1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/mmu_notifier.c
4 *
5 * Copyright (C) 2008 Qumranet, Inc.
6 * Copyright (C) 2008 SGI
7 * Christoph Lameter <cl@linux.com>
8 */
9
10 #include <linux/rculist.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/export.h>
13 #include <linux/mm.h>
14 #include <linux/err.h>
15 #include <linux/interval_tree.h>
16 #include <linux/srcu.h>
17 #include <linux/rcupdate.h>
18 #include <linux/sched.h>
19 #include <linux/sched/mm.h>
20 #include <linux/slab.h>
21
22 /* global SRCU for all MMs */
23 DEFINE_STATIC_SRCU(srcu);
24
25 #ifdef CONFIG_LOCKDEP
26 struct lockdep_map __mmu_notifier_invalidate_range_start_map = {
27 .name = "mmu_notifier_invalidate_range_start"
28 };
29 #endif
30
31 /*
32 * The mmu_notifier_subscriptions structure is allocated and installed in
33 * mm->notifier_subscriptions inside the mm_take_all_locks() protected
34 * critical section and it's released only when mm_count reaches zero
35 * in mmdrop().
36 */
37 struct mmu_notifier_subscriptions {
38 /* all mmu notifiers registered in this mm are queued in this list */
39 struct hlist_head list;
40 bool has_itree;
41 /* to serialize the list modifications and hlist_unhashed */
42 spinlock_t lock;
43 unsigned long invalidate_seq;
44 unsigned long active_invalidate_ranges;
45 struct rb_root_cached itree;
46 wait_queue_head_t wq;
47 struct hlist_head deferred_list;
48 };
49
50 /*
51 * This is a collision-retry read-side/write-side 'lock', a lot like a
52 * seqcount, however this allows multiple write-sides to hold it at
53 * once. Conceptually the write side is protecting the values of the PTEs in
54 * this mm, such that PTES cannot be read into SPTEs (shadow PTEs) while any
55 * writer exists.
56 *
57 * Note that the core mm creates nested invalidate_range_start()/end() regions
58 * within the same thread, and runs invalidate_range_start()/end() in parallel
59 * on multiple CPUs. This is designed to not reduce concurrency or block
60 * progress on the mm side.
61 *
62 * As a secondary function, holding the full write side also serves to prevent
63 * writers for the itree, this is an optimization to avoid extra locking
64 * during invalidate_range_start/end notifiers.
65 *
66 * The write side has two states, fully excluded:
67 * - mm->active_invalidate_ranges != 0
68 * - subscriptions->invalidate_seq & 1 == True (odd)
69 * - some range on the mm_struct is being invalidated
70 * - the itree is not allowed to change
71 *
72 * And partially excluded:
73 * - mm->active_invalidate_ranges != 0
74 * - subscriptions->invalidate_seq & 1 == False (even)
75 * - some range on the mm_struct is being invalidated
76 * - the itree is allowed to change
77 *
78 * Operations on notifier_subscriptions->invalidate_seq (under spinlock):
79 * seq |= 1 # Begin writing
80 * seq++ # Release the writing state
81 * seq & 1 # True if a writer exists
82 *
83 * The later state avoids some expensive work on inv_end in the common case of
84 * no mmu_interval_notifier monitoring the VA.
85 */
86 static bool
mn_itree_is_invalidating(struct mmu_notifier_subscriptions * subscriptions)87 mn_itree_is_invalidating(struct mmu_notifier_subscriptions *subscriptions)
88 {
89 lockdep_assert_held(&subscriptions->lock);
90 return subscriptions->invalidate_seq & 1;
91 }
92
93 static struct mmu_interval_notifier *
mn_itree_inv_start_range(struct mmu_notifier_subscriptions * subscriptions,const struct mmu_notifier_range * range,unsigned long * seq)94 mn_itree_inv_start_range(struct mmu_notifier_subscriptions *subscriptions,
95 const struct mmu_notifier_range *range,
96 unsigned long *seq)
97 {
98 struct interval_tree_node *node;
99 struct mmu_interval_notifier *res = NULL;
100
101 spin_lock(&subscriptions->lock);
102 subscriptions->active_invalidate_ranges++;
103 node = interval_tree_iter_first(&subscriptions->itree, range->start,
104 range->end - 1);
105 if (node) {
106 subscriptions->invalidate_seq |= 1;
107 res = container_of(node, struct mmu_interval_notifier,
108 interval_tree);
109 }
110
111 *seq = subscriptions->invalidate_seq;
112 spin_unlock(&subscriptions->lock);
113 return res;
114 }
115
116 static struct mmu_interval_notifier *
mn_itree_inv_next(struct mmu_interval_notifier * interval_sub,const struct mmu_notifier_range * range)117 mn_itree_inv_next(struct mmu_interval_notifier *interval_sub,
118 const struct mmu_notifier_range *range)
119 {
120 struct interval_tree_node *node;
121
122 node = interval_tree_iter_next(&interval_sub->interval_tree,
123 range->start, range->end - 1);
124 if (!node)
125 return NULL;
126 return container_of(node, struct mmu_interval_notifier, interval_tree);
127 }
128
mn_itree_inv_end(struct mmu_notifier_subscriptions * subscriptions)129 static void mn_itree_inv_end(struct mmu_notifier_subscriptions *subscriptions)
130 {
131 struct mmu_interval_notifier *interval_sub;
132 struct hlist_node *next;
133
134 spin_lock(&subscriptions->lock);
135 if (--subscriptions->active_invalidate_ranges ||
136 !mn_itree_is_invalidating(subscriptions)) {
137 spin_unlock(&subscriptions->lock);
138 return;
139 }
140
141 /* Make invalidate_seq even */
142 subscriptions->invalidate_seq++;
143
144 /*
145 * The inv_end incorporates a deferred mechanism like rtnl_unlock().
146 * Adds and removes are queued until the final inv_end happens then
147 * they are progressed. This arrangement for tree updates is used to
148 * avoid using a blocking lock during invalidate_range_start.
149 */
150 hlist_for_each_entry_safe(interval_sub, next,
151 &subscriptions->deferred_list,
152 deferred_item) {
153 if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb))
154 interval_tree_insert(&interval_sub->interval_tree,
155 &subscriptions->itree);
156 else
157 interval_tree_remove(&interval_sub->interval_tree,
158 &subscriptions->itree);
159 hlist_del(&interval_sub->deferred_item);
160 }
161 spin_unlock(&subscriptions->lock);
162
163 wake_up_all(&subscriptions->wq);
164 }
165
166 /**
167 * mmu_interval_read_begin - Begin a read side critical section against a VA
168 * range
169 * @interval_sub: The interval subscription
170 *
171 * mmu_iterval_read_begin()/mmu_iterval_read_retry() implement a
172 * collision-retry scheme similar to seqcount for the VA range under
173 * subscription. If the mm invokes invalidation during the critical section
174 * then mmu_interval_read_retry() will return true.
175 *
176 * This is useful to obtain shadow PTEs where teardown or setup of the SPTEs
177 * require a blocking context. The critical region formed by this can sleep,
178 * and the required 'user_lock' can also be a sleeping lock.
179 *
180 * The caller is required to provide a 'user_lock' to serialize both teardown
181 * and setup.
182 *
183 * The return value should be passed to mmu_interval_read_retry().
184 */
185 unsigned long
mmu_interval_read_begin(struct mmu_interval_notifier * interval_sub)186 mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub)
187 {
188 struct mmu_notifier_subscriptions *subscriptions =
189 interval_sub->mm->notifier_subscriptions;
190 unsigned long seq;
191 bool is_invalidating;
192
193 /*
194 * If the subscription has a different seq value under the user_lock
195 * than we started with then it has collided.
196 *
197 * If the subscription currently has the same seq value as the
198 * subscriptions seq, then it is currently between
199 * invalidate_start/end and is colliding.
200 *
201 * The locking looks broadly like this:
202 * mn_tree_invalidate_start(): mmu_interval_read_begin():
203 * spin_lock
204 * seq = READ_ONCE(interval_sub->invalidate_seq);
205 * seq == subs->invalidate_seq
206 * spin_unlock
207 * spin_lock
208 * seq = ++subscriptions->invalidate_seq
209 * spin_unlock
210 * op->invalidate_range():
211 * user_lock
212 * mmu_interval_set_seq()
213 * interval_sub->invalidate_seq = seq
214 * user_unlock
215 *
216 * [Required: mmu_interval_read_retry() == true]
217 *
218 * mn_itree_inv_end():
219 * spin_lock
220 * seq = ++subscriptions->invalidate_seq
221 * spin_unlock
222 *
223 * user_lock
224 * mmu_interval_read_retry():
225 * interval_sub->invalidate_seq != seq
226 * user_unlock
227 *
228 * Barriers are not needed here as any races here are closed by an
229 * eventual mmu_interval_read_retry(), which provides a barrier via the
230 * user_lock.
231 */
232 spin_lock(&subscriptions->lock);
233 /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
234 seq = READ_ONCE(interval_sub->invalidate_seq);
235 is_invalidating = seq == subscriptions->invalidate_seq;
236 spin_unlock(&subscriptions->lock);
237
238 /*
239 * interval_sub->invalidate_seq must always be set to an odd value via
240 * mmu_interval_set_seq() using the provided cur_seq from
241 * mn_itree_inv_start_range(). This ensures that if seq does wrap we
242 * will always clear the below sleep in some reasonable time as
243 * subscriptions->invalidate_seq is even in the idle state.
244 */
245 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
246 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
247 if (is_invalidating)
248 wait_event(subscriptions->wq,
249 READ_ONCE(subscriptions->invalidate_seq) != seq);
250
251 /*
252 * Notice that mmu_interval_read_retry() can already be true at this
253 * point, avoiding loops here allows the caller to provide a global
254 * time bound.
255 */
256
257 return seq;
258 }
259 EXPORT_SYMBOL_GPL(mmu_interval_read_begin);
260
mn_itree_release(struct mmu_notifier_subscriptions * subscriptions,struct mm_struct * mm)261 static void mn_itree_release(struct mmu_notifier_subscriptions *subscriptions,
262 struct mm_struct *mm)
263 {
264 struct mmu_notifier_range range = {
265 .flags = MMU_NOTIFIER_RANGE_BLOCKABLE,
266 .event = MMU_NOTIFY_RELEASE,
267 .mm = mm,
268 .start = 0,
269 .end = ULONG_MAX,
270 };
271 struct mmu_interval_notifier *interval_sub;
272 unsigned long cur_seq;
273 bool ret;
274
275 for (interval_sub =
276 mn_itree_inv_start_range(subscriptions, &range, &cur_seq);
277 interval_sub;
278 interval_sub = mn_itree_inv_next(interval_sub, &range)) {
279 ret = interval_sub->ops->invalidate(interval_sub, &range,
280 cur_seq);
281 WARN_ON(!ret);
282 }
283
284 mn_itree_inv_end(subscriptions);
285 }
286
287 /*
288 * This function can't run concurrently against mmu_notifier_register
289 * because mm->mm_users > 0 during mmu_notifier_register and exit_mmap
290 * runs with mm_users == 0. Other tasks may still invoke mmu notifiers
291 * in parallel despite there being no task using this mm any more,
292 * through the vmas outside of the exit_mmap context, such as with
293 * vmtruncate. This serializes against mmu_notifier_unregister with
294 * the notifier_subscriptions->lock in addition to SRCU and it serializes
295 * against the other mmu notifiers with SRCU. struct mmu_notifier_subscriptions
296 * can't go away from under us as exit_mmap holds an mm_count pin
297 * itself.
298 */
mn_hlist_release(struct mmu_notifier_subscriptions * subscriptions,struct mm_struct * mm)299 static void mn_hlist_release(struct mmu_notifier_subscriptions *subscriptions,
300 struct mm_struct *mm)
301 {
302 struct mmu_notifier *subscription;
303 int id;
304
305 /*
306 * SRCU here will block mmu_notifier_unregister until
307 * ->release returns.
308 */
309 id = srcu_read_lock(&srcu);
310 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
311 srcu_read_lock_held(&srcu))
312 /*
313 * If ->release runs before mmu_notifier_unregister it must be
314 * handled, as it's the only way for the driver to flush all
315 * existing sptes and stop the driver from establishing any more
316 * sptes before all the pages in the mm are freed.
317 */
318 if (subscription->ops->release)
319 subscription->ops->release(subscription, mm);
320
321 spin_lock(&subscriptions->lock);
322 while (unlikely(!hlist_empty(&subscriptions->list))) {
323 subscription = hlist_entry(subscriptions->list.first,
324 struct mmu_notifier, hlist);
325 /*
326 * We arrived before mmu_notifier_unregister so
327 * mmu_notifier_unregister will do nothing other than to wait
328 * for ->release to finish and for mmu_notifier_unregister to
329 * return.
330 */
331 hlist_del_init_rcu(&subscription->hlist);
332 }
333 spin_unlock(&subscriptions->lock);
334 srcu_read_unlock(&srcu, id);
335
336 /*
337 * synchronize_srcu here prevents mmu_notifier_release from returning to
338 * exit_mmap (which would proceed with freeing all pages in the mm)
339 * until the ->release method returns, if it was invoked by
340 * mmu_notifier_unregister.
341 *
342 * The notifier_subscriptions can't go away from under us because
343 * one mm_count is held by exit_mmap.
344 */
345 synchronize_srcu(&srcu);
346 }
347
__mmu_notifier_release(struct mm_struct * mm)348 void __mmu_notifier_release(struct mm_struct *mm)
349 {
350 struct mmu_notifier_subscriptions *subscriptions =
351 mm->notifier_subscriptions;
352
353 if (subscriptions->has_itree)
354 mn_itree_release(subscriptions, mm);
355
356 if (!hlist_empty(&subscriptions->list))
357 mn_hlist_release(subscriptions, mm);
358 }
359
360 /*
361 * If no young bitflag is supported by the hardware, ->clear_flush_young can
362 * unmap the address and return 1 or 0 depending if the mapping previously
363 * existed or not.
364 */
__mmu_notifier_clear_flush_young(struct mm_struct * mm,unsigned long start,unsigned long end)365 int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
366 unsigned long start,
367 unsigned long end)
368 {
369 struct mmu_notifier *subscription;
370 int young = 0, id;
371
372 id = srcu_read_lock(&srcu);
373 hlist_for_each_entry_rcu(subscription,
374 &mm->notifier_subscriptions->list, hlist,
375 srcu_read_lock_held(&srcu)) {
376 if (subscription->ops->clear_flush_young)
377 young |= subscription->ops->clear_flush_young(
378 subscription, mm, start, end);
379 }
380 srcu_read_unlock(&srcu, id);
381
382 return young;
383 }
384
__mmu_notifier_clear_young(struct mm_struct * mm,unsigned long start,unsigned long end)385 int __mmu_notifier_clear_young(struct mm_struct *mm,
386 unsigned long start,
387 unsigned long end)
388 {
389 struct mmu_notifier *subscription;
390 int young = 0, id;
391
392 id = srcu_read_lock(&srcu);
393 hlist_for_each_entry_rcu(subscription,
394 &mm->notifier_subscriptions->list, hlist,
395 srcu_read_lock_held(&srcu)) {
396 if (subscription->ops->clear_young)
397 young |= subscription->ops->clear_young(subscription,
398 mm, start, end);
399 }
400 srcu_read_unlock(&srcu, id);
401
402 return young;
403 }
404
__mmu_notifier_test_young(struct mm_struct * mm,unsigned long address)405 int __mmu_notifier_test_young(struct mm_struct *mm,
406 unsigned long address)
407 {
408 struct mmu_notifier *subscription;
409 int young = 0, id;
410
411 id = srcu_read_lock(&srcu);
412 hlist_for_each_entry_rcu(subscription,
413 &mm->notifier_subscriptions->list, hlist,
414 srcu_read_lock_held(&srcu)) {
415 if (subscription->ops->test_young) {
416 young = subscription->ops->test_young(subscription, mm,
417 address);
418 if (young)
419 break;
420 }
421 }
422 srcu_read_unlock(&srcu, id);
423
424 return young;
425 }
426
__mmu_notifier_change_pte(struct mm_struct * mm,unsigned long address,pte_t pte)427 void __mmu_notifier_change_pte(struct mm_struct *mm, unsigned long address,
428 pte_t pte)
429 {
430 struct mmu_notifier *subscription;
431 int id;
432
433 id = srcu_read_lock(&srcu);
434 hlist_for_each_entry_rcu(subscription,
435 &mm->notifier_subscriptions->list, hlist,
436 srcu_read_lock_held(&srcu)) {
437 if (subscription->ops->change_pte)
438 subscription->ops->change_pte(subscription, mm, address,
439 pte);
440 }
441 srcu_read_unlock(&srcu, id);
442 }
443
mn_itree_invalidate(struct mmu_notifier_subscriptions * subscriptions,const struct mmu_notifier_range * range)444 static int mn_itree_invalidate(struct mmu_notifier_subscriptions *subscriptions,
445 const struct mmu_notifier_range *range)
446 {
447 struct mmu_interval_notifier *interval_sub;
448 unsigned long cur_seq;
449
450 for (interval_sub =
451 mn_itree_inv_start_range(subscriptions, range, &cur_seq);
452 interval_sub;
453 interval_sub = mn_itree_inv_next(interval_sub, range)) {
454 bool ret;
455
456 ret = interval_sub->ops->invalidate(interval_sub, range,
457 cur_seq);
458 if (!ret) {
459 if (WARN_ON(mmu_notifier_range_blockable(range)))
460 continue;
461 goto out_would_block;
462 }
463 }
464 return 0;
465
466 out_would_block:
467 /*
468 * On -EAGAIN the non-blocking caller is not allowed to call
469 * invalidate_range_end()
470 */
471 mn_itree_inv_end(subscriptions);
472 return -EAGAIN;
473 }
474
mn_hlist_invalidate_range_start(struct mmu_notifier_subscriptions * subscriptions,struct mmu_notifier_range * range)475 static int mn_hlist_invalidate_range_start(
476 struct mmu_notifier_subscriptions *subscriptions,
477 struct mmu_notifier_range *range)
478 {
479 struct mmu_notifier *subscription;
480 int ret = 0;
481 int id;
482
483 id = srcu_read_lock(&srcu);
484 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
485 srcu_read_lock_held(&srcu)) {
486 const struct mmu_notifier_ops *ops = subscription->ops;
487
488 if (ops->invalidate_range_start) {
489 int _ret;
490
491 if (!mmu_notifier_range_blockable(range))
492 non_block_start();
493 _ret = ops->invalidate_range_start(subscription, range);
494 if (!mmu_notifier_range_blockable(range))
495 non_block_end();
496 if (_ret) {
497 pr_info("%pS callback failed with %d in %sblockable context.\n",
498 ops->invalidate_range_start, _ret,
499 !mmu_notifier_range_blockable(range) ?
500 "non-" :
501 "");
502 WARN_ON(mmu_notifier_range_blockable(range) ||
503 _ret != -EAGAIN);
504 /*
505 * We call all the notifiers on any EAGAIN,
506 * there is no way for a notifier to know if
507 * its start method failed, thus a start that
508 * does EAGAIN can't also do end.
509 */
510 WARN_ON(ops->invalidate_range_end);
511 ret = _ret;
512 }
513 }
514 }
515
516 if (ret) {
517 /*
518 * Must be non-blocking to get here. If there are multiple
519 * notifiers and one or more failed start, any that succeeded
520 * start are expecting their end to be called. Do so now.
521 */
522 hlist_for_each_entry_rcu(subscription, &subscriptions->list,
523 hlist, srcu_read_lock_held(&srcu)) {
524 if (!subscription->ops->invalidate_range_end)
525 continue;
526
527 subscription->ops->invalidate_range_end(subscription,
528 range);
529 }
530 }
531 srcu_read_unlock(&srcu, id);
532
533 return ret;
534 }
535
__mmu_notifier_invalidate_range_start(struct mmu_notifier_range * range)536 int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
537 {
538 struct mmu_notifier_subscriptions *subscriptions =
539 range->mm->notifier_subscriptions;
540 int ret;
541
542 if (subscriptions->has_itree) {
543 ret = mn_itree_invalidate(subscriptions, range);
544 if (ret)
545 return ret;
546 }
547 if (!hlist_empty(&subscriptions->list))
548 return mn_hlist_invalidate_range_start(subscriptions, range);
549 return 0;
550 }
551
552 static void
mn_hlist_invalidate_end(struct mmu_notifier_subscriptions * subscriptions,struct mmu_notifier_range * range,bool only_end)553 mn_hlist_invalidate_end(struct mmu_notifier_subscriptions *subscriptions,
554 struct mmu_notifier_range *range, bool only_end)
555 {
556 struct mmu_notifier *subscription;
557 int id;
558
559 id = srcu_read_lock(&srcu);
560 hlist_for_each_entry_rcu(subscription, &subscriptions->list, hlist,
561 srcu_read_lock_held(&srcu)) {
562 /*
563 * Call invalidate_range here too to avoid the need for the
564 * subsystem of having to register an invalidate_range_end
565 * call-back when there is invalidate_range already. Usually a
566 * subsystem registers either invalidate_range_start()/end() or
567 * invalidate_range(), so this will be no additional overhead
568 * (besides the pointer check).
569 *
570 * We skip call to invalidate_range() if we know it is safe ie
571 * call site use mmu_notifier_invalidate_range_only_end() which
572 * is safe to do when we know that a call to invalidate_range()
573 * already happen under page table lock.
574 */
575 if (!only_end && subscription->ops->invalidate_range)
576 subscription->ops->invalidate_range(subscription,
577 range->mm,
578 range->start,
579 range->end);
580 if (subscription->ops->invalidate_range_end) {
581 if (!mmu_notifier_range_blockable(range))
582 non_block_start();
583 subscription->ops->invalidate_range_end(subscription,
584 range);
585 if (!mmu_notifier_range_blockable(range))
586 non_block_end();
587 }
588 }
589 srcu_read_unlock(&srcu, id);
590 }
591
__mmu_notifier_invalidate_range_end(struct mmu_notifier_range * range,bool only_end)592 void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range,
593 bool only_end)
594 {
595 struct mmu_notifier_subscriptions *subscriptions =
596 range->mm->notifier_subscriptions;
597
598 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
599 if (subscriptions->has_itree)
600 mn_itree_inv_end(subscriptions);
601
602 if (!hlist_empty(&subscriptions->list))
603 mn_hlist_invalidate_end(subscriptions, range, only_end);
604 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
605 }
606
__mmu_notifier_invalidate_range(struct mm_struct * mm,unsigned long start,unsigned long end)607 void __mmu_notifier_invalidate_range(struct mm_struct *mm,
608 unsigned long start, unsigned long end)
609 {
610 struct mmu_notifier *subscription;
611 int id;
612
613 id = srcu_read_lock(&srcu);
614 hlist_for_each_entry_rcu(subscription,
615 &mm->notifier_subscriptions->list, hlist,
616 srcu_read_lock_held(&srcu)) {
617 if (subscription->ops->invalidate_range)
618 subscription->ops->invalidate_range(subscription, mm,
619 start, end);
620 }
621 srcu_read_unlock(&srcu, id);
622 }
623
624 #ifdef CONFIG_SPECULATIVE_PAGE_FAULT
625
mmu_notifier_write_lock(struct mm_struct * mm)626 static inline void mmu_notifier_write_lock(struct mm_struct *mm)
627 {
628 percpu_down_write(mm->mmu_notifier_lock);
629 }
630
mmu_notifier_write_unlock(struct mm_struct * mm)631 static inline void mmu_notifier_write_unlock(struct mm_struct *mm)
632 {
633 percpu_up_write(mm->mmu_notifier_lock);
634 }
635
636 #else /* CONFIG_SPECULATIVE_PAGE_FAULT */
637
mmu_notifier_write_lock(struct mm_struct * mm)638 static inline void mmu_notifier_write_lock(struct mm_struct *mm) {}
mmu_notifier_write_unlock(struct mm_struct * mm)639 static inline void mmu_notifier_write_unlock(struct mm_struct *mm) {}
640
641 #endif /* CONFIG_SPECULATIVE_PAGE_FAULT */
642
643 /*
644 * Same as mmu_notifier_register but here the caller must hold the mmap_lock in
645 * write mode. A NULL mn signals the notifier is being registered for itree
646 * mode.
647 */
__mmu_notifier_register(struct mmu_notifier * subscription,struct mm_struct * mm)648 int __mmu_notifier_register(struct mmu_notifier *subscription,
649 struct mm_struct *mm)
650 {
651 struct mmu_notifier_subscriptions *subscriptions = NULL;
652 int ret;
653
654 mmap_assert_write_locked(mm);
655 BUG_ON(atomic_read(&mm->mm_users) <= 0);
656
657 if (IS_ENABLED(CONFIG_LOCKDEP)) {
658 fs_reclaim_acquire(GFP_KERNEL);
659 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
660 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
661 fs_reclaim_release(GFP_KERNEL);
662 }
663
664 if (!mm->notifier_subscriptions) {
665 /*
666 * kmalloc cannot be called under mm_take_all_locks(), but we
667 * know that mm->notifier_subscriptions can't change while we
668 * hold the write side of the mmap_lock.
669 */
670 subscriptions = kzalloc(
671 sizeof(struct mmu_notifier_subscriptions), GFP_KERNEL);
672 if (!subscriptions)
673 return -ENOMEM;
674
675 INIT_HLIST_HEAD(&subscriptions->list);
676 spin_lock_init(&subscriptions->lock);
677 subscriptions->invalidate_seq = 2;
678 subscriptions->itree = RB_ROOT_CACHED;
679 init_waitqueue_head(&subscriptions->wq);
680 INIT_HLIST_HEAD(&subscriptions->deferred_list);
681 }
682
683 mmu_notifier_write_lock(mm);
684
685 ret = mm_take_all_locks(mm);
686 if (unlikely(ret)) {
687 mmu_notifier_write_unlock(mm);
688 goto out_clean;
689 }
690
691 /*
692 * Serialize the update against mmu_notifier_unregister. A
693 * side note: mmu_notifier_release can't run concurrently with
694 * us because we hold the mm_users pin (either implicitly as
695 * current->mm or explicitly with get_task_mm() or similar).
696 * We can't race against any other mmu notifier method either
697 * thanks to mm_take_all_locks().
698 *
699 * release semantics on the initialization of the
700 * mmu_notifier_subscriptions's contents are provided for unlocked
701 * readers. acquire can only be used while holding the mmgrab or
702 * mmget, and is safe because once created the
703 * mmu_notifier_subscriptions is not freed until the mm is destroyed.
704 * As above, users holding the mmap_lock or one of the
705 * mm_take_all_locks() do not need to use acquire semantics.
706 */
707 if (subscriptions)
708 smp_store_release(&mm->notifier_subscriptions, subscriptions);
709
710 if (subscription) {
711 /* Pairs with the mmdrop in mmu_notifier_unregister_* */
712 mmgrab(mm);
713 subscription->mm = mm;
714 subscription->users = 1;
715
716 spin_lock(&mm->notifier_subscriptions->lock);
717 hlist_add_head_rcu(&subscription->hlist,
718 &mm->notifier_subscriptions->list);
719 spin_unlock(&mm->notifier_subscriptions->lock);
720 } else
721 mm->notifier_subscriptions->has_itree = true;
722
723 mm_drop_all_locks(mm);
724 mmu_notifier_write_unlock(mm);
725 BUG_ON(atomic_read(&mm->mm_users) <= 0);
726 return 0;
727
728 out_clean:
729 kfree(subscriptions);
730 return ret;
731 }
732 EXPORT_SYMBOL_GPL(__mmu_notifier_register);
733
734 /**
735 * mmu_notifier_register - Register a notifier on a mm
736 * @subscription: The notifier to attach
737 * @mm: The mm to attach the notifier to
738 *
739 * Must not hold mmap_lock nor any other VM related lock when calling
740 * this registration function. Must also ensure mm_users can't go down
741 * to zero while this runs to avoid races with mmu_notifier_release,
742 * so mm has to be current->mm or the mm should be pinned safely such
743 * as with get_task_mm(). If the mm is not current->mm, the mm_users
744 * pin should be released by calling mmput after mmu_notifier_register
745 * returns.
746 *
747 * mmu_notifier_unregister() or mmu_notifier_put() must be always called to
748 * unregister the notifier.
749 *
750 * While the caller has a mmu_notifier get the subscription->mm pointer will remain
751 * valid, and can be converted to an active mm pointer via mmget_not_zero().
752 */
mmu_notifier_register(struct mmu_notifier * subscription,struct mm_struct * mm)753 int mmu_notifier_register(struct mmu_notifier *subscription,
754 struct mm_struct *mm)
755 {
756 int ret;
757
758 mmap_write_lock(mm);
759 ret = __mmu_notifier_register(subscription, mm);
760 mmap_write_unlock(mm);
761 return ret;
762 }
763 EXPORT_SYMBOL_GPL(mmu_notifier_register);
764
765 static struct mmu_notifier *
find_get_mmu_notifier(struct mm_struct * mm,const struct mmu_notifier_ops * ops)766 find_get_mmu_notifier(struct mm_struct *mm, const struct mmu_notifier_ops *ops)
767 {
768 struct mmu_notifier *subscription;
769
770 spin_lock(&mm->notifier_subscriptions->lock);
771 hlist_for_each_entry_rcu(subscription,
772 &mm->notifier_subscriptions->list, hlist,
773 lockdep_is_held(&mm->notifier_subscriptions->lock)) {
774 if (subscription->ops != ops)
775 continue;
776
777 if (likely(subscription->users != UINT_MAX))
778 subscription->users++;
779 else
780 subscription = ERR_PTR(-EOVERFLOW);
781 spin_unlock(&mm->notifier_subscriptions->lock);
782 return subscription;
783 }
784 spin_unlock(&mm->notifier_subscriptions->lock);
785 return NULL;
786 }
787
788 /**
789 * mmu_notifier_get_locked - Return the single struct mmu_notifier for
790 * the mm & ops
791 * @ops: The operations struct being subscribe with
792 * @mm : The mm to attach notifiers too
793 *
794 * This function either allocates a new mmu_notifier via
795 * ops->alloc_notifier(), or returns an already existing notifier on the
796 * list. The value of the ops pointer is used to determine when two notifiers
797 * are the same.
798 *
799 * Each call to mmu_notifier_get() must be paired with a call to
800 * mmu_notifier_put(). The caller must hold the write side of mm->mmap_lock.
801 *
802 * While the caller has a mmu_notifier get the mm pointer will remain valid,
803 * and can be converted to an active mm pointer via mmget_not_zero().
804 */
mmu_notifier_get_locked(const struct mmu_notifier_ops * ops,struct mm_struct * mm)805 struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
806 struct mm_struct *mm)
807 {
808 struct mmu_notifier *subscription;
809 int ret;
810
811 mmap_assert_write_locked(mm);
812
813 if (mm->notifier_subscriptions) {
814 subscription = find_get_mmu_notifier(mm, ops);
815 if (subscription)
816 return subscription;
817 }
818
819 subscription = ops->alloc_notifier(mm);
820 if (IS_ERR(subscription))
821 return subscription;
822 subscription->ops = ops;
823 ret = __mmu_notifier_register(subscription, mm);
824 if (ret)
825 goto out_free;
826 return subscription;
827 out_free:
828 subscription->ops->free_notifier(subscription);
829 return ERR_PTR(ret);
830 }
831 EXPORT_SYMBOL_GPL(mmu_notifier_get_locked);
832
833 /* this is called after the last mmu_notifier_unregister() returned */
__mmu_notifier_subscriptions_destroy(struct mm_struct * mm)834 void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
835 {
836 BUG_ON(!hlist_empty(&mm->notifier_subscriptions->list));
837 kfree(mm->notifier_subscriptions);
838 mm->notifier_subscriptions = LIST_POISON1; /* debug */
839 }
840
841 /*
842 * This releases the mm_count pin automatically and frees the mm
843 * structure if it was the last user of it. It serializes against
844 * running mmu notifiers with SRCU and against mmu_notifier_unregister
845 * with the unregister lock + SRCU. All sptes must be dropped before
846 * calling mmu_notifier_unregister. ->release or any other notifier
847 * method may be invoked concurrently with mmu_notifier_unregister,
848 * and only after mmu_notifier_unregister returned we're guaranteed
849 * that ->release or any other method can't run anymore.
850 */
mmu_notifier_unregister(struct mmu_notifier * subscription,struct mm_struct * mm)851 void mmu_notifier_unregister(struct mmu_notifier *subscription,
852 struct mm_struct *mm)
853 {
854 BUG_ON(atomic_read(&mm->mm_count) <= 0);
855
856 if (!hlist_unhashed(&subscription->hlist)) {
857 /*
858 * SRCU here will force exit_mmap to wait for ->release to
859 * finish before freeing the pages.
860 */
861 int id;
862
863 id = srcu_read_lock(&srcu);
864 /*
865 * exit_mmap will block in mmu_notifier_release to guarantee
866 * that ->release is called before freeing the pages.
867 */
868 if (subscription->ops->release)
869 subscription->ops->release(subscription, mm);
870 srcu_read_unlock(&srcu, id);
871
872 spin_lock(&mm->notifier_subscriptions->lock);
873 /*
874 * Can not use list_del_rcu() since __mmu_notifier_release
875 * can delete it before we hold the lock.
876 */
877 hlist_del_init_rcu(&subscription->hlist);
878 spin_unlock(&mm->notifier_subscriptions->lock);
879 }
880
881 /*
882 * Wait for any running method to finish, of course including
883 * ->release if it was run by mmu_notifier_release instead of us.
884 */
885 synchronize_srcu(&srcu);
886
887 BUG_ON(atomic_read(&mm->mm_count) <= 0);
888
889 mmdrop(mm);
890 }
891 EXPORT_SYMBOL_GPL(mmu_notifier_unregister);
892
mmu_notifier_free_rcu(struct rcu_head * rcu)893 static void mmu_notifier_free_rcu(struct rcu_head *rcu)
894 {
895 struct mmu_notifier *subscription =
896 container_of(rcu, struct mmu_notifier, rcu);
897 struct mm_struct *mm = subscription->mm;
898
899 subscription->ops->free_notifier(subscription);
900 /* Pairs with the get in __mmu_notifier_register() */
901 mmdrop(mm);
902 }
903
904 /**
905 * mmu_notifier_put - Release the reference on the notifier
906 * @subscription: The notifier to act on
907 *
908 * This function must be paired with each mmu_notifier_get(), it releases the
909 * reference obtained by the get. If this is the last reference then process
910 * to free the notifier will be run asynchronously.
911 *
912 * Unlike mmu_notifier_unregister() the get/put flow only calls ops->release
913 * when the mm_struct is destroyed. Instead free_notifier is always called to
914 * release any resources held by the user.
915 *
916 * As ops->release is not guaranteed to be called, the user must ensure that
917 * all sptes are dropped, and no new sptes can be established before
918 * mmu_notifier_put() is called.
919 *
920 * This function can be called from the ops->release callback, however the
921 * caller must still ensure it is called pairwise with mmu_notifier_get().
922 *
923 * Modules calling this function must call mmu_notifier_synchronize() in
924 * their __exit functions to ensure the async work is completed.
925 */
mmu_notifier_put(struct mmu_notifier * subscription)926 void mmu_notifier_put(struct mmu_notifier *subscription)
927 {
928 struct mm_struct *mm = subscription->mm;
929
930 spin_lock(&mm->notifier_subscriptions->lock);
931 if (WARN_ON(!subscription->users) || --subscription->users)
932 goto out_unlock;
933 hlist_del_init_rcu(&subscription->hlist);
934 spin_unlock(&mm->notifier_subscriptions->lock);
935
936 call_srcu(&srcu, &subscription->rcu, mmu_notifier_free_rcu);
937 return;
938
939 out_unlock:
940 spin_unlock(&mm->notifier_subscriptions->lock);
941 }
942 EXPORT_SYMBOL_GPL(mmu_notifier_put);
943
__mmu_interval_notifier_insert(struct mmu_interval_notifier * interval_sub,struct mm_struct * mm,struct mmu_notifier_subscriptions * subscriptions,unsigned long start,unsigned long length,const struct mmu_interval_notifier_ops * ops)944 static int __mmu_interval_notifier_insert(
945 struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
946 struct mmu_notifier_subscriptions *subscriptions, unsigned long start,
947 unsigned long length, const struct mmu_interval_notifier_ops *ops)
948 {
949 interval_sub->mm = mm;
950 interval_sub->ops = ops;
951 RB_CLEAR_NODE(&interval_sub->interval_tree.rb);
952 interval_sub->interval_tree.start = start;
953 /*
954 * Note that the representation of the intervals in the interval tree
955 * considers the ending point as contained in the interval.
956 */
957 if (length == 0 ||
958 check_add_overflow(start, length - 1,
959 &interval_sub->interval_tree.last))
960 return -EOVERFLOW;
961
962 /* Must call with a mmget() held */
963 if (WARN_ON(atomic_read(&mm->mm_users) <= 0))
964 return -EINVAL;
965
966 /* pairs with mmdrop in mmu_interval_notifier_remove() */
967 mmgrab(mm);
968
969 /*
970 * If some invalidate_range_start/end region is going on in parallel
971 * we don't know what VA ranges are affected, so we must assume this
972 * new range is included.
973 *
974 * If the itree is invalidating then we are not allowed to change
975 * it. Retrying until invalidation is done is tricky due to the
976 * possibility for live lock, instead defer the add to
977 * mn_itree_inv_end() so this algorithm is deterministic.
978 *
979 * In all cases the value for the interval_sub->invalidate_seq should be
980 * odd, see mmu_interval_read_begin()
981 */
982 spin_lock(&subscriptions->lock);
983 if (subscriptions->active_invalidate_ranges) {
984 if (mn_itree_is_invalidating(subscriptions))
985 hlist_add_head(&interval_sub->deferred_item,
986 &subscriptions->deferred_list);
987 else {
988 subscriptions->invalidate_seq |= 1;
989 interval_tree_insert(&interval_sub->interval_tree,
990 &subscriptions->itree);
991 }
992 interval_sub->invalidate_seq = subscriptions->invalidate_seq;
993 } else {
994 WARN_ON(mn_itree_is_invalidating(subscriptions));
995 /*
996 * The starting seq for a subscription not under invalidation
997 * should be odd, not equal to the current invalidate_seq and
998 * invalidate_seq should not 'wrap' to the new seq any time
999 * soon.
1000 */
1001 interval_sub->invalidate_seq =
1002 subscriptions->invalidate_seq - 1;
1003 interval_tree_insert(&interval_sub->interval_tree,
1004 &subscriptions->itree);
1005 }
1006 spin_unlock(&subscriptions->lock);
1007 return 0;
1008 }
1009
1010 /**
1011 * mmu_interval_notifier_insert - Insert an interval notifier
1012 * @interval_sub: Interval subscription to register
1013 * @start: Starting virtual address to monitor
1014 * @length: Length of the range to monitor
1015 * @mm: mm_struct to attach to
1016 * @ops: Interval notifier operations to be called on matching events
1017 *
1018 * This function subscribes the interval notifier for notifications from the
1019 * mm. Upon return the ops related to mmu_interval_notifier will be called
1020 * whenever an event that intersects with the given range occurs.
1021 *
1022 * Upon return the range_notifier may not be present in the interval tree yet.
1023 * The caller must use the normal interval notifier read flow via
1024 * mmu_interval_read_begin() to establish SPTEs for this range.
1025 */
mmu_interval_notifier_insert(struct mmu_interval_notifier * interval_sub,struct mm_struct * mm,unsigned long start,unsigned long length,const struct mmu_interval_notifier_ops * ops)1026 int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
1027 struct mm_struct *mm, unsigned long start,
1028 unsigned long length,
1029 const struct mmu_interval_notifier_ops *ops)
1030 {
1031 struct mmu_notifier_subscriptions *subscriptions;
1032 int ret;
1033
1034 might_lock(&mm->mmap_lock);
1035
1036 subscriptions = smp_load_acquire(&mm->notifier_subscriptions);
1037 if (!subscriptions || !subscriptions->has_itree) {
1038 ret = mmu_notifier_register(NULL, mm);
1039 if (ret)
1040 return ret;
1041 subscriptions = mm->notifier_subscriptions;
1042 }
1043 return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
1044 start, length, ops);
1045 }
1046 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert);
1047
mmu_interval_notifier_insert_locked(struct mmu_interval_notifier * interval_sub,struct mm_struct * mm,unsigned long start,unsigned long length,const struct mmu_interval_notifier_ops * ops)1048 int mmu_interval_notifier_insert_locked(
1049 struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
1050 unsigned long start, unsigned long length,
1051 const struct mmu_interval_notifier_ops *ops)
1052 {
1053 struct mmu_notifier_subscriptions *subscriptions =
1054 mm->notifier_subscriptions;
1055 int ret;
1056
1057 mmap_assert_write_locked(mm);
1058
1059 if (!subscriptions || !subscriptions->has_itree) {
1060 ret = __mmu_notifier_register(NULL, mm);
1061 if (ret)
1062 return ret;
1063 subscriptions = mm->notifier_subscriptions;
1064 }
1065 return __mmu_interval_notifier_insert(interval_sub, mm, subscriptions,
1066 start, length, ops);
1067 }
1068 EXPORT_SYMBOL_GPL(mmu_interval_notifier_insert_locked);
1069
1070 static bool
mmu_interval_seq_released(struct mmu_notifier_subscriptions * subscriptions,unsigned long seq)1071 mmu_interval_seq_released(struct mmu_notifier_subscriptions *subscriptions,
1072 unsigned long seq)
1073 {
1074 bool ret;
1075
1076 spin_lock(&subscriptions->lock);
1077 ret = subscriptions->invalidate_seq != seq;
1078 spin_unlock(&subscriptions->lock);
1079 return ret;
1080 }
1081
1082 /**
1083 * mmu_interval_notifier_remove - Remove a interval notifier
1084 * @interval_sub: Interval subscription to unregister
1085 *
1086 * This function must be paired with mmu_interval_notifier_insert(). It cannot
1087 * be called from any ops callback.
1088 *
1089 * Once this returns ops callbacks are no longer running on other CPUs and
1090 * will not be called in future.
1091 */
mmu_interval_notifier_remove(struct mmu_interval_notifier * interval_sub)1092 void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub)
1093 {
1094 struct mm_struct *mm = interval_sub->mm;
1095 struct mmu_notifier_subscriptions *subscriptions =
1096 mm->notifier_subscriptions;
1097 unsigned long seq = 0;
1098
1099 might_sleep();
1100
1101 spin_lock(&subscriptions->lock);
1102 if (mn_itree_is_invalidating(subscriptions)) {
1103 /*
1104 * remove is being called after insert put this on the
1105 * deferred list, but before the deferred list was processed.
1106 */
1107 if (RB_EMPTY_NODE(&interval_sub->interval_tree.rb)) {
1108 hlist_del(&interval_sub->deferred_item);
1109 } else {
1110 hlist_add_head(&interval_sub->deferred_item,
1111 &subscriptions->deferred_list);
1112 seq = subscriptions->invalidate_seq;
1113 }
1114 } else {
1115 WARN_ON(RB_EMPTY_NODE(&interval_sub->interval_tree.rb));
1116 interval_tree_remove(&interval_sub->interval_tree,
1117 &subscriptions->itree);
1118 }
1119 spin_unlock(&subscriptions->lock);
1120
1121 /*
1122 * The possible sleep on progress in the invalidation requires the
1123 * caller not hold any locks held by invalidation callbacks.
1124 */
1125 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
1126 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
1127 if (seq)
1128 wait_event(subscriptions->wq,
1129 mmu_interval_seq_released(subscriptions, seq));
1130
1131 /* pairs with mmgrab in mmu_interval_notifier_insert() */
1132 mmdrop(mm);
1133 }
1134 EXPORT_SYMBOL_GPL(mmu_interval_notifier_remove);
1135
1136 /**
1137 * mmu_notifier_synchronize - Ensure all mmu_notifiers are freed
1138 *
1139 * This function ensures that all outstanding async SRU work from
1140 * mmu_notifier_put() is completed. After it returns any mmu_notifier_ops
1141 * associated with an unused mmu_notifier will no longer be called.
1142 *
1143 * Before using the caller must ensure that all of its mmu_notifiers have been
1144 * fully released via mmu_notifier_put().
1145 *
1146 * Modules using the mmu_notifier_put() API should call this in their __exit
1147 * function to avoid module unloading races.
1148 */
mmu_notifier_synchronize(void)1149 void mmu_notifier_synchronize(void)
1150 {
1151 synchronize_srcu(&srcu);
1152 }
1153 EXPORT_SYMBOL_GPL(mmu_notifier_synchronize);
1154
1155 bool
mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range * range)1156 mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range)
1157 {
1158 if (!range->vma || range->event != MMU_NOTIFY_PROTECTION_VMA)
1159 return false;
1160 /* Return true if the vma still have the read flag set. */
1161 return range->vma->vm_flags & VM_READ;
1162 }
1163 EXPORT_SYMBOL_GPL(mmu_notifier_range_update_to_read_only);
1164