• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	linux/mm/madvise.c
4  *
5  * Copyright (C) 1999  Linus Torvalds
6  * Copyright (C) 2002  Christoph Hellwig
7  */
8 
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/sched/mm.h>
21 #include <linux/mm_inline.h>
22 #include <linux/string.h>
23 #include <linux/uio.h>
24 #include <linux/ksm.h>
25 #include <linux/fs.h>
26 #include <linux/file.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagewalk.h>
30 #include <linux/swap.h>
31 #include <linux/swapops.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/mmu_notifier.h>
34 #include <trace/hooks/mm.h>
35 
36 #include <asm/tlb.h>
37 
38 #include "internal.h"
39 
40 struct madvise_walk_private {
41 	struct mmu_gather *tlb;
42 	bool pageout;
43 };
44 
45 /*
46  * Any behaviour which results in changes to the vma->vm_flags needs to
47  * take mmap_lock for writing. Others, which simply traverse vmas, need
48  * to only take it for reading.
49  */
madvise_need_mmap_write(int behavior)50 static int madvise_need_mmap_write(int behavior)
51 {
52 	switch (behavior) {
53 	case MADV_REMOVE:
54 	case MADV_WILLNEED:
55 	case MADV_DONTNEED:
56 	case MADV_COLD:
57 	case MADV_PAGEOUT:
58 	case MADV_FREE:
59 		return 0;
60 	default:
61 		/* be safe, default to 1. list exceptions explicitly */
62 		return 1;
63 	}
64 }
65 
66 #ifdef CONFIG_ANON_VMA_NAME
anon_vma_name_alloc(const char * name)67 struct anon_vma_name *anon_vma_name_alloc(const char *name)
68 {
69 	struct anon_vma_name *anon_name;
70 	size_t count;
71 
72 	/* Add 1 for NUL terminator at the end of the anon_name->name */
73 	count = strlen(name) + 1;
74 	anon_name = kmalloc(struct_size(anon_name, name, count), GFP_KERNEL);
75 	if (anon_name) {
76 		kref_init(&anon_name->kref);
77 		memcpy(anon_name->name, name, count);
78 	}
79 
80 	return anon_name;
81 }
82 
anon_vma_name_free(struct kref * kref)83 void anon_vma_name_free(struct kref *kref)
84 {
85 	struct anon_vma_name *anon_name =
86 			container_of(kref, struct anon_vma_name, kref);
87 	kfree(anon_name);
88 }
89 
anon_vma_name(struct vm_area_struct * vma)90 struct anon_vma_name *anon_vma_name(struct vm_area_struct *vma)
91 {
92 	mmap_assert_locked(vma->vm_mm);
93 
94 	if (vma->vm_file)
95 		return NULL;
96 
97 	return vma->anon_name;
98 }
99 
100 /* mmap_lock should be write-locked */
replace_anon_vma_name(struct vm_area_struct * vma,struct anon_vma_name * anon_name)101 static int replace_anon_vma_name(struct vm_area_struct *vma,
102 				 struct anon_vma_name *anon_name)
103 {
104 	struct anon_vma_name *orig_name = anon_vma_name(vma);
105 
106 	if (!anon_name) {
107 		vma->anon_name = NULL;
108 		anon_vma_name_put(orig_name);
109 		return 0;
110 	}
111 
112 	if (anon_vma_name_eq(orig_name, anon_name))
113 		return 0;
114 
115 	vma->anon_name = anon_vma_name_reuse(anon_name);
116 	anon_vma_name_put(orig_name);
117 
118 	return 0;
119 }
120 #else /* CONFIG_ANON_VMA_NAME */
replace_anon_vma_name(struct vm_area_struct * vma,struct anon_vma_name * anon_name)121 static int replace_anon_vma_name(struct vm_area_struct *vma,
122 				 struct anon_vma_name *anon_name)
123 {
124 	if (anon_name)
125 		return -EINVAL;
126 
127 	return 0;
128 }
129 #endif /* CONFIG_ANON_VMA_NAME */
130 /*
131  * Update the vm_flags on region of a vma, splitting it or merging it as
132  * necessary.  Must be called with mmap_sem held for writing;
133  * Caller should ensure anon_name stability by raising its refcount even when
134  * anon_name belongs to a valid vma because this function might free that vma.
135  */
madvise_update_vma(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long new_flags,struct anon_vma_name * anon_name)136 static int madvise_update_vma(struct vm_area_struct *vma,
137 			      struct vm_area_struct **prev, unsigned long start,
138 			      unsigned long end, unsigned long new_flags,
139 			      struct anon_vma_name *anon_name)
140 {
141 	struct mm_struct *mm = vma->vm_mm;
142 	int error;
143 	pgoff_t pgoff;
144 
145 	if (new_flags == vma->vm_flags && anon_vma_name_eq(anon_vma_name(vma), anon_name)) {
146 		*prev = vma;
147 		return 0;
148 	}
149 
150 	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
151 	*prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
152 			  vma->vm_file, pgoff, vma_policy(vma),
153 			  vma->vm_userfaultfd_ctx, anon_name);
154 	if (*prev) {
155 		vma = *prev;
156 		goto success;
157 	}
158 
159 	*prev = vma;
160 
161 	if (start != vma->vm_start) {
162 		if (unlikely(mm->map_count >= sysctl_max_map_count))
163 			return -ENOMEM;
164 		error = __split_vma(mm, vma, start, 1);
165 		if (error)
166 			return error;
167 	}
168 
169 	if (end != vma->vm_end) {
170 		if (unlikely(mm->map_count >= sysctl_max_map_count))
171 			return -ENOMEM;
172 		error = __split_vma(mm, vma, end, 0);
173 		if (error)
174 			return error;
175 	}
176 
177 success:
178 	/*
179 	 * vm_flags is protected by the mmap_lock held in write mode.
180 	 */
181 	vm_write_begin(vma);
182 	WRITE_ONCE(vma->vm_flags, new_flags);
183 	vm_write_end(vma);
184 	if (!vma->vm_file) {
185 		error = replace_anon_vma_name(vma, anon_name);
186 		if (error)
187 			return error;
188 	}
189 
190 	return 0;
191 }
192 
193 #ifdef CONFIG_SWAP
swapin_walk_pmd_entry(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * walk)194 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
195 	unsigned long end, struct mm_walk *walk)
196 {
197 	pte_t *orig_pte;
198 	struct vm_area_struct *vma = walk->private;
199 	unsigned long index;
200 
201 	if (pmd_none_or_trans_huge_or_clear_bad(pmd))
202 		return 0;
203 
204 	for (index = start; index != end; index += PAGE_SIZE) {
205 		pte_t pte;
206 		swp_entry_t entry;
207 		struct page *page;
208 		spinlock_t *ptl;
209 
210 		orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
211 		pte = *(orig_pte + ((index - start) / PAGE_SIZE));
212 		pte_unmap_unlock(orig_pte, ptl);
213 
214 		if (pte_present(pte) || pte_none(pte))
215 			continue;
216 		entry = pte_to_swp_entry(pte);
217 		if (unlikely(non_swap_entry(entry)))
218 			continue;
219 
220 		page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
221 							vma, index, false);
222 		if (page)
223 			put_page(page);
224 	}
225 
226 	return 0;
227 }
228 
229 static const struct mm_walk_ops swapin_walk_ops = {
230 	.pmd_entry		= swapin_walk_pmd_entry,
231 };
232 
force_shm_swapin_readahead(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct address_space * mapping)233 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
234 		unsigned long start, unsigned long end,
235 		struct address_space *mapping)
236 {
237 	XA_STATE(xas, &mapping->i_pages, linear_page_index(vma, start));
238 	pgoff_t end_index = linear_page_index(vma, end + PAGE_SIZE - 1);
239 	struct page *page;
240 
241 	rcu_read_lock();
242 	xas_for_each(&xas, page, end_index) {
243 		swp_entry_t swap;
244 
245 		if (!xa_is_value(page))
246 			continue;
247 		xas_pause(&xas);
248 		rcu_read_unlock();
249 
250 		swap = radix_to_swp_entry(page);
251 		page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
252 							NULL, 0, false);
253 		if (page)
254 			put_page(page);
255 
256 		rcu_read_lock();
257 	}
258 	rcu_read_unlock();
259 
260 	lru_add_drain();	/* Push any new pages onto the LRU now */
261 }
262 #endif		/* CONFIG_SWAP */
263 
264 /*
265  * Schedule all required I/O operations.  Do not wait for completion.
266  */
madvise_willneed(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)267 static long madvise_willneed(struct vm_area_struct *vma,
268 			     struct vm_area_struct **prev,
269 			     unsigned long start, unsigned long end)
270 {
271 	struct mm_struct *mm = vma->vm_mm;
272 	struct file *file = vma->vm_file;
273 	loff_t offset;
274 
275 	*prev = vma;
276 #ifdef CONFIG_SWAP
277 	if (!file) {
278 		walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
279 		lru_add_drain(); /* Push any new pages onto the LRU now */
280 		return 0;
281 	}
282 
283 	if (shmem_mapping(file->f_mapping)) {
284 		force_shm_swapin_readahead(vma, start, end,
285 					file->f_mapping);
286 		return 0;
287 	}
288 #else
289 	if (!file)
290 		return -EBADF;
291 #endif
292 
293 	if (IS_DAX(file_inode(file))) {
294 		/* no bad return value, but ignore advice */
295 		return 0;
296 	}
297 
298 	/*
299 	 * Filesystem's fadvise may need to take various locks.  We need to
300 	 * explicitly grab a reference because the vma (and hence the
301 	 * vma's reference to the file) can go away as soon as we drop
302 	 * mmap_lock.
303 	 */
304 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
305 	get_file(file);
306 	offset = (loff_t)(start - vma->vm_start)
307 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
308 	mmap_read_unlock(mm);
309 	vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
310 	fput(file);
311 	mmap_read_lock(mm);
312 	return 0;
313 }
314 
madvise_cold_or_pageout_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)315 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
316 				unsigned long addr, unsigned long end,
317 				struct mm_walk *walk)
318 {
319 	struct madvise_walk_private *private = walk->private;
320 	struct mmu_gather *tlb = private->tlb;
321 	bool pageout = private->pageout;
322 	struct mm_struct *mm = tlb->mm;
323 	struct vm_area_struct *vma = walk->vma;
324 	pte_t *orig_pte, *pte, ptent;
325 	spinlock_t *ptl;
326 	struct page *page = NULL;
327 	LIST_HEAD(page_list);
328 
329 	if (fatal_signal_pending(current))
330 		return -EINTR;
331 
332 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
333 	if (pmd_trans_huge(*pmd)) {
334 		pmd_t orig_pmd;
335 		unsigned long next = pmd_addr_end(addr, end);
336 
337 		tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
338 		ptl = pmd_trans_huge_lock(pmd, vma);
339 		if (!ptl)
340 			return 0;
341 
342 		orig_pmd = *pmd;
343 		if (is_huge_zero_pmd(orig_pmd))
344 			goto huge_unlock;
345 
346 		if (unlikely(!pmd_present(orig_pmd))) {
347 			VM_BUG_ON(thp_migration_supported() &&
348 					!is_pmd_migration_entry(orig_pmd));
349 			goto huge_unlock;
350 		}
351 
352 		page = pmd_page(orig_pmd);
353 
354 		/* Do not interfere with other mappings of this page */
355 		if (page_mapcount(page) != 1)
356 			goto huge_unlock;
357 
358 		if (next - addr != HPAGE_PMD_SIZE) {
359 			int err;
360 
361 			get_page(page);
362 			spin_unlock(ptl);
363 			lock_page(page);
364 			err = split_huge_page(page);
365 			unlock_page(page);
366 			put_page(page);
367 			if (!err)
368 				goto regular_page;
369 			return 0;
370 		}
371 
372 		if (pmd_young(orig_pmd)) {
373 			pmdp_invalidate(vma, addr, pmd);
374 			orig_pmd = pmd_mkold(orig_pmd);
375 
376 			set_pmd_at(mm, addr, pmd, orig_pmd);
377 			tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
378 		}
379 
380 		ClearPageReferenced(page);
381 		test_and_clear_page_young(page);
382 		if (pageout) {
383 			if (!isolate_lru_page(page)) {
384 				if (PageUnevictable(page))
385 					putback_lru_page(page);
386 				else
387 					list_add(&page->lru, &page_list);
388 			}
389 		} else
390 			deactivate_page(page);
391 huge_unlock:
392 		spin_unlock(ptl);
393 		if (pageout)
394 			reclaim_pages(&page_list);
395 		return 0;
396 	}
397 
398 regular_page:
399 	if (pmd_trans_unstable(pmd))
400 		return 0;
401 #endif
402 	tlb_change_page_size(tlb, PAGE_SIZE);
403 	orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
404 	flush_tlb_batched_pending(mm);
405 	arch_enter_lazy_mmu_mode();
406 	for (; addr < end; pte++, addr += PAGE_SIZE) {
407 		ptent = *pte;
408 
409 		if (pte_none(ptent))
410 			continue;
411 
412 		if (!pte_present(ptent))
413 			continue;
414 
415 		page = vm_normal_page(vma, addr, ptent);
416 		if (!page)
417 			continue;
418 
419 		/*
420 		 * Creating a THP page is expensive so split it only if we
421 		 * are sure it's worth. Split it if we are only owner.
422 		 */
423 		if (PageTransCompound(page)) {
424 			if (page_mapcount(page) != 1)
425 				break;
426 			get_page(page);
427 			if (!trylock_page(page)) {
428 				put_page(page);
429 				break;
430 			}
431 			pte_unmap_unlock(orig_pte, ptl);
432 			if (split_huge_page(page)) {
433 				unlock_page(page);
434 				put_page(page);
435 				pte_offset_map_lock(mm, pmd, addr, &ptl);
436 				break;
437 			}
438 			unlock_page(page);
439 			put_page(page);
440 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
441 			pte--;
442 			addr -= PAGE_SIZE;
443 			continue;
444 		}
445 
446 		/*
447 		 * Do not interfere with other mappings of this page and
448 		 * non-LRU page.
449 		 */
450 		if (!PageLRU(page) || page_mapcount(page) != 1)
451 			continue;
452 
453 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
454 
455 		if (pte_young(ptent)) {
456 			ptent = ptep_get_and_clear_full(mm, addr, pte,
457 							tlb->fullmm);
458 			ptent = pte_mkold(ptent);
459 			set_pte_at(mm, addr, pte, ptent);
460 			tlb_remove_tlb_entry(tlb, pte, addr);
461 		}
462 
463 		/*
464 		 * We are deactivating a page for accelerating reclaiming.
465 		 * VM couldn't reclaim the page unless we clear PG_young.
466 		 * As a side effect, it makes confuse idle-page tracking
467 		 * because they will miss recent referenced history.
468 		 */
469 		ClearPageReferenced(page);
470 		test_and_clear_page_young(page);
471 		if (pageout) {
472 			if (!isolate_lru_page(page)) {
473 				if (PageUnevictable(page))
474 					putback_lru_page(page);
475 				else
476 					list_add(&page->lru, &page_list);
477 			}
478 		} else
479 			deactivate_page(page);
480 	}
481 
482 	arch_leave_lazy_mmu_mode();
483 	pte_unmap_unlock(orig_pte, ptl);
484 	if (pageout)
485 		reclaim_pages(&page_list);
486 	cond_resched();
487 
488 	return 0;
489 }
490 
491 static const struct mm_walk_ops cold_walk_ops = {
492 	.pmd_entry = madvise_cold_or_pageout_pte_range,
493 };
494 
madvise_cold_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)495 static void madvise_cold_page_range(struct mmu_gather *tlb,
496 			     struct vm_area_struct *vma,
497 			     unsigned long addr, unsigned long end)
498 {
499 	struct madvise_walk_private walk_private = {
500 		.pageout = false,
501 		.tlb = tlb,
502 	};
503 
504 	tlb_start_vma(tlb, vma);
505 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
506 	tlb_end_vma(tlb, vma);
507 }
508 
madvise_cold(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)509 static long madvise_cold(struct vm_area_struct *vma,
510 			struct vm_area_struct **prev,
511 			unsigned long start_addr, unsigned long end_addr)
512 {
513 	struct mm_struct *mm = vma->vm_mm;
514 	struct mmu_gather tlb;
515 
516 	*prev = vma;
517 	if (!can_madv_lru_vma(vma))
518 		return -EINVAL;
519 
520 	lru_add_drain();
521 	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
522 	madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
523 	tlb_finish_mmu(&tlb, start_addr, end_addr);
524 
525 	return 0;
526 }
527 
madvise_pageout_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end)528 static void madvise_pageout_page_range(struct mmu_gather *tlb,
529 			     struct vm_area_struct *vma,
530 			     unsigned long addr, unsigned long end)
531 {
532 	struct madvise_walk_private walk_private = {
533 		.pageout = true,
534 		.tlb = tlb,
535 	};
536 
537 	tlb_start_vma(tlb, vma);
538 	walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
539 	tlb_end_vma(tlb, vma);
540 }
541 
can_do_pageout(struct vm_area_struct * vma)542 static inline bool can_do_pageout(struct vm_area_struct *vma)
543 {
544 	if (vma_is_anonymous(vma))
545 		return true;
546 	if (!vma->vm_file)
547 		return false;
548 	/*
549 	 * paging out pagecache only for non-anonymous mappings that correspond
550 	 * to the files the calling process could (if tried) open for writing;
551 	 * otherwise we'd be including shared non-exclusive mappings, which
552 	 * opens a side channel.
553 	 */
554 	return inode_owner_or_capable(file_inode(vma->vm_file)) ||
555 		inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
556 }
557 
madvise_pageout(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start_addr,unsigned long end_addr)558 static long madvise_pageout(struct vm_area_struct *vma,
559 			struct vm_area_struct **prev,
560 			unsigned long start_addr, unsigned long end_addr)
561 {
562 	struct mm_struct *mm = vma->vm_mm;
563 	struct mmu_gather tlb;
564 
565 	*prev = vma;
566 	if (!can_madv_lru_vma(vma))
567 		return -EINVAL;
568 
569 	if (!can_do_pageout(vma))
570 		return 0;
571 
572 	lru_add_drain();
573 	tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
574 	madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
575 	tlb_finish_mmu(&tlb, start_addr, end_addr);
576 
577 	return 0;
578 }
579 
madvise_free_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)580 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
581 				unsigned long end, struct mm_walk *walk)
582 
583 {
584 	struct mmu_gather *tlb = walk->private;
585 	struct mm_struct *mm = tlb->mm;
586 	struct vm_area_struct *vma = walk->vma;
587 	spinlock_t *ptl;
588 	pte_t *orig_pte, *pte, ptent;
589 	struct page *page;
590 	int nr_swap = 0;
591 	unsigned long next;
592 
593 	next = pmd_addr_end(addr, end);
594 	if (pmd_trans_huge(*pmd))
595 		if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
596 			goto next;
597 
598 	if (pmd_trans_unstable(pmd))
599 		return 0;
600 
601 	tlb_change_page_size(tlb, PAGE_SIZE);
602 	orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
603 	flush_tlb_batched_pending(mm);
604 	arch_enter_lazy_mmu_mode();
605 	for (; addr != end; pte++, addr += PAGE_SIZE) {
606 		ptent = *pte;
607 
608 		if (pte_none(ptent))
609 			continue;
610 		/*
611 		 * If the pte has swp_entry, just clear page table to
612 		 * prevent swap-in which is more expensive rather than
613 		 * (page allocation + zeroing).
614 		 */
615 		if (!pte_present(ptent)) {
616 			swp_entry_t entry;
617 
618 			entry = pte_to_swp_entry(ptent);
619 			if (non_swap_entry(entry))
620 				continue;
621 			nr_swap--;
622 			free_swap_and_cache(entry);
623 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
624 			continue;
625 		}
626 
627 		page = vm_normal_page(vma, addr, ptent);
628 		if (!page)
629 			continue;
630 
631 		/*
632 		 * If pmd isn't transhuge but the page is THP and
633 		 * is owned by only this process, split it and
634 		 * deactivate all pages.
635 		 */
636 		if (PageTransCompound(page)) {
637 			if (page_mapcount(page) != 1)
638 				goto out;
639 			get_page(page);
640 			if (!trylock_page(page)) {
641 				put_page(page);
642 				goto out;
643 			}
644 			pte_unmap_unlock(orig_pte, ptl);
645 			if (split_huge_page(page)) {
646 				unlock_page(page);
647 				put_page(page);
648 				pte_offset_map_lock(mm, pmd, addr, &ptl);
649 				goto out;
650 			}
651 			unlock_page(page);
652 			put_page(page);
653 			pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
654 			pte--;
655 			addr -= PAGE_SIZE;
656 			continue;
657 		}
658 
659 		VM_BUG_ON_PAGE(PageTransCompound(page), page);
660 
661 		if (PageSwapCache(page) || PageDirty(page)) {
662 			if (!trylock_page(page))
663 				continue;
664 			/*
665 			 * If page is shared with others, we couldn't clear
666 			 * PG_dirty of the page.
667 			 */
668 			if (page_mapcount(page) != 1) {
669 				unlock_page(page);
670 				continue;
671 			}
672 
673 			if (PageSwapCache(page) && !try_to_free_swap(page)) {
674 				unlock_page(page);
675 				continue;
676 			}
677 
678 			ClearPageDirty(page);
679 			unlock_page(page);
680 		}
681 
682 		if (pte_young(ptent) || pte_dirty(ptent)) {
683 			/*
684 			 * Some of architecture(ex, PPC) don't update TLB
685 			 * with set_pte_at and tlb_remove_tlb_entry so for
686 			 * the portability, remap the pte with old|clean
687 			 * after pte clearing.
688 			 */
689 			ptent = ptep_get_and_clear_full(mm, addr, pte,
690 							tlb->fullmm);
691 
692 			ptent = pte_mkold(ptent);
693 			ptent = pte_mkclean(ptent);
694 			set_pte_at(mm, addr, pte, ptent);
695 			tlb_remove_tlb_entry(tlb, pte, addr);
696 		}
697 		mark_page_lazyfree(page);
698 	}
699 out:
700 	if (nr_swap) {
701 		if (current->mm == mm)
702 			sync_mm_rss(mm);
703 
704 		add_mm_counter(mm, MM_SWAPENTS, nr_swap);
705 	}
706 	arch_leave_lazy_mmu_mode();
707 	pte_unmap_unlock(orig_pte, ptl);
708 	cond_resched();
709 next:
710 	return 0;
711 }
712 
713 static const struct mm_walk_ops madvise_free_walk_ops = {
714 	.pmd_entry		= madvise_free_pte_range,
715 };
716 
madvise_free_single_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr)717 static int madvise_free_single_vma(struct vm_area_struct *vma,
718 			unsigned long start_addr, unsigned long end_addr)
719 {
720 	struct mm_struct *mm = vma->vm_mm;
721 	struct mmu_notifier_range range;
722 	struct mmu_gather tlb;
723 
724 	/* MADV_FREE works for only anon vma at the moment */
725 	if (!vma_is_anonymous(vma))
726 		return -EINVAL;
727 
728 	range.start = max(vma->vm_start, start_addr);
729 	if (range.start >= vma->vm_end)
730 		return -EINVAL;
731 	range.end = min(vma->vm_end, end_addr);
732 	if (range.end <= vma->vm_start)
733 		return -EINVAL;
734 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
735 				range.start, range.end);
736 
737 	lru_add_drain();
738 	tlb_gather_mmu(&tlb, mm, range.start, range.end);
739 	update_hiwater_rss(mm);
740 
741 	mmu_notifier_invalidate_range_start(&range);
742 	tlb_start_vma(&tlb, vma);
743 	walk_page_range(vma->vm_mm, range.start, range.end,
744 			&madvise_free_walk_ops, &tlb);
745 	tlb_end_vma(&tlb, vma);
746 	mmu_notifier_invalidate_range_end(&range);
747 	tlb_finish_mmu(&tlb, range.start, range.end);
748 
749 	return 0;
750 }
751 
752 /*
753  * Application no longer needs these pages.  If the pages are dirty,
754  * it's OK to just throw them away.  The app will be more careful about
755  * data it wants to keep.  Be sure to free swap resources too.  The
756  * zap_page_range call sets things up for shrink_active_list to actually free
757  * these pages later if no one else has touched them in the meantime,
758  * although we could add these pages to a global reuse list for
759  * shrink_active_list to pick up before reclaiming other pages.
760  *
761  * NB: This interface discards data rather than pushes it out to swap,
762  * as some implementations do.  This has performance implications for
763  * applications like large transactional databases which want to discard
764  * pages in anonymous maps after committing to backing store the data
765  * that was kept in them.  There is no reason to write this data out to
766  * the swap area if the application is discarding it.
767  *
768  * An interface that causes the system to free clean pages and flush
769  * dirty pages is already available as msync(MS_INVALIDATE).
770  */
madvise_dontneed_single_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)771 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
772 					unsigned long start, unsigned long end)
773 {
774 	zap_page_range(vma, start, end - start);
775 	return 0;
776 }
777 
madvise_dontneed_free(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,int behavior)778 static long madvise_dontneed_free(struct vm_area_struct *vma,
779 				  struct vm_area_struct **prev,
780 				  unsigned long start, unsigned long end,
781 				  int behavior)
782 {
783 	struct mm_struct *mm = vma->vm_mm;
784 
785 	*prev = vma;
786 	if (!can_madv_lru_vma(vma))
787 		return -EINVAL;
788 
789 	if (!userfaultfd_remove(vma, start, end)) {
790 		*prev = NULL; /* mmap_lock has been dropped, prev is stale */
791 
792 		mmap_read_lock(mm);
793 		vma = find_vma(mm, start);
794 		if (!vma)
795 			return -ENOMEM;
796 		if (start < vma->vm_start) {
797 			/*
798 			 * This "vma" under revalidation is the one
799 			 * with the lowest vma->vm_start where start
800 			 * is also < vma->vm_end. If start <
801 			 * vma->vm_start it means an hole materialized
802 			 * in the user address space within the
803 			 * virtual range passed to MADV_DONTNEED
804 			 * or MADV_FREE.
805 			 */
806 			return -ENOMEM;
807 		}
808 		if (!can_madv_lru_vma(vma))
809 			return -EINVAL;
810 		if (end > vma->vm_end) {
811 			/*
812 			 * Don't fail if end > vma->vm_end. If the old
813 			 * vma was splitted while the mmap_lock was
814 			 * released the effect of the concurrent
815 			 * operation may not cause madvise() to
816 			 * have an undefined result. There may be an
817 			 * adjacent next vma that we'll walk
818 			 * next. userfaultfd_remove() will generate an
819 			 * UFFD_EVENT_REMOVE repetition on the
820 			 * end-vma->vm_end range, but the manager can
821 			 * handle a repetition fine.
822 			 */
823 			end = vma->vm_end;
824 		}
825 		VM_WARN_ON(start >= end);
826 	}
827 
828 	if (behavior == MADV_DONTNEED)
829 		return madvise_dontneed_single_vma(vma, start, end);
830 	else if (behavior == MADV_FREE)
831 		return madvise_free_single_vma(vma, start, end);
832 	else
833 		return -EINVAL;
834 }
835 
836 /*
837  * Application wants to free up the pages and associated backing store.
838  * This is effectively punching a hole into the middle of a file.
839  */
madvise_remove(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end)840 static long madvise_remove(struct vm_area_struct *vma,
841 				struct vm_area_struct **prev,
842 				unsigned long start, unsigned long end)
843 {
844 	loff_t offset;
845 	int error;
846 	struct file *f;
847 	struct mm_struct *mm = vma->vm_mm;
848 
849 	*prev = NULL;	/* tell sys_madvise we drop mmap_lock */
850 
851 	if (vma->vm_flags & VM_LOCKED)
852 		return -EINVAL;
853 
854 	f = vma->vm_file;
855 
856 	if (!f || !f->f_mapping || !f->f_mapping->host) {
857 			return -EINVAL;
858 	}
859 
860 	if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
861 		return -EACCES;
862 
863 	offset = (loff_t)(start - vma->vm_start)
864 			+ ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
865 
866 	/*
867 	 * Filesystem's fallocate may need to take i_mutex.  We need to
868 	 * explicitly grab a reference because the vma (and hence the
869 	 * vma's reference to the file) can go away as soon as we drop
870 	 * mmap_lock.
871 	 */
872 	get_file(f);
873 	if (userfaultfd_remove(vma, start, end)) {
874 		/* mmap_lock was not released by userfaultfd_remove() */
875 		mmap_read_unlock(mm);
876 	}
877 	error = vfs_fallocate(f,
878 				FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
879 				offset, end - start);
880 	fput(f);
881 	mmap_read_lock(mm);
882 	return error;
883 }
884 
885 /*
886  * Apply an madvise behavior to a region of a vma.  madvise_update_vma
887  * will handle splitting a vm area into separate areas, each area with its own
888  * behavior.
889  */
madvise_vma_behavior(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long behavior)890 static int madvise_vma_behavior(struct vm_area_struct *vma,
891 				struct vm_area_struct **prev,
892 				unsigned long start, unsigned long end,
893 				unsigned long behavior)
894 {
895 	int error;
896 	struct anon_vma_name *anon_name;
897 	unsigned long new_flags = vma->vm_flags;
898 
899 	switch (behavior) {
900 	case MADV_REMOVE:
901 		return madvise_remove(vma, prev, start, end);
902 	case MADV_WILLNEED:
903 		return madvise_willneed(vma, prev, start, end);
904 	case MADV_COLD:
905 		return madvise_cold(vma, prev, start, end);
906 	case MADV_PAGEOUT:
907 		return madvise_pageout(vma, prev, start, end);
908 	case MADV_FREE:
909 	case MADV_DONTNEED:
910 		return madvise_dontneed_free(vma, prev, start, end, behavior);
911 	case MADV_NORMAL:
912 		new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
913 		break;
914 	case MADV_SEQUENTIAL:
915 		new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
916 		break;
917 	case MADV_RANDOM:
918 		new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
919 		break;
920 	case MADV_DONTFORK:
921 		new_flags |= VM_DONTCOPY;
922 		break;
923 	case MADV_DOFORK:
924 		if (vma->vm_flags & VM_IO)
925 			return -EINVAL;
926 		new_flags &= ~VM_DONTCOPY;
927 		break;
928 	case MADV_WIPEONFORK:
929 		/* MADV_WIPEONFORK is only supported on anonymous memory. */
930 		if (vma->vm_file || vma->vm_flags & VM_SHARED)
931 			return -EINVAL;
932 		new_flags |= VM_WIPEONFORK;
933 		break;
934 	case MADV_KEEPONFORK:
935 		new_flags &= ~VM_WIPEONFORK;
936 		break;
937 	case MADV_DONTDUMP:
938 		new_flags |= VM_DONTDUMP;
939 		break;
940 	case MADV_DODUMP:
941 		if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL)
942 			return -EINVAL;
943 		new_flags &= ~VM_DONTDUMP;
944 		break;
945 	case MADV_MERGEABLE:
946 	case MADV_UNMERGEABLE:
947 		error = ksm_madvise(vma, start, end, behavior, &new_flags);
948 		if (error)
949 			goto out;
950 		break;
951 	case MADV_HUGEPAGE:
952 	case MADV_NOHUGEPAGE:
953 		error = hugepage_madvise(vma, &new_flags, behavior);
954 		if (error)
955 			goto out;
956 		break;
957 	}
958 
959 	anon_name = anon_vma_name(vma);
960 	anon_vma_name_get(anon_name);
961 	error = madvise_update_vma(vma, prev, start, end, new_flags,
962 				   anon_name);
963 	anon_vma_name_put(anon_name);
964 
965 out:
966 	/*
967 	 * madvise() returns EAGAIN if kernel resources, such as
968 	 * slab, are temporarily unavailable.
969 	 */
970 	if (error == -ENOMEM)
971 		error = -EAGAIN;
972 	return error;
973 }
974 
975 #ifdef CONFIG_MEMORY_FAILURE
976 /*
977  * Error injection support for memory error handling.
978  */
madvise_inject_error(int behavior,unsigned long start,unsigned long end)979 static int madvise_inject_error(int behavior,
980 		unsigned long start, unsigned long end)
981 {
982 	struct zone *zone;
983 	unsigned long size;
984 
985 	if (!capable(CAP_SYS_ADMIN))
986 		return -EPERM;
987 
988 
989 	for (; start < end; start += size) {
990 		unsigned long pfn;
991 		struct page *page;
992 		int ret;
993 
994 		ret = get_user_pages_fast(start, 1, 0, &page);
995 		if (ret != 1)
996 			return ret;
997 		pfn = page_to_pfn(page);
998 
999 		/*
1000 		 * When soft offlining hugepages, after migrating the page
1001 		 * we dissolve it, therefore in the second loop "page" will
1002 		 * no longer be a compound page.
1003 		 */
1004 		size = page_size(compound_head(page));
1005 
1006 		if (behavior == MADV_SOFT_OFFLINE) {
1007 			pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
1008 				 pfn, start);
1009 			ret = soft_offline_page(pfn, MF_COUNT_INCREASED);
1010 		} else {
1011 			pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
1012 				 pfn, start);
1013 			ret = memory_failure(pfn, MF_COUNT_INCREASED);
1014 		}
1015 
1016 		if (ret)
1017 			return ret;
1018 	}
1019 
1020 	/* Ensure that all poisoned pages are removed from per-cpu lists */
1021 	for_each_populated_zone(zone)
1022 		drain_all_pages(zone);
1023 
1024 	return 0;
1025 }
1026 #endif
1027 
1028 static bool
madvise_behavior_valid(int behavior)1029 madvise_behavior_valid(int behavior)
1030 {
1031 	switch (behavior) {
1032 	case MADV_DOFORK:
1033 	case MADV_DONTFORK:
1034 	case MADV_NORMAL:
1035 	case MADV_SEQUENTIAL:
1036 	case MADV_RANDOM:
1037 	case MADV_REMOVE:
1038 	case MADV_WILLNEED:
1039 	case MADV_DONTNEED:
1040 	case MADV_FREE:
1041 	case MADV_COLD:
1042 	case MADV_PAGEOUT:
1043 #ifdef CONFIG_KSM
1044 	case MADV_MERGEABLE:
1045 	case MADV_UNMERGEABLE:
1046 #endif
1047 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1048 	case MADV_HUGEPAGE:
1049 	case MADV_NOHUGEPAGE:
1050 #endif
1051 	case MADV_DONTDUMP:
1052 	case MADV_DODUMP:
1053 	case MADV_WIPEONFORK:
1054 	case MADV_KEEPONFORK:
1055 #ifdef CONFIG_MEMORY_FAILURE
1056 	case MADV_SOFT_OFFLINE:
1057 	case MADV_HWPOISON:
1058 #endif
1059 		return true;
1060 
1061 	default:
1062 		return false;
1063 	}
1064 }
1065 
1066 static bool
process_madvise_behavior_valid(int behavior)1067 process_madvise_behavior_valid(int behavior)
1068 {
1069 	switch (behavior) {
1070 	case MADV_COLD:
1071 	case MADV_PAGEOUT:
1072 		return true;
1073 	default:
1074 		return false;
1075 	}
1076 }
1077 
1078 /*
1079  * Walk the vmas in range [start,end), and call the visit function on each one.
1080  * The visit function will get start and end parameters that cover the overlap
1081  * between the current vma and the original range.  Any unmapped regions in the
1082  * original range will result in this function returning -ENOMEM while still
1083  * calling the visit function on all of the existing vmas in the range.
1084  * Must be called with the mmap_lock held for reading or writing.
1085  */
1086 static
madvise_walk_vmas(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned long arg,int (* visit)(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long arg))1087 int madvise_walk_vmas(struct mm_struct *mm, unsigned long start,
1088 		      unsigned long end, unsigned long arg,
1089 		      int (*visit)(struct vm_area_struct *vma,
1090 				   struct vm_area_struct **prev, unsigned long start,
1091 				   unsigned long end, unsigned long arg))
1092 {
1093 	struct vm_area_struct *vma;
1094 	struct vm_area_struct *prev;
1095 	unsigned long tmp;
1096 	int unmapped_error = 0;
1097 
1098 	/*
1099 	 * If the interval [start,end) covers some unmapped address
1100 	 * ranges, just ignore them, but return -ENOMEM at the end.
1101 	 * - different from the way of handling in mlock etc.
1102 	 */
1103 	vma = find_vma_prev(mm, start, &prev);
1104 	if (vma && start > vma->vm_start)
1105 		prev = vma;
1106 
1107 	for (;;) {
1108 		int error;
1109 
1110 		/* Still start < end. */
1111 		if (!vma)
1112 			return -ENOMEM;
1113 
1114 		/* Here start < (end|vma->vm_end). */
1115 		if (start < vma->vm_start) {
1116 			unmapped_error = -ENOMEM;
1117 			start = vma->vm_start;
1118 			if (start >= end)
1119 				break;
1120 		}
1121 
1122 		/* Here vma->vm_start <= start < (end|vma->vm_end) */
1123 		tmp = vma->vm_end;
1124 		if (end < tmp)
1125 			tmp = end;
1126 
1127 		/* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1128 		error = visit(vma, &prev, start, tmp, arg);
1129 		if (error)
1130 			return error;
1131 		start = tmp;
1132 		if (prev && start < prev->vm_end)
1133 			start = prev->vm_end;
1134 		if (start >= end)
1135 			break;
1136 		if (prev)
1137 			vma = prev->vm_next;
1138 		else	/* madvise_remove dropped mmap_lock */
1139 			vma = find_vma(mm, start);
1140 	}
1141 
1142 	return unmapped_error;
1143 }
1144 
1145 #ifdef CONFIG_ANON_VMA_NAME
madvise_vma_anon_name(struct vm_area_struct * vma,struct vm_area_struct ** prev,unsigned long start,unsigned long end,unsigned long anon_name)1146 static int madvise_vma_anon_name(struct vm_area_struct *vma,
1147 				 struct vm_area_struct **prev,
1148 				 unsigned long start, unsigned long end,
1149 				 unsigned long anon_name)
1150 {
1151 	int error;
1152 
1153 	/* Only anonymous mappings can be named */
1154 	if (vma->vm_file)
1155 		return -EBADF;
1156 
1157 	error = madvise_update_vma(vma, prev, start, end, vma->vm_flags,
1158 				   (struct anon_vma_name *)anon_name);
1159 
1160 	/*
1161 	 * madvise() returns EAGAIN if kernel resources, such as
1162 	 * slab, are temporarily unavailable.
1163 	 */
1164 	if (error == -ENOMEM)
1165 		error = -EAGAIN;
1166 	return error;
1167 }
1168 
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)1169 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
1170 			  unsigned long len_in, struct anon_vma_name *anon_name)
1171 {
1172 	unsigned long end;
1173 	unsigned long len;
1174 
1175 	if (start & ~PAGE_MASK)
1176 		return -EINVAL;
1177 	len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1178 
1179 	/* Check to see whether len was rounded up from small -ve to zero */
1180 	if (len_in && !len)
1181 		return -EINVAL;
1182 
1183 	end = start + len;
1184 	if (end < start)
1185 		return -EINVAL;
1186 
1187 	if (end == start)
1188 		return 0;
1189 
1190 	return madvise_walk_vmas(mm, start, end, (unsigned long)anon_name,
1191 				 madvise_vma_anon_name);
1192 }
1193 #endif /* CONFIG_ANON_VMA_NAME */
1194 /*
1195  * The madvise(2) system call.
1196  *
1197  * Applications can use madvise() to advise the kernel how it should
1198  * handle paging I/O in this VM area.  The idea is to help the kernel
1199  * use appropriate read-ahead and caching techniques.  The information
1200  * provided is advisory only, and can be safely disregarded by the
1201  * kernel without affecting the correct operation of the application.
1202  *
1203  * behavior values:
1204  *  MADV_NORMAL - the default behavior is to read clusters.  This
1205  *		results in some read-ahead and read-behind.
1206  *  MADV_RANDOM - the system should read the minimum amount of data
1207  *		on any access, since it is unlikely that the appli-
1208  *		cation will need more than what it asks for.
1209  *  MADV_SEQUENTIAL - pages in the given range will probably be accessed
1210  *		once, so they can be aggressively read ahead, and
1211  *		can be freed soon after they are accessed.
1212  *  MADV_WILLNEED - the application is notifying the system to read
1213  *		some pages ahead.
1214  *  MADV_DONTNEED - the application is finished with the given range,
1215  *		so the kernel can free resources associated with it.
1216  *  MADV_FREE - the application marks pages in the given range as lazy free,
1217  *		where actual purges are postponed until memory pressure happens.
1218  *  MADV_REMOVE - the application wants to free up the given range of
1219  *		pages and associated backing store.
1220  *  MADV_DONTFORK - omit this area from child's address space when forking:
1221  *		typically, to avoid COWing pages pinned by get_user_pages().
1222  *  MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1223  *  MADV_WIPEONFORK - present the child process with zero-filled memory in this
1224  *              range after a fork.
1225  *  MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1226  *  MADV_HWPOISON - trigger memory error handler as if the given memory range
1227  *		were corrupted by unrecoverable hardware memory failure.
1228  *  MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1229  *  MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1230  *		this area with pages of identical content from other such areas.
1231  *  MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1232  *  MADV_HUGEPAGE - the application wants to back the given range by transparent
1233  *		huge pages in the future. Existing pages might be coalesced and
1234  *		new pages might be allocated as THP.
1235  *  MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1236  *		transparent huge pages so the existing pages will not be
1237  *		coalesced into THP and new pages will not be allocated as THP.
1238  *  MADV_DONTDUMP - the application wants to prevent pages in the given range
1239  *		from being included in its core dump.
1240  *  MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1241  *  MADV_COLD - the application is not expected to use this memory soon,
1242  *		deactivate pages in this range so that they can be reclaimed
1243  *		easily if memory pressure hanppens.
1244  *  MADV_PAGEOUT - the application is not expected to use this memory soon,
1245  *		page out the pages in this range immediately.
1246  *
1247  * return values:
1248  *  zero    - success
1249  *  -EINVAL - start + len < 0, start is not page-aligned,
1250  *		"behavior" is not a valid value, or application
1251  *		is attempting to release locked or shared pages,
1252  *		or the specified address range includes file, Huge TLB,
1253  *		MAP_SHARED or VMPFNMAP range.
1254  *  -ENOMEM - addresses in the specified range are not currently
1255  *		mapped, or are outside the AS of the process.
1256  *  -EIO    - an I/O error occurred while paging in data.
1257  *  -EBADF  - map exists, but area maps something that isn't a file.
1258  *  -EAGAIN - a kernel resource was temporarily unavailable.
1259  */
do_madvise(struct mm_struct * mm,unsigned long start,size_t len_in,int behavior)1260 int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior)
1261 {
1262 	unsigned long end;
1263 	int error;
1264 	int write;
1265 	size_t len;
1266 	struct blk_plug plug;
1267 	bool do_plug = true;
1268 
1269 	start = untagged_addr(start);
1270 
1271 	if (!madvise_behavior_valid(behavior))
1272 		return -EINVAL;
1273 
1274 	if (!PAGE_ALIGNED(start))
1275 		return -EINVAL;
1276 	len = PAGE_ALIGN(len_in);
1277 
1278 	/* Check to see whether len was rounded up from small -ve to zero */
1279 	if (len_in && !len)
1280 		return -EINVAL;
1281 
1282 	end = start + len;
1283 	if (end < start)
1284 		return -EINVAL;
1285 
1286 	if (end == start)
1287 		return 0;
1288 
1289 #ifdef CONFIG_MEMORY_FAILURE
1290 	if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1291 		return madvise_inject_error(behavior, start, start + len_in);
1292 #endif
1293 
1294 	write = madvise_need_mmap_write(behavior);
1295 	if (write) {
1296 		if (mmap_write_lock_killable(mm))
1297 			return -EINTR;
1298 	} else {
1299 		mmap_read_lock(mm);
1300 	}
1301 
1302 	trace_android_vh_do_madvise_blk_plug(behavior, &do_plug);
1303 	if (do_plug)
1304 		blk_start_plug(&plug);
1305 	error = madvise_walk_vmas(mm, start, end, behavior,
1306 			madvise_vma_behavior);
1307 	if (do_plug)
1308 		blk_finish_plug(&plug);
1309 	if (write)
1310 		mmap_write_unlock(mm);
1311 	else
1312 		mmap_read_unlock(mm);
1313 
1314 	return error;
1315 }
1316 
SYSCALL_DEFINE3(madvise,unsigned long,start,size_t,len_in,int,behavior)1317 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1318 {
1319 	return do_madvise(current->mm, start, len_in, behavior);
1320 }
1321 
SYSCALL_DEFINE5(process_madvise,int,pidfd,const struct iovec __user *,vec,size_t,vlen,int,behavior,unsigned int,flags)1322 SYSCALL_DEFINE5(process_madvise, int, pidfd, const struct iovec __user *, vec,
1323 		size_t, vlen, int, behavior, unsigned int, flags)
1324 {
1325 	ssize_t ret;
1326 	struct iovec iovstack[UIO_FASTIOV], iovec;
1327 	struct iovec *iov = iovstack;
1328 	struct iov_iter iter;
1329 	struct pid *pid;
1330 	struct task_struct *task;
1331 	struct mm_struct *mm;
1332 	size_t total_len;
1333 	unsigned int f_flags;
1334 
1335 	if (flags != 0) {
1336 		ret = -EINVAL;
1337 		goto out;
1338 	}
1339 
1340 	ret = import_iovec(READ, vec, vlen, ARRAY_SIZE(iovstack), &iov, &iter);
1341 	if (ret < 0)
1342 		goto out;
1343 
1344 	pid = pidfd_get_pid(pidfd, &f_flags);
1345 	if (IS_ERR(pid)) {
1346 		ret = PTR_ERR(pid);
1347 		goto free_iov;
1348 	}
1349 
1350 	task = get_pid_task(pid, PIDTYPE_PID);
1351 	if (!task) {
1352 		ret = -ESRCH;
1353 		goto put_pid;
1354 	}
1355 
1356 	if (!process_madvise_behavior_valid(behavior)) {
1357 		ret = -EINVAL;
1358 		goto release_task;
1359 	}
1360 
1361 	/* Require PTRACE_MODE_READ to avoid leaking ASLR metadata. */
1362 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1363 	if (IS_ERR_OR_NULL(mm)) {
1364 		ret = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
1365 		goto release_task;
1366 	}
1367 
1368 	/*
1369 	 * Require CAP_SYS_NICE for influencing process performance. Note that
1370 	 * only non-destructive hints are currently supported.
1371 	 */
1372 	if (!capable(CAP_SYS_NICE)) {
1373 		ret = -EPERM;
1374 		goto release_mm;
1375 	}
1376 
1377 	total_len = iov_iter_count(&iter);
1378 
1379 	while (iov_iter_count(&iter)) {
1380 		iovec = iov_iter_iovec(&iter);
1381 		ret = do_madvise(mm, (unsigned long)iovec.iov_base,
1382 					iovec.iov_len, behavior);
1383 		if (ret < 0)
1384 			break;
1385 		iov_iter_advance(&iter, iovec.iov_len);
1386 	}
1387 
1388 	ret = (total_len - iov_iter_count(&iter)) ? : ret;
1389 
1390 release_mm:
1391 	mmput(mm);
1392 release_task:
1393 	put_task_struct(task);
1394 put_pid:
1395 	put_pid(pid);
1396 free_iov:
1397 	kfree(iov);
1398 out:
1399 	return ret;
1400 }
1401