1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/vmacache.h>
18 #include <linux/shm.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <linux/swap.h>
22 #include <linux/syscalls.h>
23 #include <linux/capability.h>
24 #include <linux/init.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/profile.h>
32 #include <linux/export.h>
33 #include <linux/mount.h>
34 #include <linux/mempolicy.h>
35 #include <linux/rmap.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/mmdebug.h>
38 #include <linux/perf_event.h>
39 #include <linux/audit.h>
40 #include <linux/khugepaged.h>
41 #include <linux/uprobes.h>
42 #include <linux/rbtree_augmented.h>
43 #include <linux/notifier.h>
44 #include <linux/memory.h>
45 #include <linux/printk.h>
46 #include <linux/userfaultfd_k.h>
47 #include <linux/moduleparam.h>
48 #include <linux/pkeys.h>
49 #include <linux/oom.h>
50 #include <linux/sched/mm.h>
51
52 #include <linux/uaccess.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlb.h>
55 #include <asm/mmu_context.h>
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/mmap.h>
59 #undef CREATE_TRACE_POINTS
60 #include <trace/hooks/mm.h>
61 #include "internal.h"
62
63 #ifndef arch_mmap_check
64 #define arch_mmap_check(addr, len, flags) (0)
65 #endif
66
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
68 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
69 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
70 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
71 #endif
72 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
73 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
74 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
75 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
76 #endif
77
78 static bool ignore_rlimit_data;
79 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
80
81 static void unmap_region(struct mm_struct *mm,
82 struct vm_area_struct *vma, struct vm_area_struct *prev,
83 unsigned long start, unsigned long end);
84
85 /* description of effects of mapping type and prot in current implementation.
86 * this is due to the limited x86 page protection hardware. The expected
87 * behavior is in parens:
88 *
89 * map_type prot
90 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
91 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
92 * w: (no) no w: (no) no w: (yes) yes w: (no) no
93 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
94 *
95 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
96 * w: (no) no w: (no) no w: (copy) copy w: (no) no
97 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
98 */
99 pgprot_t protection_map[16] __ro_after_init = {
100 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
101 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
102 };
103
104 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
arch_filter_pgprot(pgprot_t prot)105 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
106 {
107 return prot;
108 }
109 #endif
110
vm_get_page_prot(unsigned long vm_flags)111 pgprot_t vm_get_page_prot(unsigned long vm_flags)
112 {
113 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
114 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
115 pgprot_val(arch_vm_get_page_prot(vm_flags)));
116
117 return arch_filter_pgprot(ret);
118 }
119 EXPORT_SYMBOL(vm_get_page_prot);
120
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)121 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
122 {
123 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
124 }
125
126 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)127 void vma_set_page_prot(struct vm_area_struct *vma)
128 {
129 unsigned long vm_flags = vma->vm_flags;
130 pgprot_t vm_page_prot;
131
132 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
133 if (vma_wants_writenotify(vma, vm_page_prot)) {
134 vm_flags &= ~VM_SHARED;
135 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
136 }
137 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
138 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
139 }
140
141 /*
142 * Requires inode->i_mapping->i_mmap_rwsem
143 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)144 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
145 struct file *file, struct address_space *mapping)
146 {
147 if (vma->vm_flags & VM_DENYWRITE)
148 allow_write_access(file);
149 if (vma->vm_flags & VM_SHARED)
150 mapping_unmap_writable(mapping);
151
152 flush_dcache_mmap_lock(mapping);
153 vma_interval_tree_remove(vma, &mapping->i_mmap);
154 flush_dcache_mmap_unlock(mapping);
155 }
156
157 /*
158 * Unlink a file-based vm structure from its interval tree, to hide
159 * vma from rmap and vmtruncate before freeing its page tables.
160 */
unlink_file_vma(struct vm_area_struct * vma)161 void unlink_file_vma(struct vm_area_struct *vma)
162 {
163 struct file *file = vma->vm_file;
164
165 if (file) {
166 struct address_space *mapping = file->f_mapping;
167 i_mmap_lock_write(mapping);
168 __remove_shared_vm_struct(vma, file, mapping);
169 i_mmap_unlock_write(mapping);
170 }
171 }
172
__free_vma(struct vm_area_struct * vma)173 static void __free_vma(struct vm_area_struct *vma)
174 {
175 if (vma->vm_file)
176 fput(vma->vm_file);
177 mpol_put(vma_policy(vma));
178 vm_area_free(vma);
179 }
180
181 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
put_vma(struct vm_area_struct * vma)182 void put_vma(struct vm_area_struct *vma)
183 {
184 if (atomic_dec_and_test(&vma->vm_ref_count))
185 __free_vma(vma);
186 }
187 #else
put_vma(struct vm_area_struct * vma)188 static inline void put_vma(struct vm_area_struct *vma)
189 {
190 __free_vma(vma);
191 }
192 #endif
193
194 /*
195 * Close a vm structure and free it, returning the next.
196 */
remove_vma(struct vm_area_struct * vma)197 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
198 {
199 struct vm_area_struct *next = vma->vm_next;
200
201 might_sleep();
202 if (vma->vm_ops && vma->vm_ops->close)
203 vma->vm_ops->close(vma);
204 put_vma(vma);
205 return next;
206 }
207
208 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
209 struct list_head *uf);
SYSCALL_DEFINE1(brk,unsigned long,brk)210 SYSCALL_DEFINE1(brk, unsigned long, brk)
211 {
212 unsigned long retval;
213 unsigned long newbrk, oldbrk, origbrk;
214 struct mm_struct *mm = current->mm;
215 struct vm_area_struct *next;
216 unsigned long min_brk;
217 bool populate;
218 bool downgraded = false;
219 LIST_HEAD(uf);
220
221 if (mmap_write_lock_killable(mm))
222 return -EINTR;
223
224 origbrk = mm->brk;
225
226 #ifdef CONFIG_COMPAT_BRK
227 /*
228 * CONFIG_COMPAT_BRK can still be overridden by setting
229 * randomize_va_space to 2, which will still cause mm->start_brk
230 * to be arbitrarily shifted
231 */
232 if (current->brk_randomized)
233 min_brk = mm->start_brk;
234 else
235 min_brk = mm->end_data;
236 #else
237 min_brk = mm->start_brk;
238 #endif
239 if (brk < min_brk)
240 goto out;
241
242 /*
243 * Check against rlimit here. If this check is done later after the test
244 * of oldbrk with newbrk then it can escape the test and let the data
245 * segment grow beyond its set limit the in case where the limit is
246 * not page aligned -Ram Gupta
247 */
248 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
249 mm->end_data, mm->start_data))
250 goto out;
251
252 newbrk = PAGE_ALIGN(brk);
253 oldbrk = PAGE_ALIGN(mm->brk);
254 if (oldbrk == newbrk) {
255 mm->brk = brk;
256 goto success;
257 }
258
259 /*
260 * Always allow shrinking brk.
261 * __do_munmap() may downgrade mmap_lock to read.
262 */
263 if (brk <= mm->brk) {
264 int ret;
265
266 /*
267 * mm->brk must to be protected by write mmap_lock so update it
268 * before downgrading mmap_lock. When __do_munmap() fails,
269 * mm->brk will be restored from origbrk.
270 */
271 mm->brk = brk;
272 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
273 if (ret < 0) {
274 mm->brk = origbrk;
275 goto out;
276 } else if (ret == 1) {
277 downgraded = true;
278 }
279 goto success;
280 }
281
282 /* Check against existing mmap mappings. */
283 next = find_vma(mm, oldbrk);
284 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
285 goto out;
286
287 /* Ok, looks good - let it rip. */
288 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
289 goto out;
290 mm->brk = brk;
291
292 success:
293 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
294 if (downgraded)
295 mmap_read_unlock(mm);
296 else
297 mmap_write_unlock(mm);
298 userfaultfd_unmap_complete(mm, &uf);
299 if (populate)
300 mm_populate(oldbrk, newbrk - oldbrk);
301 return brk;
302
303 out:
304 retval = origbrk;
305 mmap_write_unlock(mm);
306 return retval;
307 }
308
vma_compute_gap(struct vm_area_struct * vma)309 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
310 {
311 unsigned long gap, prev_end;
312
313 /*
314 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
315 * allow two stack_guard_gaps between them here, and when choosing
316 * an unmapped area; whereas when expanding we only require one.
317 * That's a little inconsistent, but keeps the code here simpler.
318 */
319 gap = vm_start_gap(vma);
320 if (vma->vm_prev) {
321 prev_end = vm_end_gap(vma->vm_prev);
322 if (gap > prev_end)
323 gap -= prev_end;
324 else
325 gap = 0;
326 }
327 return gap;
328 }
329
330 #ifdef CONFIG_DEBUG_VM_RB
vma_compute_subtree_gap(struct vm_area_struct * vma)331 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
332 {
333 unsigned long max = vma_compute_gap(vma), subtree_gap;
334 if (vma->vm_rb.rb_left) {
335 subtree_gap = rb_entry(vma->vm_rb.rb_left,
336 struct vm_area_struct, vm_rb)->rb_subtree_gap;
337 if (subtree_gap > max)
338 max = subtree_gap;
339 }
340 if (vma->vm_rb.rb_right) {
341 subtree_gap = rb_entry(vma->vm_rb.rb_right,
342 struct vm_area_struct, vm_rb)->rb_subtree_gap;
343 if (subtree_gap > max)
344 max = subtree_gap;
345 }
346 return max;
347 }
348
browse_rb(struct mm_struct * mm)349 static int browse_rb(struct mm_struct *mm)
350 {
351 struct rb_root *root = &mm->mm_rb;
352 int i = 0, j, bug = 0;
353 struct rb_node *nd, *pn = NULL;
354 unsigned long prev = 0, pend = 0;
355
356 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
357 struct vm_area_struct *vma;
358 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
359 if (vma->vm_start < prev) {
360 pr_emerg("vm_start %lx < prev %lx\n",
361 vma->vm_start, prev);
362 bug = 1;
363 }
364 if (vma->vm_start < pend) {
365 pr_emerg("vm_start %lx < pend %lx\n",
366 vma->vm_start, pend);
367 bug = 1;
368 }
369 if (vma->vm_start > vma->vm_end) {
370 pr_emerg("vm_start %lx > vm_end %lx\n",
371 vma->vm_start, vma->vm_end);
372 bug = 1;
373 }
374 spin_lock(&mm->page_table_lock);
375 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
376 pr_emerg("free gap %lx, correct %lx\n",
377 vma->rb_subtree_gap,
378 vma_compute_subtree_gap(vma));
379 bug = 1;
380 }
381 spin_unlock(&mm->page_table_lock);
382 i++;
383 pn = nd;
384 prev = vma->vm_start;
385 pend = vma->vm_end;
386 }
387 j = 0;
388 for (nd = pn; nd; nd = rb_prev(nd))
389 j++;
390 if (i != j) {
391 pr_emerg("backwards %d, forwards %d\n", j, i);
392 bug = 1;
393 }
394 return bug ? -1 : i;
395 }
396
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)397 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
398 {
399 struct rb_node *nd;
400
401 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
402 struct vm_area_struct *vma;
403 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
404 VM_BUG_ON_VMA(vma != ignore &&
405 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
406 vma);
407 }
408 }
409
validate_mm(struct mm_struct * mm)410 static void validate_mm(struct mm_struct *mm)
411 {
412 int bug = 0;
413 int i = 0;
414 unsigned long highest_address = 0;
415 struct vm_area_struct *vma = mm->mmap;
416
417 while (vma) {
418 struct anon_vma *anon_vma = vma->anon_vma;
419 struct anon_vma_chain *avc;
420
421 if (anon_vma) {
422 anon_vma_lock_read(anon_vma);
423 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
424 anon_vma_interval_tree_verify(avc);
425 anon_vma_unlock_read(anon_vma);
426 }
427
428 highest_address = vm_end_gap(vma);
429 vma = vma->vm_next;
430 i++;
431 }
432 if (i != mm->map_count) {
433 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
434 bug = 1;
435 }
436 if (highest_address != mm->highest_vm_end) {
437 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
438 mm->highest_vm_end, highest_address);
439 bug = 1;
440 }
441 i = browse_rb(mm);
442 if (i != mm->map_count) {
443 if (i != -1)
444 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
445 bug = 1;
446 }
447 VM_BUG_ON_MM(bug, mm);
448 }
449 #else
450 #define validate_mm_rb(root, ignore) do { } while (0)
451 #define validate_mm(mm) do { } while (0)
452 #endif
453
RB_DECLARE_CALLBACKS_MAX(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_gap)454 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
455 struct vm_area_struct, vm_rb,
456 unsigned long, rb_subtree_gap, vma_compute_gap)
457 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
458 #define mm_rb_write_lock(mm) write_lock(&(mm)->mm_rb_lock)
459 #define mm_rb_write_unlock(mm) write_unlock(&(mm)->mm_rb_lock)
460 #else
461 #define mm_rb_write_lock(mm) do { } while (0)
462 #define mm_rb_write_unlock(mm) do { } while (0)
463 #endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
464
465 /*
466 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
467 * vma->vm_prev->vm_end values changed, without modifying the vma's position
468 * in the rbtree.
469 */
470 static void vma_gap_update(struct vm_area_struct *vma)
471 {
472 /*
473 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
474 * a callback function that does exactly what we want.
475 */
476 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
477 }
478
vma_rb_insert(struct vm_area_struct * vma,struct mm_struct * mm)479 static inline void vma_rb_insert(struct vm_area_struct *vma,
480 struct mm_struct *mm)
481 {
482 struct rb_root *root = &mm->mm_rb;
483
484 /* All rb_subtree_gap values must be consistent prior to insertion */
485 validate_mm_rb(root, NULL);
486
487 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
488 }
489
__vma_rb_erase(struct vm_area_struct * vma,struct mm_struct * mm)490 static void __vma_rb_erase(struct vm_area_struct *vma, struct mm_struct *mm)
491 {
492 struct rb_root *root = &mm->mm_rb;
493 /*
494 * Note rb_erase_augmented is a fairly large inline function,
495 * so make sure we instantiate it only once with our desired
496 * augmented rbtree callbacks.
497 */
498 mm_rb_write_lock(mm);
499 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
500 mm_rb_write_unlock(mm); /* wmb */
501
502 /*
503 * Ensure the removal is complete before clearing the node.
504 * Matched by vma_has_changed()/handle_speculative_fault().
505 */
506 RB_CLEAR_NODE(&vma->vm_rb);
507 }
508
vma_rb_erase_ignore(struct vm_area_struct * vma,struct mm_struct * mm,struct vm_area_struct * ignore)509 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
510 struct mm_struct *mm,
511 struct vm_area_struct *ignore)
512 {
513 /*
514 * All rb_subtree_gap values must be consistent prior to erase,
515 * with the possible exception of
516 *
517 * a. the "next" vma being erased if next->vm_start was reduced in
518 * __vma_adjust() -> __vma_unlink()
519 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
520 * vma_rb_erase()
521 */
522 validate_mm_rb(&mm->mm_rb, ignore);
523
524 __vma_rb_erase(vma, mm);
525 }
526
vma_rb_erase(struct vm_area_struct * vma,struct mm_struct * mm)527 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
528 struct mm_struct *mm)
529 {
530 vma_rb_erase_ignore(vma, mm, vma);
531 }
532
533 /*
534 * vma has some anon_vma assigned, and is already inserted on that
535 * anon_vma's interval trees.
536 *
537 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
538 * vma must be removed from the anon_vma's interval trees using
539 * anon_vma_interval_tree_pre_update_vma().
540 *
541 * After the update, the vma will be reinserted using
542 * anon_vma_interval_tree_post_update_vma().
543 *
544 * The entire update must be protected by exclusive mmap_lock and by
545 * the root anon_vma's mutex.
546 */
547 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)548 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
549 {
550 struct anon_vma_chain *avc;
551
552 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
553 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
554 }
555
556 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)557 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
558 {
559 struct anon_vma_chain *avc;
560
561 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
562 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
563 }
564
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)565 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
566 unsigned long end, struct vm_area_struct **pprev,
567 struct rb_node ***rb_link, struct rb_node **rb_parent)
568 {
569 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
570
571 __rb_link = &mm->mm_rb.rb_node;
572 rb_prev = __rb_parent = NULL;
573
574 while (*__rb_link) {
575 struct vm_area_struct *vma_tmp;
576
577 __rb_parent = *__rb_link;
578 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
579
580 if (vma_tmp->vm_end > addr) {
581 /* Fail if an existing vma overlaps the area */
582 if (vma_tmp->vm_start < end)
583 return -ENOMEM;
584 __rb_link = &__rb_parent->rb_left;
585 } else {
586 rb_prev = __rb_parent;
587 __rb_link = &__rb_parent->rb_right;
588 }
589 }
590
591 *pprev = NULL;
592 if (rb_prev)
593 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
594 *rb_link = __rb_link;
595 *rb_parent = __rb_parent;
596 return 0;
597 }
598
599 /*
600 * vma_next() - Get the next VMA.
601 * @mm: The mm_struct.
602 * @vma: The current vma.
603 *
604 * If @vma is NULL, return the first vma in the mm.
605 *
606 * Returns: The next VMA after @vma.
607 */
vma_next(struct mm_struct * mm,struct vm_area_struct * vma)608 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
609 struct vm_area_struct *vma)
610 {
611 if (!vma)
612 return mm->mmap;
613
614 return vma->vm_next;
615 }
616
617 /*
618 * munmap_vma_range() - munmap VMAs that overlap a range.
619 * @mm: The mm struct
620 * @start: The start of the range.
621 * @len: The length of the range.
622 * @pprev: pointer to the pointer that will be set to previous vm_area_struct
623 * @rb_link: the rb_node
624 * @rb_parent: the parent rb_node
625 *
626 * Find all the vm_area_struct that overlap from @start to
627 * @end and munmap them. Set @pprev to the previous vm_area_struct.
628 *
629 * Returns: -ENOMEM on munmap failure or 0 on success.
630 */
631 static inline int
munmap_vma_range(struct mm_struct * mm,unsigned long start,unsigned long len,struct vm_area_struct ** pprev,struct rb_node *** link,struct rb_node ** parent,struct list_head * uf)632 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
633 struct vm_area_struct **pprev, struct rb_node ***link,
634 struct rb_node **parent, struct list_head *uf)
635 {
636
637 while (find_vma_links(mm, start, start + len, pprev, link, parent))
638 if (do_munmap(mm, start, len, uf))
639 return -ENOMEM;
640
641 return 0;
642 }
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)643 static unsigned long count_vma_pages_range(struct mm_struct *mm,
644 unsigned long addr, unsigned long end)
645 {
646 unsigned long nr_pages = 0;
647 struct vm_area_struct *vma;
648
649 /* Find first overlaping mapping */
650 vma = find_vma_intersection(mm, addr, end);
651 if (!vma)
652 return 0;
653
654 nr_pages = (min(end, vma->vm_end) -
655 max(addr, vma->vm_start)) >> PAGE_SHIFT;
656
657 /* Iterate over the rest of the overlaps */
658 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
659 unsigned long overlap_len;
660
661 if (vma->vm_start > end)
662 break;
663
664 overlap_len = min(end, vma->vm_end) - vma->vm_start;
665 nr_pages += overlap_len >> PAGE_SHIFT;
666 }
667
668 return nr_pages;
669 }
670
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)671 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
672 struct rb_node **rb_link, struct rb_node *rb_parent)
673 {
674 /* Update tracking information for the gap following the new vma. */
675 if (vma->vm_next)
676 vma_gap_update(vma->vm_next);
677 else
678 mm->highest_vm_end = vm_end_gap(vma);
679
680 /*
681 * vma->vm_prev wasn't known when we followed the rbtree to find the
682 * correct insertion point for that vma. As a result, we could not
683 * update the vma vm_rb parents rb_subtree_gap values on the way down.
684 * So, we first insert the vma with a zero rb_subtree_gap value
685 * (to be consistent with what we did on the way down), and then
686 * immediately update the gap to the correct value. Finally we
687 * rebalance the rbtree after all augmented values have been set.
688 */
689 mm_rb_write_lock(mm);
690 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
691 vma->rb_subtree_gap = 0;
692 vma_gap_update(vma);
693 vma_rb_insert(vma, mm);
694 mm_rb_write_unlock(mm);
695 }
696
__vma_link_file(struct vm_area_struct * vma)697 static void __vma_link_file(struct vm_area_struct *vma)
698 {
699 struct file *file;
700
701 file = vma->vm_file;
702 if (file) {
703 struct address_space *mapping = file->f_mapping;
704
705 if (vma->vm_flags & VM_DENYWRITE)
706 put_write_access(file_inode(file));
707 if (vma->vm_flags & VM_SHARED)
708 mapping_allow_writable(mapping);
709
710 flush_dcache_mmap_lock(mapping);
711 vma_interval_tree_insert(vma, &mapping->i_mmap);
712 flush_dcache_mmap_unlock(mapping);
713 }
714 }
715
716 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)717 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
718 struct vm_area_struct *prev, struct rb_node **rb_link,
719 struct rb_node *rb_parent)
720 {
721 __vma_link_list(mm, vma, prev);
722 __vma_link_rb(mm, vma, rb_link, rb_parent);
723 }
724
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)725 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
726 struct vm_area_struct *prev, struct rb_node **rb_link,
727 struct rb_node *rb_parent)
728 {
729 struct address_space *mapping = NULL;
730
731 if (vma->vm_file) {
732 mapping = vma->vm_file->f_mapping;
733 i_mmap_lock_write(mapping);
734 }
735
736 __vma_link(mm, vma, prev, rb_link, rb_parent);
737 __vma_link_file(vma);
738
739 if (mapping)
740 i_mmap_unlock_write(mapping);
741
742 mm->map_count++;
743 validate_mm(mm);
744 }
745
746 /*
747 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
748 * mm's list and rbtree. It has already been inserted into the interval tree.
749 */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)750 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
751 {
752 struct vm_area_struct *prev;
753 struct rb_node **rb_link, *rb_parent;
754
755 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
756 &prev, &rb_link, &rb_parent))
757 BUG();
758 __vma_link(mm, vma, prev, rb_link, rb_parent);
759 mm->map_count++;
760 }
761
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * ignore)762 static __always_inline void __vma_unlink(struct mm_struct *mm,
763 struct vm_area_struct *vma,
764 struct vm_area_struct *ignore)
765 {
766 vma_rb_erase_ignore(vma, mm, ignore);
767 __vma_unlink_list(mm, vma);
768 /* Kill the cache */
769 vmacache_invalidate(mm);
770 }
771
772 /*
773 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
774 * is already present in an i_mmap tree without adjusting the tree.
775 * The following helper function should be used when such adjustments
776 * are necessary. The "insert" vma (if any) is to be inserted
777 * before we drop the necessary locks.
778 */
__vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert,struct vm_area_struct * expand,bool keep_locked)779 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
780 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
781 struct vm_area_struct *expand, bool keep_locked)
782 {
783 struct mm_struct *mm = vma->vm_mm;
784 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
785 struct address_space *mapping = NULL;
786 struct rb_root_cached *root = NULL;
787 struct anon_vma *anon_vma = NULL;
788 struct file *file = vma->vm_file;
789 bool start_changed = false, end_changed = false;
790 long adjust_next = 0;
791 int remove_next = 0;
792
793 vm_write_begin(vma);
794 if (next)
795 vm_write_begin(next);
796
797 if (next && !insert) {
798 struct vm_area_struct *exporter = NULL, *importer = NULL;
799
800 if (end >= next->vm_end) {
801 /*
802 * vma expands, overlapping all the next, and
803 * perhaps the one after too (mprotect case 6).
804 * The only other cases that gets here are
805 * case 1, case 7 and case 8.
806 */
807 if (next == expand) {
808 /*
809 * The only case where we don't expand "vma"
810 * and we expand "next" instead is case 8.
811 */
812 VM_WARN_ON(end != next->vm_end);
813 /*
814 * remove_next == 3 means we're
815 * removing "vma" and that to do so we
816 * swapped "vma" and "next".
817 */
818 remove_next = 3;
819 VM_WARN_ON(file != next->vm_file);
820 swap(vma, next);
821 } else {
822 VM_WARN_ON(expand != vma);
823 /*
824 * case 1, 6, 7, remove_next == 2 is case 6,
825 * remove_next == 1 is case 1 or 7.
826 */
827 remove_next = 1 + (end > next->vm_end);
828 VM_WARN_ON(remove_next == 2 &&
829 end != next->vm_next->vm_end);
830 /* trim end to next, for case 6 first pass */
831 end = next->vm_end;
832 }
833
834 exporter = next;
835 importer = vma;
836
837 /*
838 * If next doesn't have anon_vma, import from vma after
839 * next, if the vma overlaps with it.
840 */
841 if (remove_next == 2 && !next->anon_vma)
842 exporter = next->vm_next;
843
844 } else if (end > next->vm_start) {
845 /*
846 * vma expands, overlapping part of the next:
847 * mprotect case 5 shifting the boundary up.
848 */
849 adjust_next = (end - next->vm_start);
850 exporter = next;
851 importer = vma;
852 VM_WARN_ON(expand != importer);
853 } else if (end < vma->vm_end) {
854 /*
855 * vma shrinks, and !insert tells it's not
856 * split_vma inserting another: so it must be
857 * mprotect case 4 shifting the boundary down.
858 */
859 adjust_next = -(vma->vm_end - end);
860 exporter = vma;
861 importer = next;
862 VM_WARN_ON(expand != importer);
863 }
864
865 /*
866 * Easily overlooked: when mprotect shifts the boundary,
867 * make sure the expanding vma has anon_vma set if the
868 * shrinking vma had, to cover any anon pages imported.
869 */
870 if (exporter && exporter->anon_vma && !importer->anon_vma) {
871 int error;
872
873 importer->anon_vma = exporter->anon_vma;
874 error = anon_vma_clone(importer, exporter);
875 if (error) {
876 if (next && next != vma)
877 vm_write_end(next);
878 vm_write_end(vma);
879 return error;
880 }
881 }
882 }
883 again:
884 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
885
886 if (file) {
887 mapping = file->f_mapping;
888 root = &mapping->i_mmap;
889 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
890
891 if (adjust_next)
892 uprobe_munmap(next, next->vm_start, next->vm_end);
893
894 i_mmap_lock_write(mapping);
895 if (insert) {
896 /*
897 * Put into interval tree now, so instantiated pages
898 * are visible to arm/parisc __flush_dcache_page
899 * throughout; but we cannot insert into address
900 * space until vma start or end is updated.
901 */
902 __vma_link_file(insert);
903 }
904 }
905
906 anon_vma = vma->anon_vma;
907 if (!anon_vma && adjust_next)
908 anon_vma = next->anon_vma;
909 if (anon_vma) {
910 VM_WARN_ON(adjust_next && next->anon_vma &&
911 anon_vma != next->anon_vma);
912 anon_vma_lock_write(anon_vma);
913 anon_vma_interval_tree_pre_update_vma(vma);
914 if (adjust_next)
915 anon_vma_interval_tree_pre_update_vma(next);
916 }
917
918 if (file) {
919 flush_dcache_mmap_lock(mapping);
920 vma_interval_tree_remove(vma, root);
921 if (adjust_next)
922 vma_interval_tree_remove(next, root);
923 }
924
925 if (start != vma->vm_start) {
926 WRITE_ONCE(vma->vm_start, start);
927 start_changed = true;
928 }
929 if (end != vma->vm_end) {
930 WRITE_ONCE(vma->vm_end, end);
931 end_changed = true;
932 }
933 WRITE_ONCE(vma->vm_pgoff, pgoff);
934 if (adjust_next) {
935 WRITE_ONCE(next->vm_start,
936 next->vm_start + adjust_next);
937 WRITE_ONCE(next->vm_pgoff,
938 next->vm_pgoff + (adjust_next >> PAGE_SHIFT));
939 }
940
941 if (file) {
942 if (adjust_next)
943 vma_interval_tree_insert(next, root);
944 vma_interval_tree_insert(vma, root);
945 flush_dcache_mmap_unlock(mapping);
946 }
947
948 if (remove_next) {
949 /*
950 * vma_merge has merged next into vma, and needs
951 * us to remove next before dropping the locks.
952 */
953 if (remove_next != 3)
954 __vma_unlink(mm, next, next);
955 else
956 /*
957 * vma is not before next if they've been
958 * swapped.
959 *
960 * pre-swap() next->vm_start was reduced so
961 * tell validate_mm_rb to ignore pre-swap()
962 * "next" (which is stored in post-swap()
963 * "vma").
964 */
965 __vma_unlink(mm, next, vma);
966 if (file)
967 __remove_shared_vm_struct(next, file, mapping);
968 } else if (insert) {
969 /*
970 * split_vma has split insert from vma, and needs
971 * us to insert it before dropping the locks
972 * (it may either follow vma or precede it).
973 */
974 __insert_vm_struct(mm, insert);
975 } else {
976 if (start_changed)
977 vma_gap_update(vma);
978 if (end_changed) {
979 if (!next)
980 mm->highest_vm_end = vm_end_gap(vma);
981 else if (!adjust_next)
982 vma_gap_update(next);
983 }
984 }
985
986 if (anon_vma) {
987 anon_vma_interval_tree_post_update_vma(vma);
988 if (adjust_next)
989 anon_vma_interval_tree_post_update_vma(next);
990 anon_vma_unlock_write(anon_vma);
991 }
992
993 if (file) {
994 i_mmap_unlock_write(mapping);
995 uprobe_mmap(vma);
996
997 if (adjust_next)
998 uprobe_mmap(next);
999 }
1000
1001 if (remove_next) {
1002 if (file)
1003 uprobe_munmap(next, next->vm_start, next->vm_end);
1004 if (next->anon_vma)
1005 anon_vma_merge(vma, next);
1006 mm->map_count--;
1007 vm_write_end(next);
1008 put_vma(next);
1009 /*
1010 * In mprotect's case 6 (see comments on vma_merge),
1011 * we must remove another next too. It would clutter
1012 * up the code too much to do both in one go.
1013 */
1014 if (remove_next != 3) {
1015 /*
1016 * If "next" was removed and vma->vm_end was
1017 * expanded (up) over it, in turn
1018 * "next->vm_prev->vm_end" changed and the
1019 * "vma->vm_next" gap must be updated.
1020 */
1021 next = vma->vm_next;
1022 if (next)
1023 vm_write_begin(next);
1024 } else {
1025 /*
1026 * For the scope of the comment "next" and
1027 * "vma" considered pre-swap(): if "vma" was
1028 * removed, next->vm_start was expanded (down)
1029 * over it and the "next" gap must be updated.
1030 * Because of the swap() the post-swap() "vma"
1031 * actually points to pre-swap() "next"
1032 * (post-swap() "next" as opposed is now a
1033 * dangling pointer).
1034 */
1035 next = vma;
1036 }
1037 if (remove_next == 2) {
1038 remove_next = 1;
1039 end = next->vm_end;
1040 goto again;
1041 }
1042 else if (next)
1043 vma_gap_update(next);
1044 else {
1045 /*
1046 * If remove_next == 2 we obviously can't
1047 * reach this path.
1048 *
1049 * If remove_next == 3 we can't reach this
1050 * path because pre-swap() next is always not
1051 * NULL. pre-swap() "next" is not being
1052 * removed and its next->vm_end is not altered
1053 * (and furthermore "end" already matches
1054 * next->vm_end in remove_next == 3).
1055 *
1056 * We reach this only in the remove_next == 1
1057 * case if the "next" vma that was removed was
1058 * the highest vma of the mm. However in such
1059 * case next->vm_end == "end" and the extended
1060 * "vma" has vma->vm_end == next->vm_end so
1061 * mm->highest_vm_end doesn't need any update
1062 * in remove_next == 1 case.
1063 */
1064 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1065 }
1066 }
1067 if (insert && file)
1068 uprobe_mmap(insert);
1069
1070 if (next && next != vma)
1071 vm_write_end(next);
1072 if (!keep_locked)
1073 vm_write_end(vma);
1074
1075 validate_mm(mm);
1076
1077 return 0;
1078 }
1079
1080 /*
1081 * If the vma has a ->close operation then the driver probably needs to release
1082 * per-vma resources, so we don't attempt to merge those.
1083 */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1084 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1085 struct file *file, unsigned long vm_flags,
1086 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1087 struct anon_vma_name *anon_name)
1088 {
1089 /*
1090 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1091 * match the flags but dirty bit -- the caller should mark
1092 * merged VMA as dirty. If dirty bit won't be excluded from
1093 * comparison, we increase pressure on the memory system forcing
1094 * the kernel to generate new VMAs when old one could be
1095 * extended instead.
1096 */
1097 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1098 return 0;
1099 if (vma->vm_file != file)
1100 return 0;
1101 if (vma->vm_ops && vma->vm_ops->close)
1102 return 0;
1103 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1104 return 0;
1105 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
1106 return 0;
1107 return 1;
1108 }
1109
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)1110 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1111 struct anon_vma *anon_vma2,
1112 struct vm_area_struct *vma)
1113 {
1114 /*
1115 * The list_is_singular() test is to avoid merging VMA cloned from
1116 * parents. This can improve scalability caused by anon_vma lock.
1117 */
1118 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1119 list_is_singular(&vma->anon_vma_chain)))
1120 return 1;
1121 return anon_vma1 == anon_vma2;
1122 }
1123
1124 /*
1125 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1126 * in front of (at a lower virtual address and file offset than) the vma.
1127 *
1128 * We cannot merge two vmas if they have differently assigned (non-NULL)
1129 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1130 *
1131 * We don't check here for the merged mmap wrapping around the end of pagecache
1132 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1133 * wrap, nor mmaps which cover the final page at index -1UL.
1134 */
1135 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1136 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1137 struct anon_vma *anon_vma, struct file *file,
1138 pgoff_t vm_pgoff,
1139 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1140 struct anon_vma_name *anon_name)
1141 {
1142 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1143 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1144 if (vma->vm_pgoff == vm_pgoff)
1145 return 1;
1146 }
1147 return 0;
1148 }
1149
1150 /*
1151 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1152 * beyond (at a higher virtual address and file offset than) the vma.
1153 *
1154 * We cannot merge two vmas if they have differently assigned (non-NULL)
1155 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1156 */
1157 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1158 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1159 struct anon_vma *anon_vma, struct file *file,
1160 pgoff_t vm_pgoff,
1161 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1162 struct anon_vma_name *anon_name)
1163 {
1164 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1165 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1166 pgoff_t vm_pglen;
1167 vm_pglen = vma_pages(vma);
1168 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1169 return 1;
1170 }
1171 return 0;
1172 }
1173
1174 /*
1175 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1176 * figure out whether that can be merged with its predecessor or its
1177 * successor. Or both (it neatly fills a hole).
1178 *
1179 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1180 * certain not to be mapped by the time vma_merge is called; but when
1181 * called for mprotect, it is certain to be already mapped (either at
1182 * an offset within prev, or at the start of next), and the flags of
1183 * this area are about to be changed to vm_flags - and the no-change
1184 * case has already been eliminated.
1185 *
1186 * The following mprotect cases have to be considered, where AAAA is
1187 * the area passed down from mprotect_fixup, never extending beyond one
1188 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1189 *
1190 * AAAA AAAA AAAA
1191 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1192 * cannot merge might become might become
1193 * PPNNNNNNNNNN PPPPPPPPPPNN
1194 * mmap, brk or case 4 below case 5 below
1195 * mremap move:
1196 * AAAA AAAA
1197 * PPPP NNNN PPPPNNNNXXXX
1198 * might become might become
1199 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1200 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1201 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1202 *
1203 * It is important for case 8 that the vma NNNN overlapping the
1204 * region AAAA is never going to extended over XXXX. Instead XXXX must
1205 * be extended in region AAAA and NNNN must be removed. This way in
1206 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1207 * rmap_locks, the properties of the merged vma will be already
1208 * correct for the whole merged range. Some of those properties like
1209 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1210 * be correct for the whole merged range immediately after the
1211 * rmap_locks are released. Otherwise if XXXX would be removed and
1212 * NNNN would be extended over the XXXX range, remove_migration_ptes
1213 * or other rmap walkers (if working on addresses beyond the "end"
1214 * parameter) may establish ptes with the wrong permissions of NNNN
1215 * instead of the right permissions of XXXX.
1216 */
__vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name,bool keep_locked)1217 struct vm_area_struct *__vma_merge(struct mm_struct *mm,
1218 struct vm_area_struct *prev, unsigned long addr,
1219 unsigned long end, unsigned long vm_flags,
1220 struct anon_vma *anon_vma, struct file *file,
1221 pgoff_t pgoff, struct mempolicy *policy,
1222 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1223 struct anon_vma_name *anon_name, bool keep_locked)
1224 {
1225 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1226 struct vm_area_struct *area, *next;
1227 int err;
1228
1229 /*
1230 * We later require that vma->vm_flags == vm_flags,
1231 * so this tests vma->vm_flags & VM_SPECIAL, too.
1232 */
1233 if (vm_flags & VM_SPECIAL)
1234 return NULL;
1235
1236 next = vma_next(mm, prev);
1237 area = next;
1238 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1239 next = next->vm_next;
1240
1241 /* verify some invariant that must be enforced by the caller */
1242 VM_WARN_ON(prev && addr <= prev->vm_start);
1243 VM_WARN_ON(area && end > area->vm_end);
1244 VM_WARN_ON(addr >= end);
1245
1246 /*
1247 * Can it merge with the predecessor?
1248 */
1249 if (prev && prev->vm_end == addr &&
1250 mpol_equal(vma_policy(prev), policy) &&
1251 can_vma_merge_after(prev, vm_flags,
1252 anon_vma, file, pgoff,
1253 vm_userfaultfd_ctx, anon_name)) {
1254 /*
1255 * OK, it can. Can we now merge in the successor as well?
1256 */
1257 if (next && end == next->vm_start &&
1258 mpol_equal(policy, vma_policy(next)) &&
1259 can_vma_merge_before(next, vm_flags,
1260 anon_vma, file,
1261 pgoff+pglen,
1262 vm_userfaultfd_ctx, anon_name) &&
1263 is_mergeable_anon_vma(prev->anon_vma,
1264 next->anon_vma, NULL)) {
1265 /* cases 1, 6 */
1266 err = __vma_adjust(prev, prev->vm_start,
1267 next->vm_end, prev->vm_pgoff, NULL,
1268 prev, keep_locked);
1269 } else /* cases 2, 5, 7 */
1270 err = __vma_adjust(prev, prev->vm_start,
1271 end, prev->vm_pgoff, NULL, prev,
1272 keep_locked);
1273 if (err)
1274 return NULL;
1275 khugepaged_enter_vma_merge(prev, vm_flags);
1276 return prev;
1277 }
1278
1279 /*
1280 * Can this new request be merged in front of next?
1281 */
1282 if (next && end == next->vm_start &&
1283 mpol_equal(policy, vma_policy(next)) &&
1284 can_vma_merge_before(next, vm_flags,
1285 anon_vma, file, pgoff+pglen,
1286 vm_userfaultfd_ctx, anon_name)) {
1287 if (prev && addr < prev->vm_end) /* case 4 */
1288 err = __vma_adjust(prev, prev->vm_start,
1289 addr, prev->vm_pgoff, NULL, next,
1290 keep_locked);
1291 else { /* cases 3, 8 */
1292 err = __vma_adjust(area, addr, next->vm_end,
1293 next->vm_pgoff - pglen, NULL, next,
1294 keep_locked);
1295 /*
1296 * In case 3 area is already equal to next and
1297 * this is a noop, but in case 8 "area" has
1298 * been removed and next was expanded over it.
1299 */
1300 area = next;
1301 }
1302 if (err)
1303 return NULL;
1304 khugepaged_enter_vma_merge(area, vm_flags);
1305 return area;
1306 }
1307
1308 return NULL;
1309 }
1310
1311 /*
1312 * Rough compatibility check to quickly see if it's even worth looking
1313 * at sharing an anon_vma.
1314 *
1315 * They need to have the same vm_file, and the flags can only differ
1316 * in things that mprotect may change.
1317 *
1318 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1319 * we can merge the two vma's. For example, we refuse to merge a vma if
1320 * there is a vm_ops->close() function, because that indicates that the
1321 * driver is doing some kind of reference counting. But that doesn't
1322 * really matter for the anon_vma sharing case.
1323 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1324 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1325 {
1326 return a->vm_end == b->vm_start &&
1327 mpol_equal(vma_policy(a), vma_policy(b)) &&
1328 a->vm_file == b->vm_file &&
1329 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1330 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1331 }
1332
1333 /*
1334 * Do some basic sanity checking to see if we can re-use the anon_vma
1335 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1336 * the same as 'old', the other will be the new one that is trying
1337 * to share the anon_vma.
1338 *
1339 * NOTE! This runs with mm_sem held for reading, so it is possible that
1340 * the anon_vma of 'old' is concurrently in the process of being set up
1341 * by another page fault trying to merge _that_. But that's ok: if it
1342 * is being set up, that automatically means that it will be a singleton
1343 * acceptable for merging, so we can do all of this optimistically. But
1344 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1345 *
1346 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1347 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1348 * is to return an anon_vma that is "complex" due to having gone through
1349 * a fork).
1350 *
1351 * We also make sure that the two vma's are compatible (adjacent,
1352 * and with the same memory policies). That's all stable, even with just
1353 * a read lock on the mm_sem.
1354 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1355 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1356 {
1357 if (anon_vma_compatible(a, b)) {
1358 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1359
1360 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1361 return anon_vma;
1362 }
1363 return NULL;
1364 }
1365
1366 /*
1367 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1368 * neighbouring vmas for a suitable anon_vma, before it goes off
1369 * to allocate a new anon_vma. It checks because a repetitive
1370 * sequence of mprotects and faults may otherwise lead to distinct
1371 * anon_vmas being allocated, preventing vma merge in subsequent
1372 * mprotect.
1373 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1374 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1375 {
1376 struct anon_vma *anon_vma = NULL;
1377
1378 /* Try next first. */
1379 if (vma->vm_next) {
1380 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1381 if (anon_vma)
1382 return anon_vma;
1383 }
1384
1385 /* Try prev next. */
1386 if (vma->vm_prev)
1387 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1388
1389 /*
1390 * We might reach here with anon_vma == NULL if we can't find
1391 * any reusable anon_vma.
1392 * There's no absolute need to look only at touching neighbours:
1393 * we could search further afield for "compatible" anon_vmas.
1394 * But it would probably just be a waste of time searching,
1395 * or lead to too many vmas hanging off the same anon_vma.
1396 * We're trying to allow mprotect remerging later on,
1397 * not trying to minimize memory used for anon_vmas.
1398 */
1399 return anon_vma;
1400 }
1401
1402 /*
1403 * If a hint addr is less than mmap_min_addr change hint to be as
1404 * low as possible but still greater than mmap_min_addr
1405 */
round_hint_to_min(unsigned long hint)1406 static inline unsigned long round_hint_to_min(unsigned long hint)
1407 {
1408 hint &= PAGE_MASK;
1409 if (((void *)hint != NULL) &&
1410 (hint < mmap_min_addr))
1411 return PAGE_ALIGN(mmap_min_addr);
1412 return hint;
1413 }
1414
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1415 static inline int mlock_future_check(struct mm_struct *mm,
1416 unsigned long flags,
1417 unsigned long len)
1418 {
1419 unsigned long locked, lock_limit;
1420
1421 /* mlock MCL_FUTURE? */
1422 if (flags & VM_LOCKED) {
1423 locked = len >> PAGE_SHIFT;
1424 locked += mm->locked_vm;
1425 lock_limit = rlimit(RLIMIT_MEMLOCK);
1426 lock_limit >>= PAGE_SHIFT;
1427 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1428 return -EAGAIN;
1429 }
1430 return 0;
1431 }
1432
file_mmap_size_max(struct file * file,struct inode * inode)1433 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1434 {
1435 if (S_ISREG(inode->i_mode))
1436 return MAX_LFS_FILESIZE;
1437
1438 if (S_ISBLK(inode->i_mode))
1439 return MAX_LFS_FILESIZE;
1440
1441 if (S_ISSOCK(inode->i_mode))
1442 return MAX_LFS_FILESIZE;
1443
1444 /* Special "we do even unsigned file positions" case */
1445 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1446 return 0;
1447
1448 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1449 return ULONG_MAX;
1450 }
1451
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1452 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1453 unsigned long pgoff, unsigned long len)
1454 {
1455 u64 maxsize = file_mmap_size_max(file, inode);
1456
1457 if (maxsize && len > maxsize)
1458 return false;
1459 maxsize -= len;
1460 if (pgoff > maxsize >> PAGE_SHIFT)
1461 return false;
1462 return true;
1463 }
1464
1465 /*
1466 * The caller must write-lock current->mm->mmap_lock.
1467 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1468 unsigned long do_mmap(struct file *file, unsigned long addr,
1469 unsigned long len, unsigned long prot,
1470 unsigned long flags, unsigned long pgoff,
1471 unsigned long *populate, struct list_head *uf)
1472 {
1473 struct mm_struct *mm = current->mm;
1474 vm_flags_t vm_flags;
1475 int pkey = 0;
1476
1477 *populate = 0;
1478
1479 if (!len)
1480 return -EINVAL;
1481
1482 /*
1483 * Does the application expect PROT_READ to imply PROT_EXEC?
1484 *
1485 * (the exception is when the underlying filesystem is noexec
1486 * mounted, in which case we dont add PROT_EXEC.)
1487 */
1488 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1489 if (!(file && path_noexec(&file->f_path)))
1490 prot |= PROT_EXEC;
1491
1492 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1493 if (flags & MAP_FIXED_NOREPLACE)
1494 flags |= MAP_FIXED;
1495
1496 if (!(flags & MAP_FIXED))
1497 addr = round_hint_to_min(addr);
1498
1499 /* Careful about overflows.. */
1500 len = PAGE_ALIGN(len);
1501 if (!len)
1502 return -ENOMEM;
1503
1504 /* offset overflow? */
1505 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1506 return -EOVERFLOW;
1507
1508 /* Too many mappings? */
1509 if (mm->map_count > sysctl_max_map_count)
1510 return -ENOMEM;
1511
1512 /* Obtain the address to map to. we verify (or select) it and ensure
1513 * that it represents a valid section of the address space.
1514 */
1515 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1516 if (IS_ERR_VALUE(addr))
1517 return addr;
1518
1519 if (flags & MAP_FIXED_NOREPLACE) {
1520 struct vm_area_struct *vma = find_vma(mm, addr);
1521
1522 if (vma && vma->vm_start < addr + len)
1523 return -EEXIST;
1524 }
1525
1526 if (prot == PROT_EXEC) {
1527 pkey = execute_only_pkey(mm);
1528 if (pkey < 0)
1529 pkey = 0;
1530 }
1531
1532 /* Do simple checking here so the lower-level routines won't have
1533 * to. we assume access permissions have been handled by the open
1534 * of the memory object, so we don't do any here.
1535 */
1536 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1537 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1538
1539 if (flags & MAP_LOCKED)
1540 if (!can_do_mlock())
1541 return -EPERM;
1542
1543 if (mlock_future_check(mm, vm_flags, len))
1544 return -EAGAIN;
1545
1546 if (file) {
1547 struct inode *inode = file_inode(file);
1548 unsigned long flags_mask;
1549
1550 if (!file_mmap_ok(file, inode, pgoff, len))
1551 return -EOVERFLOW;
1552
1553 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1554
1555 switch (flags & MAP_TYPE) {
1556 case MAP_SHARED:
1557 /*
1558 * Force use of MAP_SHARED_VALIDATE with non-legacy
1559 * flags. E.g. MAP_SYNC is dangerous to use with
1560 * MAP_SHARED as you don't know which consistency model
1561 * you will get. We silently ignore unsupported flags
1562 * with MAP_SHARED to preserve backward compatibility.
1563 */
1564 flags &= LEGACY_MAP_MASK;
1565 fallthrough;
1566 case MAP_SHARED_VALIDATE:
1567 if (flags & ~flags_mask)
1568 return -EOPNOTSUPP;
1569 if (prot & PROT_WRITE) {
1570 if (!(file->f_mode & FMODE_WRITE))
1571 return -EACCES;
1572 if (IS_SWAPFILE(file->f_mapping->host))
1573 return -ETXTBSY;
1574 }
1575
1576 /*
1577 * Make sure we don't allow writing to an append-only
1578 * file..
1579 */
1580 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1581 return -EACCES;
1582
1583 /*
1584 * Make sure there are no mandatory locks on the file.
1585 */
1586 if (locks_verify_locked(file))
1587 return -EAGAIN;
1588
1589 vm_flags |= VM_SHARED | VM_MAYSHARE;
1590 if (!(file->f_mode & FMODE_WRITE))
1591 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1592 fallthrough;
1593 case MAP_PRIVATE:
1594 if (!(file->f_mode & FMODE_READ))
1595 return -EACCES;
1596 if (path_noexec(&file->f_path)) {
1597 if (vm_flags & VM_EXEC)
1598 return -EPERM;
1599 vm_flags &= ~VM_MAYEXEC;
1600 }
1601
1602 if (!file->f_op->mmap)
1603 return -ENODEV;
1604 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1605 return -EINVAL;
1606 break;
1607
1608 default:
1609 return -EINVAL;
1610 }
1611 } else {
1612 switch (flags & MAP_TYPE) {
1613 case MAP_SHARED:
1614 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1615 return -EINVAL;
1616 /*
1617 * Ignore pgoff.
1618 */
1619 pgoff = 0;
1620 vm_flags |= VM_SHARED | VM_MAYSHARE;
1621 break;
1622 case MAP_PRIVATE:
1623 /*
1624 * Set pgoff according to addr for anon_vma.
1625 */
1626 pgoff = addr >> PAGE_SHIFT;
1627 break;
1628 default:
1629 return -EINVAL;
1630 }
1631 }
1632
1633 /*
1634 * Set 'VM_NORESERVE' if we should not account for the
1635 * memory use of this mapping.
1636 */
1637 if (flags & MAP_NORESERVE) {
1638 /* We honor MAP_NORESERVE if allowed to overcommit */
1639 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1640 vm_flags |= VM_NORESERVE;
1641
1642 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1643 if (file && is_file_hugepages(file))
1644 vm_flags |= VM_NORESERVE;
1645 }
1646
1647 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1648 if (!IS_ERR_VALUE(addr) &&
1649 ((vm_flags & VM_LOCKED) ||
1650 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1651 *populate = len;
1652 return addr;
1653 }
1654
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1655 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1656 unsigned long prot, unsigned long flags,
1657 unsigned long fd, unsigned long pgoff)
1658 {
1659 struct file *file = NULL;
1660 unsigned long retval;
1661
1662 if (!(flags & MAP_ANONYMOUS)) {
1663 audit_mmap_fd(fd, flags);
1664 file = fget(fd);
1665 if (!file)
1666 return -EBADF;
1667 if (is_file_hugepages(file)) {
1668 len = ALIGN(len, huge_page_size(hstate_file(file)));
1669 } else if (unlikely(flags & MAP_HUGETLB)) {
1670 retval = -EINVAL;
1671 goto out_fput;
1672 }
1673 } else if (flags & MAP_HUGETLB) {
1674 struct user_struct *user = NULL;
1675 struct hstate *hs;
1676
1677 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1678 if (!hs)
1679 return -EINVAL;
1680
1681 len = ALIGN(len, huge_page_size(hs));
1682 /*
1683 * VM_NORESERVE is used because the reservations will be
1684 * taken when vm_ops->mmap() is called
1685 * A dummy user value is used because we are not locking
1686 * memory so no accounting is necessary
1687 */
1688 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1689 VM_NORESERVE,
1690 &user, HUGETLB_ANONHUGE_INODE,
1691 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1692 if (IS_ERR(file))
1693 return PTR_ERR(file);
1694 }
1695
1696 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1697
1698 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1699 out_fput:
1700 if (file)
1701 fput(file);
1702 return retval;
1703 }
1704
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1705 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1706 unsigned long, prot, unsigned long, flags,
1707 unsigned long, fd, unsigned long, pgoff)
1708 {
1709 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1710 }
1711
1712 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1713 struct mmap_arg_struct {
1714 unsigned long addr;
1715 unsigned long len;
1716 unsigned long prot;
1717 unsigned long flags;
1718 unsigned long fd;
1719 unsigned long offset;
1720 };
1721
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1722 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1723 {
1724 struct mmap_arg_struct a;
1725
1726 if (copy_from_user(&a, arg, sizeof(a)))
1727 return -EFAULT;
1728 if (offset_in_page(a.offset))
1729 return -EINVAL;
1730
1731 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1732 a.offset >> PAGE_SHIFT);
1733 }
1734 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1735
1736 /*
1737 * Some shared mappings will want the pages marked read-only
1738 * to track write events. If so, we'll downgrade vm_page_prot
1739 * to the private version (using protection_map[] without the
1740 * VM_SHARED bit).
1741 */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1742 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1743 {
1744 vm_flags_t vm_flags = vma->vm_flags;
1745 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1746
1747 /* If it was private or non-writable, the write bit is already clear */
1748 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1749 return 0;
1750
1751 /* The backer wishes to know when pages are first written to? */
1752 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1753 return 1;
1754
1755 /* The open routine did something to the protections that pgprot_modify
1756 * won't preserve? */
1757 if (pgprot_val(vm_page_prot) !=
1758 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1759 return 0;
1760
1761 /*
1762 * Do we need to track softdirty? hugetlb does not support softdirty
1763 * tracking yet.
1764 */
1765 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY) &&
1766 !is_vm_hugetlb_page(vma))
1767 return 1;
1768
1769 /* Specialty mapping? */
1770 if (vm_flags & VM_PFNMAP)
1771 return 0;
1772
1773 /* Can the mapping track the dirty pages? */
1774 return vma->vm_file && vma->vm_file->f_mapping &&
1775 mapping_can_writeback(vma->vm_file->f_mapping);
1776 }
1777
1778 /*
1779 * We account for memory if it's a private writeable mapping,
1780 * not hugepages and VM_NORESERVE wasn't set.
1781 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1782 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1783 {
1784 /*
1785 * hugetlb has its own accounting separate from the core VM
1786 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1787 */
1788 if (file && is_file_hugepages(file))
1789 return 0;
1790
1791 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1792 }
1793
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)1794 unsigned long mmap_region(struct file *file, unsigned long addr,
1795 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1796 struct list_head *uf)
1797 {
1798 struct mm_struct *mm = current->mm;
1799 struct vm_area_struct *vma, *prev, *merge;
1800 int error;
1801 struct rb_node **rb_link, *rb_parent;
1802 unsigned long charged = 0;
1803
1804 /* Check against address space limit. */
1805 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1806 unsigned long nr_pages;
1807
1808 /*
1809 * MAP_FIXED may remove pages of mappings that intersects with
1810 * requested mapping. Account for the pages it would unmap.
1811 */
1812 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1813
1814 if (!may_expand_vm(mm, vm_flags,
1815 (len >> PAGE_SHIFT) - nr_pages))
1816 return -ENOMEM;
1817 }
1818
1819 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1820 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1821 return -ENOMEM;
1822 /*
1823 * Private writable mapping: check memory availability
1824 */
1825 if (accountable_mapping(file, vm_flags)) {
1826 charged = len >> PAGE_SHIFT;
1827 if (security_vm_enough_memory_mm(mm, charged))
1828 return -ENOMEM;
1829 vm_flags |= VM_ACCOUNT;
1830 }
1831
1832 /*
1833 * Can we just expand an old mapping?
1834 */
1835 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1836 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1837 if (vma)
1838 goto out;
1839
1840 /*
1841 * Determine the object being mapped and call the appropriate
1842 * specific mapper. the address has already been validated, but
1843 * not unmapped, but the maps are removed from the list.
1844 */
1845 vma = vm_area_alloc(mm);
1846 if (!vma) {
1847 error = -ENOMEM;
1848 goto unacct_error;
1849 }
1850
1851 vma->vm_start = addr;
1852 vma->vm_end = addr + len;
1853 vma->vm_flags = vm_flags;
1854 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1855 vma->vm_pgoff = pgoff;
1856
1857 if (file) {
1858 if (vm_flags & VM_DENYWRITE) {
1859 error = deny_write_access(file);
1860 if (error)
1861 goto free_vma;
1862 }
1863 if (vm_flags & VM_SHARED) {
1864 error = mapping_map_writable(file->f_mapping);
1865 if (error)
1866 goto allow_write_and_free_vma;
1867 }
1868
1869 /* ->mmap() can change vma->vm_file, but must guarantee that
1870 * vma_link() below can deny write-access if VM_DENYWRITE is set
1871 * and map writably if VM_SHARED is set. This usually means the
1872 * new file must not have been exposed to user-space, yet.
1873 */
1874 vma->vm_file = get_file(file);
1875 error = call_mmap(file, vma);
1876 if (error)
1877 goto unmap_and_free_vma;
1878
1879 /* Can addr have changed??
1880 *
1881 * Answer: Yes, several device drivers can do it in their
1882 * f_op->mmap method. -DaveM
1883 * Bug: If addr is changed, prev, rb_link, rb_parent should
1884 * be updated for vma_link()
1885 */
1886 WARN_ON_ONCE(addr != vma->vm_start);
1887
1888 addr = vma->vm_start;
1889
1890 /* If vm_flags changed after call_mmap(), we should try merge vma again
1891 * as we may succeed this time.
1892 */
1893 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1894 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1895 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1896 if (merge) {
1897 /* ->mmap() can change vma->vm_file and fput the original file. So
1898 * fput the vma->vm_file here or we would add an extra fput for file
1899 * and cause general protection fault ultimately.
1900 */
1901 fput(vma->vm_file);
1902 vm_area_free(vma);
1903 vma = merge;
1904 /* Update vm_flags to pick up the change. */
1905 vm_flags = vma->vm_flags;
1906 goto unmap_writable;
1907 }
1908 }
1909
1910 vm_flags = vma->vm_flags;
1911 } else if (vm_flags & VM_SHARED) {
1912 error = shmem_zero_setup(vma);
1913 if (error)
1914 goto free_vma;
1915 } else {
1916 vma_set_anonymous(vma);
1917 }
1918
1919 /* Allow architectures to sanity-check the vm_flags */
1920 if (!arch_validate_flags(vma->vm_flags)) {
1921 error = -EINVAL;
1922 if (file)
1923 goto close_and_free_vma;
1924 else
1925 goto free_vma;
1926 }
1927
1928 vma_link(mm, vma, prev, rb_link, rb_parent);
1929 /* Once vma denies write, undo our temporary denial count */
1930 if (file) {
1931 unmap_writable:
1932 if (vm_flags & VM_SHARED)
1933 mapping_unmap_writable(file->f_mapping);
1934 if (vm_flags & VM_DENYWRITE)
1935 allow_write_access(file);
1936 }
1937 file = vma->vm_file;
1938 out:
1939 perf_event_mmap(vma);
1940
1941 vm_write_begin(vma);
1942 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1943 if (vm_flags & VM_LOCKED) {
1944 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1945 is_vm_hugetlb_page(vma) ||
1946 vma == get_gate_vma(current->mm))
1947 WRITE_ONCE(vma->vm_flags,
1948 vma->vm_flags & VM_LOCKED_CLEAR_MASK);
1949 else
1950 mm->locked_vm += (len >> PAGE_SHIFT);
1951 }
1952
1953 if (file)
1954 uprobe_mmap(vma);
1955
1956 /*
1957 * New (or expanded) vma always get soft dirty status.
1958 * Otherwise user-space soft-dirty page tracker won't
1959 * be able to distinguish situation when vma area unmapped,
1960 * then new mapped in-place (which must be aimed as
1961 * a completely new data area).
1962 */
1963 WRITE_ONCE(vma->vm_flags, vma->vm_flags | VM_SOFTDIRTY);
1964
1965 vma_set_page_prot(vma);
1966 vm_write_end(vma);
1967
1968 return addr;
1969
1970 close_and_free_vma:
1971 if (vma->vm_ops && vma->vm_ops->close)
1972 vma->vm_ops->close(vma);
1973 unmap_and_free_vma:
1974 vma->vm_file = NULL;
1975 fput(file);
1976
1977 /* Undo any partial mapping done by a device driver. */
1978 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1979 if (vm_flags & VM_SHARED)
1980 mapping_unmap_writable(file->f_mapping);
1981 allow_write_and_free_vma:
1982 if (vm_flags & VM_DENYWRITE)
1983 allow_write_access(file);
1984 free_vma:
1985 vm_area_free(vma);
1986 unacct_error:
1987 if (charged)
1988 vm_unacct_memory(charged);
1989 return error;
1990 }
1991
unmapped_area(struct vm_unmapped_area_info * info)1992 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1993 {
1994 /*
1995 * We implement the search by looking for an rbtree node that
1996 * immediately follows a suitable gap. That is,
1997 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1998 * - gap_end = vma->vm_start >= info->low_limit + length;
1999 * - gap_end - gap_start >= length
2000 */
2001
2002 struct mm_struct *mm = current->mm;
2003 struct vm_area_struct *vma;
2004 unsigned long length, low_limit, high_limit, gap_start, gap_end;
2005
2006 /* Adjust search length to account for worst case alignment overhead */
2007 length = info->length + info->align_mask;
2008 if (length < info->length)
2009 return -ENOMEM;
2010
2011 /* Adjust search limits by the desired length */
2012 if (info->high_limit < length)
2013 return -ENOMEM;
2014 high_limit = info->high_limit - length;
2015
2016 if (info->low_limit > high_limit)
2017 return -ENOMEM;
2018 low_limit = info->low_limit + length;
2019
2020 /* Check if rbtree root looks promising */
2021 if (RB_EMPTY_ROOT(&mm->mm_rb))
2022 goto check_highest;
2023 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2024 if (vma->rb_subtree_gap < length)
2025 goto check_highest;
2026
2027 while (true) {
2028 /* Visit left subtree if it looks promising */
2029 gap_end = vm_start_gap(vma);
2030 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
2031 struct vm_area_struct *left =
2032 rb_entry(vma->vm_rb.rb_left,
2033 struct vm_area_struct, vm_rb);
2034 if (left->rb_subtree_gap >= length) {
2035 vma = left;
2036 continue;
2037 }
2038 }
2039
2040 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2041 check_current:
2042 /* Check if current node has a suitable gap */
2043 if (gap_start > high_limit)
2044 return -ENOMEM;
2045 if (gap_end >= low_limit &&
2046 gap_end > gap_start && gap_end - gap_start >= length)
2047 goto found;
2048
2049 /* Visit right subtree if it looks promising */
2050 if (vma->vm_rb.rb_right) {
2051 struct vm_area_struct *right =
2052 rb_entry(vma->vm_rb.rb_right,
2053 struct vm_area_struct, vm_rb);
2054 if (right->rb_subtree_gap >= length) {
2055 vma = right;
2056 continue;
2057 }
2058 }
2059
2060 /* Go back up the rbtree to find next candidate node */
2061 while (true) {
2062 struct rb_node *prev = &vma->vm_rb;
2063 if (!rb_parent(prev))
2064 goto check_highest;
2065 vma = rb_entry(rb_parent(prev),
2066 struct vm_area_struct, vm_rb);
2067 if (prev == vma->vm_rb.rb_left) {
2068 gap_start = vm_end_gap(vma->vm_prev);
2069 gap_end = vm_start_gap(vma);
2070 goto check_current;
2071 }
2072 }
2073 }
2074
2075 check_highest:
2076 /* Check highest gap, which does not precede any rbtree node */
2077 gap_start = mm->highest_vm_end;
2078 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
2079 if (gap_start > high_limit)
2080 return -ENOMEM;
2081
2082 found:
2083 /* We found a suitable gap. Clip it with the original low_limit. */
2084 if (gap_start < info->low_limit)
2085 gap_start = info->low_limit;
2086
2087 /* Adjust gap address to the desired alignment */
2088 gap_start += (info->align_offset - gap_start) & info->align_mask;
2089
2090 VM_BUG_ON(gap_start + info->length > info->high_limit);
2091 VM_BUG_ON(gap_start + info->length > gap_end);
2092 return gap_start;
2093 }
2094
unmapped_area_topdown(struct vm_unmapped_area_info * info)2095 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2096 {
2097 struct mm_struct *mm = current->mm;
2098 struct vm_area_struct *vma;
2099 unsigned long length, low_limit, high_limit, gap_start, gap_end;
2100 unsigned long addr = 0;
2101
2102 /* Adjust search length to account for worst case alignment overhead */
2103 length = info->length + info->align_mask;
2104 if (length < info->length)
2105 return -ENOMEM;
2106
2107 trace_android_vh_get_from_fragment_pool(mm, info, &addr);
2108 if (addr)
2109 return addr;
2110
2111 /*
2112 * Adjust search limits by the desired length.
2113 * See implementation comment at top of unmapped_area().
2114 */
2115 gap_end = info->high_limit;
2116 if (gap_end < length)
2117 return -ENOMEM;
2118 high_limit = gap_end - length;
2119
2120 if (info->low_limit > high_limit)
2121 return -ENOMEM;
2122 low_limit = info->low_limit + length;
2123
2124 /* Check highest gap, which does not precede any rbtree node */
2125 gap_start = mm->highest_vm_end;
2126 if (gap_start <= high_limit)
2127 goto found_highest;
2128
2129 /* Check if rbtree root looks promising */
2130 if (RB_EMPTY_ROOT(&mm->mm_rb))
2131 return -ENOMEM;
2132 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2133 if (vma->rb_subtree_gap < length)
2134 return -ENOMEM;
2135
2136 while (true) {
2137 /* Visit right subtree if it looks promising */
2138 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2139 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2140 struct vm_area_struct *right =
2141 rb_entry(vma->vm_rb.rb_right,
2142 struct vm_area_struct, vm_rb);
2143 if (right->rb_subtree_gap >= length) {
2144 vma = right;
2145 continue;
2146 }
2147 }
2148
2149 check_current:
2150 /* Check if current node has a suitable gap */
2151 gap_end = vm_start_gap(vma);
2152 if (gap_end < low_limit)
2153 return -ENOMEM;
2154 if (gap_start <= high_limit &&
2155 gap_end > gap_start && gap_end - gap_start >= length)
2156 goto found;
2157
2158 /* Visit left subtree if it looks promising */
2159 if (vma->vm_rb.rb_left) {
2160 struct vm_area_struct *left =
2161 rb_entry(vma->vm_rb.rb_left,
2162 struct vm_area_struct, vm_rb);
2163 if (left->rb_subtree_gap >= length) {
2164 vma = left;
2165 continue;
2166 }
2167 }
2168
2169 /* Go back up the rbtree to find next candidate node */
2170 while (true) {
2171 struct rb_node *prev = &vma->vm_rb;
2172 if (!rb_parent(prev))
2173 return -ENOMEM;
2174 vma = rb_entry(rb_parent(prev),
2175 struct vm_area_struct, vm_rb);
2176 if (prev == vma->vm_rb.rb_right) {
2177 gap_start = vma->vm_prev ?
2178 vm_end_gap(vma->vm_prev) : 0;
2179 goto check_current;
2180 }
2181 }
2182 }
2183
2184 found:
2185 /* We found a suitable gap. Clip it with the original high_limit. */
2186 if (gap_end > info->high_limit)
2187 gap_end = info->high_limit;
2188
2189 found_highest:
2190 /* Compute highest gap address at the desired alignment */
2191 gap_end -= info->length;
2192 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2193
2194 VM_BUG_ON(gap_end < info->low_limit);
2195 VM_BUG_ON(gap_end < gap_start);
2196 return gap_end;
2197 }
2198
2199 /*
2200 * Search for an unmapped address range.
2201 *
2202 * We are looking for a range that:
2203 * - does not intersect with any VMA;
2204 * - is contained within the [low_limit, high_limit) interval;
2205 * - is at least the desired size.
2206 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2207 */
vm_unmapped_area(struct vm_unmapped_area_info * info)2208 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2209 {
2210 unsigned long addr;
2211
2212 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2213 addr = unmapped_area_topdown(info);
2214 else
2215 addr = unmapped_area(info);
2216
2217 trace_vm_unmapped_area(addr, info);
2218 return addr;
2219 }
2220 EXPORT_SYMBOL_GPL(vm_unmapped_area);
2221
2222 /* Get an address range which is currently unmapped.
2223 * For shmat() with addr=0.
2224 *
2225 * Ugly calling convention alert:
2226 * Return value with the low bits set means error value,
2227 * ie
2228 * if (ret & ~PAGE_MASK)
2229 * error = ret;
2230 *
2231 * This function "knows" that -ENOMEM has the bits set.
2232 */
2233 #ifndef HAVE_ARCH_UNMAPPED_AREA
2234 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2235 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2236 unsigned long len, unsigned long pgoff, unsigned long flags)
2237 {
2238 struct mm_struct *mm = current->mm;
2239 struct vm_area_struct *vma, *prev;
2240 struct vm_unmapped_area_info info;
2241 const unsigned long mmap_end = arch_get_mmap_end(addr);
2242
2243 if (len > mmap_end - mmap_min_addr)
2244 return -ENOMEM;
2245
2246 if (flags & MAP_FIXED)
2247 return addr;
2248
2249 if (addr) {
2250 addr = PAGE_ALIGN(addr);
2251 vma = find_vma_prev(mm, addr, &prev);
2252 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2253 (!vma || addr + len <= vm_start_gap(vma)) &&
2254 (!prev || addr >= vm_end_gap(prev)))
2255 return addr;
2256 }
2257
2258 info.flags = 0;
2259 info.length = len;
2260 info.low_limit = mm->mmap_base;
2261 info.high_limit = mmap_end;
2262 info.align_mask = 0;
2263 info.align_offset = 0;
2264 return vm_unmapped_area(&info);
2265 }
2266 #endif
2267
2268 /*
2269 * This mmap-allocator allocates new areas top-down from below the
2270 * stack's low limit (the base):
2271 */
2272 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2273 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2274 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2275 unsigned long len, unsigned long pgoff,
2276 unsigned long flags)
2277 {
2278 struct vm_area_struct *vma, *prev;
2279 struct mm_struct *mm = current->mm;
2280 struct vm_unmapped_area_info info;
2281 const unsigned long mmap_end = arch_get_mmap_end(addr);
2282
2283 /* requested length too big for entire address space */
2284 if (len > mmap_end - mmap_min_addr)
2285 return -ENOMEM;
2286
2287 if (flags & MAP_FIXED)
2288 return addr;
2289
2290 /* requesting a specific address */
2291 if (addr) {
2292 addr = PAGE_ALIGN(addr);
2293 vma = find_vma_prev(mm, addr, &prev);
2294 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2295 (!vma || addr + len <= vm_start_gap(vma)) &&
2296 (!prev || addr >= vm_end_gap(prev)))
2297 return addr;
2298 }
2299
2300 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2301 info.length = len;
2302 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2303 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2304 info.align_mask = 0;
2305 info.align_offset = 0;
2306 trace_android_vh_exclude_reserved_zone(mm, &info);
2307 addr = vm_unmapped_area(&info);
2308
2309 /*
2310 * A failed mmap() very likely causes application failure,
2311 * so fall back to the bottom-up function here. This scenario
2312 * can happen with large stack limits and large mmap()
2313 * allocations.
2314 */
2315 if (offset_in_page(addr)) {
2316 VM_BUG_ON(addr != -ENOMEM);
2317 info.flags = 0;
2318 info.low_limit = TASK_UNMAPPED_BASE;
2319 info.high_limit = mmap_end;
2320 addr = vm_unmapped_area(&info);
2321 }
2322
2323 trace_android_vh_include_reserved_zone(mm, &info, &addr);
2324
2325 return addr;
2326 }
2327 #endif
2328
2329 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2330 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2331 unsigned long pgoff, unsigned long flags)
2332 {
2333 unsigned long (*get_area)(struct file *, unsigned long,
2334 unsigned long, unsigned long, unsigned long);
2335
2336 unsigned long error = arch_mmap_check(addr, len, flags);
2337 if (error)
2338 return error;
2339
2340 /* Careful about overflows.. */
2341 if (len > TASK_SIZE)
2342 return -ENOMEM;
2343
2344 get_area = current->mm->get_unmapped_area;
2345 if (file) {
2346 if (file->f_op->get_unmapped_area)
2347 get_area = file->f_op->get_unmapped_area;
2348 } else if (flags & MAP_SHARED) {
2349 /*
2350 * mmap_region() will call shmem_zero_setup() to create a file,
2351 * so use shmem's get_unmapped_area in case it can be huge.
2352 * do_mmap() will clear pgoff, so match alignment.
2353 */
2354 pgoff = 0;
2355 get_area = shmem_get_unmapped_area;
2356 }
2357
2358 addr = get_area(file, addr, len, pgoff, flags);
2359 if (IS_ERR_VALUE(addr))
2360 return addr;
2361
2362 if (addr > TASK_SIZE - len)
2363 return -ENOMEM;
2364 if (offset_in_page(addr))
2365 return -EINVAL;
2366
2367 error = security_mmap_addr(addr);
2368 return error ? error : addr;
2369 }
2370
2371 EXPORT_SYMBOL(get_unmapped_area);
2372
2373 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
__find_vma(struct mm_struct * mm,unsigned long addr)2374 static struct vm_area_struct *__find_vma(struct mm_struct *mm,
2375 unsigned long addr)
2376 {
2377 struct rb_node *rb_node;
2378 struct vm_area_struct *vma = NULL;
2379
2380 rb_node = mm->mm_rb.rb_node;
2381
2382 while (rb_node) {
2383 struct vm_area_struct *tmp;
2384
2385 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2386
2387 if (tmp->vm_end > addr) {
2388 vma = tmp;
2389 if (tmp->vm_start <= addr)
2390 break;
2391 rb_node = rb_node->rb_left;
2392 } else
2393 rb_node = rb_node->rb_right;
2394 }
2395
2396 return vma;
2397 }
2398
find_vma(struct mm_struct * mm,unsigned long addr)2399 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2400 {
2401 struct vm_area_struct *vma;
2402
2403 /* Check the cache first. */
2404 vma = vmacache_find(mm, addr);
2405 if (likely(vma))
2406 return vma;
2407
2408 vma = __find_vma(mm, addr);
2409 if (vma)
2410 vmacache_update(addr, vma);
2411 return vma;
2412 }
2413 EXPORT_SYMBOL(find_vma);
2414
2415 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
get_vma(struct mm_struct * mm,unsigned long addr)2416 struct vm_area_struct *get_vma(struct mm_struct *mm, unsigned long addr)
2417 {
2418 struct vm_area_struct *vma = NULL;
2419
2420 read_lock(&mm->mm_rb_lock);
2421 vma = __find_vma(mm, addr);
2422
2423 /*
2424 * If there is a concurrent fast mremap, bail out since the entire
2425 * PMD/PUD subtree may have been remapped.
2426 *
2427 * This is usually safe for conventional mremap since it takes the
2428 * PTE locks as does SPF. However fast mremap only takes the lock
2429 * at the PMD/PUD level which is ok as it is done with the mmap
2430 * write lock held. But since SPF, as the term implies forgoes,
2431 * taking the mmap read lock and also cannot take PTL lock at the
2432 * larger PMD/PUD granualrity, since it would introduce huge
2433 * contention in the page fault path; fall back to regular fault
2434 * handling.
2435 */
2436 if (vma && !atomic_inc_unless_negative(&vma->vm_ref_count))
2437 vma = NULL;
2438 read_unlock(&mm->mm_rb_lock);
2439
2440 return vma;
2441 }
2442 #endif
2443
2444 /*
2445 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2446 */
2447 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2448 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2449 struct vm_area_struct **pprev)
2450 {
2451 struct vm_area_struct *vma;
2452
2453 vma = find_vma(mm, addr);
2454 if (vma) {
2455 *pprev = vma->vm_prev;
2456 } else {
2457 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2458
2459 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2460 }
2461 return vma;
2462 }
2463
2464 /*
2465 * Verify that the stack growth is acceptable and
2466 * update accounting. This is shared with both the
2467 * grow-up and grow-down cases.
2468 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2469 static int acct_stack_growth(struct vm_area_struct *vma,
2470 unsigned long size, unsigned long grow)
2471 {
2472 struct mm_struct *mm = vma->vm_mm;
2473 unsigned long new_start;
2474
2475 /* address space limit tests */
2476 if (!may_expand_vm(mm, vma->vm_flags, grow))
2477 return -ENOMEM;
2478
2479 /* Stack limit test */
2480 if (size > rlimit(RLIMIT_STACK))
2481 return -ENOMEM;
2482
2483 /* mlock limit tests */
2484 if (vma->vm_flags & VM_LOCKED) {
2485 unsigned long locked;
2486 unsigned long limit;
2487 locked = mm->locked_vm + grow;
2488 limit = rlimit(RLIMIT_MEMLOCK);
2489 limit >>= PAGE_SHIFT;
2490 if (locked > limit && !capable(CAP_IPC_LOCK))
2491 return -ENOMEM;
2492 }
2493
2494 /* Check to ensure the stack will not grow into a hugetlb-only region */
2495 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2496 vma->vm_end - size;
2497 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2498 return -EFAULT;
2499
2500 /*
2501 * Overcommit.. This must be the final test, as it will
2502 * update security statistics.
2503 */
2504 if (security_vm_enough_memory_mm(mm, grow))
2505 return -ENOMEM;
2506
2507 return 0;
2508 }
2509
2510 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2511 /*
2512 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2513 * vma is the last one with address > vma->vm_end. Have to extend vma.
2514 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2515 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2516 {
2517 struct mm_struct *mm = vma->vm_mm;
2518 struct vm_area_struct *next;
2519 unsigned long gap_addr;
2520 int error = 0;
2521
2522 if (!(vma->vm_flags & VM_GROWSUP))
2523 return -EFAULT;
2524
2525 /* Guard against exceeding limits of the address space. */
2526 address &= PAGE_MASK;
2527 if (address >= (TASK_SIZE & PAGE_MASK))
2528 return -ENOMEM;
2529 address += PAGE_SIZE;
2530
2531 /* Enforce stack_guard_gap */
2532 gap_addr = address + stack_guard_gap;
2533
2534 /* Guard against overflow */
2535 if (gap_addr < address || gap_addr > TASK_SIZE)
2536 gap_addr = TASK_SIZE;
2537
2538 next = vma->vm_next;
2539 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2540 if (!(next->vm_flags & VM_GROWSUP))
2541 return -ENOMEM;
2542 /* Check that both stack segments have the same anon_vma? */
2543 }
2544
2545 /* We must make sure the anon_vma is allocated. */
2546 if (unlikely(anon_vma_prepare(vma)))
2547 return -ENOMEM;
2548
2549 /*
2550 * vma->vm_start/vm_end cannot change under us because the caller
2551 * is required to hold the mmap_lock in read mode. We need the
2552 * anon_vma lock to serialize against concurrent expand_stacks.
2553 */
2554 anon_vma_lock_write(vma->anon_vma);
2555
2556 /* Somebody else might have raced and expanded it already */
2557 if (address > vma->vm_end) {
2558 unsigned long size, grow;
2559
2560 size = address - vma->vm_start;
2561 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2562
2563 error = -ENOMEM;
2564 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2565 error = acct_stack_growth(vma, size, grow);
2566 if (!error) {
2567 /*
2568 * vma_gap_update() doesn't support concurrent
2569 * updates, but we only hold a shared mmap_lock
2570 * lock here, so we need to protect against
2571 * concurrent vma expansions.
2572 * anon_vma_lock_write() doesn't help here, as
2573 * we don't guarantee that all growable vmas
2574 * in a mm share the same root anon vma.
2575 * So, we reuse mm->page_table_lock to guard
2576 * against concurrent vma expansions.
2577 */
2578 spin_lock(&mm->page_table_lock);
2579 if (vma->vm_flags & VM_LOCKED)
2580 mm->locked_vm += grow;
2581 vm_stat_account(mm, vma->vm_flags, grow);
2582 anon_vma_interval_tree_pre_update_vma(vma);
2583 vma->vm_end = address;
2584 anon_vma_interval_tree_post_update_vma(vma);
2585 if (vma->vm_next)
2586 vma_gap_update(vma->vm_next);
2587 else
2588 mm->highest_vm_end = vm_end_gap(vma);
2589 spin_unlock(&mm->page_table_lock);
2590
2591 perf_event_mmap(vma);
2592 }
2593 }
2594 }
2595 anon_vma_unlock_write(vma->anon_vma);
2596 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2597 validate_mm(mm);
2598 return error;
2599 }
2600 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2601
2602 /*
2603 * vma is the first one with address < vma->vm_start. Have to extend vma.
2604 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2605 int expand_downwards(struct vm_area_struct *vma,
2606 unsigned long address)
2607 {
2608 struct mm_struct *mm = vma->vm_mm;
2609 struct vm_area_struct *prev;
2610 int error = 0;
2611
2612 address &= PAGE_MASK;
2613 if (address < mmap_min_addr)
2614 return -EPERM;
2615
2616 /* Enforce stack_guard_gap */
2617 prev = vma->vm_prev;
2618 /* Check that both stack segments have the same anon_vma? */
2619 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2620 vma_is_accessible(prev)) {
2621 if (address - prev->vm_end < stack_guard_gap)
2622 return -ENOMEM;
2623 }
2624
2625 /* We must make sure the anon_vma is allocated. */
2626 if (unlikely(anon_vma_prepare(vma)))
2627 return -ENOMEM;
2628
2629 /*
2630 * vma->vm_start/vm_end cannot change under us because the caller
2631 * is required to hold the mmap_lock in read mode. We need the
2632 * anon_vma lock to serialize against concurrent expand_stacks.
2633 */
2634 anon_vma_lock_write(vma->anon_vma);
2635
2636 /* Somebody else might have raced and expanded it already */
2637 if (address < vma->vm_start) {
2638 unsigned long size, grow;
2639
2640 size = vma->vm_end - address;
2641 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2642
2643 error = -ENOMEM;
2644 if (grow <= vma->vm_pgoff) {
2645 error = acct_stack_growth(vma, size, grow);
2646 if (!error) {
2647 /*
2648 * vma_gap_update() doesn't support concurrent
2649 * updates, but we only hold a shared mmap_lock
2650 * lock here, so we need to protect against
2651 * concurrent vma expansions.
2652 * anon_vma_lock_write() doesn't help here, as
2653 * we don't guarantee that all growable vmas
2654 * in a mm share the same root anon vma.
2655 * So, we reuse mm->page_table_lock to guard
2656 * against concurrent vma expansions.
2657 */
2658 spin_lock(&mm->page_table_lock);
2659 if (vma->vm_flags & VM_LOCKED)
2660 mm->locked_vm += grow;
2661 vm_stat_account(mm, vma->vm_flags, grow);
2662 anon_vma_interval_tree_pre_update_vma(vma);
2663 WRITE_ONCE(vma->vm_start, address);
2664 WRITE_ONCE(vma->vm_pgoff, vma->vm_pgoff - grow);
2665 anon_vma_interval_tree_post_update_vma(vma);
2666 vma_gap_update(vma);
2667 spin_unlock(&mm->page_table_lock);
2668
2669 perf_event_mmap(vma);
2670 }
2671 }
2672 }
2673 anon_vma_unlock_write(vma->anon_vma);
2674 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2675 validate_mm(mm);
2676 return error;
2677 }
2678
2679 /* enforced gap between the expanding stack and other mappings. */
2680 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2681
cmdline_parse_stack_guard_gap(char * p)2682 static int __init cmdline_parse_stack_guard_gap(char *p)
2683 {
2684 unsigned long val;
2685 char *endptr;
2686
2687 val = simple_strtoul(p, &endptr, 10);
2688 if (!*endptr)
2689 stack_guard_gap = val << PAGE_SHIFT;
2690
2691 return 1;
2692 }
2693 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2694
2695 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2696 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2697 {
2698 return expand_upwards(vma, address);
2699 }
2700
2701 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2702 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2703 {
2704 struct vm_area_struct *vma, *prev;
2705
2706 addr &= PAGE_MASK;
2707 vma = find_vma_prev(mm, addr, &prev);
2708 if (vma && (vma->vm_start <= addr))
2709 return vma;
2710 /* don't alter vm_end if the coredump is running */
2711 if (!prev || expand_stack(prev, addr))
2712 return NULL;
2713 if (prev->vm_flags & VM_LOCKED)
2714 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2715 return prev;
2716 }
2717 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2718 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2719 {
2720 return expand_downwards(vma, address);
2721 }
2722
2723 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2724 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2725 {
2726 struct vm_area_struct *vma;
2727 unsigned long start;
2728
2729 addr &= PAGE_MASK;
2730 vma = find_vma(mm, addr);
2731 if (!vma)
2732 return NULL;
2733 if (vma->vm_start <= addr)
2734 return vma;
2735 if (!(vma->vm_flags & VM_GROWSDOWN))
2736 return NULL;
2737 start = vma->vm_start;
2738 if (expand_stack(vma, addr))
2739 return NULL;
2740 if (vma->vm_flags & VM_LOCKED)
2741 populate_vma_page_range(vma, addr, start, NULL);
2742 return vma;
2743 }
2744 #endif
2745
2746 EXPORT_SYMBOL_GPL(find_extend_vma);
2747
2748 /*
2749 * Ok - we have the memory areas we should free on the vma list,
2750 * so release them, and do the vma updates.
2751 *
2752 * Called with the mm semaphore held.
2753 */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2754 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2755 {
2756 unsigned long nr_accounted = 0;
2757
2758 /* Update high watermark before we lower total_vm */
2759 update_hiwater_vm(mm);
2760 do {
2761 long nrpages = vma_pages(vma);
2762
2763 if (vma->vm_flags & VM_ACCOUNT)
2764 nr_accounted += nrpages;
2765 vm_stat_account(mm, vma->vm_flags, -nrpages);
2766 vma = remove_vma(vma);
2767 } while (vma);
2768 vm_unacct_memory(nr_accounted);
2769 validate_mm(mm);
2770 }
2771
2772 /*
2773 * Get rid of page table information in the indicated region.
2774 *
2775 * Called with the mm semaphore held.
2776 */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2777 static void unmap_region(struct mm_struct *mm,
2778 struct vm_area_struct *vma, struct vm_area_struct *prev,
2779 unsigned long start, unsigned long end)
2780 {
2781 struct vm_area_struct *next = vma_next(mm, prev);
2782 struct mmu_gather tlb;
2783 struct vm_area_struct *cur_vma;
2784
2785 lru_add_drain();
2786 tlb_gather_mmu(&tlb, mm, start, end);
2787 update_hiwater_rss(mm);
2788 unmap_vmas(&tlb, vma, start, end);
2789
2790 /*
2791 * Ensure we have no stale TLB entries by the time this mapping is
2792 * removed from the rmap.
2793 * Note that we don't have to worry about nested flushes here because
2794 * we're holding the mm semaphore for removing the mapping - so any
2795 * concurrent flush in this region has to be coming through the rmap,
2796 * and we synchronize against that using the rmap lock.
2797 */
2798 for (cur_vma = vma; cur_vma; cur_vma = cur_vma->vm_next) {
2799 if ((cur_vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) != 0) {
2800 tlb_flush_mmu(&tlb);
2801 break;
2802 }
2803 }
2804
2805 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2806 next ? next->vm_start : USER_PGTABLES_CEILING);
2807 tlb_finish_mmu(&tlb, start, end);
2808 }
2809
2810 /*
2811 * Create a list of vma's touched by the unmap, removing them from the mm's
2812 * vma list as we go..
2813 */
2814 static bool
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2815 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2816 struct vm_area_struct *prev, unsigned long end)
2817 {
2818 struct vm_area_struct **insertion_point;
2819 struct vm_area_struct *tail_vma = NULL;
2820
2821 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2822 vma->vm_prev = NULL;
2823 do {
2824 vma_rb_erase(vma, mm);
2825 mm->map_count--;
2826 tail_vma = vma;
2827 vma = vma->vm_next;
2828 } while (vma && vma->vm_start < end);
2829 *insertion_point = vma;
2830 if (vma) {
2831 vma->vm_prev = prev;
2832 vma_gap_update(vma);
2833 } else
2834 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2835 tail_vma->vm_next = NULL;
2836
2837 /* Kill the cache */
2838 vmacache_invalidate(mm);
2839
2840 /*
2841 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2842 * VM_GROWSUP VMA. Such VMAs can change their size under
2843 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2844 */
2845 if (vma && (vma->vm_flags & VM_GROWSDOWN))
2846 return false;
2847 if (prev && (prev->vm_flags & VM_GROWSUP))
2848 return false;
2849 return true;
2850 }
2851
2852 /*
2853 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2854 * has already been checked or doesn't make sense to fail.
2855 */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2856 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2857 unsigned long addr, int new_below)
2858 {
2859 struct vm_area_struct *new;
2860 int err;
2861
2862 if (vma->vm_ops && vma->vm_ops->split) {
2863 err = vma->vm_ops->split(vma, addr);
2864 if (err)
2865 return err;
2866 }
2867
2868 new = vm_area_dup(vma);
2869 if (!new)
2870 return -ENOMEM;
2871
2872 if (new_below)
2873 new->vm_end = addr;
2874 else {
2875 new->vm_start = addr;
2876 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2877 }
2878
2879 err = vma_dup_policy(vma, new);
2880 if (err)
2881 goto out_free_vma;
2882
2883 err = anon_vma_clone(new, vma);
2884 if (err)
2885 goto out_free_mpol;
2886
2887 if (new->vm_file)
2888 get_file(new->vm_file);
2889
2890 if (new->vm_ops && new->vm_ops->open)
2891 new->vm_ops->open(new);
2892
2893 if (new_below)
2894 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2895 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2896 else
2897 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2898
2899 /* Success. */
2900 if (!err)
2901 return 0;
2902
2903 /* Clean everything up if vma_adjust failed. */
2904 if (new->vm_ops && new->vm_ops->close)
2905 new->vm_ops->close(new);
2906 if (new->vm_file)
2907 fput(new->vm_file);
2908 unlink_anon_vmas(new);
2909 out_free_mpol:
2910 mpol_put(vma_policy(new));
2911 out_free_vma:
2912 vm_area_free(new);
2913 return err;
2914 }
2915
2916 /*
2917 * Split a vma into two pieces at address 'addr', a new vma is allocated
2918 * either for the first part or the tail.
2919 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2920 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2921 unsigned long addr, int new_below)
2922 {
2923 if (mm->map_count >= sysctl_max_map_count)
2924 return -ENOMEM;
2925
2926 return __split_vma(mm, vma, addr, new_below);
2927 }
2928
2929 /* Munmap is split into 2 main parts -- this part which finds
2930 * what needs doing, and the areas themselves, which do the
2931 * work. This now handles partial unmappings.
2932 * Jeremy Fitzhardinge <jeremy@goop.org>
2933 */
__do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool downgrade)2934 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2935 struct list_head *uf, bool downgrade)
2936 {
2937 unsigned long end;
2938 struct vm_area_struct *vma, *prev, *last;
2939
2940 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2941 return -EINVAL;
2942
2943 len = PAGE_ALIGN(len);
2944 end = start + len;
2945 if (len == 0)
2946 return -EINVAL;
2947
2948 /*
2949 * arch_unmap() might do unmaps itself. It must be called
2950 * and finish any rbtree manipulation before this code
2951 * runs and also starts to manipulate the rbtree.
2952 */
2953 arch_unmap(mm, start, end);
2954
2955 /* Find the first overlapping VMA */
2956 vma = find_vma(mm, start);
2957 if (!vma)
2958 return 0;
2959 prev = vma->vm_prev;
2960 /* we have start < vma->vm_end */
2961
2962 /* if it doesn't overlap, we have nothing.. */
2963 if (vma->vm_start >= end)
2964 return 0;
2965
2966 /*
2967 * If we need to split any vma, do it now to save pain later.
2968 *
2969 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2970 * unmapped vm_area_struct will remain in use: so lower split_vma
2971 * places tmp vma above, and higher split_vma places tmp vma below.
2972 */
2973 if (start > vma->vm_start) {
2974 int error;
2975
2976 /*
2977 * Make sure that map_count on return from munmap() will
2978 * not exceed its limit; but let map_count go just above
2979 * its limit temporarily, to help free resources as expected.
2980 */
2981 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2982 return -ENOMEM;
2983
2984 error = __split_vma(mm, vma, start, 0);
2985 if (error)
2986 return error;
2987 prev = vma;
2988 }
2989
2990 /* Does it split the last one? */
2991 last = find_vma(mm, end);
2992 if (last && end > last->vm_start) {
2993 int error = __split_vma(mm, last, end, 1);
2994 if (error)
2995 return error;
2996 }
2997 vma = vma_next(mm, prev);
2998
2999 if (unlikely(uf)) {
3000 /*
3001 * If userfaultfd_unmap_prep returns an error the vmas
3002 * will remain splitted, but userland will get a
3003 * highly unexpected error anyway. This is no
3004 * different than the case where the first of the two
3005 * __split_vma fails, but we don't undo the first
3006 * split, despite we could. This is unlikely enough
3007 * failure that it's not worth optimizing it for.
3008 */
3009 int error = userfaultfd_unmap_prep(vma, start, end, uf);
3010 if (error)
3011 return error;
3012 }
3013
3014 /*
3015 * unlock any mlock()ed ranges before detaching vmas
3016 */
3017 if (mm->locked_vm) {
3018 struct vm_area_struct *tmp = vma;
3019 while (tmp && tmp->vm_start < end) {
3020 if (tmp->vm_flags & VM_LOCKED) {
3021 mm->locked_vm -= vma_pages(tmp);
3022 munlock_vma_pages_all(tmp);
3023 }
3024
3025 tmp = tmp->vm_next;
3026 }
3027 }
3028
3029 /* Detach vmas from rbtree */
3030 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
3031 downgrade = false;
3032
3033 if (downgrade)
3034 mmap_write_downgrade(mm);
3035
3036 unmap_region(mm, vma, prev, start, end);
3037
3038 /* Fix up all other VM information */
3039 remove_vma_list(mm, vma);
3040
3041 return downgrade ? 1 : 0;
3042 }
3043
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)3044 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
3045 struct list_head *uf)
3046 {
3047 return __do_munmap(mm, start, len, uf, false);
3048 }
3049
__vm_munmap(unsigned long start,size_t len,bool downgrade)3050 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
3051 {
3052 int ret;
3053 struct mm_struct *mm = current->mm;
3054 LIST_HEAD(uf);
3055
3056 if (mmap_write_lock_killable(mm))
3057 return -EINTR;
3058
3059 ret = __do_munmap(mm, start, len, &uf, downgrade);
3060 /*
3061 * Returning 1 indicates mmap_lock is downgraded.
3062 * But 1 is not legal return value of vm_munmap() and munmap(), reset
3063 * it to 0 before return.
3064 */
3065 if (ret == 1) {
3066 mmap_read_unlock(mm);
3067 ret = 0;
3068 } else
3069 mmap_write_unlock(mm);
3070
3071 userfaultfd_unmap_complete(mm, &uf);
3072 return ret;
3073 }
3074
vm_munmap(unsigned long start,size_t len)3075 int vm_munmap(unsigned long start, size_t len)
3076 {
3077 return __vm_munmap(start, len, false);
3078 }
3079 EXPORT_SYMBOL(vm_munmap);
3080
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)3081 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3082 {
3083 addr = untagged_addr(addr);
3084 profile_munmap(addr);
3085 return __vm_munmap(addr, len, true);
3086 }
3087
3088
3089 /*
3090 * Emulation of deprecated remap_file_pages() syscall.
3091 */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)3092 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3093 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3094 {
3095
3096 struct mm_struct *mm = current->mm;
3097 struct vm_area_struct *vma;
3098 unsigned long populate = 0;
3099 unsigned long ret = -EINVAL;
3100 struct file *file;
3101
3102 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
3103 current->comm, current->pid);
3104
3105 if (prot)
3106 return ret;
3107 start = start & PAGE_MASK;
3108 size = size & PAGE_MASK;
3109
3110 if (start + size <= start)
3111 return ret;
3112
3113 /* Does pgoff wrap? */
3114 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3115 return ret;
3116
3117 if (mmap_write_lock_killable(mm))
3118 return -EINTR;
3119
3120 vma = find_vma(mm, start);
3121
3122 if (!vma || !(vma->vm_flags & VM_SHARED))
3123 goto out;
3124
3125 if (start < vma->vm_start)
3126 goto out;
3127
3128 if (start + size > vma->vm_end) {
3129 struct vm_area_struct *next;
3130
3131 for (next = vma->vm_next; next; next = next->vm_next) {
3132 /* hole between vmas ? */
3133 if (next->vm_start != next->vm_prev->vm_end)
3134 goto out;
3135
3136 if (next->vm_file != vma->vm_file)
3137 goto out;
3138
3139 if (next->vm_flags != vma->vm_flags)
3140 goto out;
3141
3142 if (start + size <= next->vm_end)
3143 break;
3144 }
3145
3146 if (!next)
3147 goto out;
3148 }
3149
3150 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3151 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3152 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3153
3154 flags &= MAP_NONBLOCK;
3155 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3156 if (vma->vm_flags & VM_LOCKED) {
3157 struct vm_area_struct *tmp;
3158 flags |= MAP_LOCKED;
3159
3160 /* drop PG_Mlocked flag for over-mapped range */
3161 for (tmp = vma; tmp->vm_start >= start + size;
3162 tmp = tmp->vm_next) {
3163 /*
3164 * Split pmd and munlock page on the border
3165 * of the range.
3166 */
3167 vma_adjust_trans_huge(tmp, start, start + size, 0);
3168
3169 munlock_vma_pages_range(tmp,
3170 max(tmp->vm_start, start),
3171 min(tmp->vm_end, start + size));
3172 }
3173 }
3174
3175 file = get_file(vma->vm_file);
3176 ret = do_mmap(vma->vm_file, start, size,
3177 prot, flags, pgoff, &populate, NULL);
3178 fput(file);
3179 out:
3180 mmap_write_unlock(mm);
3181 if (populate)
3182 mm_populate(ret, populate);
3183 if (!IS_ERR_VALUE(ret))
3184 ret = 0;
3185 return ret;
3186 }
3187
3188 /*
3189 * this is really a simplified "do_mmap". it only handles
3190 * anonymous maps. eventually we may be able to do some
3191 * brk-specific accounting here.
3192 */
do_brk_flags(unsigned long addr,unsigned long len,unsigned long flags,struct list_head * uf)3193 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3194 {
3195 struct mm_struct *mm = current->mm;
3196 struct vm_area_struct *vma, *prev;
3197 struct rb_node **rb_link, *rb_parent;
3198 pgoff_t pgoff = addr >> PAGE_SHIFT;
3199 int error;
3200 unsigned long mapped_addr;
3201
3202 /* Until we need other flags, refuse anything except VM_EXEC. */
3203 if ((flags & (~VM_EXEC)) != 0)
3204 return -EINVAL;
3205 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3206
3207 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3208 if (IS_ERR_VALUE(mapped_addr))
3209 return mapped_addr;
3210
3211 error = mlock_future_check(mm, mm->def_flags, len);
3212 if (error)
3213 return error;
3214
3215 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3216 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3217 return -ENOMEM;
3218
3219 /* Check against address space limits *after* clearing old maps... */
3220 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3221 return -ENOMEM;
3222
3223 if (mm->map_count > sysctl_max_map_count)
3224 return -ENOMEM;
3225
3226 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3227 return -ENOMEM;
3228
3229 /* Can we just expand an old private anonymous mapping? */
3230 vma = vma_merge(mm, prev, addr, addr + len, flags,
3231 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3232 if (vma)
3233 goto out;
3234
3235 /*
3236 * create a vma struct for an anonymous mapping
3237 */
3238 vma = vm_area_alloc(mm);
3239 if (!vma) {
3240 vm_unacct_memory(len >> PAGE_SHIFT);
3241 return -ENOMEM;
3242 }
3243
3244 vma_set_anonymous(vma);
3245 vma->vm_start = addr;
3246 vma->vm_end = addr + len;
3247 vma->vm_pgoff = pgoff;
3248 vma->vm_flags = flags;
3249 vma->vm_page_prot = vm_get_page_prot(flags);
3250 vma_link(mm, vma, prev, rb_link, rb_parent);
3251 out:
3252 perf_event_mmap(vma);
3253 mm->total_vm += len >> PAGE_SHIFT;
3254 mm->data_vm += len >> PAGE_SHIFT;
3255 if (flags & VM_LOCKED)
3256 mm->locked_vm += (len >> PAGE_SHIFT);
3257 vma->vm_flags |= VM_SOFTDIRTY;
3258 return 0;
3259 }
3260
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3261 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3262 {
3263 struct mm_struct *mm = current->mm;
3264 unsigned long len;
3265 int ret;
3266 bool populate;
3267 LIST_HEAD(uf);
3268
3269 len = PAGE_ALIGN(request);
3270 if (len < request)
3271 return -ENOMEM;
3272 if (!len)
3273 return 0;
3274
3275 if (mmap_write_lock_killable(mm))
3276 return -EINTR;
3277
3278 ret = do_brk_flags(addr, len, flags, &uf);
3279 populate = ((mm->def_flags & VM_LOCKED) != 0);
3280 mmap_write_unlock(mm);
3281 userfaultfd_unmap_complete(mm, &uf);
3282 if (populate && !ret)
3283 mm_populate(addr, len);
3284 return ret;
3285 }
3286 EXPORT_SYMBOL(vm_brk_flags);
3287
vm_brk(unsigned long addr,unsigned long len)3288 int vm_brk(unsigned long addr, unsigned long len)
3289 {
3290 return vm_brk_flags(addr, len, 0);
3291 }
3292 EXPORT_SYMBOL(vm_brk);
3293
3294 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3295 void exit_mmap(struct mm_struct *mm)
3296 {
3297 struct mmu_gather tlb;
3298 struct vm_area_struct *vma;
3299 unsigned long nr_accounted = 0;
3300
3301 /* mm's last user has gone, and its about to be pulled down */
3302 mmu_notifier_release(mm);
3303
3304 if (unlikely(mm_is_oom_victim(mm))) {
3305 /*
3306 * Manually reap the mm to free as much memory as possible.
3307 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3308 * this mm from further consideration. Taking mm->mmap_lock for
3309 * write after setting MMF_OOM_SKIP will guarantee that the oom
3310 * reaper will not run on this mm again after mmap_lock is
3311 * dropped.
3312 *
3313 * Nothing can be holding mm->mmap_lock here and the above call
3314 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3315 * __oom_reap_task_mm() will not block.
3316 *
3317 * This needs to be done before calling munlock_vma_pages_all(),
3318 * which clears VM_LOCKED, otherwise the oom reaper cannot
3319 * reliably test it.
3320 */
3321 (void)__oom_reap_task_mm(mm);
3322
3323 set_bit(MMF_OOM_SKIP, &mm->flags);
3324 }
3325
3326 mmap_write_lock(mm);
3327 if (mm->locked_vm) {
3328 vma = mm->mmap;
3329 while (vma) {
3330 if (vma->vm_flags & VM_LOCKED)
3331 munlock_vma_pages_all(vma);
3332 vma = vma->vm_next;
3333 }
3334 }
3335
3336 arch_exit_mmap(mm);
3337
3338 vma = mm->mmap;
3339 if (!vma) {
3340 /* Can happen if dup_mmap() received an OOM */
3341 mmap_write_unlock(mm);
3342 return;
3343 }
3344
3345 lru_add_drain();
3346 flush_cache_mm(mm);
3347 tlb_gather_mmu(&tlb, mm, 0, -1);
3348 /* update_hiwater_rss(mm) here? but nobody should be looking */
3349 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3350 unmap_vmas(&tlb, vma, 0, -1);
3351 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3352 tlb_finish_mmu(&tlb, 0, -1);
3353
3354 /* Walk the list again, actually closing and freeing it. */
3355 while (vma) {
3356 if (vma->vm_flags & VM_ACCOUNT)
3357 nr_accounted += vma_pages(vma);
3358 vma = remove_vma(vma);
3359 cond_resched();
3360 }
3361 mm->mmap = NULL;
3362 mmap_write_unlock(mm);
3363 vm_unacct_memory(nr_accounted);
3364 }
3365
3366 /* Insert vm structure into process list sorted by address
3367 * and into the inode's i_mmap tree. If vm_file is non-NULL
3368 * then i_mmap_rwsem is taken here.
3369 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3370 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3371 {
3372 struct vm_area_struct *prev;
3373 struct rb_node **rb_link, *rb_parent;
3374
3375 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3376 &prev, &rb_link, &rb_parent))
3377 return -ENOMEM;
3378 if ((vma->vm_flags & VM_ACCOUNT) &&
3379 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3380 return -ENOMEM;
3381
3382 /*
3383 * The vm_pgoff of a purely anonymous vma should be irrelevant
3384 * until its first write fault, when page's anon_vma and index
3385 * are set. But now set the vm_pgoff it will almost certainly
3386 * end up with (unless mremap moves it elsewhere before that
3387 * first wfault), so /proc/pid/maps tells a consistent story.
3388 *
3389 * By setting it to reflect the virtual start address of the
3390 * vma, merges and splits can happen in a seamless way, just
3391 * using the existing file pgoff checks and manipulations.
3392 * Similarly in do_mmap and in do_brk_flags.
3393 */
3394 if (vma_is_anonymous(vma)) {
3395 BUG_ON(vma->anon_vma);
3396 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3397 }
3398
3399 vma_link(mm, vma, prev, rb_link, rb_parent);
3400 return 0;
3401 }
3402
3403 /*
3404 * Copy the vma structure to a new location in the same mm,
3405 * prior to moving page table entries, to effect an mremap move.
3406 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3407 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3408 unsigned long addr, unsigned long len, pgoff_t pgoff,
3409 bool *need_rmap_locks)
3410 {
3411 struct vm_area_struct *vma = *vmap;
3412 unsigned long vma_start = vma->vm_start;
3413 struct mm_struct *mm = vma->vm_mm;
3414 struct vm_area_struct *new_vma, *prev;
3415 struct rb_node **rb_link, *rb_parent;
3416 bool faulted_in_anon_vma = true;
3417
3418 /*
3419 * If anonymous vma has not yet been faulted, update new pgoff
3420 * to match new location, to increase its chance of merging.
3421 */
3422 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3423 pgoff = addr >> PAGE_SHIFT;
3424 faulted_in_anon_vma = false;
3425 }
3426
3427 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3428 return NULL; /* should never get here */
3429
3430 /* There is 3 cases to manage here in
3431 * AAAA AAAA AAAA AAAA
3432 * PPPP.... PPPP......NNNN PPPP....NNNN PP........NN
3433 * PPPPPPPP(A) PPPP..NNNNNNNN(B) PPPPPPPPPPPP(1) NULL
3434 * PPPPPPPPNNNN(2)
3435 * PPPPNNNNNNNN(3)
3436 *
3437 * new_vma == prev in case A,1,2
3438 * new_vma == next in case B,3
3439 */
3440 new_vma = __vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3441 vma->anon_vma, vma->vm_file, pgoff,
3442 vma_policy(vma), vma->vm_userfaultfd_ctx,
3443 anon_vma_name(vma), true);
3444 if (new_vma) {
3445 /*
3446 * Source vma may have been merged into new_vma
3447 */
3448 if (unlikely(vma_start >= new_vma->vm_start &&
3449 vma_start < new_vma->vm_end)) {
3450 /*
3451 * The only way we can get a vma_merge with
3452 * self during an mremap is if the vma hasn't
3453 * been faulted in yet and we were allowed to
3454 * reset the dst vma->vm_pgoff to the
3455 * destination address of the mremap to allow
3456 * the merge to happen. mremap must change the
3457 * vm_pgoff linearity between src and dst vmas
3458 * (in turn preventing a vma_merge) to be
3459 * safe. It is only safe to keep the vm_pgoff
3460 * linear if there are no pages mapped yet.
3461 */
3462 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3463 *vmap = vma = new_vma;
3464 }
3465 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3466 } else {
3467 new_vma = vm_area_dup(vma);
3468 if (!new_vma)
3469 goto out;
3470 new_vma->vm_start = addr;
3471 new_vma->vm_end = addr + len;
3472 new_vma->vm_pgoff = pgoff;
3473 if (vma_dup_policy(vma, new_vma))
3474 goto out_free_vma;
3475 if (anon_vma_clone(new_vma, vma))
3476 goto out_free_mempol;
3477 if (new_vma->vm_file)
3478 get_file(new_vma->vm_file);
3479 if (new_vma->vm_ops && new_vma->vm_ops->open)
3480 new_vma->vm_ops->open(new_vma);
3481 /*
3482 * As the VMA is linked right now, it may be hit by the
3483 * speculative page fault handler. But we don't want it to
3484 * to start mapping page in this area until the caller has
3485 * potentially move the pte from the moved VMA. To prevent
3486 * that we protect it right now, and let the caller unprotect
3487 * it once the move is done.
3488 */
3489 vm_write_begin(new_vma);
3490 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3491 *need_rmap_locks = false;
3492 }
3493 return new_vma;
3494
3495 out_free_mempol:
3496 mpol_put(vma_policy(new_vma));
3497 out_free_vma:
3498 vm_area_free(new_vma);
3499 out:
3500 return NULL;
3501 }
3502
3503 /*
3504 * Return true if the calling process may expand its vm space by the passed
3505 * number of pages
3506 */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3507 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3508 {
3509 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3510 return false;
3511
3512 if (is_data_mapping(flags) &&
3513 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3514 /* Workaround for Valgrind */
3515 if (rlimit(RLIMIT_DATA) == 0 &&
3516 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3517 return true;
3518
3519 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3520 current->comm, current->pid,
3521 (mm->data_vm + npages) << PAGE_SHIFT,
3522 rlimit(RLIMIT_DATA),
3523 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3524
3525 if (!ignore_rlimit_data)
3526 return false;
3527 }
3528
3529 return true;
3530 }
3531
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3532 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3533 {
3534 mm->total_vm += npages;
3535
3536 if (is_exec_mapping(flags))
3537 mm->exec_vm += npages;
3538 else if (is_stack_mapping(flags))
3539 mm->stack_vm += npages;
3540 else if (is_data_mapping(flags))
3541 mm->data_vm += npages;
3542 }
3543
3544 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3545
3546 /*
3547 * Having a close hook prevents vma merging regardless of flags.
3548 */
special_mapping_close(struct vm_area_struct * vma)3549 static void special_mapping_close(struct vm_area_struct *vma)
3550 {
3551 }
3552
special_mapping_name(struct vm_area_struct * vma)3553 static const char *special_mapping_name(struct vm_area_struct *vma)
3554 {
3555 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3556 }
3557
special_mapping_mremap(struct vm_area_struct * new_vma)3558 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3559 {
3560 struct vm_special_mapping *sm = new_vma->vm_private_data;
3561
3562 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3563 return -EFAULT;
3564
3565 if (sm->mremap)
3566 return sm->mremap(sm, new_vma);
3567
3568 return 0;
3569 }
3570
3571 static const struct vm_operations_struct special_mapping_vmops = {
3572 .close = special_mapping_close,
3573 .fault = special_mapping_fault,
3574 .mremap = special_mapping_mremap,
3575 .name = special_mapping_name,
3576 /* vDSO code relies that VVAR can't be accessed remotely */
3577 .access = NULL,
3578 };
3579
3580 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3581 .close = special_mapping_close,
3582 .fault = special_mapping_fault,
3583 };
3584
special_mapping_fault(struct vm_fault * vmf)3585 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3586 {
3587 struct vm_area_struct *vma = vmf->vma;
3588 pgoff_t pgoff;
3589 struct page **pages;
3590
3591 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3592 pages = vma->vm_private_data;
3593 } else {
3594 struct vm_special_mapping *sm = vma->vm_private_data;
3595
3596 if (sm->fault)
3597 return sm->fault(sm, vmf->vma, vmf);
3598
3599 pages = sm->pages;
3600 }
3601
3602 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3603 pgoff--;
3604
3605 if (*pages) {
3606 struct page *page = *pages;
3607 get_page(page);
3608 vmf->page = page;
3609 return 0;
3610 }
3611
3612 return VM_FAULT_SIGBUS;
3613 }
3614
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3615 static struct vm_area_struct *__install_special_mapping(
3616 struct mm_struct *mm,
3617 unsigned long addr, unsigned long len,
3618 unsigned long vm_flags, void *priv,
3619 const struct vm_operations_struct *ops)
3620 {
3621 int ret;
3622 struct vm_area_struct *vma;
3623
3624 vma = vm_area_alloc(mm);
3625 if (unlikely(vma == NULL))
3626 return ERR_PTR(-ENOMEM);
3627
3628 vma->vm_start = addr;
3629 vma->vm_end = addr + len;
3630
3631 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3632 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3633
3634 vma->vm_ops = ops;
3635 vma->vm_private_data = priv;
3636
3637 ret = insert_vm_struct(mm, vma);
3638 if (ret)
3639 goto out;
3640
3641 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3642
3643 perf_event_mmap(vma);
3644
3645 return vma;
3646
3647 out:
3648 vm_area_free(vma);
3649 return ERR_PTR(ret);
3650 }
3651
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3652 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3653 const struct vm_special_mapping *sm)
3654 {
3655 return vma->vm_private_data == sm &&
3656 (vma->vm_ops == &special_mapping_vmops ||
3657 vma->vm_ops == &legacy_special_mapping_vmops);
3658 }
3659
3660 /*
3661 * Called with mm->mmap_lock held for writing.
3662 * Insert a new vma covering the given region, with the given flags.
3663 * Its pages are supplied by the given array of struct page *.
3664 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3665 * The region past the last page supplied will always produce SIGBUS.
3666 * The array pointer and the pages it points to are assumed to stay alive
3667 * for as long as this mapping might exist.
3668 */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3669 struct vm_area_struct *_install_special_mapping(
3670 struct mm_struct *mm,
3671 unsigned long addr, unsigned long len,
3672 unsigned long vm_flags, const struct vm_special_mapping *spec)
3673 {
3674 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3675 &special_mapping_vmops);
3676 }
3677
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3678 int install_special_mapping(struct mm_struct *mm,
3679 unsigned long addr, unsigned long len,
3680 unsigned long vm_flags, struct page **pages)
3681 {
3682 struct vm_area_struct *vma = __install_special_mapping(
3683 mm, addr, len, vm_flags, (void *)pages,
3684 &legacy_special_mapping_vmops);
3685
3686 return PTR_ERR_OR_ZERO(vma);
3687 }
3688
3689 static DEFINE_MUTEX(mm_all_locks_mutex);
3690
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3691 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3692 {
3693 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3694 /*
3695 * The LSB of head.next can't change from under us
3696 * because we hold the mm_all_locks_mutex.
3697 */
3698 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3699 /*
3700 * We can safely modify head.next after taking the
3701 * anon_vma->root->rwsem. If some other vma in this mm shares
3702 * the same anon_vma we won't take it again.
3703 *
3704 * No need of atomic instructions here, head.next
3705 * can't change from under us thanks to the
3706 * anon_vma->root->rwsem.
3707 */
3708 if (__test_and_set_bit(0, (unsigned long *)
3709 &anon_vma->root->rb_root.rb_root.rb_node))
3710 BUG();
3711 }
3712 }
3713
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3714 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3715 {
3716 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3717 /*
3718 * AS_MM_ALL_LOCKS can't change from under us because
3719 * we hold the mm_all_locks_mutex.
3720 *
3721 * Operations on ->flags have to be atomic because
3722 * even if AS_MM_ALL_LOCKS is stable thanks to the
3723 * mm_all_locks_mutex, there may be other cpus
3724 * changing other bitflags in parallel to us.
3725 */
3726 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3727 BUG();
3728 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3729 }
3730 }
3731
3732 /*
3733 * This operation locks against the VM for all pte/vma/mm related
3734 * operations that could ever happen on a certain mm. This includes
3735 * vmtruncate, try_to_unmap, and all page faults.
3736 *
3737 * The caller must take the mmap_lock in write mode before calling
3738 * mm_take_all_locks(). The caller isn't allowed to release the
3739 * mmap_lock until mm_drop_all_locks() returns.
3740 *
3741 * mmap_lock in write mode is required in order to block all operations
3742 * that could modify pagetables and free pages without need of
3743 * altering the vma layout. It's also needed in write mode to avoid new
3744 * anon_vmas to be associated with existing vmas.
3745 *
3746 * A single task can't take more than one mm_take_all_locks() in a row
3747 * or it would deadlock.
3748 *
3749 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3750 * mapping->flags avoid to take the same lock twice, if more than one
3751 * vma in this mm is backed by the same anon_vma or address_space.
3752 *
3753 * We take locks in following order, accordingly to comment at beginning
3754 * of mm/rmap.c:
3755 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3756 * hugetlb mapping);
3757 * - all i_mmap_rwsem locks;
3758 * - all anon_vma->rwseml
3759 *
3760 * We can take all locks within these types randomly because the VM code
3761 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3762 * mm_all_locks_mutex.
3763 *
3764 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3765 * that may have to take thousand of locks.
3766 *
3767 * mm_take_all_locks() can fail if it's interrupted by signals.
3768 */
mm_take_all_locks(struct mm_struct * mm)3769 int mm_take_all_locks(struct mm_struct *mm)
3770 {
3771 struct vm_area_struct *vma;
3772 struct anon_vma_chain *avc;
3773
3774 BUG_ON(mmap_read_trylock(mm));
3775
3776 mutex_lock(&mm_all_locks_mutex);
3777
3778 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3779 if (signal_pending(current))
3780 goto out_unlock;
3781 if (vma->vm_file && vma->vm_file->f_mapping &&
3782 is_vm_hugetlb_page(vma))
3783 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3784 }
3785
3786 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3787 if (signal_pending(current))
3788 goto out_unlock;
3789 if (vma->vm_file && vma->vm_file->f_mapping &&
3790 !is_vm_hugetlb_page(vma))
3791 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3792 }
3793
3794 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3795 if (signal_pending(current))
3796 goto out_unlock;
3797 if (vma->anon_vma)
3798 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3799 vm_lock_anon_vma(mm, avc->anon_vma);
3800 }
3801
3802 return 0;
3803
3804 out_unlock:
3805 mm_drop_all_locks(mm);
3806 return -EINTR;
3807 }
3808
vm_unlock_anon_vma(struct anon_vma * anon_vma)3809 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3810 {
3811 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3812 /*
3813 * The LSB of head.next can't change to 0 from under
3814 * us because we hold the mm_all_locks_mutex.
3815 *
3816 * We must however clear the bitflag before unlocking
3817 * the vma so the users using the anon_vma->rb_root will
3818 * never see our bitflag.
3819 *
3820 * No need of atomic instructions here, head.next
3821 * can't change from under us until we release the
3822 * anon_vma->root->rwsem.
3823 */
3824 if (!__test_and_clear_bit(0, (unsigned long *)
3825 &anon_vma->root->rb_root.rb_root.rb_node))
3826 BUG();
3827 anon_vma_unlock_write(anon_vma);
3828 }
3829 }
3830
vm_unlock_mapping(struct address_space * mapping)3831 static void vm_unlock_mapping(struct address_space *mapping)
3832 {
3833 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3834 /*
3835 * AS_MM_ALL_LOCKS can't change to 0 from under us
3836 * because we hold the mm_all_locks_mutex.
3837 */
3838 i_mmap_unlock_write(mapping);
3839 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3840 &mapping->flags))
3841 BUG();
3842 }
3843 }
3844
3845 /*
3846 * The mmap_lock cannot be released by the caller until
3847 * mm_drop_all_locks() returns.
3848 */
mm_drop_all_locks(struct mm_struct * mm)3849 void mm_drop_all_locks(struct mm_struct *mm)
3850 {
3851 struct vm_area_struct *vma;
3852 struct anon_vma_chain *avc;
3853
3854 BUG_ON(mmap_read_trylock(mm));
3855 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3856
3857 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3858 if (vma->anon_vma)
3859 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3860 vm_unlock_anon_vma(avc->anon_vma);
3861 if (vma->vm_file && vma->vm_file->f_mapping)
3862 vm_unlock_mapping(vma->vm_file->f_mapping);
3863 }
3864
3865 mutex_unlock(&mm_all_locks_mutex);
3866 }
3867
3868 /*
3869 * initialise the percpu counter for VM
3870 */
mmap_init(void)3871 void __init mmap_init(void)
3872 {
3873 int ret;
3874
3875 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3876 VM_BUG_ON(ret);
3877 }
3878
3879 /*
3880 * Initialise sysctl_user_reserve_kbytes.
3881 *
3882 * This is intended to prevent a user from starting a single memory hogging
3883 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3884 * mode.
3885 *
3886 * The default value is min(3% of free memory, 128MB)
3887 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3888 */
init_user_reserve(void)3889 static int init_user_reserve(void)
3890 {
3891 unsigned long free_kbytes;
3892
3893 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3894
3895 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3896 return 0;
3897 }
3898 subsys_initcall(init_user_reserve);
3899
3900 /*
3901 * Initialise sysctl_admin_reserve_kbytes.
3902 *
3903 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3904 * to log in and kill a memory hogging process.
3905 *
3906 * Systems with more than 256MB will reserve 8MB, enough to recover
3907 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3908 * only reserve 3% of free pages by default.
3909 */
init_admin_reserve(void)3910 static int init_admin_reserve(void)
3911 {
3912 unsigned long free_kbytes;
3913
3914 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3915
3916 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3917 return 0;
3918 }
3919 subsys_initcall(init_admin_reserve);
3920
3921 /*
3922 * Reinititalise user and admin reserves if memory is added or removed.
3923 *
3924 * The default user reserve max is 128MB, and the default max for the
3925 * admin reserve is 8MB. These are usually, but not always, enough to
3926 * enable recovery from a memory hogging process using login/sshd, a shell,
3927 * and tools like top. It may make sense to increase or even disable the
3928 * reserve depending on the existence of swap or variations in the recovery
3929 * tools. So, the admin may have changed them.
3930 *
3931 * If memory is added and the reserves have been eliminated or increased above
3932 * the default max, then we'll trust the admin.
3933 *
3934 * If memory is removed and there isn't enough free memory, then we
3935 * need to reset the reserves.
3936 *
3937 * Otherwise keep the reserve set by the admin.
3938 */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3939 static int reserve_mem_notifier(struct notifier_block *nb,
3940 unsigned long action, void *data)
3941 {
3942 unsigned long tmp, free_kbytes;
3943
3944 switch (action) {
3945 case MEM_ONLINE:
3946 /* Default max is 128MB. Leave alone if modified by operator. */
3947 tmp = sysctl_user_reserve_kbytes;
3948 if (0 < tmp && tmp < (1UL << 17))
3949 init_user_reserve();
3950
3951 /* Default max is 8MB. Leave alone if modified by operator. */
3952 tmp = sysctl_admin_reserve_kbytes;
3953 if (0 < tmp && tmp < (1UL << 13))
3954 init_admin_reserve();
3955
3956 break;
3957 case MEM_OFFLINE:
3958 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3959
3960 if (sysctl_user_reserve_kbytes > free_kbytes) {
3961 init_user_reserve();
3962 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3963 sysctl_user_reserve_kbytes);
3964 }
3965
3966 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3967 init_admin_reserve();
3968 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3969 sysctl_admin_reserve_kbytes);
3970 }
3971 break;
3972 default:
3973 break;
3974 }
3975 return NOTIFY_OK;
3976 }
3977
3978 static struct notifier_block reserve_mem_nb = {
3979 .notifier_call = reserve_mem_notifier,
3980 };
3981
init_reserve_notifier(void)3982 static int __meminit init_reserve_notifier(void)
3983 {
3984 if (register_hotmemory_notifier(&reserve_mem_nb))
3985 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3986
3987 return 0;
3988 }
3989 subsys_initcall(init_reserve_notifier);
3990