171 #define OBJECT_NO_SCAN (1 << 2)
172 /* flag set to fully scan the object when scan_area allocation failed */
173 #define OBJECT_FULL_SCAN (1 << 3)
174
175 #define HEX_PREFIX " "
176 /* number of bytes to print per line; must be 16 or 32 */
177 #define HEX_ROW_SIZE 16
178 /* number of bytes to print at a time (1, 2, 4, 8) */
179 #define HEX_GROUP_SIZE 1
180 /* include ASCII after the hex output */
181 #define HEX_ASCII 1
182 /* max number of lines to be printed */
183 #define HEX_MAX_LINES 2
184
185 /* the list of all allocated objects */
186 static LIST_HEAD(object_list);
187 /* the list of gray-colored objects (see color_gray comment below) */
188 static LIST_HEAD(gray_list);
189 /* memory pool allocation */
190 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
191 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
192 static LIST_HEAD(mem_pool_free_list);
193 /* search tree for object boundaries */
194 static struct rb_root object_tree_root = RB_ROOT;
195 /* protecting the access to object_list and object_tree_root */
196 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
197
198 /* allocation caches for kmemleak internal data */
199 static struct kmem_cache *object_cache;
200 static struct kmem_cache *scan_area_cache;
201
202 /* set if tracing memory operations is enabled */
203 static int kmemleak_enabled = 1;
204 /* same as above but only for the kmemleak_free() callback */
205 static int kmemleak_free_enabled = 1;
206 /* set in the late_initcall if there were no errors */
207 static int kmemleak_initialized;
208 /* set if a kmemleak warning was issued */
209 static int kmemleak_warning;
210 /* set if a fatal kmemleak error has occurred */
211 static int kmemleak_error;
212
213 /* minimum and maximum address that may be valid pointers */
214 static unsigned long min_addr = ULONG_MAX;
215 static unsigned long max_addr;
216
217 static struct task_struct *scan_thread;
218 /* used to avoid reporting of recently allocated objects */
219 static unsigned long jiffies_min_age;
220 static unsigned long jiffies_last_scan;
221 /* delay between automatic memory scannings */
222 static signed long jiffies_scan_wait;
223 /* enables or disables the task stacks scanning */
224 static int kmemleak_stack_scan = 1;
225 /* protects the memory scanning, parameters and debug/kmemleak file access */
226 static DEFINE_MUTEX(scan_mutex);
227 /* setting kmemleak=on, will set this var, skipping the disable */
228 static int kmemleak_skip_disable;
229 /* If there are leaks that can be reported */
230 static bool kmemleak_found_leaks;
231
232 static bool kmemleak_verbose;
233 module_param_named(verbose, kmemleak_verbose, bool, 0600);
234
235 static void kmemleak_disable(void);
236
237 /*
238 * Print a warning and dump the stack trace.
239 */
240 #define kmemleak_warn(x...) do { \
241 pr_warn(x); \
242 dump_stack(); \
243 kmemleak_warning = 1; \
244 } while (0)
245
246 /*
247 * Macro invoked when a serious kmemleak condition occurred and cannot be
248 * recovered from. Kmemleak will be disabled and further allocation/freeing
249 * tracing no longer available.
250 */
251 #define kmemleak_stop(x...) do { \
252 kmemleak_warn(x); \
253 kmemleak_disable(); \
254 } while (0)
255
256 #define warn_or_seq_printf(seq, fmt, ...) do { \
257 if (seq) \
258 seq_printf(seq, fmt, ##__VA_ARGS__); \
259 else \
260 pr_warn(fmt, ##__VA_ARGS__); \
261 } while (0)
262
warn_or_seq_hex_dump(struct seq_file * seq,int prefix_type,int rowsize,int groupsize,const void * buf,size_t len,bool ascii)263 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
264 int rowsize, int groupsize, const void *buf,
265 size_t len, bool ascii)
266 {
267 if (seq)
268 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
269 buf, len, ascii);
270 else
271 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
272 rowsize, groupsize, buf, len, ascii);
273 }
274
275 /*
276 * Printing of the objects hex dump to the seq file. The number of lines to be
277 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
278 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
279 * with the object->lock held.
280 */
hex_dump_object(struct seq_file * seq,struct kmemleak_object * object)281 static void hex_dump_object(struct seq_file *seq,
282 struct kmemleak_object *object)
283 {
284 const u8 *ptr = (const u8 *)object->pointer;
285 size_t len;
286
287 /* limit the number of lines to HEX_MAX_LINES */
288 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
289
290 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
291 kasan_disable_current();
292 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
293 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
294 kasan_enable_current();
295 }
296
297 /*
298 * Object colors, encoded with count and min_count:
299 * - white - orphan object, not enough references to it (count < min_count)
300 * - gray - not orphan, not marked as false positive (min_count == 0) or
301 * sufficient references to it (count >= min_count)
302 * - black - ignore, it doesn't contain references (e.g. text section)
303 * (min_count == -1). No function defined for this color.
304 * Newly created objects don't have any color assigned (object->count == -1)
305 * before the next memory scan when they become white.
306 */
color_white(const struct kmemleak_object * object)307 static bool color_white(const struct kmemleak_object *object)
308 {
309 return object->count != KMEMLEAK_BLACK &&
310 object->count < object->min_count;
311 }
312
color_gray(const struct kmemleak_object * object)313 static bool color_gray(const struct kmemleak_object *object)
314 {
315 return object->min_count != KMEMLEAK_BLACK &&
316 object->count >= object->min_count;
317 }
318
319 /*
320 * Objects are considered unreferenced only if their color is white, they have
321 * not be deleted and have a minimum age to avoid false positives caused by
322 * pointers temporarily stored in CPU registers.
323 */
unreferenced_object(struct kmemleak_object * object)324 static bool unreferenced_object(struct kmemleak_object *object)
325 {
326 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
327 time_before_eq(object->jiffies + jiffies_min_age,
328 jiffies_last_scan);
329 }
330
331 /*
332 * Printing of the unreferenced objects information to the seq file. The
333 * print_unreferenced function must be called with the object->lock held.
334 */
print_unreferenced(struct seq_file * seq,struct kmemleak_object * object)335 static void print_unreferenced(struct seq_file *seq,
336 struct kmemleak_object *object)
337 {
338 int i;
339 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
340
341 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
342 object->pointer, object->size);
343 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
344 object->comm, object->pid, object->jiffies,
345 msecs_age / 1000, msecs_age % 1000);
346 hex_dump_object(seq, object);
347 warn_or_seq_printf(seq, " backtrace:\n");
348
349 for (i = 0; i < object->trace_len; i++) {
350 void *ptr = (void *)object->trace[i];
351 warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
352 }
353 }
354
355 /*
356 * Print the kmemleak_object information. This function is used mainly for
357 * debugging special cases when kmemleak operations. It must be called with
358 * the object->lock held.
359 */
dump_object_info(struct kmemleak_object * object)360 static void dump_object_info(struct kmemleak_object *object)
361 {
362 pr_notice("Object 0x%08lx (size %zu):\n",
363 object->pointer, object->size);
364 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
365 object->comm, object->pid, object->jiffies);
366 pr_notice(" min_count = %d\n", object->min_count);
367 pr_notice(" count = %d\n", object->count);
368 pr_notice(" flags = 0x%x\n", object->flags);
369 pr_notice(" checksum = %u\n", object->checksum);
370 pr_notice(" backtrace:\n");
371 stack_trace_print(object->trace, object->trace_len, 4);
372 }
373
374 /*
375 * Look-up a memory block metadata (kmemleak_object) in the object search
376 * tree based on a pointer value. If alias is 0, only values pointing to the
377 * beginning of the memory block are allowed. The kmemleak_lock must be held
378 * when calling this function.
379 */
lookup_object(unsigned long ptr,int alias)380 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
381 {
382 struct rb_node *rb = object_tree_root.rb_node;
383 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
384
385 while (rb) {
386 struct kmemleak_object *object;
387 unsigned long untagged_objp;
388
389 object = rb_entry(rb, struct kmemleak_object, rb_node);
390 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
391
392 if (untagged_ptr < untagged_objp)
393 rb = object->rb_node.rb_left;
394 else if (untagged_objp + object->size <= untagged_ptr)
395 rb = object->rb_node.rb_right;
396 else if (untagged_objp == untagged_ptr || alias)
397 return object;
398 else {
399 kmemleak_warn("Found object by alias at 0x%08lx\n",
400 ptr);
401 dump_object_info(object);
402 break;
403 }
404 }
405 return NULL;
406 }
407
408 /*
409 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
410 * that once an object's use_count reached 0, the RCU freeing was already
411 * registered and the object should no longer be used. This function must be
412 * called under the protection of rcu_read_lock().
413 */
get_object(struct kmemleak_object * object)414 static int get_object(struct kmemleak_object *object)
415 {
416 return atomic_inc_not_zero(&object->use_count);
417 }
418
419 /*
420 * Memory pool allocation and freeing. kmemleak_lock must not be held.
421 */
mem_pool_alloc(gfp_t gfp)422 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
423 {
424 unsigned long flags;
425 struct kmemleak_object *object;
426
427 /* try the slab allocator first */
428 if (object_cache) {
429 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
430 if (object)
431 return object;
432 }
433
434 /* slab allocation failed, try the memory pool */
435 raw_spin_lock_irqsave(&kmemleak_lock, flags);
436 object = list_first_entry_or_null(&mem_pool_free_list,
437 typeof(*object), object_list);
438 if (object)
439 list_del(&object->object_list);
440 else if (mem_pool_free_count)
441 object = &mem_pool[--mem_pool_free_count];
442 else
443 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
444 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
445
446 return object;
447 }
448
449 /*
450 * Return the object to either the slab allocator or the memory pool.
451 */
mem_pool_free(struct kmemleak_object * object)452 static void mem_pool_free(struct kmemleak_object *object)
453 {
454 unsigned long flags;
455
456 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
457 kmem_cache_free(object_cache, object);
458 return;
459 }
460
461 /* add the object to the memory pool free list */
462 raw_spin_lock_irqsave(&kmemleak_lock, flags);
463 list_add(&object->object_list, &mem_pool_free_list);
464 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
465 }
466
467 /*
468 * RCU callback to free a kmemleak_object.
469 */
free_object_rcu(struct rcu_head * rcu)470 static void free_object_rcu(struct rcu_head *rcu)
471 {
472 struct hlist_node *tmp;
473 struct kmemleak_scan_area *area;
474 struct kmemleak_object *object =
475 container_of(rcu, struct kmemleak_object, rcu);
476
477 /*
478 * Once use_count is 0 (guaranteed by put_object), there is no other
479 * code accessing this object, hence no need for locking.
480 */
481 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
482 hlist_del(&area->node);
483 kmem_cache_free(scan_area_cache, area);
484 }
485 mem_pool_free(object);
486 }
487
488 /*
489 * Decrement the object use_count. Once the count is 0, free the object using
490 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
491 * delete_object() path, the delayed RCU freeing ensures that there is no
492 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
493 * is also possible.
494 */
put_object(struct kmemleak_object * object)495 static void put_object(struct kmemleak_object *object)
496 {
497 if (!atomic_dec_and_test(&object->use_count))
498 return;
499
500 /* should only get here after delete_object was called */
501 WARN_ON(object->flags & OBJECT_ALLOCATED);
502
503 /*
504 * It may be too early for the RCU callbacks, however, there is no
505 * concurrent object_list traversal when !object_cache and all objects
506 * came from the memory pool. Free the object directly.
507 */
508 if (object_cache)
509 call_rcu(&object->rcu, free_object_rcu);
510 else
511 free_object_rcu(&object->rcu);
512 }
513
514 /*
515 * Look up an object in the object search tree and increase its use_count.
516 */
find_and_get_object(unsigned long ptr,int alias)517 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
518 {
519 unsigned long flags;
520 struct kmemleak_object *object;
521
522 rcu_read_lock();
523 raw_spin_lock_irqsave(&kmemleak_lock, flags);
524 object = lookup_object(ptr, alias);
525 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
526
527 /* check whether the object is still available */
528 if (object && !get_object(object))
529 object = NULL;
530 rcu_read_unlock();
531
532 return object;
533 }
534
535 /*
536 * Remove an object from the object_tree_root and object_list. Must be called
537 * with the kmemleak_lock held _if_ kmemleak is still enabled.
538 */
__remove_object(struct kmemleak_object * object)539 static void __remove_object(struct kmemleak_object *object)
540 {
541 rb_erase(&object->rb_node, &object_tree_root);
542 list_del_rcu(&object->object_list);
543 }
544
545 /*
546 * Look up an object in the object search tree and remove it from both
547 * object_tree_root and object_list. The returned object's use_count should be
548 * at least 1, as initially set by create_object().
549 */
find_and_remove_object(unsigned long ptr,int alias)550 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
551 {
552 unsigned long flags;
553 struct kmemleak_object *object;
554
555 raw_spin_lock_irqsave(&kmemleak_lock, flags);
556 object = lookup_object(ptr, alias);
557 if (object)
558 __remove_object(object);
559 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
560
561 return object;
562 }
563
564 /*
565 * Save stack trace to the given array of MAX_TRACE size.
566 */
__save_stack_trace(unsigned long * trace)567 static int __save_stack_trace(unsigned long *trace)
568 {
569 return stack_trace_save(trace, MAX_TRACE, 2);
570 }
571
572 /*
573 * Create the metadata (struct kmemleak_object) corresponding to an allocated
574 * memory block and add it to the object_list and object_tree_root.
575 */
create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp)576 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
577 int min_count, gfp_t gfp)
578 {
579 unsigned long flags;
580 struct kmemleak_object *object, *parent;
581 struct rb_node **link, *rb_parent;
582 unsigned long untagged_ptr;
583 unsigned long untagged_objp;
584
585 object = mem_pool_alloc(gfp);
586 if (!object) {
587 pr_warn("Cannot allocate a kmemleak_object structure\n");
588 kmemleak_disable();
589 return NULL;
590 }
591
592 INIT_LIST_HEAD(&object->object_list);
593 INIT_LIST_HEAD(&object->gray_list);
594 INIT_HLIST_HEAD(&object->area_list);
595 raw_spin_lock_init(&object->lock);
596 atomic_set(&object->use_count, 1);
597 object->flags = OBJECT_ALLOCATED;
598 object->pointer = ptr;
599 object->size = kfence_ksize((void *)ptr) ?: size;
600 object->excess_ref = 0;
601 object->min_count = min_count;
602 object->count = 0; /* white color initially */
603 object->jiffies = jiffies;
604 object->checksum = 0;
605
606 /* task information */
607 if (in_irq()) {
608 object->pid = 0;
609 strncpy(object->comm, "hardirq", sizeof(object->comm));
610 } else if (in_serving_softirq()) {
611 object->pid = 0;
612 strncpy(object->comm, "softirq", sizeof(object->comm));
613 } else {
614 object->pid = current->pid;
615 /*
616 * There is a small chance of a race with set_task_comm(),
617 * however using get_task_comm() here may cause locking
618 * dependency issues with current->alloc_lock. In the worst
619 * case, the command line is not correct.
620 */
621 strncpy(object->comm, current->comm, sizeof(object->comm));
622 }
623
624 /* kernel backtrace */
625 object->trace_len = __save_stack_trace(object->trace);
626
627 raw_spin_lock_irqsave(&kmemleak_lock, flags);
628
629 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
630 min_addr = min(min_addr, untagged_ptr);
631 max_addr = max(max_addr, untagged_ptr + size);
632 link = &object_tree_root.rb_node;
633 rb_parent = NULL;
634 while (*link) {
635 rb_parent = *link;
636 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
637 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
638 if (untagged_ptr + size <= untagged_objp)
639 link = &parent->rb_node.rb_left;
640 else if (untagged_objp + parent->size <= untagged_ptr)
641 link = &parent->rb_node.rb_right;
642 else {
643 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
644 ptr);
645 /*
646 * No need for parent->lock here since "parent" cannot
647 * be freed while the kmemleak_lock is held.
648 */
649 dump_object_info(parent);
650 kmem_cache_free(object_cache, object);
651 object = NULL;
652 goto out;
653 }
654 }
655 rb_link_node(&object->rb_node, rb_parent, link);
656 rb_insert_color(&object->rb_node, &object_tree_root);
657
658 list_add_tail_rcu(&object->object_list, &object_list);
659 out:
660 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
661 return object;
662 }
663
664 /*
665 * Mark the object as not allocated and schedule RCU freeing via put_object().
666 */
__delete_object(struct kmemleak_object * object)667 static void __delete_object(struct kmemleak_object *object)
668 {
669 unsigned long flags;
670
671 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
672 WARN_ON(atomic_read(&object->use_count) < 1);
673
674 /*
675 * Locking here also ensures that the corresponding memory block
676 * cannot be freed when it is being scanned.
677 */
678 raw_spin_lock_irqsave(&object->lock, flags);
679 object->flags &= ~OBJECT_ALLOCATED;
680 raw_spin_unlock_irqrestore(&object->lock, flags);
681 put_object(object);
682 }
683
684 /*
685 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
686 * delete it.
687 */
delete_object_full(unsigned long ptr)688 static void delete_object_full(unsigned long ptr)
689 {
690 struct kmemleak_object *object;
691
692 object = find_and_remove_object(ptr, 0);
693 if (!object) {
694 #ifdef DEBUG
695 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
696 ptr);
697 #endif
698 return;
699 }
700 __delete_object(object);
701 }
702
703 /*
704 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
705 * delete it. If the memory block is partially freed, the function may create
706 * additional metadata for the remaining parts of the block.
707 */
delete_object_part(unsigned long ptr,size_t size)708 static void delete_object_part(unsigned long ptr, size_t size)
709 {
710 struct kmemleak_object *object;
711 unsigned long start, end;
712
713 object = find_and_remove_object(ptr, 1);
714 if (!object) {
715 #ifdef DEBUG
716 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
717 ptr, size);
718 #endif
719 return;
720 }
721
722 /*
723 * Create one or two objects that may result from the memory block
724 * split. Note that partial freeing is only done by free_bootmem() and
725 * this happens before kmemleak_init() is called.
726 */
727 start = object->pointer;
728 end = object->pointer + object->size;
729 if (ptr > start)
730 create_object(start, ptr - start, object->min_count,
731 GFP_KERNEL);
732 if (ptr + size < end)
733 create_object(ptr + size, end - ptr - size, object->min_count,
734 GFP_KERNEL);
735
736 __delete_object(object);
737 }
738
__paint_it(struct kmemleak_object * object,int color)739 static void __paint_it(struct kmemleak_object *object, int color)
740 {
741 object->min_count = color;
742 if (color == KMEMLEAK_BLACK)
743 object->flags |= OBJECT_NO_SCAN;
744 }
745
paint_it(struct kmemleak_object * object,int color)746 static void paint_it(struct kmemleak_object *object, int color)
747 {
748 unsigned long flags;
749
750 raw_spin_lock_irqsave(&object->lock, flags);
751 __paint_it(object, color);
752 raw_spin_unlock_irqrestore(&object->lock, flags);
753 }
754
paint_ptr(unsigned long ptr,int color)755 static void paint_ptr(unsigned long ptr, int color)
756 {
757 struct kmemleak_object *object;
758
759 object = find_and_get_object(ptr, 0);
760 if (!object) {
761 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
762 ptr,
763 (color == KMEMLEAK_GREY) ? "Grey" :
764 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
765 return;
766 }
767 paint_it(object, color);
768 put_object(object);
769 }
770
771 /*
772 * Mark an object permanently as gray-colored so that it can no longer be
773 * reported as a leak. This is used in general to mark a false positive.
774 */
make_gray_object(unsigned long ptr)775 static void make_gray_object(unsigned long ptr)
776 {
777 paint_ptr(ptr, KMEMLEAK_GREY);
778 }
779
780 /*
781 * Mark the object as black-colored so that it is ignored from scans and
782 * reporting.
783 */
make_black_object(unsigned long ptr)784 static void make_black_object(unsigned long ptr)
785 {
786 paint_ptr(ptr, KMEMLEAK_BLACK);
787 }
788
789 /*
790 * Add a scanning area to the object. If at least one such area is added,
791 * kmemleak will only scan these ranges rather than the whole memory block.
792 */
add_scan_area(unsigned long ptr,size_t size,gfp_t gfp)793 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
794 {
795 unsigned long flags;
796 struct kmemleak_object *object;
797 struct kmemleak_scan_area *area = NULL;
798 unsigned long untagged_ptr;
799 unsigned long untagged_objp;
800
801 object = find_and_get_object(ptr, 1);
802 if (!object) {
803 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
804 ptr);
805 return;
806 }
807
808 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
809 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
810
811 if (scan_area_cache)
812 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
813
814 raw_spin_lock_irqsave(&object->lock, flags);
815 if (!area) {
816 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
817 /* mark the object for full scan to avoid false positives */
818 object->flags |= OBJECT_FULL_SCAN;
819 goto out_unlock;
820 }
821 if (size == SIZE_MAX) {
822 size = untagged_objp + object->size - untagged_ptr;
823 } else if (untagged_ptr + size > untagged_objp + object->size) {
824 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
825 dump_object_info(object);
826 kmem_cache_free(scan_area_cache, area);
827 goto out_unlock;
828 }
829
830 INIT_HLIST_NODE(&area->node);
831 area->start = ptr;
832 area->size = size;
833
834 hlist_add_head(&area->node, &object->area_list);
835 out_unlock:
836 raw_spin_unlock_irqrestore(&object->lock, flags);
837 put_object(object);
838 }
839
840 /*
841 * Any surplus references (object already gray) to 'ptr' are passed to
842 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
843 * vm_struct may be used as an alternative reference to the vmalloc'ed object
844 * (see free_thread_stack()).
845 */
object_set_excess_ref(unsigned long ptr,unsigned long excess_ref)846 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
847 {
848 unsigned long flags;
849 struct kmemleak_object *object;
850
851 object = find_and_get_object(ptr, 0);
852 if (!object) {
853 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
854 ptr);
855 return;
856 }
857
858 raw_spin_lock_irqsave(&object->lock, flags);
859 object->excess_ref = excess_ref;
860 raw_spin_unlock_irqrestore(&object->lock, flags);
861 put_object(object);
862 }
863
864 /*
865 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
866 * pointer. Such object will not be scanned by kmemleak but references to it
867 * are searched.
868 */
object_no_scan(unsigned long ptr)869 static void object_no_scan(unsigned long ptr)
870 {
871 unsigned long flags;
872 struct kmemleak_object *object;
873
874 object = find_and_get_object(ptr, 0);
875 if (!object) {
876 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
877 return;
878 }
879
880 raw_spin_lock_irqsave(&object->lock, flags);
881 object->flags |= OBJECT_NO_SCAN;
882 raw_spin_unlock_irqrestore(&object->lock, flags);
883 put_object(object);
884 }
885
886 /**
887 * kmemleak_alloc - register a newly allocated object
888 * @ptr: pointer to beginning of the object
889 * @size: size of the object
890 * @min_count: minimum number of references to this object. If during memory
891 * scanning a number of references less than @min_count is found,
892 * the object is reported as a memory leak. If @min_count is 0,
893 * the object is never reported as a leak. If @min_count is -1,
894 * the object is ignored (not scanned and not reported as a leak)
895 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
896 *
897 * This function is called from the kernel allocators when a new object
898 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
899 */
kmemleak_alloc(const void * ptr,size_t size,int min_count,gfp_t gfp)900 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
901 gfp_t gfp)
902 {
903 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
904
905 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
906 create_object((unsigned long)ptr, size, min_count, gfp);
907 }
908 EXPORT_SYMBOL_GPL(kmemleak_alloc);
909
910 /**
911 * kmemleak_alloc_percpu - register a newly allocated __percpu object
912 * @ptr: __percpu pointer to beginning of the object
913 * @size: size of the object
914 * @gfp: flags used for kmemleak internal memory allocations
915 *
916 * This function is called from the kernel percpu allocator when a new object
917 * (memory block) is allocated (alloc_percpu).
918 */
kmemleak_alloc_percpu(const void __percpu * ptr,size_t size,gfp_t gfp)919 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
920 gfp_t gfp)
921 {
922 unsigned int cpu;
923
924 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
925
926 /*
927 * Percpu allocations are only scanned and not reported as leaks
928 * (min_count is set to 0).
929 */
930 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
931 for_each_possible_cpu(cpu)
932 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
933 size, 0, gfp);
934 }
935 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
936
937 /**
938 * kmemleak_vmalloc - register a newly vmalloc'ed object
939 * @area: pointer to vm_struct
940 * @size: size of the object
941 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
942 *
943 * This function is called from the vmalloc() kernel allocator when a new
944 * object (memory block) is allocated.
945 */
kmemleak_vmalloc(const struct vm_struct * area,size_t size,gfp_t gfp)946 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
947 {
948 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
949
950 /*
951 * A min_count = 2 is needed because vm_struct contains a reference to
952 * the virtual address of the vmalloc'ed block.
953 */
954 if (kmemleak_enabled) {
955 create_object((unsigned long)area->addr, size, 2, gfp);
956 object_set_excess_ref((unsigned long)area,
957 (unsigned long)area->addr);
958 }
959 }
960 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
961
962 /**
963 * kmemleak_free - unregister a previously registered object
964 * @ptr: pointer to beginning of the object
965 *
966 * This function is called from the kernel allocators when an object (memory
967 * block) is freed (kmem_cache_free, kfree, vfree etc.).
968 */
kmemleak_free(const void * ptr)969 void __ref kmemleak_free(const void *ptr)
970 {
971 pr_debug("%s(0x%p)\n", __func__, ptr);
972
973 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
974 delete_object_full((unsigned long)ptr);
975 }
976 EXPORT_SYMBOL_GPL(kmemleak_free);
977
978 /**
979 * kmemleak_free_part - partially unregister a previously registered object
980 * @ptr: pointer to the beginning or inside the object. This also
981 * represents the start of the range to be freed
982 * @size: size to be unregistered
983 *
984 * This function is called when only a part of a memory block is freed
985 * (usually from the bootmem allocator).
986 */
kmemleak_free_part(const void * ptr,size_t size)987 void __ref kmemleak_free_part(const void *ptr, size_t size)
988 {
989 pr_debug("%s(0x%p)\n", __func__, ptr);
990
991 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
992 delete_object_part((unsigned long)ptr, size);
993 }
994 EXPORT_SYMBOL_GPL(kmemleak_free_part);
995
996 /**
997 * kmemleak_free_percpu - unregister a previously registered __percpu object
998 * @ptr: __percpu pointer to beginning of the object
999 *
1000 * This function is called from the kernel percpu allocator when an object
1001 * (memory block) is freed (free_percpu).
1002 */
kmemleak_free_percpu(const void __percpu * ptr)1003 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1004 {
1005 unsigned int cpu;
1006
1007 pr_debug("%s(0x%p)\n", __func__, ptr);
1008
1009 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1010 for_each_possible_cpu(cpu)
1011 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1012 cpu));
1013 }
1014 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1015
1016 /**
1017 * kmemleak_update_trace - update object allocation stack trace
1018 * @ptr: pointer to beginning of the object
1019 *
1020 * Override the object allocation stack trace for cases where the actual
1021 * allocation place is not always useful.
1022 */
kmemleak_update_trace(const void * ptr)1023 void __ref kmemleak_update_trace(const void *ptr)
1024 {
1025 struct kmemleak_object *object;
1026 unsigned long flags;
1027
1028 pr_debug("%s(0x%p)\n", __func__, ptr);
1029
1030 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1031 return;
1032
1033 object = find_and_get_object((unsigned long)ptr, 1);
1034 if (!object) {
1035 #ifdef DEBUG
1036 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1037 ptr);
1038 #endif
1039 return;
1040 }
1041
1042 raw_spin_lock_irqsave(&object->lock, flags);
1043 object->trace_len = __save_stack_trace(object->trace);
1044 raw_spin_unlock_irqrestore(&object->lock, flags);
1045
1046 put_object(object);
1047 }
1048 EXPORT_SYMBOL(kmemleak_update_trace);
1049
1050 /**
1051 * kmemleak_not_leak - mark an allocated object as false positive
1052 * @ptr: pointer to beginning of the object
1053 *
1054 * Calling this function on an object will cause the memory block to no longer
1055 * be reported as leak and always be scanned.
1056 */
kmemleak_not_leak(const void * ptr)1057 void __ref kmemleak_not_leak(const void *ptr)
1058 {
1059 pr_debug("%s(0x%p)\n", __func__, ptr);
1060
1061 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1062 make_gray_object((unsigned long)ptr);
1063 }
1064 EXPORT_SYMBOL(kmemleak_not_leak);
1065
1066 /**
1067 * kmemleak_ignore - ignore an allocated object
1068 * @ptr: pointer to beginning of the object
1069 *
1070 * Calling this function on an object will cause the memory block to be
1071 * ignored (not scanned and not reported as a leak). This is usually done when
1072 * it is known that the corresponding block is not a leak and does not contain
1073 * any references to other allocated memory blocks.
1074 */
kmemleak_ignore(const void * ptr)1075 void __ref kmemleak_ignore(const void *ptr)
1076 {
1077 pr_debug("%s(0x%p)\n", __func__, ptr);
1078
1079 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1080 make_black_object((unsigned long)ptr);
1081 }
1082 EXPORT_SYMBOL(kmemleak_ignore);
1083
1084 /**
1085 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1086 * @ptr: pointer to beginning or inside the object. This also
1087 * represents the start of the scan area
1088 * @size: size of the scan area
1089 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1090 *
1091 * This function is used when it is known that only certain parts of an object
1092 * contain references to other objects. Kmemleak will only scan these areas
1093 * reducing the number false negatives.
1094 */
kmemleak_scan_area(const void * ptr,size_t size,gfp_t gfp)1095 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1096 {
1097 pr_debug("%s(0x%p)\n", __func__, ptr);
1098
1099 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1100 add_scan_area((unsigned long)ptr, size, gfp);
1101 }
1102 EXPORT_SYMBOL(kmemleak_scan_area);
1103
1104 /**
1105 * kmemleak_no_scan - do not scan an allocated object
1106 * @ptr: pointer to beginning of the object
1107 *
1108 * This function notifies kmemleak not to scan the given memory block. Useful
1109 * in situations where it is known that the given object does not contain any
1110 * references to other objects. Kmemleak will not scan such objects reducing
1111 * the number of false negatives.
1112 */
kmemleak_no_scan(const void * ptr)1113 void __ref kmemleak_no_scan(const void *ptr)
1114 {
1115 pr_debug("%s(0x%p)\n", __func__, ptr);
1116
1117 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1118 object_no_scan((unsigned long)ptr);
1119 }
1120 EXPORT_SYMBOL(kmemleak_no_scan);
1121
1122 /**
1123 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1124 * address argument
1125 * @phys: physical address of the object
1126 * @size: size of the object
1127 * @min_count: minimum number of references to this object.
1128 * See kmemleak_alloc()
1129 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1130 */
kmemleak_alloc_phys(phys_addr_t phys,size_t size,int min_count,gfp_t gfp)1131 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1132 gfp_t gfp)
1133 {
1134 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1135 kmemleak_alloc(__va(phys), size, min_count, gfp);
1136 }
1137 EXPORT_SYMBOL(kmemleak_alloc_phys);
1138
1139 /**
1140 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1141 * physical address argument
1142 * @phys: physical address if the beginning or inside an object. This
1143 * also represents the start of the range to be freed
1144 * @size: size to be unregistered
1145 */
kmemleak_free_part_phys(phys_addr_t phys,size_t size)1146 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1147 {
1148 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1149 kmemleak_free_part(__va(phys), size);
1150 }
1151 EXPORT_SYMBOL(kmemleak_free_part_phys);
1152
1153 /**
1154 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1155 * address argument
1156 * @phys: physical address of the object
1157 */
kmemleak_not_leak_phys(phys_addr_t phys)1158 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1159 {
1160 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1161 kmemleak_not_leak(__va(phys));
1162 }
1163 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1164
1165 /**
1166 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1167 * address argument
1168 * @phys: physical address of the object
1169 */
kmemleak_ignore_phys(phys_addr_t phys)1170 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1171 {
1172 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1173 kmemleak_ignore(__va(phys));
1174 }
1175 EXPORT_SYMBOL(kmemleak_ignore_phys);
1176
1177 /*
1178 * Update an object's checksum and return true if it was modified.
1179 */
update_checksum(struct kmemleak_object * object)1180 static bool update_checksum(struct kmemleak_object *object)
1181 {
1182 u32 old_csum = object->checksum;
1183
1184 kasan_disable_current();
1185 kcsan_disable_current();
1186 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1187 kasan_enable_current();
1188 kcsan_enable_current();
1189
1190 return object->checksum != old_csum;
1191 }
1192
1193 /*
1194 * Update an object's references. object->lock must be held by the caller.
1195 */
update_refs(struct kmemleak_object * object)1196 static void update_refs(struct kmemleak_object *object)
1197 {
1198 if (!color_white(object)) {
1199 /* non-orphan, ignored or new */
1200 return;
1201 }
1202
1203 /*
1204 * Increase the object's reference count (number of pointers to the
1205 * memory block). If this count reaches the required minimum, the
1206 * object's color will become gray and it will be added to the
1207 * gray_list.
1208 */
1209 object->count++;
1210 if (color_gray(object)) {
1211 /* put_object() called when removing from gray_list */
1212 WARN_ON(!get_object(object));
1213 list_add_tail(&object->gray_list, &gray_list);
1214 }
1215 }
1216
1217 /*
1218 * Memory scanning is a long process and it needs to be interruptable. This
1219 * function checks whether such interrupt condition occurred.
1220 */
scan_should_stop(void)1221 static int scan_should_stop(void)
1222 {
1223 if (!kmemleak_enabled)
1224 return 1;
1225
1226 /*
1227 * This function may be called from either process or kthread context,
1228 * hence the need to check for both stop conditions.
1229 */
1230 if (current->mm)
1231 return signal_pending(current);
1232 else
1233 return kthread_should_stop();
1234
1235 return 0;
1236 }
1237
1238 /*
1239 * Scan a memory block (exclusive range) for valid pointers and add those
1240 * found to the gray list.
1241 */
scan_block(void * _start,void * _end,struct kmemleak_object * scanned)1242 static void scan_block(void *_start, void *_end,
1243 struct kmemleak_object *scanned)
1244 {
1245 unsigned long *ptr;
1246 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1247 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1248 unsigned long flags;
1249 unsigned long untagged_ptr;
1250
1251 raw_spin_lock_irqsave(&kmemleak_lock, flags);
1252 for (ptr = start; ptr < end; ptr++) {
1253 struct kmemleak_object *object;
1254 unsigned long pointer;
1255 unsigned long excess_ref;
1256
1257 if (scan_should_stop())
1258 break;
1259
1260 kasan_disable_current();
1261 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1262 kasan_enable_current();
1263
1264 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1265 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1266 continue;
1267
1268 /*
1269 * No need for get_object() here since we hold kmemleak_lock.
1270 * object->use_count cannot be dropped to 0 while the object
1271 * is still present in object_tree_root and object_list
1272 * (with updates protected by kmemleak_lock).
1273 */
1274 object = lookup_object(pointer, 1);
1275 if (!object)
1276 continue;
1277 if (object == scanned)
1278 /* self referenced, ignore */
1279 continue;
1280
1281 /*
1282 * Avoid the lockdep recursive warning on object->lock being
1283 * previously acquired in scan_object(). These locks are
1284 * enclosed by scan_mutex.
1285 */
1286 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1287 /* only pass surplus references (object already gray) */
1288 if (color_gray(object)) {
1289 excess_ref = object->excess_ref;
1290 /* no need for update_refs() if object already gray */
1291 } else {
1292 excess_ref = 0;
1293 update_refs(object);
1294 }
1295 raw_spin_unlock(&object->lock);
1296
1297 if (excess_ref) {
1298 object = lookup_object(excess_ref, 0);
1299 if (!object)
1300 continue;
1301 if (object == scanned)
1302 /* circular reference, ignore */
1303 continue;
1304 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1305 update_refs(object);
1306 raw_spin_unlock(&object->lock);
1307 }
1308 }
1309 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1310 }
1311
1312 /*
1313 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1314 */
1315 #ifdef CONFIG_SMP
scan_large_block(void * start,void * end)1316 static void scan_large_block(void *start, void *end)
1317 {
1318 void *next;
1319
1320 while (start < end) {
1321 next = min(start + MAX_SCAN_SIZE, end);
1322 scan_block(start, next, NULL);
1323 start = next;
1324 cond_resched();
1325 }
1326 }
1327 #endif
1328
1329 /*
1330 * Scan a memory block corresponding to a kmemleak_object. A condition is
1331 * that object->use_count >= 1.
1332 */
scan_object(struct kmemleak_object * object)1333 static void scan_object(struct kmemleak_object *object)
1334 {
1335 struct kmemleak_scan_area *area;
1336 unsigned long flags;
1337
1338 /*
1339 * Once the object->lock is acquired, the corresponding memory block
1340 * cannot be freed (the same lock is acquired in delete_object).
1341 */
1342 raw_spin_lock_irqsave(&object->lock, flags);
1343 if (object->flags & OBJECT_NO_SCAN)
1344 goto out;
1345 if (!(object->flags & OBJECT_ALLOCATED))
1346 /* already freed object */
1347 goto out;
1348 if (hlist_empty(&object->area_list) ||
1349 object->flags & OBJECT_FULL_SCAN) {
1350 void *start = (void *)object->pointer;
1351 void *end = (void *)(object->pointer + object->size);
1352 void *next;
1353
1354 do {
1355 next = min(start + MAX_SCAN_SIZE, end);
1356 scan_block(start, next, object);
1357
1358 start = next;
1359 if (start >= end)
1360 break;
1361
1362 raw_spin_unlock_irqrestore(&object->lock, flags);
1363 cond_resched();
1364 raw_spin_lock_irqsave(&object->lock, flags);
1365 } while (object->flags & OBJECT_ALLOCATED);
1366 } else
1367 hlist_for_each_entry(area, &object->area_list, node)
1368 scan_block((void *)area->start,
1369 (void *)(area->start + area->size),
1370 object);
1371 out:
1372 raw_spin_unlock_irqrestore(&object->lock, flags);
1373 }
1374
1375 /*
1376 * Scan the objects already referenced (gray objects). More objects will be
1377 * referenced and, if there are no memory leaks, all the objects are scanned.
1378 */
scan_gray_list(void)1379 static void scan_gray_list(void)
1380 {
1381 struct kmemleak_object *object, *tmp;
1382
1383 /*
1384 * The list traversal is safe for both tail additions and removals
1385 * from inside the loop. The kmemleak objects cannot be freed from
1386 * outside the loop because their use_count was incremented.
1387 */
1388 object = list_entry(gray_list.next, typeof(*object), gray_list);
1389 while (&object->gray_list != &gray_list) {
1390 cond_resched();
1391
1392 /* may add new objects to the list */
1393 if (!scan_should_stop())
1394 scan_object(object);
1395
1396 tmp = list_entry(object->gray_list.next, typeof(*object),
1397 gray_list);
1398
1399 /* remove the object from the list and release it */
1400 list_del(&object->gray_list);
1401 put_object(object);
1402
1403 object = tmp;
1404 }
1405 WARN_ON(!list_empty(&gray_list));
1406 }
1407
1408 /*
1409 * Scan data sections and all the referenced memory blocks allocated via the
1410 * kernel's standard allocators. This function must be called with the
1411 * scan_mutex held.
1412 */
kmemleak_scan(void)1413 static void kmemleak_scan(void)
1414 {
1415 unsigned long flags;
1416 struct kmemleak_object *object;
1417 struct zone *zone;
1418 int __maybe_unused i;
1419 int new_leaks = 0;
1420
1421 jiffies_last_scan = jiffies;
1422
1423 /* prepare the kmemleak_object's */
1424 rcu_read_lock();
1425 list_for_each_entry_rcu(object, &object_list, object_list) {
1426 raw_spin_lock_irqsave(&object->lock, flags);
1427 #ifdef DEBUG
1428 /*
1429 * With a few exceptions there should be a maximum of
1430 * 1 reference to any object at this point.
1431 */
1432 if (atomic_read(&object->use_count) > 1) {
1433 pr_debug("object->use_count = %d\n",
1434 atomic_read(&object->use_count));
1435 dump_object_info(object);
1436 }
1437 #endif
1438 /* reset the reference count (whiten the object) */
1439 object->count = 0;
1440 if (color_gray(object) && get_object(object))
1441 list_add_tail(&object->gray_list, &gray_list);
1442
1443 raw_spin_unlock_irqrestore(&object->lock, flags);
1444 }
1445 rcu_read_unlock();
1446
1447 #ifdef CONFIG_SMP
1448 /* per-cpu sections scanning */
1449 for_each_possible_cpu(i)
1450 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1451 __per_cpu_end + per_cpu_offset(i));
1452 #endif
1453
1454 /*
1455 * Struct page scanning for each node.
1456 */
1457 get_online_mems();
1458 for_each_populated_zone(zone) {
1459 unsigned long start_pfn = zone->zone_start_pfn;
1460 unsigned long end_pfn = zone_end_pfn(zone);
1461 unsigned long pfn;
1462
1463 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1464 struct page *page = pfn_to_online_page(pfn);
1465
1466 if (!page)
1467 continue;
1468
1469 /* only scan pages belonging to this zone */
1470 if (page_zone(page) != zone)
1471 continue;
1472 /* only scan if page is in use */
1473 if (page_count(page) == 0)
1474 continue;
1475 scan_block(page, page + 1, NULL);
1476 if (!(pfn & 63))
1477 cond_resched();
1478 }
1479 }
1480 put_online_mems();
1481
1482 /*
1483 * Scanning the task stacks (may introduce false negatives).
1484 */
1485 if (kmemleak_stack_scan) {
1486 struct task_struct *p, *g;
1487
1488 rcu_read_lock();
1489 for_each_process_thread(g, p) {
1490 void *stack = try_get_task_stack(p);
1491 if (stack) {
1492 scan_block(stack, stack + THREAD_SIZE, NULL);
1493 put_task_stack(p);
1494 }
1495 }
1496 rcu_read_unlock();
1497 }
1498
1499 /*
1500 * Scan the objects already referenced from the sections scanned
1501 * above.
1502 */
1503 scan_gray_list();
1504
1505 /*
1506 * Check for new or unreferenced objects modified since the previous
1507 * scan and color them gray until the next scan.
1508 */
1509 rcu_read_lock();
1510 list_for_each_entry_rcu(object, &object_list, object_list) {
1511 raw_spin_lock_irqsave(&object->lock, flags);
1512 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1513 && update_checksum(object) && get_object(object)) {
1514 /* color it gray temporarily */
1515 object->count = object->min_count;
1516 list_add_tail(&object->gray_list, &gray_list);
1517 }
1518 raw_spin_unlock_irqrestore(&object->lock, flags);
1519 }
1520 rcu_read_unlock();
1521
1522 /*
1523 * Re-scan the gray list for modified unreferenced objects.
1524 */
1525 scan_gray_list();
1526
1527 /*
1528 * If scanning was stopped do not report any new unreferenced objects.
1529 */
1530 if (scan_should_stop())
1531 return;
1532
1533 /*
1534 * Scanning result reporting.
1535 */
1536 rcu_read_lock();
1537 list_for_each_entry_rcu(object, &object_list, object_list) {
1538 raw_spin_lock_irqsave(&object->lock, flags);
1539 if (unreferenced_object(object) &&
1540 !(object->flags & OBJECT_REPORTED)) {
1541 object->flags |= OBJECT_REPORTED;
1542
1543 if (kmemleak_verbose)
1544 print_unreferenced(NULL, object);
1545
1546 new_leaks++;
1547 }
1548 raw_spin_unlock_irqrestore(&object->lock, flags);
1549 }
1550 rcu_read_unlock();
1551
1552 if (new_leaks) {
1553 kmemleak_found_leaks = true;
1554
1555 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1556 new_leaks);
1557 }
1558
1559 }
1560
1561 /*
1562 * Thread function performing automatic memory scanning. Unreferenced objects
1563 * at the end of a memory scan are reported but only the first time.
1564 */
kmemleak_scan_thread(void * arg)1565 static int kmemleak_scan_thread(void *arg)
1566 {
1567 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1568
1569 pr_info("Automatic memory scanning thread started\n");
1570 set_user_nice(current, 10);
1571
1572 /*
1573 * Wait before the first scan to allow the system to fully initialize.
1574 */
1575 if (first_run) {
1576 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1577 first_run = 0;
1578 while (timeout && !kthread_should_stop())
1579 timeout = schedule_timeout_interruptible(timeout);
1580 }
1581
1582 while (!kthread_should_stop()) {
1583 signed long timeout = jiffies_scan_wait;
1584
1585 mutex_lock(&scan_mutex);
1586 kmemleak_scan();
1587 mutex_unlock(&scan_mutex);
1588
1589 /* wait before the next scan */
1590 while (timeout && !kthread_should_stop())
1591 timeout = schedule_timeout_interruptible(timeout);
1592 }
1593
1594 pr_info("Automatic memory scanning thread ended\n");
1595
1596 return 0;
1597 }
1598
1599 /*
1600 * Start the automatic memory scanning thread. This function must be called
1601 * with the scan_mutex held.
1602 */
start_scan_thread(void)1603 static void start_scan_thread(void)
1604 {
1605 if (scan_thread)
1606 return;
1607 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1608 if (IS_ERR(scan_thread)) {
1609 pr_warn("Failed to create the scan thread\n");
1610 scan_thread = NULL;
1611 }
1612 }
1613
1614 /*
1615 * Stop the automatic memory scanning thread.
1616 */
stop_scan_thread(void)1617 static void stop_scan_thread(void)
1618 {
1619 if (scan_thread) {
1620 kthread_stop(scan_thread);
1621 scan_thread = NULL;
1622 }
1623 }
1624
1625 /*
1626 * Iterate over the object_list and return the first valid object at or after
1627 * the required position with its use_count incremented. The function triggers
1628 * a memory scanning when the pos argument points to the first position.
1629 */
kmemleak_seq_start(struct seq_file * seq,loff_t * pos)1630 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1631 {
1632 struct kmemleak_object *object;
1633 loff_t n = *pos;
1634 int err;
1635
1636 err = mutex_lock_interruptible(&scan_mutex);
1637 if (err < 0)
1638 return ERR_PTR(err);
1639
1640 rcu_read_lock();
1641 list_for_each_entry_rcu(object, &object_list, object_list) {
1642 if (n-- > 0)
1643 continue;
1644 if (get_object(object))
1645 goto out;
1646 }
1647 object = NULL;
1648 out:
1649 return object;
1650 }
1651
1652 /*
1653 * Return the next object in the object_list. The function decrements the
1654 * use_count of the previous object and increases that of the next one.
1655 */
kmemleak_seq_next(struct seq_file * seq,void * v,loff_t * pos)1656 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1657 {
1658 struct kmemleak_object *prev_obj = v;
1659 struct kmemleak_object *next_obj = NULL;
1660 struct kmemleak_object *obj = prev_obj;
1661
1662 ++(*pos);
1663
1664 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1665 if (get_object(obj)) {
1666 next_obj = obj;
1667 break;
1668 }
1669 }
1670
1671 put_object(prev_obj);
1672 return next_obj;
1673 }
1674
1675 /*
1676 * Decrement the use_count of the last object required, if any.
1677 */
kmemleak_seq_stop(struct seq_file * seq,void * v)1678 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1679 {
1680 if (!IS_ERR(v)) {
1681 /*
1682 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1683 * waiting was interrupted, so only release it if !IS_ERR.
1684 */
1685 rcu_read_unlock();
1686 mutex_unlock(&scan_mutex);
1687 if (v)
1688 put_object(v);
1689 }
1690 }
1691
1692 /*
1693 * Print the information for an unreferenced object to the seq file.
1694 */
kmemleak_seq_show(struct seq_file * seq,void * v)1695 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1696 {
1697 struct kmemleak_object *object = v;
1698 unsigned long flags;
1699
1700 raw_spin_lock_irqsave(&object->lock, flags);
1701 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1702 print_unreferenced(seq, object);
1703 raw_spin_unlock_irqrestore(&object->lock, flags);
1704 return 0;
1705 }
1706
1707 static const struct seq_operations kmemleak_seq_ops = {
1708 .start = kmemleak_seq_start,
1709 .next = kmemleak_seq_next,
1710 .stop = kmemleak_seq_stop,
1711 .show = kmemleak_seq_show,
1712 };
1713
kmemleak_open(struct inode * inode,struct file * file)1714 static int kmemleak_open(struct inode *inode, struct file *file)
1715 {
1716 return seq_open(file, &kmemleak_seq_ops);
1717 }
1718
dump_str_object_info(const char * str)1719 static int dump_str_object_info(const char *str)
1720 {
1721 unsigned long flags;
1722 struct kmemleak_object *object;
1723 unsigned long addr;
1724
1725 if (kstrtoul(str, 0, &addr))
1726 return -EINVAL;
1727 object = find_and_get_object(addr, 0);
1728 if (!object) {
1729 pr_info("Unknown object at 0x%08lx\n", addr);
1730 return -EINVAL;
1731 }
1732
1733 raw_spin_lock_irqsave(&object->lock, flags);
1734 dump_object_info(object);
1735 raw_spin_unlock_irqrestore(&object->lock, flags);
1736
1737 put_object(object);
1738 return 0;
1739 }
1740
1741 /*
1742 * We use grey instead of black to ensure we can do future scans on the same
1743 * objects. If we did not do future scans these black objects could
1744 * potentially contain references to newly allocated objects in the future and
1745 * we'd end up with false positives.
1746 */
kmemleak_clear(void)1747 static void kmemleak_clear(void)
1748 {
1749 struct kmemleak_object *object;
1750 unsigned long flags;
1751
1752 rcu_read_lock();
1753 list_for_each_entry_rcu(object, &object_list, object_list) {
1754 raw_spin_lock_irqsave(&object->lock, flags);
1755 if ((object->flags & OBJECT_REPORTED) &&
1756 unreferenced_object(object))
1757 __paint_it(object, KMEMLEAK_GREY);
1758 raw_spin_unlock_irqrestore(&object->lock, flags);
1759 }
1760 rcu_read_unlock();
1761
1762 kmemleak_found_leaks = false;
1763 }
1764
1765 static void __kmemleak_do_cleanup(void);
1766
1767 /*
1768 * File write operation to configure kmemleak at run-time. The following
1769 * commands can be written to the /sys/kernel/debug/kmemleak file:
1770 * off - disable kmemleak (irreversible)
1771 * stack=on - enable the task stacks scanning
1772 * stack=off - disable the tasks stacks scanning
1773 * scan=on - start the automatic memory scanning thread
1774 * scan=off - stop the automatic memory scanning thread
1775 * scan=... - set the automatic memory scanning period in seconds (0 to
1776 * disable it)
1777 * scan - trigger a memory scan
1778 * clear - mark all current reported unreferenced kmemleak objects as
1779 * grey to ignore printing them, or free all kmemleak objects
1780 * if kmemleak has been disabled.
1781 * dump=... - dump information about the object found at the given address
1782 */
kmemleak_write(struct file * file,const char __user * user_buf,size_t size,loff_t * ppos)1783 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1784 size_t size, loff_t *ppos)
1785 {
1786 char buf[64];
1787 int buf_size;
1788 int ret;
1789
1790 buf_size = min(size, (sizeof(buf) - 1));
1791 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1792 return -EFAULT;
1793 buf[buf_size] = 0;
1794
1795 ret = mutex_lock_interruptible(&scan_mutex);
1796 if (ret < 0)
1797 return ret;
1798
1799 if (strncmp(buf, "clear", 5) == 0) {
1800 if (kmemleak_enabled)
1801 kmemleak_clear();
1802 else
1803 __kmemleak_do_cleanup();
1804 goto out;
1805 }
1806
1807 if (!kmemleak_enabled) {
1808 ret = -EPERM;
1809 goto out;
1810 }
1811
1812 if (strncmp(buf, "off", 3) == 0)
1813 kmemleak_disable();
1814 else if (strncmp(buf, "stack=on", 8) == 0)
1815 kmemleak_stack_scan = 1;
1816 else if (strncmp(buf, "stack=off", 9) == 0)
1817 kmemleak_stack_scan = 0;
1818 else if (strncmp(buf, "scan=on", 7) == 0)
1819 start_scan_thread();
1820 else if (strncmp(buf, "scan=off", 8) == 0)
1821 stop_scan_thread();
1822 else if (strncmp(buf, "scan=", 5) == 0) {
1823 unsigned long secs;
1824
1825 ret = kstrtoul(buf + 5, 0, &secs);
1826 if (ret < 0)
1827 goto out;
1828 stop_scan_thread();
1829 if (secs) {
1830 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1831 start_scan_thread();
1832 }
1833 } else if (strncmp(buf, "scan", 4) == 0)
1834 kmemleak_scan();
1835 else if (strncmp(buf, "dump=", 5) == 0)
1836 ret = dump_str_object_info(buf + 5);
1837 else
1838 ret = -EINVAL;
1839
1840 out:
1841 mutex_unlock(&scan_mutex);
1842 if (ret < 0)
1843 return ret;
1844
1845 /* ignore the rest of the buffer, only one command at a time */
1846 *ppos += size;
1847 return size;
1848 }
1849
1850 static const struct file_operations kmemleak_fops = {
1851 .owner = THIS_MODULE,
1852 .open = kmemleak_open,
1853 .read = seq_read,
1854 .write = kmemleak_write,
1855 .llseek = seq_lseek,
1856 .release = seq_release,
1857 };
1858
__kmemleak_do_cleanup(void)1859 static void __kmemleak_do_cleanup(void)
1860 {
1861 struct kmemleak_object *object, *tmp;
1862
1863 /*
1864 * Kmemleak has already been disabled, no need for RCU list traversal
1865 * or kmemleak_lock held.
1866 */
1867 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1868 __remove_object(object);
1869 __delete_object(object);
1870 }
1871 }
1872
1873 /*
1874 * Stop the memory scanning thread and free the kmemleak internal objects if
1875 * no previous scan thread (otherwise, kmemleak may still have some useful
1876 * information on memory leaks).
1877 */
kmemleak_do_cleanup(struct work_struct * work)1878 static void kmemleak_do_cleanup(struct work_struct *work)
1879 {
1880 stop_scan_thread();
1881
1882 mutex_lock(&scan_mutex);
1883 /*
1884 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1885 * longer track object freeing. Ordering of the scan thread stopping and
1886 * the memory accesses below is guaranteed by the kthread_stop()
1887 * function.
1888 */
1889 kmemleak_free_enabled = 0;
1890 mutex_unlock(&scan_mutex);
1891
1892 if (!kmemleak_found_leaks)
1893 __kmemleak_do_cleanup();
1894 else
1895 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1896 }
1897
1898 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1899
1900 /*
1901 * Disable kmemleak. No memory allocation/freeing will be traced once this
1902 * function is called. Disabling kmemleak is an irreversible operation.
1903 */
kmemleak_disable(void)1904 static void kmemleak_disable(void)
1905 {
1906 /* atomically check whether it was already invoked */
1907 if (cmpxchg(&kmemleak_error, 0, 1))
1908 return;
1909
1910 /* stop any memory operation tracing */
1911 kmemleak_enabled = 0;
1912
1913 /* check whether it is too early for a kernel thread */
1914 if (kmemleak_initialized)
1915 schedule_work(&cleanup_work);
1916 else
1917 kmemleak_free_enabled = 0;
1918
1919 pr_info("Kernel memory leak detector disabled\n");
1920 }
1921
1922 /*
1923 * Allow boot-time kmemleak disabling (enabled by default).
1924 */
kmemleak_boot_config(char * str)1925 static int __init kmemleak_boot_config(char *str)
1926 {
1927 if (!str)
1928 return -EINVAL;
1929 if (strcmp(str, "off") == 0)
1930 kmemleak_disable();
1931 else if (strcmp(str, "on") == 0)
1932 kmemleak_skip_disable = 1;
1933 else
1934 return -EINVAL;
1935 return 0;
1936 }
1937 early_param("kmemleak", kmemleak_boot_config);
1938
1939 /*
1940 * Kmemleak initialization.
1941 */
kmemleak_init(void)1942 void __init kmemleak_init(void)
1943 {
1944 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1945 if (!kmemleak_skip_disable) {
1946 kmemleak_disable();
1947 return;
1948 }
1949 #endif
1950
1951 if (kmemleak_error)
1952 return;
1953
1954 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1955 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1956
1957 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1958 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1959
1960 /* register the data/bss sections */
1961 create_object((unsigned long)_sdata, _edata - _sdata,
1962 KMEMLEAK_GREY, GFP_ATOMIC);
1963 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
1964 KMEMLEAK_GREY, GFP_ATOMIC);
1965 /* only register .data..ro_after_init if not within .data */
1966 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
1967 create_object((unsigned long)__start_ro_after_init,
1968 __end_ro_after_init - __start_ro_after_init,
1969 KMEMLEAK_GREY, GFP_ATOMIC);
1970 }
1971
1972 /*
1973 * Late initialization function.
1974 */
kmemleak_late_init(void)1975 static int __init kmemleak_late_init(void)
1976 {
1977 kmemleak_initialized = 1;
1978
1979 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
1980
1981 if (kmemleak_error) {
1982 /*
1983 * Some error occurred and kmemleak was disabled. There is a
1984 * small chance that kmemleak_disable() was called immediately
1985 * after setting kmemleak_initialized and we may end up with
1986 * two clean-up threads but serialized by scan_mutex.
1987 */
1988 schedule_work(&cleanup_work);
1989 return -ENOMEM;
1990 }
1991
1992 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
1993 mutex_lock(&scan_mutex);
1994 start_scan_thread();
1995 mutex_unlock(&scan_mutex);
1996 }
1997
1998 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
1999 mem_pool_free_count);
2000
2001 return 0;
2002 }
2003 late_initcall(kmemleak_late_init);
2004