1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/page-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7 *
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
10 *
11 * 10Apr2002 Andrew Morton
12 * Initial version
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/writeback.h>
24 #include <linux/init.h>
25 #include <linux/backing-dev.h>
26 #include <linux/task_io_accounting_ops.h>
27 #include <linux/blkdev.h>
28 #include <linux/mpage.h>
29 #include <linux/rmap.h>
30 #include <linux/percpu.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42
43 #include "internal.h"
44
45 #undef CREATE_TRACE_POINT
46 #include <trace/hooks/mm.h>
47
48 /*
49 * Sleep at most 200ms at a time in balance_dirty_pages().
50 */
51 #define MAX_PAUSE max(HZ/5, 1)
52
53 /*
54 * Try to keep balance_dirty_pages() call intervals higher than this many pages
55 * by raising pause time to max_pause when falls below it.
56 */
57 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
58
59 /*
60 * Estimate write bandwidth at 200ms intervals.
61 */
62 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
63
64 #define RATELIMIT_CALC_SHIFT 10
65
66 /*
67 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
68 * will look to see if it needs to force writeback or throttling.
69 */
70 static long ratelimit_pages = 32;
71
72 /* The following parameters are exported via /proc/sys/vm */
73
74 /*
75 * Start background writeback (via writeback threads) at this percentage
76 */
77 int dirty_background_ratio = 10;
78
79 /*
80 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
81 * dirty_background_ratio * the amount of dirtyable memory
82 */
83 unsigned long dirty_background_bytes;
84
85 /*
86 * free highmem will not be subtracted from the total free memory
87 * for calculating free ratios if vm_highmem_is_dirtyable is true
88 */
89 int vm_highmem_is_dirtyable;
90
91 /*
92 * The generator of dirty data starts writeback at this percentage
93 */
94 int vm_dirty_ratio = 20;
95
96 /*
97 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
98 * vm_dirty_ratio * the amount of dirtyable memory
99 */
100 unsigned long vm_dirty_bytes;
101
102 /*
103 * The interval between `kupdate'-style writebacks
104 */
105 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
106
107 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
108
109 /*
110 * The longest time for which data is allowed to remain dirty
111 */
112 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
113
114 /*
115 * Flag that makes the machine dump writes/reads and block dirtyings.
116 */
117 int block_dump;
118
119 /*
120 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
121 * a full sync is triggered after this time elapses without any disk activity.
122 */
123 int laptop_mode;
124
125 EXPORT_SYMBOL(laptop_mode);
126
127 /* End of sysctl-exported parameters */
128
129 struct wb_domain global_wb_domain;
130
131 /* consolidated parameters for balance_dirty_pages() and its subroutines */
132 struct dirty_throttle_control {
133 #ifdef CONFIG_CGROUP_WRITEBACK
134 struct wb_domain *dom;
135 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
136 #endif
137 struct bdi_writeback *wb;
138 struct fprop_local_percpu *wb_completions;
139
140 unsigned long avail; /* dirtyable */
141 unsigned long dirty; /* file_dirty + write + nfs */
142 unsigned long thresh; /* dirty threshold */
143 unsigned long bg_thresh; /* dirty background threshold */
144
145 unsigned long wb_dirty; /* per-wb counterparts */
146 unsigned long wb_thresh;
147 unsigned long wb_bg_thresh;
148
149 unsigned long pos_ratio;
150 };
151
152 /*
153 * Length of period for aging writeout fractions of bdis. This is an
154 * arbitrarily chosen number. The longer the period, the slower fractions will
155 * reflect changes in current writeout rate.
156 */
157 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
158
159 #ifdef CONFIG_CGROUP_WRITEBACK
160
161 #define GDTC_INIT(__wb) .wb = (__wb), \
162 .dom = &global_wb_domain, \
163 .wb_completions = &(__wb)->completions
164
165 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
166
167 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
168 .dom = mem_cgroup_wb_domain(__wb), \
169 .wb_completions = &(__wb)->memcg_completions, \
170 .gdtc = __gdtc
171
mdtc_valid(struct dirty_throttle_control * dtc)172 static bool mdtc_valid(struct dirty_throttle_control *dtc)
173 {
174 return dtc->dom;
175 }
176
dtc_dom(struct dirty_throttle_control * dtc)177 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
178 {
179 return dtc->dom;
180 }
181
mdtc_gdtc(struct dirty_throttle_control * mdtc)182 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
183 {
184 return mdtc->gdtc;
185 }
186
wb_memcg_completions(struct bdi_writeback * wb)187 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
188 {
189 return &wb->memcg_completions;
190 }
191
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)192 static void wb_min_max_ratio(struct bdi_writeback *wb,
193 unsigned long *minp, unsigned long *maxp)
194 {
195 unsigned long this_bw = wb->avg_write_bandwidth;
196 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
197 unsigned long long min = wb->bdi->min_ratio;
198 unsigned long long max = wb->bdi->max_ratio;
199
200 /*
201 * @wb may already be clean by the time control reaches here and
202 * the total may not include its bw.
203 */
204 if (this_bw < tot_bw) {
205 if (min) {
206 min *= this_bw;
207 min = div64_ul(min, tot_bw);
208 }
209 if (max < 100) {
210 max *= this_bw;
211 max = div64_ul(max, tot_bw);
212 }
213 }
214
215 *minp = min;
216 *maxp = max;
217 }
218
219 #else /* CONFIG_CGROUP_WRITEBACK */
220
221 #define GDTC_INIT(__wb) .wb = (__wb), \
222 .wb_completions = &(__wb)->completions
223 #define GDTC_INIT_NO_WB
224 #define MDTC_INIT(__wb, __gdtc)
225
mdtc_valid(struct dirty_throttle_control * dtc)226 static bool mdtc_valid(struct dirty_throttle_control *dtc)
227 {
228 return false;
229 }
230
dtc_dom(struct dirty_throttle_control * dtc)231 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
232 {
233 return &global_wb_domain;
234 }
235
mdtc_gdtc(struct dirty_throttle_control * mdtc)236 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
237 {
238 return NULL;
239 }
240
wb_memcg_completions(struct bdi_writeback * wb)241 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
242 {
243 return NULL;
244 }
245
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)246 static void wb_min_max_ratio(struct bdi_writeback *wb,
247 unsigned long *minp, unsigned long *maxp)
248 {
249 *minp = wb->bdi->min_ratio;
250 *maxp = wb->bdi->max_ratio;
251 }
252
253 #endif /* CONFIG_CGROUP_WRITEBACK */
254
255 /*
256 * In a memory zone, there is a certain amount of pages we consider
257 * available for the page cache, which is essentially the number of
258 * free and reclaimable pages, minus some zone reserves to protect
259 * lowmem and the ability to uphold the zone's watermarks without
260 * requiring writeback.
261 *
262 * This number of dirtyable pages is the base value of which the
263 * user-configurable dirty ratio is the effective number of pages that
264 * are allowed to be actually dirtied. Per individual zone, or
265 * globally by using the sum of dirtyable pages over all zones.
266 *
267 * Because the user is allowed to specify the dirty limit globally as
268 * absolute number of bytes, calculating the per-zone dirty limit can
269 * require translating the configured limit into a percentage of
270 * global dirtyable memory first.
271 */
272
273 /**
274 * node_dirtyable_memory - number of dirtyable pages in a node
275 * @pgdat: the node
276 *
277 * Return: the node's number of pages potentially available for dirty
278 * page cache. This is the base value for the per-node dirty limits.
279 */
node_dirtyable_memory(struct pglist_data * pgdat)280 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
281 {
282 unsigned long nr_pages = 0;
283 int z;
284
285 for (z = 0; z < MAX_NR_ZONES; z++) {
286 struct zone *zone = pgdat->node_zones + z;
287
288 if (!populated_zone(zone))
289 continue;
290
291 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
292 }
293
294 /*
295 * Pages reserved for the kernel should not be considered
296 * dirtyable, to prevent a situation where reclaim has to
297 * clean pages in order to balance the zones.
298 */
299 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
300
301 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
302 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
303
304 return nr_pages;
305 }
306
highmem_dirtyable_memory(unsigned long total)307 static unsigned long highmem_dirtyable_memory(unsigned long total)
308 {
309 #ifdef CONFIG_HIGHMEM
310 int node;
311 unsigned long x = 0;
312 int i;
313
314 for_each_node_state(node, N_HIGH_MEMORY) {
315 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
316 struct zone *z;
317 unsigned long nr_pages;
318
319 if (!is_highmem_idx(i))
320 continue;
321
322 z = &NODE_DATA(node)->node_zones[i];
323 if (!populated_zone(z))
324 continue;
325
326 nr_pages = zone_page_state(z, NR_FREE_PAGES);
327 /* watch for underflows */
328 nr_pages -= min(nr_pages, high_wmark_pages(z));
329 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
330 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
331 x += nr_pages;
332 }
333 }
334
335 /*
336 * Unreclaimable memory (kernel memory or anonymous memory
337 * without swap) can bring down the dirtyable pages below
338 * the zone's dirty balance reserve and the above calculation
339 * will underflow. However we still want to add in nodes
340 * which are below threshold (negative values) to get a more
341 * accurate calculation but make sure that the total never
342 * underflows.
343 */
344 if ((long)x < 0)
345 x = 0;
346
347 /*
348 * Make sure that the number of highmem pages is never larger
349 * than the number of the total dirtyable memory. This can only
350 * occur in very strange VM situations but we want to make sure
351 * that this does not occur.
352 */
353 return min(x, total);
354 #else
355 return 0;
356 #endif
357 }
358
359 /**
360 * global_dirtyable_memory - number of globally dirtyable pages
361 *
362 * Return: the global number of pages potentially available for dirty
363 * page cache. This is the base value for the global dirty limits.
364 */
global_dirtyable_memory(void)365 static unsigned long global_dirtyable_memory(void)
366 {
367 unsigned long x;
368
369 x = global_zone_page_state(NR_FREE_PAGES);
370 /*
371 * Pages reserved for the kernel should not be considered
372 * dirtyable, to prevent a situation where reclaim has to
373 * clean pages in order to balance the zones.
374 */
375 x -= min(x, totalreserve_pages);
376
377 x += global_node_page_state(NR_INACTIVE_FILE);
378 x += global_node_page_state(NR_ACTIVE_FILE);
379
380 if (!vm_highmem_is_dirtyable)
381 x -= highmem_dirtyable_memory(x);
382
383 return x + 1; /* Ensure that we never return 0 */
384 }
385
386 /**
387 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
388 * @dtc: dirty_throttle_control of interest
389 *
390 * Calculate @dtc->thresh and ->bg_thresh considering
391 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
392 * must ensure that @dtc->avail is set before calling this function. The
393 * dirty limits will be lifted by 1/4 for real-time tasks.
394 */
domain_dirty_limits(struct dirty_throttle_control * dtc)395 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
396 {
397 const unsigned long available_memory = dtc->avail;
398 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
399 unsigned long bytes = vm_dirty_bytes;
400 unsigned long bg_bytes = dirty_background_bytes;
401 /* convert ratios to per-PAGE_SIZE for higher precision */
402 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
403 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
404 unsigned long thresh;
405 unsigned long bg_thresh;
406 struct task_struct *tsk;
407
408 /* gdtc is !NULL iff @dtc is for memcg domain */
409 if (gdtc) {
410 unsigned long global_avail = gdtc->avail;
411
412 /*
413 * The byte settings can't be applied directly to memcg
414 * domains. Convert them to ratios by scaling against
415 * globally available memory. As the ratios are in
416 * per-PAGE_SIZE, they can be obtained by dividing bytes by
417 * number of pages.
418 */
419 if (bytes)
420 ratio = min(DIV_ROUND_UP(bytes, global_avail),
421 PAGE_SIZE);
422 if (bg_bytes)
423 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
424 PAGE_SIZE);
425 bytes = bg_bytes = 0;
426 }
427
428 if (bytes)
429 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
430 else
431 thresh = (ratio * available_memory) / PAGE_SIZE;
432
433 if (bg_bytes)
434 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
435 else
436 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
437
438 if (bg_thresh >= thresh)
439 bg_thresh = thresh / 2;
440 tsk = current;
441 if (rt_task(tsk)) {
442 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
443 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
444 }
445 dtc->thresh = thresh;
446 dtc->bg_thresh = bg_thresh;
447
448 /* we should eventually report the domain in the TP */
449 if (!gdtc)
450 trace_global_dirty_state(bg_thresh, thresh);
451 }
452
453 /**
454 * global_dirty_limits - background-writeback and dirty-throttling thresholds
455 * @pbackground: out parameter for bg_thresh
456 * @pdirty: out parameter for thresh
457 *
458 * Calculate bg_thresh and thresh for global_wb_domain. See
459 * domain_dirty_limits() for details.
460 */
global_dirty_limits(unsigned long * pbackground,unsigned long * pdirty)461 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
462 {
463 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
464
465 gdtc.avail = global_dirtyable_memory();
466 domain_dirty_limits(&gdtc);
467
468 *pbackground = gdtc.bg_thresh;
469 *pdirty = gdtc.thresh;
470 }
471
472 /**
473 * node_dirty_limit - maximum number of dirty pages allowed in a node
474 * @pgdat: the node
475 *
476 * Return: the maximum number of dirty pages allowed in a node, based
477 * on the node's dirtyable memory.
478 */
node_dirty_limit(struct pglist_data * pgdat)479 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
480 {
481 unsigned long node_memory = node_dirtyable_memory(pgdat);
482 struct task_struct *tsk = current;
483 unsigned long dirty;
484
485 if (vm_dirty_bytes)
486 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
487 node_memory / global_dirtyable_memory();
488 else
489 dirty = vm_dirty_ratio * node_memory / 100;
490
491 if (rt_task(tsk))
492 dirty += dirty / 4;
493
494 return dirty;
495 }
496
497 /**
498 * node_dirty_ok - tells whether a node is within its dirty limits
499 * @pgdat: the node to check
500 *
501 * Return: %true when the dirty pages in @pgdat are within the node's
502 * dirty limit, %false if the limit is exceeded.
503 */
node_dirty_ok(struct pglist_data * pgdat)504 bool node_dirty_ok(struct pglist_data *pgdat)
505 {
506 unsigned long limit = node_dirty_limit(pgdat);
507 unsigned long nr_pages = 0;
508
509 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
510 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
511
512 return nr_pages <= limit;
513 }
514
dirty_background_ratio_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)515 int dirty_background_ratio_handler(struct ctl_table *table, int write,
516 void *buffer, size_t *lenp, loff_t *ppos)
517 {
518 int ret;
519
520 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
521 if (ret == 0 && write)
522 dirty_background_bytes = 0;
523 return ret;
524 }
525
dirty_background_bytes_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)526 int dirty_background_bytes_handler(struct ctl_table *table, int write,
527 void *buffer, size_t *lenp, loff_t *ppos)
528 {
529 int ret;
530
531 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
532 if (ret == 0 && write)
533 dirty_background_ratio = 0;
534 return ret;
535 }
536
dirty_ratio_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)537 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
538 size_t *lenp, loff_t *ppos)
539 {
540 int old_ratio = vm_dirty_ratio;
541 int ret;
542
543 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
544 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
545 writeback_set_ratelimit();
546 vm_dirty_bytes = 0;
547 }
548 return ret;
549 }
550
dirty_bytes_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)551 int dirty_bytes_handler(struct ctl_table *table, int write,
552 void *buffer, size_t *lenp, loff_t *ppos)
553 {
554 unsigned long old_bytes = vm_dirty_bytes;
555 int ret;
556
557 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
558 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
559 writeback_set_ratelimit();
560 vm_dirty_ratio = 0;
561 }
562 return ret;
563 }
564
wp_next_time(unsigned long cur_time)565 static unsigned long wp_next_time(unsigned long cur_time)
566 {
567 cur_time += VM_COMPLETIONS_PERIOD_LEN;
568 /* 0 has a special meaning... */
569 if (!cur_time)
570 return 1;
571 return cur_time;
572 }
573
wb_domain_writeout_inc(struct wb_domain * dom,struct fprop_local_percpu * completions,unsigned int max_prop_frac)574 static void wb_domain_writeout_inc(struct wb_domain *dom,
575 struct fprop_local_percpu *completions,
576 unsigned int max_prop_frac)
577 {
578 __fprop_inc_percpu_max(&dom->completions, completions,
579 max_prop_frac);
580 /* First event after period switching was turned off? */
581 if (unlikely(!dom->period_time)) {
582 /*
583 * We can race with other __bdi_writeout_inc calls here but
584 * it does not cause any harm since the resulting time when
585 * timer will fire and what is in writeout_period_time will be
586 * roughly the same.
587 */
588 dom->period_time = wp_next_time(jiffies);
589 mod_timer(&dom->period_timer, dom->period_time);
590 }
591 }
592
593 /*
594 * Increment @wb's writeout completion count and the global writeout
595 * completion count. Called from test_clear_page_writeback().
596 */
__wb_writeout_inc(struct bdi_writeback * wb)597 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
598 {
599 struct wb_domain *cgdom;
600
601 inc_wb_stat(wb, WB_WRITTEN);
602 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
603 wb->bdi->max_prop_frac);
604
605 cgdom = mem_cgroup_wb_domain(wb);
606 if (cgdom)
607 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
608 wb->bdi->max_prop_frac);
609 }
610
wb_writeout_inc(struct bdi_writeback * wb)611 void wb_writeout_inc(struct bdi_writeback *wb)
612 {
613 unsigned long flags;
614
615 local_irq_save(flags);
616 __wb_writeout_inc(wb);
617 local_irq_restore(flags);
618 }
619 EXPORT_SYMBOL_GPL(wb_writeout_inc);
620
621 /*
622 * On idle system, we can be called long after we scheduled because we use
623 * deferred timers so count with missed periods.
624 */
writeout_period(struct timer_list * t)625 static void writeout_period(struct timer_list *t)
626 {
627 struct wb_domain *dom = from_timer(dom, t, period_timer);
628 int miss_periods = (jiffies - dom->period_time) /
629 VM_COMPLETIONS_PERIOD_LEN;
630
631 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
632 dom->period_time = wp_next_time(dom->period_time +
633 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
634 mod_timer(&dom->period_timer, dom->period_time);
635 } else {
636 /*
637 * Aging has zeroed all fractions. Stop wasting CPU on period
638 * updates.
639 */
640 dom->period_time = 0;
641 }
642 }
643
wb_domain_init(struct wb_domain * dom,gfp_t gfp)644 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
645 {
646 memset(dom, 0, sizeof(*dom));
647
648 spin_lock_init(&dom->lock);
649
650 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
651
652 dom->dirty_limit_tstamp = jiffies;
653
654 return fprop_global_init(&dom->completions, gfp);
655 }
656
657 #ifdef CONFIG_CGROUP_WRITEBACK
wb_domain_exit(struct wb_domain * dom)658 void wb_domain_exit(struct wb_domain *dom)
659 {
660 del_timer_sync(&dom->period_timer);
661 fprop_global_destroy(&dom->completions);
662 }
663 #endif
664
665 /*
666 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
667 * registered backing devices, which, for obvious reasons, can not
668 * exceed 100%.
669 */
670 static unsigned int bdi_min_ratio;
671
bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)672 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
673 {
674 int ret = 0;
675
676 spin_lock_bh(&bdi_lock);
677 if (min_ratio > bdi->max_ratio) {
678 ret = -EINVAL;
679 } else {
680 min_ratio -= bdi->min_ratio;
681 if (bdi_min_ratio + min_ratio < 100) {
682 bdi_min_ratio += min_ratio;
683 bdi->min_ratio += min_ratio;
684 } else {
685 ret = -EINVAL;
686 }
687 }
688 spin_unlock_bh(&bdi_lock);
689
690 return ret;
691 }
692
bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned max_ratio)693 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
694 {
695 int ret = 0;
696
697 if (max_ratio > 100)
698 return -EINVAL;
699
700 spin_lock_bh(&bdi_lock);
701 if (bdi->min_ratio > max_ratio) {
702 ret = -EINVAL;
703 } else {
704 bdi->max_ratio = max_ratio;
705 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
706 }
707 spin_unlock_bh(&bdi_lock);
708
709 return ret;
710 }
711 EXPORT_SYMBOL(bdi_set_max_ratio);
712
dirty_freerun_ceiling(unsigned long thresh,unsigned long bg_thresh)713 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
714 unsigned long bg_thresh)
715 {
716 return (thresh + bg_thresh) / 2;
717 }
718
hard_dirty_limit(struct wb_domain * dom,unsigned long thresh)719 static unsigned long hard_dirty_limit(struct wb_domain *dom,
720 unsigned long thresh)
721 {
722 return max(thresh, dom->dirty_limit);
723 }
724
725 /*
726 * Memory which can be further allocated to a memcg domain is capped by
727 * system-wide clean memory excluding the amount being used in the domain.
728 */
mdtc_calc_avail(struct dirty_throttle_control * mdtc,unsigned long filepages,unsigned long headroom)729 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
730 unsigned long filepages, unsigned long headroom)
731 {
732 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
733 unsigned long clean = filepages - min(filepages, mdtc->dirty);
734 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
735 unsigned long other_clean = global_clean - min(global_clean, clean);
736
737 mdtc->avail = filepages + min(headroom, other_clean);
738 }
739
740 /**
741 * __wb_calc_thresh - @wb's share of dirty throttling threshold
742 * @dtc: dirty_throttle_context of interest
743 *
744 * Note that balance_dirty_pages() will only seriously take it as a hard limit
745 * when sleeping max_pause per page is not enough to keep the dirty pages under
746 * control. For example, when the device is completely stalled due to some error
747 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
748 * In the other normal situations, it acts more gently by throttling the tasks
749 * more (rather than completely block them) when the wb dirty pages go high.
750 *
751 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
752 * - starving fast devices
753 * - piling up dirty pages (that will take long time to sync) on slow devices
754 *
755 * The wb's share of dirty limit will be adapting to its throughput and
756 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
757 *
758 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
759 * dirty balancing includes all PG_dirty and PG_writeback pages.
760 */
__wb_calc_thresh(struct dirty_throttle_control * dtc)761 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
762 {
763 struct wb_domain *dom = dtc_dom(dtc);
764 unsigned long thresh = dtc->thresh;
765 u64 wb_thresh;
766 unsigned long numerator, denominator;
767 unsigned long wb_min_ratio, wb_max_ratio;
768
769 /*
770 * Calculate this BDI's share of the thresh ratio.
771 */
772 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
773 &numerator, &denominator);
774
775 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
776 wb_thresh *= numerator;
777 wb_thresh = div64_ul(wb_thresh, denominator);
778
779 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
780
781 wb_thresh += (thresh * wb_min_ratio) / 100;
782 if (wb_thresh > (thresh * wb_max_ratio) / 100)
783 wb_thresh = thresh * wb_max_ratio / 100;
784
785 return wb_thresh;
786 }
787
wb_calc_thresh(struct bdi_writeback * wb,unsigned long thresh)788 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
789 {
790 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
791 .thresh = thresh };
792 return __wb_calc_thresh(&gdtc);
793 }
794
795 /*
796 * setpoint - dirty 3
797 * f(dirty) := 1.0 + (----------------)
798 * limit - setpoint
799 *
800 * it's a 3rd order polynomial that subjects to
801 *
802 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
803 * (2) f(setpoint) = 1.0 => the balance point
804 * (3) f(limit) = 0 => the hard limit
805 * (4) df/dx <= 0 => negative feedback control
806 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
807 * => fast response on large errors; small oscillation near setpoint
808 */
pos_ratio_polynom(unsigned long setpoint,unsigned long dirty,unsigned long limit)809 static long long pos_ratio_polynom(unsigned long setpoint,
810 unsigned long dirty,
811 unsigned long limit)
812 {
813 long long pos_ratio;
814 long x;
815
816 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
817 (limit - setpoint) | 1);
818 pos_ratio = x;
819 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
820 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
821 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
822
823 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
824 }
825
826 /*
827 * Dirty position control.
828 *
829 * (o) global/bdi setpoints
830 *
831 * We want the dirty pages be balanced around the global/wb setpoints.
832 * When the number of dirty pages is higher/lower than the setpoint, the
833 * dirty position control ratio (and hence task dirty ratelimit) will be
834 * decreased/increased to bring the dirty pages back to the setpoint.
835 *
836 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
837 *
838 * if (dirty < setpoint) scale up pos_ratio
839 * if (dirty > setpoint) scale down pos_ratio
840 *
841 * if (wb_dirty < wb_setpoint) scale up pos_ratio
842 * if (wb_dirty > wb_setpoint) scale down pos_ratio
843 *
844 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
845 *
846 * (o) global control line
847 *
848 * ^ pos_ratio
849 * |
850 * | |<===== global dirty control scope ======>|
851 * 2.0 .............*
852 * | .*
853 * | . *
854 * | . *
855 * | . *
856 * | . *
857 * | . *
858 * 1.0 ................................*
859 * | . . *
860 * | . . *
861 * | . . *
862 * | . . *
863 * | . . *
864 * 0 +------------.------------------.----------------------*------------->
865 * freerun^ setpoint^ limit^ dirty pages
866 *
867 * (o) wb control line
868 *
869 * ^ pos_ratio
870 * |
871 * | *
872 * | *
873 * | *
874 * | *
875 * | * |<=========== span ============>|
876 * 1.0 .......................*
877 * | . *
878 * | . *
879 * | . *
880 * | . *
881 * | . *
882 * | . *
883 * | . *
884 * | . *
885 * | . *
886 * | . *
887 * | . *
888 * 1/4 ...............................................* * * * * * * * * * * *
889 * | . .
890 * | . .
891 * | . .
892 * 0 +----------------------.-------------------------------.------------->
893 * wb_setpoint^ x_intercept^
894 *
895 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
896 * be smoothly throttled down to normal if it starts high in situations like
897 * - start writing to a slow SD card and a fast disk at the same time. The SD
898 * card's wb_dirty may rush to many times higher than wb_setpoint.
899 * - the wb dirty thresh drops quickly due to change of JBOD workload
900 */
wb_position_ratio(struct dirty_throttle_control * dtc)901 static void wb_position_ratio(struct dirty_throttle_control *dtc)
902 {
903 struct bdi_writeback *wb = dtc->wb;
904 unsigned long write_bw = wb->avg_write_bandwidth;
905 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
906 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
907 unsigned long wb_thresh = dtc->wb_thresh;
908 unsigned long x_intercept;
909 unsigned long setpoint; /* dirty pages' target balance point */
910 unsigned long wb_setpoint;
911 unsigned long span;
912 long long pos_ratio; /* for scaling up/down the rate limit */
913 long x;
914
915 dtc->pos_ratio = 0;
916
917 if (unlikely(dtc->dirty >= limit))
918 return;
919
920 /*
921 * global setpoint
922 *
923 * See comment for pos_ratio_polynom().
924 */
925 setpoint = (freerun + limit) / 2;
926 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
927
928 /*
929 * The strictlimit feature is a tool preventing mistrusted filesystems
930 * from growing a large number of dirty pages before throttling. For
931 * such filesystems balance_dirty_pages always checks wb counters
932 * against wb limits. Even if global "nr_dirty" is under "freerun".
933 * This is especially important for fuse which sets bdi->max_ratio to
934 * 1% by default. Without strictlimit feature, fuse writeback may
935 * consume arbitrary amount of RAM because it is accounted in
936 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
937 *
938 * Here, in wb_position_ratio(), we calculate pos_ratio based on
939 * two values: wb_dirty and wb_thresh. Let's consider an example:
940 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
941 * limits are set by default to 10% and 20% (background and throttle).
942 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
943 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
944 * about ~6K pages (as the average of background and throttle wb
945 * limits). The 3rd order polynomial will provide positive feedback if
946 * wb_dirty is under wb_setpoint and vice versa.
947 *
948 * Note, that we cannot use global counters in these calculations
949 * because we want to throttle process writing to a strictlimit wb
950 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
951 * in the example above).
952 */
953 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
954 long long wb_pos_ratio;
955
956 if (dtc->wb_dirty < 8) {
957 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
958 2 << RATELIMIT_CALC_SHIFT);
959 return;
960 }
961
962 if (dtc->wb_dirty >= wb_thresh)
963 return;
964
965 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
966 dtc->wb_bg_thresh);
967
968 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
969 return;
970
971 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
972 wb_thresh);
973
974 /*
975 * Typically, for strictlimit case, wb_setpoint << setpoint
976 * and pos_ratio >> wb_pos_ratio. In the other words global
977 * state ("dirty") is not limiting factor and we have to
978 * make decision based on wb counters. But there is an
979 * important case when global pos_ratio should get precedence:
980 * global limits are exceeded (e.g. due to activities on other
981 * wb's) while given strictlimit wb is below limit.
982 *
983 * "pos_ratio * wb_pos_ratio" would work for the case above,
984 * but it would look too non-natural for the case of all
985 * activity in the system coming from a single strictlimit wb
986 * with bdi->max_ratio == 100%.
987 *
988 * Note that min() below somewhat changes the dynamics of the
989 * control system. Normally, pos_ratio value can be well over 3
990 * (when globally we are at freerun and wb is well below wb
991 * setpoint). Now the maximum pos_ratio in the same situation
992 * is 2. We might want to tweak this if we observe the control
993 * system is too slow to adapt.
994 */
995 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
996 return;
997 }
998
999 /*
1000 * We have computed basic pos_ratio above based on global situation. If
1001 * the wb is over/under its share of dirty pages, we want to scale
1002 * pos_ratio further down/up. That is done by the following mechanism.
1003 */
1004
1005 /*
1006 * wb setpoint
1007 *
1008 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1009 *
1010 * x_intercept - wb_dirty
1011 * := --------------------------
1012 * x_intercept - wb_setpoint
1013 *
1014 * The main wb control line is a linear function that subjects to
1015 *
1016 * (1) f(wb_setpoint) = 1.0
1017 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1018 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1019 *
1020 * For single wb case, the dirty pages are observed to fluctuate
1021 * regularly within range
1022 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1023 * for various filesystems, where (2) can yield in a reasonable 12.5%
1024 * fluctuation range for pos_ratio.
1025 *
1026 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1027 * own size, so move the slope over accordingly and choose a slope that
1028 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1029 */
1030 if (unlikely(wb_thresh > dtc->thresh))
1031 wb_thresh = dtc->thresh;
1032 /*
1033 * It's very possible that wb_thresh is close to 0 not because the
1034 * device is slow, but that it has remained inactive for long time.
1035 * Honour such devices a reasonable good (hopefully IO efficient)
1036 * threshold, so that the occasional writes won't be blocked and active
1037 * writes can rampup the threshold quickly.
1038 */
1039 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1040 /*
1041 * scale global setpoint to wb's:
1042 * wb_setpoint = setpoint * wb_thresh / thresh
1043 */
1044 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1045 wb_setpoint = setpoint * (u64)x >> 16;
1046 /*
1047 * Use span=(8*write_bw) in single wb case as indicated by
1048 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1049 *
1050 * wb_thresh thresh - wb_thresh
1051 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1052 * thresh thresh
1053 */
1054 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1055 x_intercept = wb_setpoint + span;
1056
1057 if (dtc->wb_dirty < x_intercept - span / 4) {
1058 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1059 (x_intercept - wb_setpoint) | 1);
1060 } else
1061 pos_ratio /= 4;
1062
1063 /*
1064 * wb reserve area, safeguard against dirty pool underrun and disk idle
1065 * It may push the desired control point of global dirty pages higher
1066 * than setpoint.
1067 */
1068 x_intercept = wb_thresh / 2;
1069 if (dtc->wb_dirty < x_intercept) {
1070 if (dtc->wb_dirty > x_intercept / 8)
1071 pos_ratio = div_u64(pos_ratio * x_intercept,
1072 dtc->wb_dirty);
1073 else
1074 pos_ratio *= 8;
1075 }
1076
1077 dtc->pos_ratio = pos_ratio;
1078 }
1079
wb_update_write_bandwidth(struct bdi_writeback * wb,unsigned long elapsed,unsigned long written)1080 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1081 unsigned long elapsed,
1082 unsigned long written)
1083 {
1084 const unsigned long period = roundup_pow_of_two(3 * HZ);
1085 unsigned long avg = wb->avg_write_bandwidth;
1086 unsigned long old = wb->write_bandwidth;
1087 u64 bw;
1088
1089 /*
1090 * bw = written * HZ / elapsed
1091 *
1092 * bw * elapsed + write_bandwidth * (period - elapsed)
1093 * write_bandwidth = ---------------------------------------------------
1094 * period
1095 *
1096 * @written may have decreased due to account_page_redirty().
1097 * Avoid underflowing @bw calculation.
1098 */
1099 bw = written - min(written, wb->written_stamp);
1100 bw *= HZ;
1101 if (unlikely(elapsed > period)) {
1102 bw = div64_ul(bw, elapsed);
1103 avg = bw;
1104 goto out;
1105 }
1106 bw += (u64)wb->write_bandwidth * (period - elapsed);
1107 bw >>= ilog2(period);
1108
1109 /*
1110 * one more level of smoothing, for filtering out sudden spikes
1111 */
1112 if (avg > old && old >= (unsigned long)bw)
1113 avg -= (avg - old) >> 3;
1114
1115 if (avg < old && old <= (unsigned long)bw)
1116 avg += (old - avg) >> 3;
1117
1118 out:
1119 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1120 avg = max(avg, 1LU);
1121 if (wb_has_dirty_io(wb)) {
1122 long delta = avg - wb->avg_write_bandwidth;
1123 WARN_ON_ONCE(atomic_long_add_return(delta,
1124 &wb->bdi->tot_write_bandwidth) <= 0);
1125 }
1126 wb->write_bandwidth = bw;
1127 wb->avg_write_bandwidth = avg;
1128 }
1129
update_dirty_limit(struct dirty_throttle_control * dtc)1130 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1131 {
1132 struct wb_domain *dom = dtc_dom(dtc);
1133 unsigned long thresh = dtc->thresh;
1134 unsigned long limit = dom->dirty_limit;
1135
1136 /*
1137 * Follow up in one step.
1138 */
1139 if (limit < thresh) {
1140 limit = thresh;
1141 goto update;
1142 }
1143
1144 /*
1145 * Follow down slowly. Use the higher one as the target, because thresh
1146 * may drop below dirty. This is exactly the reason to introduce
1147 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1148 */
1149 thresh = max(thresh, dtc->dirty);
1150 if (limit > thresh) {
1151 limit -= (limit - thresh) >> 5;
1152 goto update;
1153 }
1154 return;
1155 update:
1156 dom->dirty_limit = limit;
1157 }
1158
domain_update_bandwidth(struct dirty_throttle_control * dtc,unsigned long now)1159 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1160 unsigned long now)
1161 {
1162 struct wb_domain *dom = dtc_dom(dtc);
1163
1164 /*
1165 * check locklessly first to optimize away locking for the most time
1166 */
1167 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1168 return;
1169
1170 spin_lock(&dom->lock);
1171 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1172 update_dirty_limit(dtc);
1173 dom->dirty_limit_tstamp = now;
1174 }
1175 spin_unlock(&dom->lock);
1176 }
1177
1178 /*
1179 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1180 *
1181 * Normal wb tasks will be curbed at or below it in long term.
1182 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1183 */
wb_update_dirty_ratelimit(struct dirty_throttle_control * dtc,unsigned long dirtied,unsigned long elapsed)1184 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1185 unsigned long dirtied,
1186 unsigned long elapsed)
1187 {
1188 struct bdi_writeback *wb = dtc->wb;
1189 unsigned long dirty = dtc->dirty;
1190 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1191 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1192 unsigned long setpoint = (freerun + limit) / 2;
1193 unsigned long write_bw = wb->avg_write_bandwidth;
1194 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1195 unsigned long dirty_rate;
1196 unsigned long task_ratelimit;
1197 unsigned long balanced_dirty_ratelimit;
1198 unsigned long step;
1199 unsigned long x;
1200 unsigned long shift;
1201
1202 /*
1203 * The dirty rate will match the writeout rate in long term, except
1204 * when dirty pages are truncated by userspace or re-dirtied by FS.
1205 */
1206 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1207
1208 /*
1209 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1210 */
1211 task_ratelimit = (u64)dirty_ratelimit *
1212 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1213 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1214
1215 /*
1216 * A linear estimation of the "balanced" throttle rate. The theory is,
1217 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1218 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1219 * formula will yield the balanced rate limit (write_bw / N).
1220 *
1221 * Note that the expanded form is not a pure rate feedback:
1222 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1223 * but also takes pos_ratio into account:
1224 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1225 *
1226 * (1) is not realistic because pos_ratio also takes part in balancing
1227 * the dirty rate. Consider the state
1228 * pos_ratio = 0.5 (3)
1229 * rate = 2 * (write_bw / N) (4)
1230 * If (1) is used, it will stuck in that state! Because each dd will
1231 * be throttled at
1232 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1233 * yielding
1234 * dirty_rate = N * task_ratelimit = write_bw (6)
1235 * put (6) into (1) we get
1236 * rate_(i+1) = rate_(i) (7)
1237 *
1238 * So we end up using (2) to always keep
1239 * rate_(i+1) ~= (write_bw / N) (8)
1240 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1241 * pos_ratio is able to drive itself to 1.0, which is not only where
1242 * the dirty count meet the setpoint, but also where the slope of
1243 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1244 */
1245 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1246 dirty_rate | 1);
1247 /*
1248 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1249 */
1250 if (unlikely(balanced_dirty_ratelimit > write_bw))
1251 balanced_dirty_ratelimit = write_bw;
1252
1253 /*
1254 * We could safely do this and return immediately:
1255 *
1256 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1257 *
1258 * However to get a more stable dirty_ratelimit, the below elaborated
1259 * code makes use of task_ratelimit to filter out singular points and
1260 * limit the step size.
1261 *
1262 * The below code essentially only uses the relative value of
1263 *
1264 * task_ratelimit - dirty_ratelimit
1265 * = (pos_ratio - 1) * dirty_ratelimit
1266 *
1267 * which reflects the direction and size of dirty position error.
1268 */
1269
1270 /*
1271 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1272 * task_ratelimit is on the same side of dirty_ratelimit, too.
1273 * For example, when
1274 * - dirty_ratelimit > balanced_dirty_ratelimit
1275 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1276 * lowering dirty_ratelimit will help meet both the position and rate
1277 * control targets. Otherwise, don't update dirty_ratelimit if it will
1278 * only help meet the rate target. After all, what the users ultimately
1279 * feel and care are stable dirty rate and small position error.
1280 *
1281 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1282 * and filter out the singular points of balanced_dirty_ratelimit. Which
1283 * keeps jumping around randomly and can even leap far away at times
1284 * due to the small 200ms estimation period of dirty_rate (we want to
1285 * keep that period small to reduce time lags).
1286 */
1287 step = 0;
1288
1289 /*
1290 * For strictlimit case, calculations above were based on wb counters
1291 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1292 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1293 * Hence, to calculate "step" properly, we have to use wb_dirty as
1294 * "dirty" and wb_setpoint as "setpoint".
1295 *
1296 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1297 * it's possible that wb_thresh is close to zero due to inactivity
1298 * of backing device.
1299 */
1300 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1301 dirty = dtc->wb_dirty;
1302 if (dtc->wb_dirty < 8)
1303 setpoint = dtc->wb_dirty + 1;
1304 else
1305 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1306 }
1307
1308 if (dirty < setpoint) {
1309 x = min3(wb->balanced_dirty_ratelimit,
1310 balanced_dirty_ratelimit, task_ratelimit);
1311 if (dirty_ratelimit < x)
1312 step = x - dirty_ratelimit;
1313 } else {
1314 x = max3(wb->balanced_dirty_ratelimit,
1315 balanced_dirty_ratelimit, task_ratelimit);
1316 if (dirty_ratelimit > x)
1317 step = dirty_ratelimit - x;
1318 }
1319
1320 /*
1321 * Don't pursue 100% rate matching. It's impossible since the balanced
1322 * rate itself is constantly fluctuating. So decrease the track speed
1323 * when it gets close to the target. Helps eliminate pointless tremors.
1324 */
1325 shift = dirty_ratelimit / (2 * step + 1);
1326 if (shift < BITS_PER_LONG)
1327 step = DIV_ROUND_UP(step >> shift, 8);
1328 else
1329 step = 0;
1330
1331 if (dirty_ratelimit < balanced_dirty_ratelimit)
1332 dirty_ratelimit += step;
1333 else
1334 dirty_ratelimit -= step;
1335
1336 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1337 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1338
1339 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1340 }
1341
__wb_update_bandwidth(struct dirty_throttle_control * gdtc,struct dirty_throttle_control * mdtc,unsigned long start_time,bool update_ratelimit)1342 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1343 struct dirty_throttle_control *mdtc,
1344 unsigned long start_time,
1345 bool update_ratelimit)
1346 {
1347 struct bdi_writeback *wb = gdtc->wb;
1348 unsigned long now = jiffies;
1349 unsigned long elapsed = now - wb->bw_time_stamp;
1350 unsigned long dirtied;
1351 unsigned long written;
1352
1353 lockdep_assert_held(&wb->list_lock);
1354
1355 /*
1356 * rate-limit, only update once every 200ms.
1357 */
1358 if (elapsed < BANDWIDTH_INTERVAL)
1359 return;
1360
1361 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1362 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1363
1364 /*
1365 * Skip quiet periods when disk bandwidth is under-utilized.
1366 * (at least 1s idle time between two flusher runs)
1367 */
1368 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1369 goto snapshot;
1370
1371 if (update_ratelimit) {
1372 domain_update_bandwidth(gdtc, now);
1373 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1374
1375 /*
1376 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1377 * compiler has no way to figure that out. Help it.
1378 */
1379 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1380 domain_update_bandwidth(mdtc, now);
1381 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1382 }
1383 }
1384 wb_update_write_bandwidth(wb, elapsed, written);
1385
1386 snapshot:
1387 wb->dirtied_stamp = dirtied;
1388 wb->written_stamp = written;
1389 wb->bw_time_stamp = now;
1390 }
1391
wb_update_bandwidth(struct bdi_writeback * wb,unsigned long start_time)1392 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1393 {
1394 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1395
1396 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1397 }
1398
1399 /*
1400 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1401 * will look to see if it needs to start dirty throttling.
1402 *
1403 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1404 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1405 * (the number of pages we may dirty without exceeding the dirty limits).
1406 */
dirty_poll_interval(unsigned long dirty,unsigned long thresh)1407 static unsigned long dirty_poll_interval(unsigned long dirty,
1408 unsigned long thresh)
1409 {
1410 if (thresh > dirty)
1411 return 1UL << (ilog2(thresh - dirty) >> 1);
1412
1413 return 1;
1414 }
1415
wb_max_pause(struct bdi_writeback * wb,unsigned long wb_dirty)1416 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1417 unsigned long wb_dirty)
1418 {
1419 unsigned long bw = wb->avg_write_bandwidth;
1420 unsigned long t;
1421
1422 /*
1423 * Limit pause time for small memory systems. If sleeping for too long
1424 * time, a small pool of dirty/writeback pages may go empty and disk go
1425 * idle.
1426 *
1427 * 8 serves as the safety ratio.
1428 */
1429 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1430 t++;
1431
1432 return min_t(unsigned long, t, MAX_PAUSE);
1433 }
1434
wb_min_pause(struct bdi_writeback * wb,long max_pause,unsigned long task_ratelimit,unsigned long dirty_ratelimit,int * nr_dirtied_pause)1435 static long wb_min_pause(struct bdi_writeback *wb,
1436 long max_pause,
1437 unsigned long task_ratelimit,
1438 unsigned long dirty_ratelimit,
1439 int *nr_dirtied_pause)
1440 {
1441 long hi = ilog2(wb->avg_write_bandwidth);
1442 long lo = ilog2(wb->dirty_ratelimit);
1443 long t; /* target pause */
1444 long pause; /* estimated next pause */
1445 int pages; /* target nr_dirtied_pause */
1446
1447 /* target for 10ms pause on 1-dd case */
1448 t = max(1, HZ / 100);
1449
1450 /*
1451 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1452 * overheads.
1453 *
1454 * (N * 10ms) on 2^N concurrent tasks.
1455 */
1456 if (hi > lo)
1457 t += (hi - lo) * (10 * HZ) / 1024;
1458
1459 /*
1460 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1461 * on the much more stable dirty_ratelimit. However the next pause time
1462 * will be computed based on task_ratelimit and the two rate limits may
1463 * depart considerably at some time. Especially if task_ratelimit goes
1464 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1465 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1466 * result task_ratelimit won't be executed faithfully, which could
1467 * eventually bring down dirty_ratelimit.
1468 *
1469 * We apply two rules to fix it up:
1470 * 1) try to estimate the next pause time and if necessary, use a lower
1471 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1472 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1473 * 2) limit the target pause time to max_pause/2, so that the normal
1474 * small fluctuations of task_ratelimit won't trigger rule (1) and
1475 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1476 */
1477 t = min(t, 1 + max_pause / 2);
1478 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1479
1480 /*
1481 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1482 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1483 * When the 16 consecutive reads are often interrupted by some dirty
1484 * throttling pause during the async writes, cfq will go into idles
1485 * (deadline is fine). So push nr_dirtied_pause as high as possible
1486 * until reaches DIRTY_POLL_THRESH=32 pages.
1487 */
1488 if (pages < DIRTY_POLL_THRESH) {
1489 t = max_pause;
1490 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1491 if (pages > DIRTY_POLL_THRESH) {
1492 pages = DIRTY_POLL_THRESH;
1493 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1494 }
1495 }
1496
1497 pause = HZ * pages / (task_ratelimit + 1);
1498 if (pause > max_pause) {
1499 t = max_pause;
1500 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1501 }
1502
1503 *nr_dirtied_pause = pages;
1504 /*
1505 * The minimal pause time will normally be half the target pause time.
1506 */
1507 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1508 }
1509
wb_dirty_limits(struct dirty_throttle_control * dtc)1510 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1511 {
1512 struct bdi_writeback *wb = dtc->wb;
1513 unsigned long wb_reclaimable;
1514
1515 /*
1516 * wb_thresh is not treated as some limiting factor as
1517 * dirty_thresh, due to reasons
1518 * - in JBOD setup, wb_thresh can fluctuate a lot
1519 * - in a system with HDD and USB key, the USB key may somehow
1520 * go into state (wb_dirty >> wb_thresh) either because
1521 * wb_dirty starts high, or because wb_thresh drops low.
1522 * In this case we don't want to hard throttle the USB key
1523 * dirtiers for 100 seconds until wb_dirty drops under
1524 * wb_thresh. Instead the auxiliary wb control line in
1525 * wb_position_ratio() will let the dirtier task progress
1526 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1527 */
1528 dtc->wb_thresh = __wb_calc_thresh(dtc);
1529 dtc->wb_bg_thresh = dtc->thresh ?
1530 div64_u64(dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1531
1532 /*
1533 * In order to avoid the stacked BDI deadlock we need
1534 * to ensure we accurately count the 'dirty' pages when
1535 * the threshold is low.
1536 *
1537 * Otherwise it would be possible to get thresh+n pages
1538 * reported dirty, even though there are thresh-m pages
1539 * actually dirty; with m+n sitting in the percpu
1540 * deltas.
1541 */
1542 if (dtc->wb_thresh < 2 * wb_stat_error()) {
1543 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1544 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1545 } else {
1546 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1547 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1548 }
1549 }
1550
1551 /*
1552 * balance_dirty_pages() must be called by processes which are generating dirty
1553 * data. It looks at the number of dirty pages in the machine and will force
1554 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1555 * If we're over `background_thresh' then the writeback threads are woken to
1556 * perform some writeout.
1557 */
balance_dirty_pages(struct bdi_writeback * wb,unsigned long pages_dirtied)1558 static void balance_dirty_pages(struct bdi_writeback *wb,
1559 unsigned long pages_dirtied)
1560 {
1561 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1562 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1563 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1564 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1565 &mdtc_stor : NULL;
1566 struct dirty_throttle_control *sdtc;
1567 unsigned long nr_reclaimable; /* = file_dirty */
1568 long period;
1569 long pause;
1570 long max_pause;
1571 long min_pause;
1572 int nr_dirtied_pause;
1573 bool dirty_exceeded = false;
1574 unsigned long task_ratelimit;
1575 unsigned long dirty_ratelimit;
1576 struct backing_dev_info *bdi = wb->bdi;
1577 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1578 unsigned long start_time = jiffies;
1579
1580 for (;;) {
1581 unsigned long now = jiffies;
1582 unsigned long dirty, thresh, bg_thresh;
1583 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1584 unsigned long m_thresh = 0;
1585 unsigned long m_bg_thresh = 0;
1586
1587 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1588 gdtc->avail = global_dirtyable_memory();
1589 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1590
1591 domain_dirty_limits(gdtc);
1592
1593 if (unlikely(strictlimit)) {
1594 wb_dirty_limits(gdtc);
1595
1596 dirty = gdtc->wb_dirty;
1597 thresh = gdtc->wb_thresh;
1598 bg_thresh = gdtc->wb_bg_thresh;
1599 } else {
1600 dirty = gdtc->dirty;
1601 thresh = gdtc->thresh;
1602 bg_thresh = gdtc->bg_thresh;
1603 }
1604
1605 if (mdtc) {
1606 unsigned long filepages, headroom, writeback;
1607
1608 /*
1609 * If @wb belongs to !root memcg, repeat the same
1610 * basic calculations for the memcg domain.
1611 */
1612 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1613 &mdtc->dirty, &writeback);
1614 mdtc->dirty += writeback;
1615 mdtc_calc_avail(mdtc, filepages, headroom);
1616
1617 domain_dirty_limits(mdtc);
1618
1619 if (unlikely(strictlimit)) {
1620 wb_dirty_limits(mdtc);
1621 m_dirty = mdtc->wb_dirty;
1622 m_thresh = mdtc->wb_thresh;
1623 m_bg_thresh = mdtc->wb_bg_thresh;
1624 } else {
1625 m_dirty = mdtc->dirty;
1626 m_thresh = mdtc->thresh;
1627 m_bg_thresh = mdtc->bg_thresh;
1628 }
1629 }
1630
1631 trace_android_vh_mm_dirty_limits(gdtc, strictlimit, dirty, bg_thresh,
1632 nr_reclaimable, pages_dirtied);
1633
1634 /*
1635 * Throttle it only when the background writeback cannot
1636 * catch-up. This avoids (excessively) small writeouts
1637 * when the wb limits are ramping up in case of !strictlimit.
1638 *
1639 * In strictlimit case make decision based on the wb counters
1640 * and limits. Small writeouts when the wb limits are ramping
1641 * up are the price we consciously pay for strictlimit-ing.
1642 *
1643 * If memcg domain is in effect, @dirty should be under
1644 * both global and memcg freerun ceilings.
1645 */
1646 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1647 (!mdtc ||
1648 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1649 unsigned long intv;
1650 unsigned long m_intv;
1651
1652 free_running:
1653 intv = dirty_poll_interval(dirty, thresh);
1654 m_intv = ULONG_MAX;
1655
1656 current->dirty_paused_when = now;
1657 current->nr_dirtied = 0;
1658 if (mdtc)
1659 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1660 current->nr_dirtied_pause = min(intv, m_intv);
1661 break;
1662 }
1663
1664 if (unlikely(!writeback_in_progress(wb)))
1665 wb_start_background_writeback(wb);
1666
1667 mem_cgroup_flush_foreign(wb);
1668
1669 /*
1670 * Calculate global domain's pos_ratio and select the
1671 * global dtc by default.
1672 */
1673 if (!strictlimit) {
1674 wb_dirty_limits(gdtc);
1675
1676 if ((current->flags & PF_LOCAL_THROTTLE) &&
1677 gdtc->wb_dirty <
1678 dirty_freerun_ceiling(gdtc->wb_thresh,
1679 gdtc->wb_bg_thresh))
1680 /*
1681 * LOCAL_THROTTLE tasks must not be throttled
1682 * when below the per-wb freerun ceiling.
1683 */
1684 goto free_running;
1685 }
1686
1687 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1688 ((gdtc->dirty > gdtc->thresh) || strictlimit);
1689
1690 wb_position_ratio(gdtc);
1691 sdtc = gdtc;
1692
1693 if (mdtc) {
1694 /*
1695 * If memcg domain is in effect, calculate its
1696 * pos_ratio. @wb should satisfy constraints from
1697 * both global and memcg domains. Choose the one
1698 * w/ lower pos_ratio.
1699 */
1700 if (!strictlimit) {
1701 wb_dirty_limits(mdtc);
1702
1703 if ((current->flags & PF_LOCAL_THROTTLE) &&
1704 mdtc->wb_dirty <
1705 dirty_freerun_ceiling(mdtc->wb_thresh,
1706 mdtc->wb_bg_thresh))
1707 /*
1708 * LOCAL_THROTTLE tasks must not be
1709 * throttled when below the per-wb
1710 * freerun ceiling.
1711 */
1712 goto free_running;
1713 }
1714 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1715 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1716
1717 wb_position_ratio(mdtc);
1718 if (mdtc->pos_ratio < gdtc->pos_ratio)
1719 sdtc = mdtc;
1720 }
1721
1722 if (dirty_exceeded && !wb->dirty_exceeded)
1723 wb->dirty_exceeded = 1;
1724
1725 if (time_is_before_jiffies(wb->bw_time_stamp +
1726 BANDWIDTH_INTERVAL)) {
1727 spin_lock(&wb->list_lock);
1728 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1729 spin_unlock(&wb->list_lock);
1730 }
1731
1732 /* throttle according to the chosen dtc */
1733 dirty_ratelimit = wb->dirty_ratelimit;
1734 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1735 RATELIMIT_CALC_SHIFT;
1736 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1737 min_pause = wb_min_pause(wb, max_pause,
1738 task_ratelimit, dirty_ratelimit,
1739 &nr_dirtied_pause);
1740
1741 if (unlikely(task_ratelimit == 0)) {
1742 period = max_pause;
1743 pause = max_pause;
1744 goto pause;
1745 }
1746 period = HZ * pages_dirtied / task_ratelimit;
1747 pause = period;
1748 if (current->dirty_paused_when)
1749 pause -= now - current->dirty_paused_when;
1750 /*
1751 * For less than 1s think time (ext3/4 may block the dirtier
1752 * for up to 800ms from time to time on 1-HDD; so does xfs,
1753 * however at much less frequency), try to compensate it in
1754 * future periods by updating the virtual time; otherwise just
1755 * do a reset, as it may be a light dirtier.
1756 */
1757 if (pause < min_pause) {
1758 trace_balance_dirty_pages(wb,
1759 sdtc->thresh,
1760 sdtc->bg_thresh,
1761 sdtc->dirty,
1762 sdtc->wb_thresh,
1763 sdtc->wb_dirty,
1764 dirty_ratelimit,
1765 task_ratelimit,
1766 pages_dirtied,
1767 period,
1768 min(pause, 0L),
1769 start_time);
1770 if (pause < -HZ) {
1771 current->dirty_paused_when = now;
1772 current->nr_dirtied = 0;
1773 } else if (period) {
1774 current->dirty_paused_when += period;
1775 current->nr_dirtied = 0;
1776 } else if (current->nr_dirtied_pause <= pages_dirtied)
1777 current->nr_dirtied_pause += pages_dirtied;
1778 break;
1779 }
1780 if (unlikely(pause > max_pause)) {
1781 /* for occasional dropped task_ratelimit */
1782 now += min(pause - max_pause, max_pause);
1783 pause = max_pause;
1784 }
1785
1786 pause:
1787 trace_balance_dirty_pages(wb,
1788 sdtc->thresh,
1789 sdtc->bg_thresh,
1790 sdtc->dirty,
1791 sdtc->wb_thresh,
1792 sdtc->wb_dirty,
1793 dirty_ratelimit,
1794 task_ratelimit,
1795 pages_dirtied,
1796 period,
1797 pause,
1798 start_time);
1799 __set_current_state(TASK_KILLABLE);
1800 wb->dirty_sleep = now;
1801 io_schedule_timeout(pause);
1802
1803 current->dirty_paused_when = now + pause;
1804 current->nr_dirtied = 0;
1805 current->nr_dirtied_pause = nr_dirtied_pause;
1806
1807 /*
1808 * This is typically equal to (dirty < thresh) and can also
1809 * keep "1000+ dd on a slow USB stick" under control.
1810 */
1811 if (task_ratelimit)
1812 break;
1813
1814 /*
1815 * In the case of an unresponding NFS server and the NFS dirty
1816 * pages exceeds dirty_thresh, give the other good wb's a pipe
1817 * to go through, so that tasks on them still remain responsive.
1818 *
1819 * In theory 1 page is enough to keep the consumer-producer
1820 * pipe going: the flusher cleans 1 page => the task dirties 1
1821 * more page. However wb_dirty has accounting errors. So use
1822 * the larger and more IO friendly wb_stat_error.
1823 */
1824 if (sdtc->wb_dirty <= wb_stat_error())
1825 break;
1826
1827 if (fatal_signal_pending(current))
1828 break;
1829 }
1830
1831 if (!dirty_exceeded && wb->dirty_exceeded)
1832 wb->dirty_exceeded = 0;
1833
1834 if (writeback_in_progress(wb))
1835 return;
1836
1837 /*
1838 * In laptop mode, we wait until hitting the higher threshold before
1839 * starting background writeout, and then write out all the way down
1840 * to the lower threshold. So slow writers cause minimal disk activity.
1841 *
1842 * In normal mode, we start background writeout at the lower
1843 * background_thresh, to keep the amount of dirty memory low.
1844 */
1845 if (laptop_mode)
1846 return;
1847
1848 if (nr_reclaimable > gdtc->bg_thresh)
1849 wb_start_background_writeback(wb);
1850 }
1851
1852 static DEFINE_PER_CPU(int, bdp_ratelimits);
1853
1854 /*
1855 * Normal tasks are throttled by
1856 * loop {
1857 * dirty tsk->nr_dirtied_pause pages;
1858 * take a snap in balance_dirty_pages();
1859 * }
1860 * However there is a worst case. If every task exit immediately when dirtied
1861 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1862 * called to throttle the page dirties. The solution is to save the not yet
1863 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1864 * randomly into the running tasks. This works well for the above worst case,
1865 * as the new task will pick up and accumulate the old task's leaked dirty
1866 * count and eventually get throttled.
1867 */
1868 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1869
1870 /**
1871 * balance_dirty_pages_ratelimited - balance dirty memory state
1872 * @mapping: address_space which was dirtied
1873 *
1874 * Processes which are dirtying memory should call in here once for each page
1875 * which was newly dirtied. The function will periodically check the system's
1876 * dirty state and will initiate writeback if needed.
1877 *
1878 * On really big machines, get_writeback_state is expensive, so try to avoid
1879 * calling it too often (ratelimiting). But once we're over the dirty memory
1880 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1881 * from overshooting the limit by (ratelimit_pages) each.
1882 */
balance_dirty_pages_ratelimited(struct address_space * mapping)1883 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1884 {
1885 struct inode *inode = mapping->host;
1886 struct backing_dev_info *bdi = inode_to_bdi(inode);
1887 struct bdi_writeback *wb = NULL;
1888 int ratelimit;
1889 int *p;
1890
1891 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1892 return;
1893
1894 if (inode_cgwb_enabled(inode))
1895 wb = wb_get_create_current(bdi, GFP_KERNEL);
1896 if (!wb)
1897 wb = &bdi->wb;
1898
1899 ratelimit = current->nr_dirtied_pause;
1900 if (wb->dirty_exceeded)
1901 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1902
1903 preempt_disable();
1904 /*
1905 * This prevents one CPU to accumulate too many dirtied pages without
1906 * calling into balance_dirty_pages(), which can happen when there are
1907 * 1000+ tasks, all of them start dirtying pages at exactly the same
1908 * time, hence all honoured too large initial task->nr_dirtied_pause.
1909 */
1910 p = this_cpu_ptr(&bdp_ratelimits);
1911 if (unlikely(current->nr_dirtied >= ratelimit))
1912 *p = 0;
1913 else if (unlikely(*p >= ratelimit_pages)) {
1914 *p = 0;
1915 ratelimit = 0;
1916 }
1917 /*
1918 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1919 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1920 * the dirty throttling and livelock other long-run dirtiers.
1921 */
1922 p = this_cpu_ptr(&dirty_throttle_leaks);
1923 if (*p > 0 && current->nr_dirtied < ratelimit) {
1924 unsigned long nr_pages_dirtied;
1925 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1926 *p -= nr_pages_dirtied;
1927 current->nr_dirtied += nr_pages_dirtied;
1928 }
1929 preempt_enable();
1930
1931 if (unlikely(current->nr_dirtied >= ratelimit))
1932 balance_dirty_pages(wb, current->nr_dirtied);
1933
1934 wb_put(wb);
1935 }
1936 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1937
1938 /**
1939 * wb_over_bg_thresh - does @wb need to be written back?
1940 * @wb: bdi_writeback of interest
1941 *
1942 * Determines whether background writeback should keep writing @wb or it's
1943 * clean enough.
1944 *
1945 * Return: %true if writeback should continue.
1946 */
wb_over_bg_thresh(struct bdi_writeback * wb)1947 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1948 {
1949 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1950 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1951 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1952 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1953 &mdtc_stor : NULL;
1954
1955 /*
1956 * Similar to balance_dirty_pages() but ignores pages being written
1957 * as we're trying to decide whether to put more under writeback.
1958 */
1959 gdtc->avail = global_dirtyable_memory();
1960 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1961 domain_dirty_limits(gdtc);
1962
1963 if (gdtc->dirty > gdtc->bg_thresh)
1964 return true;
1965
1966 if (wb_stat(wb, WB_RECLAIMABLE) >
1967 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1968 return true;
1969
1970 if (mdtc) {
1971 unsigned long filepages, headroom, writeback;
1972
1973 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1974 &writeback);
1975 mdtc_calc_avail(mdtc, filepages, headroom);
1976 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1977
1978 if (mdtc->dirty > mdtc->bg_thresh)
1979 return true;
1980
1981 if (wb_stat(wb, WB_RECLAIMABLE) >
1982 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1983 return true;
1984 }
1985
1986 return false;
1987 }
1988
1989 /*
1990 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1991 */
dirty_writeback_centisecs_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)1992 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1993 void *buffer, size_t *length, loff_t *ppos)
1994 {
1995 unsigned int old_interval = dirty_writeback_interval;
1996 int ret;
1997
1998 ret = proc_dointvec(table, write, buffer, length, ppos);
1999
2000 /*
2001 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2002 * and a different non-zero value will wakeup the writeback threads.
2003 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2004 * iterate over all bdis and wbs.
2005 * The reason we do this is to make the change take effect immediately.
2006 */
2007 if (!ret && write && dirty_writeback_interval &&
2008 dirty_writeback_interval != old_interval)
2009 wakeup_flusher_threads(WB_REASON_PERIODIC);
2010
2011 return ret;
2012 }
2013
2014 #ifdef CONFIG_BLOCK
laptop_mode_timer_fn(struct timer_list * t)2015 void laptop_mode_timer_fn(struct timer_list *t)
2016 {
2017 struct backing_dev_info *backing_dev_info =
2018 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2019
2020 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2021 }
2022
2023 /*
2024 * We've spun up the disk and we're in laptop mode: schedule writeback
2025 * of all dirty data a few seconds from now. If the flush is already scheduled
2026 * then push it back - the user is still using the disk.
2027 */
laptop_io_completion(struct backing_dev_info * info)2028 void laptop_io_completion(struct backing_dev_info *info)
2029 {
2030 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2031 }
2032
2033 /*
2034 * We're in laptop mode and we've just synced. The sync's writes will have
2035 * caused another writeback to be scheduled by laptop_io_completion.
2036 * Nothing needs to be written back anymore, so we unschedule the writeback.
2037 */
laptop_sync_completion(void)2038 void laptop_sync_completion(void)
2039 {
2040 struct backing_dev_info *bdi;
2041
2042 rcu_read_lock();
2043
2044 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2045 del_timer(&bdi->laptop_mode_wb_timer);
2046
2047 rcu_read_unlock();
2048 }
2049 #endif
2050
2051 /*
2052 * If ratelimit_pages is too high then we can get into dirty-data overload
2053 * if a large number of processes all perform writes at the same time.
2054 * If it is too low then SMP machines will call the (expensive)
2055 * get_writeback_state too often.
2056 *
2057 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2058 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2059 * thresholds.
2060 */
2061
writeback_set_ratelimit(void)2062 void writeback_set_ratelimit(void)
2063 {
2064 struct wb_domain *dom = &global_wb_domain;
2065 unsigned long background_thresh;
2066 unsigned long dirty_thresh;
2067
2068 global_dirty_limits(&background_thresh, &dirty_thresh);
2069 dom->dirty_limit = dirty_thresh;
2070 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2071 if (ratelimit_pages < 16)
2072 ratelimit_pages = 16;
2073 }
2074
page_writeback_cpu_online(unsigned int cpu)2075 static int page_writeback_cpu_online(unsigned int cpu)
2076 {
2077 writeback_set_ratelimit();
2078 return 0;
2079 }
2080
2081 /*
2082 * Called early on to tune the page writeback dirty limits.
2083 *
2084 * We used to scale dirty pages according to how total memory
2085 * related to pages that could be allocated for buffers.
2086 *
2087 * However, that was when we used "dirty_ratio" to scale with
2088 * all memory, and we don't do that any more. "dirty_ratio"
2089 * is now applied to total non-HIGHPAGE memory, and as such we can't
2090 * get into the old insane situation any more where we had
2091 * large amounts of dirty pages compared to a small amount of
2092 * non-HIGHMEM memory.
2093 *
2094 * But we might still want to scale the dirty_ratio by how
2095 * much memory the box has..
2096 */
page_writeback_init(void)2097 void __init page_writeback_init(void)
2098 {
2099 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2100
2101 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2102 page_writeback_cpu_online, NULL);
2103 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2104 page_writeback_cpu_online);
2105 }
2106
2107 /**
2108 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2109 * @mapping: address space structure to write
2110 * @start: starting page index
2111 * @end: ending page index (inclusive)
2112 *
2113 * This function scans the page range from @start to @end (inclusive) and tags
2114 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2115 * that write_cache_pages (or whoever calls this function) will then use
2116 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2117 * used to avoid livelocking of writeback by a process steadily creating new
2118 * dirty pages in the file (thus it is important for this function to be quick
2119 * so that it can tag pages faster than a dirtying process can create them).
2120 */
tag_pages_for_writeback(struct address_space * mapping,pgoff_t start,pgoff_t end)2121 void tag_pages_for_writeback(struct address_space *mapping,
2122 pgoff_t start, pgoff_t end)
2123 {
2124 XA_STATE(xas, &mapping->i_pages, start);
2125 unsigned int tagged = 0;
2126 void *page;
2127
2128 xas_lock_irq(&xas);
2129 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2130 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2131 if (++tagged % XA_CHECK_SCHED)
2132 continue;
2133
2134 xas_pause(&xas);
2135 xas_unlock_irq(&xas);
2136 cond_resched();
2137 xas_lock_irq(&xas);
2138 }
2139 xas_unlock_irq(&xas);
2140 }
2141 EXPORT_SYMBOL(tag_pages_for_writeback);
2142
2143 /**
2144 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2145 * @mapping: address space structure to write
2146 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2147 * @writepage: function called for each page
2148 * @data: data passed to writepage function
2149 *
2150 * If a page is already under I/O, write_cache_pages() skips it, even
2151 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2152 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2153 * and msync() need to guarantee that all the data which was dirty at the time
2154 * the call was made get new I/O started against them. If wbc->sync_mode is
2155 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2156 * existing IO to complete.
2157 *
2158 * To avoid livelocks (when other process dirties new pages), we first tag
2159 * pages which should be written back with TOWRITE tag and only then start
2160 * writing them. For data-integrity sync we have to be careful so that we do
2161 * not miss some pages (e.g., because some other process has cleared TOWRITE
2162 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2163 * by the process clearing the DIRTY tag (and submitting the page for IO).
2164 *
2165 * To avoid deadlocks between range_cyclic writeback and callers that hold
2166 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2167 * we do not loop back to the start of the file. Doing so causes a page
2168 * lock/page writeback access order inversion - we should only ever lock
2169 * multiple pages in ascending page->index order, and looping back to the start
2170 * of the file violates that rule and causes deadlocks.
2171 *
2172 * Return: %0 on success, negative error code otherwise
2173 */
write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,writepage_t writepage,void * data)2174 int write_cache_pages(struct address_space *mapping,
2175 struct writeback_control *wbc, writepage_t writepage,
2176 void *data)
2177 {
2178 int ret = 0;
2179 int done = 0;
2180 int error;
2181 struct pagevec pvec;
2182 int nr_pages;
2183 pgoff_t index;
2184 pgoff_t end; /* Inclusive */
2185 pgoff_t done_index;
2186 int range_whole = 0;
2187 xa_mark_t tag;
2188
2189 pagevec_init(&pvec);
2190 if (wbc->range_cyclic) {
2191 index = mapping->writeback_index; /* prev offset */
2192 end = -1;
2193 } else {
2194 index = wbc->range_start >> PAGE_SHIFT;
2195 end = wbc->range_end >> PAGE_SHIFT;
2196 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2197 range_whole = 1;
2198 }
2199 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2200 tag_pages_for_writeback(mapping, index, end);
2201 tag = PAGECACHE_TAG_TOWRITE;
2202 } else {
2203 tag = PAGECACHE_TAG_DIRTY;
2204 }
2205 done_index = index;
2206 while (!done && (index <= end)) {
2207 int i;
2208
2209 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2210 tag);
2211 if (nr_pages == 0)
2212 break;
2213
2214 for (i = 0; i < nr_pages; i++) {
2215 struct page *page = pvec.pages[i];
2216
2217 done_index = page->index;
2218
2219 lock_page(page);
2220
2221 /*
2222 * Page truncated or invalidated. We can freely skip it
2223 * then, even for data integrity operations: the page
2224 * has disappeared concurrently, so there could be no
2225 * real expectation of this data interity operation
2226 * even if there is now a new, dirty page at the same
2227 * pagecache address.
2228 */
2229 if (unlikely(page->mapping != mapping)) {
2230 continue_unlock:
2231 unlock_page(page);
2232 continue;
2233 }
2234
2235 if (!PageDirty(page)) {
2236 /* someone wrote it for us */
2237 goto continue_unlock;
2238 }
2239
2240 if (PageWriteback(page)) {
2241 if (wbc->sync_mode != WB_SYNC_NONE)
2242 wait_on_page_writeback(page);
2243 else
2244 goto continue_unlock;
2245 }
2246
2247 BUG_ON(PageWriteback(page));
2248 if (!clear_page_dirty_for_io(page))
2249 goto continue_unlock;
2250
2251 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2252 error = (*writepage)(page, wbc, data);
2253 if (unlikely(error)) {
2254 /*
2255 * Handle errors according to the type of
2256 * writeback. There's no need to continue for
2257 * background writeback. Just push done_index
2258 * past this page so media errors won't choke
2259 * writeout for the entire file. For integrity
2260 * writeback, we must process the entire dirty
2261 * set regardless of errors because the fs may
2262 * still have state to clear for each page. In
2263 * that case we continue processing and return
2264 * the first error.
2265 */
2266 if (error == AOP_WRITEPAGE_ACTIVATE) {
2267 unlock_page(page);
2268 error = 0;
2269 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2270 ret = error;
2271 done_index = page->index + 1;
2272 done = 1;
2273 break;
2274 }
2275 if (!ret)
2276 ret = error;
2277 }
2278
2279 /*
2280 * We stop writing back only if we are not doing
2281 * integrity sync. In case of integrity sync we have to
2282 * keep going until we have written all the pages
2283 * we tagged for writeback prior to entering this loop.
2284 */
2285 if (--wbc->nr_to_write <= 0 &&
2286 wbc->sync_mode == WB_SYNC_NONE) {
2287 done = 1;
2288 break;
2289 }
2290 }
2291 pagevec_release(&pvec);
2292 cond_resched();
2293 }
2294
2295 /*
2296 * If we hit the last page and there is more work to be done: wrap
2297 * back the index back to the start of the file for the next
2298 * time we are called.
2299 */
2300 if (wbc->range_cyclic && !done)
2301 done_index = 0;
2302 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2303 mapping->writeback_index = done_index;
2304
2305 return ret;
2306 }
2307 EXPORT_SYMBOL(write_cache_pages);
2308
2309 /*
2310 * Function used by generic_writepages to call the real writepage
2311 * function and set the mapping flags on error
2312 */
__writepage(struct page * page,struct writeback_control * wbc,void * data)2313 static int __writepage(struct page *page, struct writeback_control *wbc,
2314 void *data)
2315 {
2316 struct address_space *mapping = data;
2317 int ret = mapping->a_ops->writepage(page, wbc);
2318 mapping_set_error(mapping, ret);
2319 return ret;
2320 }
2321
2322 /**
2323 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2324 * @mapping: address space structure to write
2325 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2326 *
2327 * This is a library function, which implements the writepages()
2328 * address_space_operation.
2329 *
2330 * Return: %0 on success, negative error code otherwise
2331 */
generic_writepages(struct address_space * mapping,struct writeback_control * wbc)2332 int generic_writepages(struct address_space *mapping,
2333 struct writeback_control *wbc)
2334 {
2335 struct blk_plug plug;
2336 int ret;
2337
2338 /* deal with chardevs and other special file */
2339 if (!mapping->a_ops->writepage)
2340 return 0;
2341
2342 blk_start_plug(&plug);
2343 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2344 blk_finish_plug(&plug);
2345 return ret;
2346 }
2347
2348 EXPORT_SYMBOL(generic_writepages);
2349
do_writepages(struct address_space * mapping,struct writeback_control * wbc)2350 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2351 {
2352 int ret;
2353
2354 if (wbc->nr_to_write <= 0)
2355 return 0;
2356 while (1) {
2357 if (mapping->a_ops->writepages)
2358 ret = mapping->a_ops->writepages(mapping, wbc);
2359 else
2360 ret = generic_writepages(mapping, wbc);
2361 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2362 break;
2363 cond_resched();
2364 congestion_wait(BLK_RW_ASYNC, HZ/50);
2365 }
2366 return ret;
2367 }
2368
2369 /**
2370 * write_one_page - write out a single page and wait on I/O
2371 * @page: the page to write
2372 *
2373 * The page must be locked by the caller and will be unlocked upon return.
2374 *
2375 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2376 * function returns.
2377 *
2378 * Return: %0 on success, negative error code otherwise
2379 */
write_one_page(struct page * page)2380 int write_one_page(struct page *page)
2381 {
2382 struct address_space *mapping = page->mapping;
2383 int ret = 0;
2384 struct writeback_control wbc = {
2385 .sync_mode = WB_SYNC_ALL,
2386 .nr_to_write = 1,
2387 };
2388
2389 BUG_ON(!PageLocked(page));
2390
2391 wait_on_page_writeback(page);
2392
2393 if (clear_page_dirty_for_io(page)) {
2394 get_page(page);
2395 ret = mapping->a_ops->writepage(page, &wbc);
2396 if (ret == 0)
2397 wait_on_page_writeback(page);
2398 put_page(page);
2399 } else {
2400 unlock_page(page);
2401 }
2402
2403 if (!ret)
2404 ret = filemap_check_errors(mapping);
2405 return ret;
2406 }
2407 EXPORT_SYMBOL(write_one_page);
2408
2409 /*
2410 * For address_spaces which do not use buffers nor write back.
2411 */
__set_page_dirty_no_writeback(struct page * page)2412 int __set_page_dirty_no_writeback(struct page *page)
2413 {
2414 if (!PageDirty(page))
2415 return !TestSetPageDirty(page);
2416 return 0;
2417 }
2418
2419 /*
2420 * Helper function for set_page_dirty family.
2421 *
2422 * Caller must hold lock_page_memcg().
2423 *
2424 * NOTE: This relies on being atomic wrt interrupts.
2425 */
account_page_dirtied(struct page * page,struct address_space * mapping)2426 void account_page_dirtied(struct page *page, struct address_space *mapping)
2427 {
2428 struct inode *inode = mapping->host;
2429
2430 trace_writeback_dirty_page(page, mapping);
2431
2432 if (mapping_can_writeback(mapping)) {
2433 struct bdi_writeback *wb;
2434
2435 inode_attach_wb(inode, page);
2436 wb = inode_to_wb(inode);
2437
2438 __inc_lruvec_page_state(page, NR_FILE_DIRTY);
2439 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2440 __inc_node_page_state(page, NR_DIRTIED);
2441 inc_wb_stat(wb, WB_RECLAIMABLE);
2442 inc_wb_stat(wb, WB_DIRTIED);
2443 task_io_account_write(PAGE_SIZE);
2444 current->nr_dirtied++;
2445 this_cpu_inc(bdp_ratelimits);
2446
2447 mem_cgroup_track_foreign_dirty(page, wb);
2448 }
2449 }
2450
2451 /*
2452 * Helper function for deaccounting dirty page without writeback.
2453 *
2454 * Caller must hold lock_page_memcg().
2455 */
account_page_cleaned(struct page * page,struct address_space * mapping,struct bdi_writeback * wb)2456 void account_page_cleaned(struct page *page, struct address_space *mapping,
2457 struct bdi_writeback *wb)
2458 {
2459 if (mapping_can_writeback(mapping)) {
2460 dec_lruvec_page_state(page, NR_FILE_DIRTY);
2461 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2462 dec_wb_stat(wb, WB_RECLAIMABLE);
2463 task_io_account_cancelled_write(PAGE_SIZE);
2464 }
2465 }
2466
2467 /*
2468 * For address_spaces which do not use buffers. Just tag the page as dirty in
2469 * the xarray.
2470 *
2471 * This is also used when a single buffer is being dirtied: we want to set the
2472 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2473 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2474 *
2475 * The caller must ensure this doesn't race with truncation. Most will simply
2476 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2477 * the pte lock held, which also locks out truncation.
2478 */
__set_page_dirty_nobuffers(struct page * page)2479 int __set_page_dirty_nobuffers(struct page *page)
2480 {
2481 lock_page_memcg(page);
2482 if (!TestSetPageDirty(page)) {
2483 struct address_space *mapping = page_mapping(page);
2484 unsigned long flags;
2485
2486 if (!mapping) {
2487 unlock_page_memcg(page);
2488 return 1;
2489 }
2490
2491 xa_lock_irqsave(&mapping->i_pages, flags);
2492 BUG_ON(page_mapping(page) != mapping);
2493 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2494 account_page_dirtied(page, mapping);
2495 __xa_set_mark(&mapping->i_pages, page_index(page),
2496 PAGECACHE_TAG_DIRTY);
2497 xa_unlock_irqrestore(&mapping->i_pages, flags);
2498 unlock_page_memcg(page);
2499
2500 if (mapping->host) {
2501 /* !PageAnon && !swapper_space */
2502 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2503 }
2504 return 1;
2505 }
2506 unlock_page_memcg(page);
2507 return 0;
2508 }
2509 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2510
2511 /*
2512 * Call this whenever redirtying a page, to de-account the dirty counters
2513 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2514 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2515 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2516 * control.
2517 */
account_page_redirty(struct page * page)2518 void account_page_redirty(struct page *page)
2519 {
2520 struct address_space *mapping = page->mapping;
2521
2522 if (mapping && mapping_can_writeback(mapping)) {
2523 struct inode *inode = mapping->host;
2524 struct bdi_writeback *wb;
2525 struct wb_lock_cookie cookie = {};
2526
2527 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2528 current->nr_dirtied--;
2529 dec_node_page_state(page, NR_DIRTIED);
2530 dec_wb_stat(wb, WB_DIRTIED);
2531 unlocked_inode_to_wb_end(inode, &cookie);
2532 }
2533 }
2534 EXPORT_SYMBOL(account_page_redirty);
2535
2536 /*
2537 * When a writepage implementation decides that it doesn't want to write this
2538 * page for some reason, it should redirty the locked page via
2539 * redirty_page_for_writepage() and it should then unlock the page and return 0
2540 */
redirty_page_for_writepage(struct writeback_control * wbc,struct page * page)2541 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2542 {
2543 int ret;
2544
2545 wbc->pages_skipped++;
2546 ret = __set_page_dirty_nobuffers(page);
2547 account_page_redirty(page);
2548 return ret;
2549 }
2550 EXPORT_SYMBOL(redirty_page_for_writepage);
2551
2552 /*
2553 * Dirty a page.
2554 *
2555 * For pages with a mapping this should be done under the page lock
2556 * for the benefit of asynchronous memory errors who prefer a consistent
2557 * dirty state. This rule can be broken in some special cases,
2558 * but should be better not to.
2559 *
2560 * If the mapping doesn't provide a set_page_dirty a_op, then
2561 * just fall through and assume that it wants buffer_heads.
2562 */
set_page_dirty(struct page * page)2563 int set_page_dirty(struct page *page)
2564 {
2565 struct address_space *mapping = page_mapping(page);
2566
2567 page = compound_head(page);
2568 if (likely(mapping)) {
2569 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2570 /*
2571 * readahead/lru_deactivate_page could remain
2572 * PG_readahead/PG_reclaim due to race with end_page_writeback
2573 * About readahead, if the page is written, the flags would be
2574 * reset. So no problem.
2575 * About lru_deactivate_page, if the page is redirty, the flag
2576 * will be reset. So no problem. but if the page is used by readahead
2577 * it will confuse readahead and make it restart the size rampup
2578 * process. But it's a trivial problem.
2579 */
2580 if (PageReclaim(page))
2581 ClearPageReclaim(page);
2582 #ifdef CONFIG_BLOCK
2583 if (!spd)
2584 spd = __set_page_dirty_buffers;
2585 #endif
2586 return (*spd)(page);
2587 }
2588 if (!PageDirty(page)) {
2589 if (!TestSetPageDirty(page))
2590 return 1;
2591 }
2592 return 0;
2593 }
2594 EXPORT_SYMBOL(set_page_dirty);
2595
2596 /*
2597 * set_page_dirty() is racy if the caller has no reference against
2598 * page->mapping->host, and if the page is unlocked. This is because another
2599 * CPU could truncate the page off the mapping and then free the mapping.
2600 *
2601 * Usually, the page _is_ locked, or the caller is a user-space process which
2602 * holds a reference on the inode by having an open file.
2603 *
2604 * In other cases, the page should be locked before running set_page_dirty().
2605 */
set_page_dirty_lock(struct page * page)2606 int set_page_dirty_lock(struct page *page)
2607 {
2608 int ret;
2609
2610 lock_page(page);
2611 ret = set_page_dirty(page);
2612 unlock_page(page);
2613 return ret;
2614 }
2615 EXPORT_SYMBOL(set_page_dirty_lock);
2616
2617 /*
2618 * This cancels just the dirty bit on the kernel page itself, it does NOT
2619 * actually remove dirty bits on any mmap's that may be around. It also
2620 * leaves the page tagged dirty, so any sync activity will still find it on
2621 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2622 * look at the dirty bits in the VM.
2623 *
2624 * Doing this should *normally* only ever be done when a page is truncated,
2625 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2626 * this when it notices that somebody has cleaned out all the buffers on a
2627 * page without actually doing it through the VM. Can you say "ext3 is
2628 * horribly ugly"? Thought you could.
2629 */
__cancel_dirty_page(struct page * page)2630 void __cancel_dirty_page(struct page *page)
2631 {
2632 struct address_space *mapping = page_mapping(page);
2633
2634 if (mapping_can_writeback(mapping)) {
2635 struct inode *inode = mapping->host;
2636 struct bdi_writeback *wb;
2637 struct wb_lock_cookie cookie = {};
2638
2639 lock_page_memcg(page);
2640 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2641
2642 if (TestClearPageDirty(page))
2643 account_page_cleaned(page, mapping, wb);
2644
2645 unlocked_inode_to_wb_end(inode, &cookie);
2646 unlock_page_memcg(page);
2647 } else {
2648 ClearPageDirty(page);
2649 }
2650 }
2651 EXPORT_SYMBOL(__cancel_dirty_page);
2652
2653 /*
2654 * Clear a page's dirty flag, while caring for dirty memory accounting.
2655 * Returns true if the page was previously dirty.
2656 *
2657 * This is for preparing to put the page under writeout. We leave the page
2658 * tagged as dirty in the xarray so that a concurrent write-for-sync
2659 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2660 * implementation will run either set_page_writeback() or set_page_dirty(),
2661 * at which stage we bring the page's dirty flag and xarray dirty tag
2662 * back into sync.
2663 *
2664 * This incoherency between the page's dirty flag and xarray tag is
2665 * unfortunate, but it only exists while the page is locked.
2666 */
clear_page_dirty_for_io(struct page * page)2667 int clear_page_dirty_for_io(struct page *page)
2668 {
2669 struct address_space *mapping = page_mapping(page);
2670 int ret = 0;
2671
2672 VM_BUG_ON_PAGE(!PageLocked(page), page);
2673
2674 if (mapping && mapping_can_writeback(mapping)) {
2675 struct inode *inode = mapping->host;
2676 struct bdi_writeback *wb;
2677 struct wb_lock_cookie cookie = {};
2678
2679 /*
2680 * Yes, Virginia, this is indeed insane.
2681 *
2682 * We use this sequence to make sure that
2683 * (a) we account for dirty stats properly
2684 * (b) we tell the low-level filesystem to
2685 * mark the whole page dirty if it was
2686 * dirty in a pagetable. Only to then
2687 * (c) clean the page again and return 1 to
2688 * cause the writeback.
2689 *
2690 * This way we avoid all nasty races with the
2691 * dirty bit in multiple places and clearing
2692 * them concurrently from different threads.
2693 *
2694 * Note! Normally the "set_page_dirty(page)"
2695 * has no effect on the actual dirty bit - since
2696 * that will already usually be set. But we
2697 * need the side effects, and it can help us
2698 * avoid races.
2699 *
2700 * We basically use the page "master dirty bit"
2701 * as a serialization point for all the different
2702 * threads doing their things.
2703 */
2704 if (page_mkclean(page))
2705 set_page_dirty(page);
2706 /*
2707 * We carefully synchronise fault handlers against
2708 * installing a dirty pte and marking the page dirty
2709 * at this point. We do this by having them hold the
2710 * page lock while dirtying the page, and pages are
2711 * always locked coming in here, so we get the desired
2712 * exclusion.
2713 */
2714 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2715 if (TestClearPageDirty(page)) {
2716 dec_lruvec_page_state(page, NR_FILE_DIRTY);
2717 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2718 dec_wb_stat(wb, WB_RECLAIMABLE);
2719 ret = 1;
2720 }
2721 unlocked_inode_to_wb_end(inode, &cookie);
2722 return ret;
2723 }
2724 return TestClearPageDirty(page);
2725 }
2726 EXPORT_SYMBOL(clear_page_dirty_for_io);
2727
test_clear_page_writeback(struct page * page)2728 int test_clear_page_writeback(struct page *page)
2729 {
2730 struct address_space *mapping = page_mapping(page);
2731 struct mem_cgroup *memcg;
2732 struct lruvec *lruvec;
2733 int ret;
2734
2735 memcg = lock_page_memcg(page);
2736 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2737 if (mapping && mapping_use_writeback_tags(mapping)) {
2738 struct inode *inode = mapping->host;
2739 struct backing_dev_info *bdi = inode_to_bdi(inode);
2740 unsigned long flags;
2741
2742 xa_lock_irqsave(&mapping->i_pages, flags);
2743 ret = TestClearPageWriteback(page);
2744 if (ret) {
2745 __xa_clear_mark(&mapping->i_pages, page_index(page),
2746 PAGECACHE_TAG_WRITEBACK);
2747 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2748 struct bdi_writeback *wb = inode_to_wb(inode);
2749
2750 dec_wb_stat(wb, WB_WRITEBACK);
2751 __wb_writeout_inc(wb);
2752 }
2753 }
2754
2755 if (mapping->host && !mapping_tagged(mapping,
2756 PAGECACHE_TAG_WRITEBACK))
2757 sb_clear_inode_writeback(mapping->host);
2758
2759 xa_unlock_irqrestore(&mapping->i_pages, flags);
2760 } else {
2761 ret = TestClearPageWriteback(page);
2762 }
2763 if (ret) {
2764 dec_lruvec_state(lruvec, NR_WRITEBACK);
2765 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2766 inc_node_page_state(page, NR_WRITTEN);
2767 }
2768 __unlock_page_memcg(memcg);
2769 return ret;
2770 }
2771
__test_set_page_writeback(struct page * page,bool keep_write)2772 int __test_set_page_writeback(struct page *page, bool keep_write)
2773 {
2774 struct address_space *mapping = page_mapping(page);
2775 int ret, access_ret;
2776
2777 lock_page_memcg(page);
2778 if (mapping && mapping_use_writeback_tags(mapping)) {
2779 XA_STATE(xas, &mapping->i_pages, page_index(page));
2780 struct inode *inode = mapping->host;
2781 struct backing_dev_info *bdi = inode_to_bdi(inode);
2782 unsigned long flags;
2783
2784 xas_lock_irqsave(&xas, flags);
2785 xas_load(&xas);
2786 ret = TestSetPageWriteback(page);
2787 if (!ret) {
2788 bool on_wblist;
2789
2790 on_wblist = mapping_tagged(mapping,
2791 PAGECACHE_TAG_WRITEBACK);
2792
2793 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2794 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT)
2795 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2796
2797 /*
2798 * We can come through here when swapping anonymous
2799 * pages, so we don't necessarily have an inode to track
2800 * for sync.
2801 */
2802 if (mapping->host && !on_wblist)
2803 sb_mark_inode_writeback(mapping->host);
2804 }
2805 if (!PageDirty(page))
2806 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2807 if (!keep_write)
2808 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2809 xas_unlock_irqrestore(&xas, flags);
2810 } else {
2811 ret = TestSetPageWriteback(page);
2812 }
2813 if (!ret) {
2814 inc_lruvec_page_state(page, NR_WRITEBACK);
2815 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2816 }
2817 unlock_page_memcg(page);
2818 access_ret = arch_make_page_accessible(page);
2819 /*
2820 * If writeback has been triggered on a page that cannot be made
2821 * accessible, it is too late to recover here.
2822 */
2823 VM_BUG_ON_PAGE(access_ret != 0, page);
2824
2825 return ret;
2826
2827 }
2828 EXPORT_SYMBOL(__test_set_page_writeback);
2829
2830 /*
2831 * Wait for a page to complete writeback
2832 */
wait_on_page_writeback(struct page * page)2833 void wait_on_page_writeback(struct page *page)
2834 {
2835 while (PageWriteback(page)) {
2836 trace_wait_on_page_writeback(page, page_mapping(page));
2837 wait_on_page_bit(page, PG_writeback);
2838 }
2839 }
2840 EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2841
2842 /**
2843 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2844 * @page: The page to wait on.
2845 *
2846 * This function determines if the given page is related to a backing device
2847 * that requires page contents to be held stable during writeback. If so, then
2848 * it will wait for any pending writeback to complete.
2849 */
wait_for_stable_page(struct page * page)2850 void wait_for_stable_page(struct page *page)
2851 {
2852 page = thp_head(page);
2853 if (page->mapping->host->i_sb->s_iflags & SB_I_STABLE_WRITES)
2854 wait_on_page_writeback(page);
2855 }
2856 EXPORT_SYMBOL_GPL(wait_for_stable_page);
2857