• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Initial version
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/writeback.h>
24 #include <linux/init.h>
25 #include <linux/backing-dev.h>
26 #include <linux/task_io_accounting_ops.h>
27 #include <linux/blkdev.h>
28 #include <linux/mpage.h>
29 #include <linux/rmap.h>
30 #include <linux/percpu.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42 
43 #include "internal.h"
44 
45 #undef CREATE_TRACE_POINT
46 #include <trace/hooks/mm.h>
47 
48 /*
49  * Sleep at most 200ms at a time in balance_dirty_pages().
50  */
51 #define MAX_PAUSE		max(HZ/5, 1)
52 
53 /*
54  * Try to keep balance_dirty_pages() call intervals higher than this many pages
55  * by raising pause time to max_pause when falls below it.
56  */
57 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
58 
59 /*
60  * Estimate write bandwidth at 200ms intervals.
61  */
62 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
63 
64 #define RATELIMIT_CALC_SHIFT	10
65 
66 /*
67  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
68  * will look to see if it needs to force writeback or throttling.
69  */
70 static long ratelimit_pages = 32;
71 
72 /* The following parameters are exported via /proc/sys/vm */
73 
74 /*
75  * Start background writeback (via writeback threads) at this percentage
76  */
77 int dirty_background_ratio = 10;
78 
79 /*
80  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
81  * dirty_background_ratio * the amount of dirtyable memory
82  */
83 unsigned long dirty_background_bytes;
84 
85 /*
86  * free highmem will not be subtracted from the total free memory
87  * for calculating free ratios if vm_highmem_is_dirtyable is true
88  */
89 int vm_highmem_is_dirtyable;
90 
91 /*
92  * The generator of dirty data starts writeback at this percentage
93  */
94 int vm_dirty_ratio = 20;
95 
96 /*
97  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
98  * vm_dirty_ratio * the amount of dirtyable memory
99  */
100 unsigned long vm_dirty_bytes;
101 
102 /*
103  * The interval between `kupdate'-style writebacks
104  */
105 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
106 
107 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
108 
109 /*
110  * The longest time for which data is allowed to remain dirty
111  */
112 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
113 
114 /*
115  * Flag that makes the machine dump writes/reads and block dirtyings.
116  */
117 int block_dump;
118 
119 /*
120  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
121  * a full sync is triggered after this time elapses without any disk activity.
122  */
123 int laptop_mode;
124 
125 EXPORT_SYMBOL(laptop_mode);
126 
127 /* End of sysctl-exported parameters */
128 
129 struct wb_domain global_wb_domain;
130 
131 /* consolidated parameters for balance_dirty_pages() and its subroutines */
132 struct dirty_throttle_control {
133 #ifdef CONFIG_CGROUP_WRITEBACK
134 	struct wb_domain	*dom;
135 	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
136 #endif
137 	struct bdi_writeback	*wb;
138 	struct fprop_local_percpu *wb_completions;
139 
140 	unsigned long		avail;		/* dirtyable */
141 	unsigned long		dirty;		/* file_dirty + write + nfs */
142 	unsigned long		thresh;		/* dirty threshold */
143 	unsigned long		bg_thresh;	/* dirty background threshold */
144 
145 	unsigned long		wb_dirty;	/* per-wb counterparts */
146 	unsigned long		wb_thresh;
147 	unsigned long		wb_bg_thresh;
148 
149 	unsigned long		pos_ratio;
150 };
151 
152 /*
153  * Length of period for aging writeout fractions of bdis. This is an
154  * arbitrarily chosen number. The longer the period, the slower fractions will
155  * reflect changes in current writeout rate.
156  */
157 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
158 
159 #ifdef CONFIG_CGROUP_WRITEBACK
160 
161 #define GDTC_INIT(__wb)		.wb = (__wb),				\
162 				.dom = &global_wb_domain,		\
163 				.wb_completions = &(__wb)->completions
164 
165 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
166 
167 #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
168 				.dom = mem_cgroup_wb_domain(__wb),	\
169 				.wb_completions = &(__wb)->memcg_completions, \
170 				.gdtc = __gdtc
171 
mdtc_valid(struct dirty_throttle_control * dtc)172 static bool mdtc_valid(struct dirty_throttle_control *dtc)
173 {
174 	return dtc->dom;
175 }
176 
dtc_dom(struct dirty_throttle_control * dtc)177 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
178 {
179 	return dtc->dom;
180 }
181 
mdtc_gdtc(struct dirty_throttle_control * mdtc)182 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
183 {
184 	return mdtc->gdtc;
185 }
186 
wb_memcg_completions(struct bdi_writeback * wb)187 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
188 {
189 	return &wb->memcg_completions;
190 }
191 
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)192 static void wb_min_max_ratio(struct bdi_writeback *wb,
193 			     unsigned long *minp, unsigned long *maxp)
194 {
195 	unsigned long this_bw = wb->avg_write_bandwidth;
196 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
197 	unsigned long long min = wb->bdi->min_ratio;
198 	unsigned long long max = wb->bdi->max_ratio;
199 
200 	/*
201 	 * @wb may already be clean by the time control reaches here and
202 	 * the total may not include its bw.
203 	 */
204 	if (this_bw < tot_bw) {
205 		if (min) {
206 			min *= this_bw;
207 			min = div64_ul(min, tot_bw);
208 		}
209 		if (max < 100) {
210 			max *= this_bw;
211 			max = div64_ul(max, tot_bw);
212 		}
213 	}
214 
215 	*minp = min;
216 	*maxp = max;
217 }
218 
219 #else	/* CONFIG_CGROUP_WRITEBACK */
220 
221 #define GDTC_INIT(__wb)		.wb = (__wb),                           \
222 				.wb_completions = &(__wb)->completions
223 #define GDTC_INIT_NO_WB
224 #define MDTC_INIT(__wb, __gdtc)
225 
mdtc_valid(struct dirty_throttle_control * dtc)226 static bool mdtc_valid(struct dirty_throttle_control *dtc)
227 {
228 	return false;
229 }
230 
dtc_dom(struct dirty_throttle_control * dtc)231 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
232 {
233 	return &global_wb_domain;
234 }
235 
mdtc_gdtc(struct dirty_throttle_control * mdtc)236 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
237 {
238 	return NULL;
239 }
240 
wb_memcg_completions(struct bdi_writeback * wb)241 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
242 {
243 	return NULL;
244 }
245 
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)246 static void wb_min_max_ratio(struct bdi_writeback *wb,
247 			     unsigned long *minp, unsigned long *maxp)
248 {
249 	*minp = wb->bdi->min_ratio;
250 	*maxp = wb->bdi->max_ratio;
251 }
252 
253 #endif	/* CONFIG_CGROUP_WRITEBACK */
254 
255 /*
256  * In a memory zone, there is a certain amount of pages we consider
257  * available for the page cache, which is essentially the number of
258  * free and reclaimable pages, minus some zone reserves to protect
259  * lowmem and the ability to uphold the zone's watermarks without
260  * requiring writeback.
261  *
262  * This number of dirtyable pages is the base value of which the
263  * user-configurable dirty ratio is the effective number of pages that
264  * are allowed to be actually dirtied.  Per individual zone, or
265  * globally by using the sum of dirtyable pages over all zones.
266  *
267  * Because the user is allowed to specify the dirty limit globally as
268  * absolute number of bytes, calculating the per-zone dirty limit can
269  * require translating the configured limit into a percentage of
270  * global dirtyable memory first.
271  */
272 
273 /**
274  * node_dirtyable_memory - number of dirtyable pages in a node
275  * @pgdat: the node
276  *
277  * Return: the node's number of pages potentially available for dirty
278  * page cache.  This is the base value for the per-node dirty limits.
279  */
node_dirtyable_memory(struct pglist_data * pgdat)280 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
281 {
282 	unsigned long nr_pages = 0;
283 	int z;
284 
285 	for (z = 0; z < MAX_NR_ZONES; z++) {
286 		struct zone *zone = pgdat->node_zones + z;
287 
288 		if (!populated_zone(zone))
289 			continue;
290 
291 		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
292 	}
293 
294 	/*
295 	 * Pages reserved for the kernel should not be considered
296 	 * dirtyable, to prevent a situation where reclaim has to
297 	 * clean pages in order to balance the zones.
298 	 */
299 	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
300 
301 	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
302 	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
303 
304 	return nr_pages;
305 }
306 
highmem_dirtyable_memory(unsigned long total)307 static unsigned long highmem_dirtyable_memory(unsigned long total)
308 {
309 #ifdef CONFIG_HIGHMEM
310 	int node;
311 	unsigned long x = 0;
312 	int i;
313 
314 	for_each_node_state(node, N_HIGH_MEMORY) {
315 		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
316 			struct zone *z;
317 			unsigned long nr_pages;
318 
319 			if (!is_highmem_idx(i))
320 				continue;
321 
322 			z = &NODE_DATA(node)->node_zones[i];
323 			if (!populated_zone(z))
324 				continue;
325 
326 			nr_pages = zone_page_state(z, NR_FREE_PAGES);
327 			/* watch for underflows */
328 			nr_pages -= min(nr_pages, high_wmark_pages(z));
329 			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
330 			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
331 			x += nr_pages;
332 		}
333 	}
334 
335 	/*
336 	 * Unreclaimable memory (kernel memory or anonymous memory
337 	 * without swap) can bring down the dirtyable pages below
338 	 * the zone's dirty balance reserve and the above calculation
339 	 * will underflow.  However we still want to add in nodes
340 	 * which are below threshold (negative values) to get a more
341 	 * accurate calculation but make sure that the total never
342 	 * underflows.
343 	 */
344 	if ((long)x < 0)
345 		x = 0;
346 
347 	/*
348 	 * Make sure that the number of highmem pages is never larger
349 	 * than the number of the total dirtyable memory. This can only
350 	 * occur in very strange VM situations but we want to make sure
351 	 * that this does not occur.
352 	 */
353 	return min(x, total);
354 #else
355 	return 0;
356 #endif
357 }
358 
359 /**
360  * global_dirtyable_memory - number of globally dirtyable pages
361  *
362  * Return: the global number of pages potentially available for dirty
363  * page cache.  This is the base value for the global dirty limits.
364  */
global_dirtyable_memory(void)365 static unsigned long global_dirtyable_memory(void)
366 {
367 	unsigned long x;
368 
369 	x = global_zone_page_state(NR_FREE_PAGES);
370 	/*
371 	 * Pages reserved for the kernel should not be considered
372 	 * dirtyable, to prevent a situation where reclaim has to
373 	 * clean pages in order to balance the zones.
374 	 */
375 	x -= min(x, totalreserve_pages);
376 
377 	x += global_node_page_state(NR_INACTIVE_FILE);
378 	x += global_node_page_state(NR_ACTIVE_FILE);
379 
380 	if (!vm_highmem_is_dirtyable)
381 		x -= highmem_dirtyable_memory(x);
382 
383 	return x + 1;	/* Ensure that we never return 0 */
384 }
385 
386 /**
387  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
388  * @dtc: dirty_throttle_control of interest
389  *
390  * Calculate @dtc->thresh and ->bg_thresh considering
391  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
392  * must ensure that @dtc->avail is set before calling this function.  The
393  * dirty limits will be lifted by 1/4 for real-time tasks.
394  */
domain_dirty_limits(struct dirty_throttle_control * dtc)395 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
396 {
397 	const unsigned long available_memory = dtc->avail;
398 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
399 	unsigned long bytes = vm_dirty_bytes;
400 	unsigned long bg_bytes = dirty_background_bytes;
401 	/* convert ratios to per-PAGE_SIZE for higher precision */
402 	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
403 	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
404 	unsigned long thresh;
405 	unsigned long bg_thresh;
406 	struct task_struct *tsk;
407 
408 	/* gdtc is !NULL iff @dtc is for memcg domain */
409 	if (gdtc) {
410 		unsigned long global_avail = gdtc->avail;
411 
412 		/*
413 		 * The byte settings can't be applied directly to memcg
414 		 * domains.  Convert them to ratios by scaling against
415 		 * globally available memory.  As the ratios are in
416 		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
417 		 * number of pages.
418 		 */
419 		if (bytes)
420 			ratio = min(DIV_ROUND_UP(bytes, global_avail),
421 				    PAGE_SIZE);
422 		if (bg_bytes)
423 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
424 				       PAGE_SIZE);
425 		bytes = bg_bytes = 0;
426 	}
427 
428 	if (bytes)
429 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
430 	else
431 		thresh = (ratio * available_memory) / PAGE_SIZE;
432 
433 	if (bg_bytes)
434 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
435 	else
436 		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
437 
438 	if (bg_thresh >= thresh)
439 		bg_thresh = thresh / 2;
440 	tsk = current;
441 	if (rt_task(tsk)) {
442 		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
443 		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
444 	}
445 	dtc->thresh = thresh;
446 	dtc->bg_thresh = bg_thresh;
447 
448 	/* we should eventually report the domain in the TP */
449 	if (!gdtc)
450 		trace_global_dirty_state(bg_thresh, thresh);
451 }
452 
453 /**
454  * global_dirty_limits - background-writeback and dirty-throttling thresholds
455  * @pbackground: out parameter for bg_thresh
456  * @pdirty: out parameter for thresh
457  *
458  * Calculate bg_thresh and thresh for global_wb_domain.  See
459  * domain_dirty_limits() for details.
460  */
global_dirty_limits(unsigned long * pbackground,unsigned long * pdirty)461 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
462 {
463 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
464 
465 	gdtc.avail = global_dirtyable_memory();
466 	domain_dirty_limits(&gdtc);
467 
468 	*pbackground = gdtc.bg_thresh;
469 	*pdirty = gdtc.thresh;
470 }
471 
472 /**
473  * node_dirty_limit - maximum number of dirty pages allowed in a node
474  * @pgdat: the node
475  *
476  * Return: the maximum number of dirty pages allowed in a node, based
477  * on the node's dirtyable memory.
478  */
node_dirty_limit(struct pglist_data * pgdat)479 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
480 {
481 	unsigned long node_memory = node_dirtyable_memory(pgdat);
482 	struct task_struct *tsk = current;
483 	unsigned long dirty;
484 
485 	if (vm_dirty_bytes)
486 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
487 			node_memory / global_dirtyable_memory();
488 	else
489 		dirty = vm_dirty_ratio * node_memory / 100;
490 
491 	if (rt_task(tsk))
492 		dirty += dirty / 4;
493 
494 	return dirty;
495 }
496 
497 /**
498  * node_dirty_ok - tells whether a node is within its dirty limits
499  * @pgdat: the node to check
500  *
501  * Return: %true when the dirty pages in @pgdat are within the node's
502  * dirty limit, %false if the limit is exceeded.
503  */
node_dirty_ok(struct pglist_data * pgdat)504 bool node_dirty_ok(struct pglist_data *pgdat)
505 {
506 	unsigned long limit = node_dirty_limit(pgdat);
507 	unsigned long nr_pages = 0;
508 
509 	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
510 	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
511 
512 	return nr_pages <= limit;
513 }
514 
dirty_background_ratio_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)515 int dirty_background_ratio_handler(struct ctl_table *table, int write,
516 		void *buffer, size_t *lenp, loff_t *ppos)
517 {
518 	int ret;
519 
520 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
521 	if (ret == 0 && write)
522 		dirty_background_bytes = 0;
523 	return ret;
524 }
525 
dirty_background_bytes_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)526 int dirty_background_bytes_handler(struct ctl_table *table, int write,
527 		void *buffer, size_t *lenp, loff_t *ppos)
528 {
529 	int ret;
530 
531 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
532 	if (ret == 0 && write)
533 		dirty_background_ratio = 0;
534 	return ret;
535 }
536 
dirty_ratio_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)537 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
538 		size_t *lenp, loff_t *ppos)
539 {
540 	int old_ratio = vm_dirty_ratio;
541 	int ret;
542 
543 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
544 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
545 		writeback_set_ratelimit();
546 		vm_dirty_bytes = 0;
547 	}
548 	return ret;
549 }
550 
dirty_bytes_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)551 int dirty_bytes_handler(struct ctl_table *table, int write,
552 		void *buffer, size_t *lenp, loff_t *ppos)
553 {
554 	unsigned long old_bytes = vm_dirty_bytes;
555 	int ret;
556 
557 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
558 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
559 		writeback_set_ratelimit();
560 		vm_dirty_ratio = 0;
561 	}
562 	return ret;
563 }
564 
wp_next_time(unsigned long cur_time)565 static unsigned long wp_next_time(unsigned long cur_time)
566 {
567 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
568 	/* 0 has a special meaning... */
569 	if (!cur_time)
570 		return 1;
571 	return cur_time;
572 }
573 
wb_domain_writeout_inc(struct wb_domain * dom,struct fprop_local_percpu * completions,unsigned int max_prop_frac)574 static void wb_domain_writeout_inc(struct wb_domain *dom,
575 				   struct fprop_local_percpu *completions,
576 				   unsigned int max_prop_frac)
577 {
578 	__fprop_inc_percpu_max(&dom->completions, completions,
579 			       max_prop_frac);
580 	/* First event after period switching was turned off? */
581 	if (unlikely(!dom->period_time)) {
582 		/*
583 		 * We can race with other __bdi_writeout_inc calls here but
584 		 * it does not cause any harm since the resulting time when
585 		 * timer will fire and what is in writeout_period_time will be
586 		 * roughly the same.
587 		 */
588 		dom->period_time = wp_next_time(jiffies);
589 		mod_timer(&dom->period_timer, dom->period_time);
590 	}
591 }
592 
593 /*
594  * Increment @wb's writeout completion count and the global writeout
595  * completion count. Called from test_clear_page_writeback().
596  */
__wb_writeout_inc(struct bdi_writeback * wb)597 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
598 {
599 	struct wb_domain *cgdom;
600 
601 	inc_wb_stat(wb, WB_WRITTEN);
602 	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
603 			       wb->bdi->max_prop_frac);
604 
605 	cgdom = mem_cgroup_wb_domain(wb);
606 	if (cgdom)
607 		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
608 				       wb->bdi->max_prop_frac);
609 }
610 
wb_writeout_inc(struct bdi_writeback * wb)611 void wb_writeout_inc(struct bdi_writeback *wb)
612 {
613 	unsigned long flags;
614 
615 	local_irq_save(flags);
616 	__wb_writeout_inc(wb);
617 	local_irq_restore(flags);
618 }
619 EXPORT_SYMBOL_GPL(wb_writeout_inc);
620 
621 /*
622  * On idle system, we can be called long after we scheduled because we use
623  * deferred timers so count with missed periods.
624  */
writeout_period(struct timer_list * t)625 static void writeout_period(struct timer_list *t)
626 {
627 	struct wb_domain *dom = from_timer(dom, t, period_timer);
628 	int miss_periods = (jiffies - dom->period_time) /
629 						 VM_COMPLETIONS_PERIOD_LEN;
630 
631 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
632 		dom->period_time = wp_next_time(dom->period_time +
633 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
634 		mod_timer(&dom->period_timer, dom->period_time);
635 	} else {
636 		/*
637 		 * Aging has zeroed all fractions. Stop wasting CPU on period
638 		 * updates.
639 		 */
640 		dom->period_time = 0;
641 	}
642 }
643 
wb_domain_init(struct wb_domain * dom,gfp_t gfp)644 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
645 {
646 	memset(dom, 0, sizeof(*dom));
647 
648 	spin_lock_init(&dom->lock);
649 
650 	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
651 
652 	dom->dirty_limit_tstamp = jiffies;
653 
654 	return fprop_global_init(&dom->completions, gfp);
655 }
656 
657 #ifdef CONFIG_CGROUP_WRITEBACK
wb_domain_exit(struct wb_domain * dom)658 void wb_domain_exit(struct wb_domain *dom)
659 {
660 	del_timer_sync(&dom->period_timer);
661 	fprop_global_destroy(&dom->completions);
662 }
663 #endif
664 
665 /*
666  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
667  * registered backing devices, which, for obvious reasons, can not
668  * exceed 100%.
669  */
670 static unsigned int bdi_min_ratio;
671 
bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)672 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
673 {
674 	int ret = 0;
675 
676 	spin_lock_bh(&bdi_lock);
677 	if (min_ratio > bdi->max_ratio) {
678 		ret = -EINVAL;
679 	} else {
680 		min_ratio -= bdi->min_ratio;
681 		if (bdi_min_ratio + min_ratio < 100) {
682 			bdi_min_ratio += min_ratio;
683 			bdi->min_ratio += min_ratio;
684 		} else {
685 			ret = -EINVAL;
686 		}
687 	}
688 	spin_unlock_bh(&bdi_lock);
689 
690 	return ret;
691 }
692 
bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned max_ratio)693 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
694 {
695 	int ret = 0;
696 
697 	if (max_ratio > 100)
698 		return -EINVAL;
699 
700 	spin_lock_bh(&bdi_lock);
701 	if (bdi->min_ratio > max_ratio) {
702 		ret = -EINVAL;
703 	} else {
704 		bdi->max_ratio = max_ratio;
705 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
706 	}
707 	spin_unlock_bh(&bdi_lock);
708 
709 	return ret;
710 }
711 EXPORT_SYMBOL(bdi_set_max_ratio);
712 
dirty_freerun_ceiling(unsigned long thresh,unsigned long bg_thresh)713 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
714 					   unsigned long bg_thresh)
715 {
716 	return (thresh + bg_thresh) / 2;
717 }
718 
hard_dirty_limit(struct wb_domain * dom,unsigned long thresh)719 static unsigned long hard_dirty_limit(struct wb_domain *dom,
720 				      unsigned long thresh)
721 {
722 	return max(thresh, dom->dirty_limit);
723 }
724 
725 /*
726  * Memory which can be further allocated to a memcg domain is capped by
727  * system-wide clean memory excluding the amount being used in the domain.
728  */
mdtc_calc_avail(struct dirty_throttle_control * mdtc,unsigned long filepages,unsigned long headroom)729 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
730 			    unsigned long filepages, unsigned long headroom)
731 {
732 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
733 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
734 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
735 	unsigned long other_clean = global_clean - min(global_clean, clean);
736 
737 	mdtc->avail = filepages + min(headroom, other_clean);
738 }
739 
740 /**
741  * __wb_calc_thresh - @wb's share of dirty throttling threshold
742  * @dtc: dirty_throttle_context of interest
743  *
744  * Note that balance_dirty_pages() will only seriously take it as a hard limit
745  * when sleeping max_pause per page is not enough to keep the dirty pages under
746  * control. For example, when the device is completely stalled due to some error
747  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
748  * In the other normal situations, it acts more gently by throttling the tasks
749  * more (rather than completely block them) when the wb dirty pages go high.
750  *
751  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
752  * - starving fast devices
753  * - piling up dirty pages (that will take long time to sync) on slow devices
754  *
755  * The wb's share of dirty limit will be adapting to its throughput and
756  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
757  *
758  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
759  * dirty balancing includes all PG_dirty and PG_writeback pages.
760  */
__wb_calc_thresh(struct dirty_throttle_control * dtc)761 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
762 {
763 	struct wb_domain *dom = dtc_dom(dtc);
764 	unsigned long thresh = dtc->thresh;
765 	u64 wb_thresh;
766 	unsigned long numerator, denominator;
767 	unsigned long wb_min_ratio, wb_max_ratio;
768 
769 	/*
770 	 * Calculate this BDI's share of the thresh ratio.
771 	 */
772 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
773 			      &numerator, &denominator);
774 
775 	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
776 	wb_thresh *= numerator;
777 	wb_thresh = div64_ul(wb_thresh, denominator);
778 
779 	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
780 
781 	wb_thresh += (thresh * wb_min_ratio) / 100;
782 	if (wb_thresh > (thresh * wb_max_ratio) / 100)
783 		wb_thresh = thresh * wb_max_ratio / 100;
784 
785 	return wb_thresh;
786 }
787 
wb_calc_thresh(struct bdi_writeback * wb,unsigned long thresh)788 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
789 {
790 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
791 					       .thresh = thresh };
792 	return __wb_calc_thresh(&gdtc);
793 }
794 
795 /*
796  *                           setpoint - dirty 3
797  *        f(dirty) := 1.0 + (----------------)
798  *                           limit - setpoint
799  *
800  * it's a 3rd order polynomial that subjects to
801  *
802  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
803  * (2) f(setpoint) = 1.0 => the balance point
804  * (3) f(limit)    = 0   => the hard limit
805  * (4) df/dx      <= 0	 => negative feedback control
806  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
807  *     => fast response on large errors; small oscillation near setpoint
808  */
pos_ratio_polynom(unsigned long setpoint,unsigned long dirty,unsigned long limit)809 static long long pos_ratio_polynom(unsigned long setpoint,
810 					  unsigned long dirty,
811 					  unsigned long limit)
812 {
813 	long long pos_ratio;
814 	long x;
815 
816 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
817 		      (limit - setpoint) | 1);
818 	pos_ratio = x;
819 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
820 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
821 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
822 
823 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
824 }
825 
826 /*
827  * Dirty position control.
828  *
829  * (o) global/bdi setpoints
830  *
831  * We want the dirty pages be balanced around the global/wb setpoints.
832  * When the number of dirty pages is higher/lower than the setpoint, the
833  * dirty position control ratio (and hence task dirty ratelimit) will be
834  * decreased/increased to bring the dirty pages back to the setpoint.
835  *
836  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
837  *
838  *     if (dirty < setpoint) scale up   pos_ratio
839  *     if (dirty > setpoint) scale down pos_ratio
840  *
841  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
842  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
843  *
844  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
845  *
846  * (o) global control line
847  *
848  *     ^ pos_ratio
849  *     |
850  *     |            |<===== global dirty control scope ======>|
851  * 2.0 .............*
852  *     |            .*
853  *     |            . *
854  *     |            .   *
855  *     |            .     *
856  *     |            .        *
857  *     |            .            *
858  * 1.0 ................................*
859  *     |            .                  .     *
860  *     |            .                  .          *
861  *     |            .                  .              *
862  *     |            .                  .                 *
863  *     |            .                  .                    *
864  *   0 +------------.------------------.----------------------*------------->
865  *           freerun^          setpoint^                 limit^   dirty pages
866  *
867  * (o) wb control line
868  *
869  *     ^ pos_ratio
870  *     |
871  *     |            *
872  *     |              *
873  *     |                *
874  *     |                  *
875  *     |                    * |<=========== span ============>|
876  * 1.0 .......................*
877  *     |                      . *
878  *     |                      .   *
879  *     |                      .     *
880  *     |                      .       *
881  *     |                      .         *
882  *     |                      .           *
883  *     |                      .             *
884  *     |                      .               *
885  *     |                      .                 *
886  *     |                      .                   *
887  *     |                      .                     *
888  * 1/4 ...............................................* * * * * * * * * * * *
889  *     |                      .                         .
890  *     |                      .                           .
891  *     |                      .                             .
892  *   0 +----------------------.-------------------------------.------------->
893  *                wb_setpoint^                    x_intercept^
894  *
895  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
896  * be smoothly throttled down to normal if it starts high in situations like
897  * - start writing to a slow SD card and a fast disk at the same time. The SD
898  *   card's wb_dirty may rush to many times higher than wb_setpoint.
899  * - the wb dirty thresh drops quickly due to change of JBOD workload
900  */
wb_position_ratio(struct dirty_throttle_control * dtc)901 static void wb_position_ratio(struct dirty_throttle_control *dtc)
902 {
903 	struct bdi_writeback *wb = dtc->wb;
904 	unsigned long write_bw = wb->avg_write_bandwidth;
905 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
906 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
907 	unsigned long wb_thresh = dtc->wb_thresh;
908 	unsigned long x_intercept;
909 	unsigned long setpoint;		/* dirty pages' target balance point */
910 	unsigned long wb_setpoint;
911 	unsigned long span;
912 	long long pos_ratio;		/* for scaling up/down the rate limit */
913 	long x;
914 
915 	dtc->pos_ratio = 0;
916 
917 	if (unlikely(dtc->dirty >= limit))
918 		return;
919 
920 	/*
921 	 * global setpoint
922 	 *
923 	 * See comment for pos_ratio_polynom().
924 	 */
925 	setpoint = (freerun + limit) / 2;
926 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
927 
928 	/*
929 	 * The strictlimit feature is a tool preventing mistrusted filesystems
930 	 * from growing a large number of dirty pages before throttling. For
931 	 * such filesystems balance_dirty_pages always checks wb counters
932 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
933 	 * This is especially important for fuse which sets bdi->max_ratio to
934 	 * 1% by default. Without strictlimit feature, fuse writeback may
935 	 * consume arbitrary amount of RAM because it is accounted in
936 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
937 	 *
938 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
939 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
940 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
941 	 * limits are set by default to 10% and 20% (background and throttle).
942 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
943 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
944 	 * about ~6K pages (as the average of background and throttle wb
945 	 * limits). The 3rd order polynomial will provide positive feedback if
946 	 * wb_dirty is under wb_setpoint and vice versa.
947 	 *
948 	 * Note, that we cannot use global counters in these calculations
949 	 * because we want to throttle process writing to a strictlimit wb
950 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
951 	 * in the example above).
952 	 */
953 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
954 		long long wb_pos_ratio;
955 
956 		if (dtc->wb_dirty < 8) {
957 			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
958 					   2 << RATELIMIT_CALC_SHIFT);
959 			return;
960 		}
961 
962 		if (dtc->wb_dirty >= wb_thresh)
963 			return;
964 
965 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
966 						    dtc->wb_bg_thresh);
967 
968 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
969 			return;
970 
971 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
972 						 wb_thresh);
973 
974 		/*
975 		 * Typically, for strictlimit case, wb_setpoint << setpoint
976 		 * and pos_ratio >> wb_pos_ratio. In the other words global
977 		 * state ("dirty") is not limiting factor and we have to
978 		 * make decision based on wb counters. But there is an
979 		 * important case when global pos_ratio should get precedence:
980 		 * global limits are exceeded (e.g. due to activities on other
981 		 * wb's) while given strictlimit wb is below limit.
982 		 *
983 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
984 		 * but it would look too non-natural for the case of all
985 		 * activity in the system coming from a single strictlimit wb
986 		 * with bdi->max_ratio == 100%.
987 		 *
988 		 * Note that min() below somewhat changes the dynamics of the
989 		 * control system. Normally, pos_ratio value can be well over 3
990 		 * (when globally we are at freerun and wb is well below wb
991 		 * setpoint). Now the maximum pos_ratio in the same situation
992 		 * is 2. We might want to tweak this if we observe the control
993 		 * system is too slow to adapt.
994 		 */
995 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
996 		return;
997 	}
998 
999 	/*
1000 	 * We have computed basic pos_ratio above based on global situation. If
1001 	 * the wb is over/under its share of dirty pages, we want to scale
1002 	 * pos_ratio further down/up. That is done by the following mechanism.
1003 	 */
1004 
1005 	/*
1006 	 * wb setpoint
1007 	 *
1008 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1009 	 *
1010 	 *                        x_intercept - wb_dirty
1011 	 *                     := --------------------------
1012 	 *                        x_intercept - wb_setpoint
1013 	 *
1014 	 * The main wb control line is a linear function that subjects to
1015 	 *
1016 	 * (1) f(wb_setpoint) = 1.0
1017 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1018 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1019 	 *
1020 	 * For single wb case, the dirty pages are observed to fluctuate
1021 	 * regularly within range
1022 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1023 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1024 	 * fluctuation range for pos_ratio.
1025 	 *
1026 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1027 	 * own size, so move the slope over accordingly and choose a slope that
1028 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1029 	 */
1030 	if (unlikely(wb_thresh > dtc->thresh))
1031 		wb_thresh = dtc->thresh;
1032 	/*
1033 	 * It's very possible that wb_thresh is close to 0 not because the
1034 	 * device is slow, but that it has remained inactive for long time.
1035 	 * Honour such devices a reasonable good (hopefully IO efficient)
1036 	 * threshold, so that the occasional writes won't be blocked and active
1037 	 * writes can rampup the threshold quickly.
1038 	 */
1039 	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1040 	/*
1041 	 * scale global setpoint to wb's:
1042 	 *	wb_setpoint = setpoint * wb_thresh / thresh
1043 	 */
1044 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1045 	wb_setpoint = setpoint * (u64)x >> 16;
1046 	/*
1047 	 * Use span=(8*write_bw) in single wb case as indicated by
1048 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1049 	 *
1050 	 *        wb_thresh                    thresh - wb_thresh
1051 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1052 	 *         thresh                           thresh
1053 	 */
1054 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1055 	x_intercept = wb_setpoint + span;
1056 
1057 	if (dtc->wb_dirty < x_intercept - span / 4) {
1058 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1059 				      (x_intercept - wb_setpoint) | 1);
1060 	} else
1061 		pos_ratio /= 4;
1062 
1063 	/*
1064 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1065 	 * It may push the desired control point of global dirty pages higher
1066 	 * than setpoint.
1067 	 */
1068 	x_intercept = wb_thresh / 2;
1069 	if (dtc->wb_dirty < x_intercept) {
1070 		if (dtc->wb_dirty > x_intercept / 8)
1071 			pos_ratio = div_u64(pos_ratio * x_intercept,
1072 					    dtc->wb_dirty);
1073 		else
1074 			pos_ratio *= 8;
1075 	}
1076 
1077 	dtc->pos_ratio = pos_ratio;
1078 }
1079 
wb_update_write_bandwidth(struct bdi_writeback * wb,unsigned long elapsed,unsigned long written)1080 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1081 				      unsigned long elapsed,
1082 				      unsigned long written)
1083 {
1084 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1085 	unsigned long avg = wb->avg_write_bandwidth;
1086 	unsigned long old = wb->write_bandwidth;
1087 	u64 bw;
1088 
1089 	/*
1090 	 * bw = written * HZ / elapsed
1091 	 *
1092 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1093 	 * write_bandwidth = ---------------------------------------------------
1094 	 *                                          period
1095 	 *
1096 	 * @written may have decreased due to account_page_redirty().
1097 	 * Avoid underflowing @bw calculation.
1098 	 */
1099 	bw = written - min(written, wb->written_stamp);
1100 	bw *= HZ;
1101 	if (unlikely(elapsed > period)) {
1102 		bw = div64_ul(bw, elapsed);
1103 		avg = bw;
1104 		goto out;
1105 	}
1106 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1107 	bw >>= ilog2(period);
1108 
1109 	/*
1110 	 * one more level of smoothing, for filtering out sudden spikes
1111 	 */
1112 	if (avg > old && old >= (unsigned long)bw)
1113 		avg -= (avg - old) >> 3;
1114 
1115 	if (avg < old && old <= (unsigned long)bw)
1116 		avg += (old - avg) >> 3;
1117 
1118 out:
1119 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1120 	avg = max(avg, 1LU);
1121 	if (wb_has_dirty_io(wb)) {
1122 		long delta = avg - wb->avg_write_bandwidth;
1123 		WARN_ON_ONCE(atomic_long_add_return(delta,
1124 					&wb->bdi->tot_write_bandwidth) <= 0);
1125 	}
1126 	wb->write_bandwidth = bw;
1127 	wb->avg_write_bandwidth = avg;
1128 }
1129 
update_dirty_limit(struct dirty_throttle_control * dtc)1130 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1131 {
1132 	struct wb_domain *dom = dtc_dom(dtc);
1133 	unsigned long thresh = dtc->thresh;
1134 	unsigned long limit = dom->dirty_limit;
1135 
1136 	/*
1137 	 * Follow up in one step.
1138 	 */
1139 	if (limit < thresh) {
1140 		limit = thresh;
1141 		goto update;
1142 	}
1143 
1144 	/*
1145 	 * Follow down slowly. Use the higher one as the target, because thresh
1146 	 * may drop below dirty. This is exactly the reason to introduce
1147 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1148 	 */
1149 	thresh = max(thresh, dtc->dirty);
1150 	if (limit > thresh) {
1151 		limit -= (limit - thresh) >> 5;
1152 		goto update;
1153 	}
1154 	return;
1155 update:
1156 	dom->dirty_limit = limit;
1157 }
1158 
domain_update_bandwidth(struct dirty_throttle_control * dtc,unsigned long now)1159 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1160 				    unsigned long now)
1161 {
1162 	struct wb_domain *dom = dtc_dom(dtc);
1163 
1164 	/*
1165 	 * check locklessly first to optimize away locking for the most time
1166 	 */
1167 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1168 		return;
1169 
1170 	spin_lock(&dom->lock);
1171 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1172 		update_dirty_limit(dtc);
1173 		dom->dirty_limit_tstamp = now;
1174 	}
1175 	spin_unlock(&dom->lock);
1176 }
1177 
1178 /*
1179  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1180  *
1181  * Normal wb tasks will be curbed at or below it in long term.
1182  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1183  */
wb_update_dirty_ratelimit(struct dirty_throttle_control * dtc,unsigned long dirtied,unsigned long elapsed)1184 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1185 				      unsigned long dirtied,
1186 				      unsigned long elapsed)
1187 {
1188 	struct bdi_writeback *wb = dtc->wb;
1189 	unsigned long dirty = dtc->dirty;
1190 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1191 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1192 	unsigned long setpoint = (freerun + limit) / 2;
1193 	unsigned long write_bw = wb->avg_write_bandwidth;
1194 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1195 	unsigned long dirty_rate;
1196 	unsigned long task_ratelimit;
1197 	unsigned long balanced_dirty_ratelimit;
1198 	unsigned long step;
1199 	unsigned long x;
1200 	unsigned long shift;
1201 
1202 	/*
1203 	 * The dirty rate will match the writeout rate in long term, except
1204 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1205 	 */
1206 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1207 
1208 	/*
1209 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1210 	 */
1211 	task_ratelimit = (u64)dirty_ratelimit *
1212 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1213 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1214 
1215 	/*
1216 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1217 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1218 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1219 	 * formula will yield the balanced rate limit (write_bw / N).
1220 	 *
1221 	 * Note that the expanded form is not a pure rate feedback:
1222 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1223 	 * but also takes pos_ratio into account:
1224 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1225 	 *
1226 	 * (1) is not realistic because pos_ratio also takes part in balancing
1227 	 * the dirty rate.  Consider the state
1228 	 *	pos_ratio = 0.5						     (3)
1229 	 *	rate = 2 * (write_bw / N)				     (4)
1230 	 * If (1) is used, it will stuck in that state! Because each dd will
1231 	 * be throttled at
1232 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1233 	 * yielding
1234 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1235 	 * put (6) into (1) we get
1236 	 *	rate_(i+1) = rate_(i)					     (7)
1237 	 *
1238 	 * So we end up using (2) to always keep
1239 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1240 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1241 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1242 	 * the dirty count meet the setpoint, but also where the slope of
1243 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1244 	 */
1245 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1246 					   dirty_rate | 1);
1247 	/*
1248 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1249 	 */
1250 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1251 		balanced_dirty_ratelimit = write_bw;
1252 
1253 	/*
1254 	 * We could safely do this and return immediately:
1255 	 *
1256 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1257 	 *
1258 	 * However to get a more stable dirty_ratelimit, the below elaborated
1259 	 * code makes use of task_ratelimit to filter out singular points and
1260 	 * limit the step size.
1261 	 *
1262 	 * The below code essentially only uses the relative value of
1263 	 *
1264 	 *	task_ratelimit - dirty_ratelimit
1265 	 *	= (pos_ratio - 1) * dirty_ratelimit
1266 	 *
1267 	 * which reflects the direction and size of dirty position error.
1268 	 */
1269 
1270 	/*
1271 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1272 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1273 	 * For example, when
1274 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1275 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1276 	 * lowering dirty_ratelimit will help meet both the position and rate
1277 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1278 	 * only help meet the rate target. After all, what the users ultimately
1279 	 * feel and care are stable dirty rate and small position error.
1280 	 *
1281 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1282 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1283 	 * keeps jumping around randomly and can even leap far away at times
1284 	 * due to the small 200ms estimation period of dirty_rate (we want to
1285 	 * keep that period small to reduce time lags).
1286 	 */
1287 	step = 0;
1288 
1289 	/*
1290 	 * For strictlimit case, calculations above were based on wb counters
1291 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1292 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1293 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1294 	 * "dirty" and wb_setpoint as "setpoint".
1295 	 *
1296 	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1297 	 * it's possible that wb_thresh is close to zero due to inactivity
1298 	 * of backing device.
1299 	 */
1300 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1301 		dirty = dtc->wb_dirty;
1302 		if (dtc->wb_dirty < 8)
1303 			setpoint = dtc->wb_dirty + 1;
1304 		else
1305 			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1306 	}
1307 
1308 	if (dirty < setpoint) {
1309 		x = min3(wb->balanced_dirty_ratelimit,
1310 			 balanced_dirty_ratelimit, task_ratelimit);
1311 		if (dirty_ratelimit < x)
1312 			step = x - dirty_ratelimit;
1313 	} else {
1314 		x = max3(wb->balanced_dirty_ratelimit,
1315 			 balanced_dirty_ratelimit, task_ratelimit);
1316 		if (dirty_ratelimit > x)
1317 			step = dirty_ratelimit - x;
1318 	}
1319 
1320 	/*
1321 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1322 	 * rate itself is constantly fluctuating. So decrease the track speed
1323 	 * when it gets close to the target. Helps eliminate pointless tremors.
1324 	 */
1325 	shift = dirty_ratelimit / (2 * step + 1);
1326 	if (shift < BITS_PER_LONG)
1327 		step = DIV_ROUND_UP(step >> shift, 8);
1328 	else
1329 		step = 0;
1330 
1331 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1332 		dirty_ratelimit += step;
1333 	else
1334 		dirty_ratelimit -= step;
1335 
1336 	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1337 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1338 
1339 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1340 }
1341 
__wb_update_bandwidth(struct dirty_throttle_control * gdtc,struct dirty_throttle_control * mdtc,unsigned long start_time,bool update_ratelimit)1342 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1343 				  struct dirty_throttle_control *mdtc,
1344 				  unsigned long start_time,
1345 				  bool update_ratelimit)
1346 {
1347 	struct bdi_writeback *wb = gdtc->wb;
1348 	unsigned long now = jiffies;
1349 	unsigned long elapsed = now - wb->bw_time_stamp;
1350 	unsigned long dirtied;
1351 	unsigned long written;
1352 
1353 	lockdep_assert_held(&wb->list_lock);
1354 
1355 	/*
1356 	 * rate-limit, only update once every 200ms.
1357 	 */
1358 	if (elapsed < BANDWIDTH_INTERVAL)
1359 		return;
1360 
1361 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1362 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1363 
1364 	/*
1365 	 * Skip quiet periods when disk bandwidth is under-utilized.
1366 	 * (at least 1s idle time between two flusher runs)
1367 	 */
1368 	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1369 		goto snapshot;
1370 
1371 	if (update_ratelimit) {
1372 		domain_update_bandwidth(gdtc, now);
1373 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1374 
1375 		/*
1376 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1377 		 * compiler has no way to figure that out.  Help it.
1378 		 */
1379 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1380 			domain_update_bandwidth(mdtc, now);
1381 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1382 		}
1383 	}
1384 	wb_update_write_bandwidth(wb, elapsed, written);
1385 
1386 snapshot:
1387 	wb->dirtied_stamp = dirtied;
1388 	wb->written_stamp = written;
1389 	wb->bw_time_stamp = now;
1390 }
1391 
wb_update_bandwidth(struct bdi_writeback * wb,unsigned long start_time)1392 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1393 {
1394 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1395 
1396 	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1397 }
1398 
1399 /*
1400  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1401  * will look to see if it needs to start dirty throttling.
1402  *
1403  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1404  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1405  * (the number of pages we may dirty without exceeding the dirty limits).
1406  */
dirty_poll_interval(unsigned long dirty,unsigned long thresh)1407 static unsigned long dirty_poll_interval(unsigned long dirty,
1408 					 unsigned long thresh)
1409 {
1410 	if (thresh > dirty)
1411 		return 1UL << (ilog2(thresh - dirty) >> 1);
1412 
1413 	return 1;
1414 }
1415 
wb_max_pause(struct bdi_writeback * wb,unsigned long wb_dirty)1416 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1417 				  unsigned long wb_dirty)
1418 {
1419 	unsigned long bw = wb->avg_write_bandwidth;
1420 	unsigned long t;
1421 
1422 	/*
1423 	 * Limit pause time for small memory systems. If sleeping for too long
1424 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1425 	 * idle.
1426 	 *
1427 	 * 8 serves as the safety ratio.
1428 	 */
1429 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1430 	t++;
1431 
1432 	return min_t(unsigned long, t, MAX_PAUSE);
1433 }
1434 
wb_min_pause(struct bdi_writeback * wb,long max_pause,unsigned long task_ratelimit,unsigned long dirty_ratelimit,int * nr_dirtied_pause)1435 static long wb_min_pause(struct bdi_writeback *wb,
1436 			 long max_pause,
1437 			 unsigned long task_ratelimit,
1438 			 unsigned long dirty_ratelimit,
1439 			 int *nr_dirtied_pause)
1440 {
1441 	long hi = ilog2(wb->avg_write_bandwidth);
1442 	long lo = ilog2(wb->dirty_ratelimit);
1443 	long t;		/* target pause */
1444 	long pause;	/* estimated next pause */
1445 	int pages;	/* target nr_dirtied_pause */
1446 
1447 	/* target for 10ms pause on 1-dd case */
1448 	t = max(1, HZ / 100);
1449 
1450 	/*
1451 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1452 	 * overheads.
1453 	 *
1454 	 * (N * 10ms) on 2^N concurrent tasks.
1455 	 */
1456 	if (hi > lo)
1457 		t += (hi - lo) * (10 * HZ) / 1024;
1458 
1459 	/*
1460 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1461 	 * on the much more stable dirty_ratelimit. However the next pause time
1462 	 * will be computed based on task_ratelimit and the two rate limits may
1463 	 * depart considerably at some time. Especially if task_ratelimit goes
1464 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1465 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1466 	 * result task_ratelimit won't be executed faithfully, which could
1467 	 * eventually bring down dirty_ratelimit.
1468 	 *
1469 	 * We apply two rules to fix it up:
1470 	 * 1) try to estimate the next pause time and if necessary, use a lower
1471 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1472 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1473 	 * 2) limit the target pause time to max_pause/2, so that the normal
1474 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1475 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1476 	 */
1477 	t = min(t, 1 + max_pause / 2);
1478 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1479 
1480 	/*
1481 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1482 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1483 	 * When the 16 consecutive reads are often interrupted by some dirty
1484 	 * throttling pause during the async writes, cfq will go into idles
1485 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1486 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1487 	 */
1488 	if (pages < DIRTY_POLL_THRESH) {
1489 		t = max_pause;
1490 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1491 		if (pages > DIRTY_POLL_THRESH) {
1492 			pages = DIRTY_POLL_THRESH;
1493 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1494 		}
1495 	}
1496 
1497 	pause = HZ * pages / (task_ratelimit + 1);
1498 	if (pause > max_pause) {
1499 		t = max_pause;
1500 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1501 	}
1502 
1503 	*nr_dirtied_pause = pages;
1504 	/*
1505 	 * The minimal pause time will normally be half the target pause time.
1506 	 */
1507 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1508 }
1509 
wb_dirty_limits(struct dirty_throttle_control * dtc)1510 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1511 {
1512 	struct bdi_writeback *wb = dtc->wb;
1513 	unsigned long wb_reclaimable;
1514 
1515 	/*
1516 	 * wb_thresh is not treated as some limiting factor as
1517 	 * dirty_thresh, due to reasons
1518 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1519 	 * - in a system with HDD and USB key, the USB key may somehow
1520 	 *   go into state (wb_dirty >> wb_thresh) either because
1521 	 *   wb_dirty starts high, or because wb_thresh drops low.
1522 	 *   In this case we don't want to hard throttle the USB key
1523 	 *   dirtiers for 100 seconds until wb_dirty drops under
1524 	 *   wb_thresh. Instead the auxiliary wb control line in
1525 	 *   wb_position_ratio() will let the dirtier task progress
1526 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1527 	 */
1528 	dtc->wb_thresh = __wb_calc_thresh(dtc);
1529 	dtc->wb_bg_thresh = dtc->thresh ?
1530 		div64_u64(dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1531 
1532 	/*
1533 	 * In order to avoid the stacked BDI deadlock we need
1534 	 * to ensure we accurately count the 'dirty' pages when
1535 	 * the threshold is low.
1536 	 *
1537 	 * Otherwise it would be possible to get thresh+n pages
1538 	 * reported dirty, even though there are thresh-m pages
1539 	 * actually dirty; with m+n sitting in the percpu
1540 	 * deltas.
1541 	 */
1542 	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1543 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1544 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1545 	} else {
1546 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1547 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1548 	}
1549 }
1550 
1551 /*
1552  * balance_dirty_pages() must be called by processes which are generating dirty
1553  * data.  It looks at the number of dirty pages in the machine and will force
1554  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1555  * If we're over `background_thresh' then the writeback threads are woken to
1556  * perform some writeout.
1557  */
balance_dirty_pages(struct bdi_writeback * wb,unsigned long pages_dirtied)1558 static void balance_dirty_pages(struct bdi_writeback *wb,
1559 				unsigned long pages_dirtied)
1560 {
1561 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1562 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1563 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1564 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1565 						     &mdtc_stor : NULL;
1566 	struct dirty_throttle_control *sdtc;
1567 	unsigned long nr_reclaimable;	/* = file_dirty */
1568 	long period;
1569 	long pause;
1570 	long max_pause;
1571 	long min_pause;
1572 	int nr_dirtied_pause;
1573 	bool dirty_exceeded = false;
1574 	unsigned long task_ratelimit;
1575 	unsigned long dirty_ratelimit;
1576 	struct backing_dev_info *bdi = wb->bdi;
1577 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1578 	unsigned long start_time = jiffies;
1579 
1580 	for (;;) {
1581 		unsigned long now = jiffies;
1582 		unsigned long dirty, thresh, bg_thresh;
1583 		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1584 		unsigned long m_thresh = 0;
1585 		unsigned long m_bg_thresh = 0;
1586 
1587 		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1588 		gdtc->avail = global_dirtyable_memory();
1589 		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1590 
1591 		domain_dirty_limits(gdtc);
1592 
1593 		if (unlikely(strictlimit)) {
1594 			wb_dirty_limits(gdtc);
1595 
1596 			dirty = gdtc->wb_dirty;
1597 			thresh = gdtc->wb_thresh;
1598 			bg_thresh = gdtc->wb_bg_thresh;
1599 		} else {
1600 			dirty = gdtc->dirty;
1601 			thresh = gdtc->thresh;
1602 			bg_thresh = gdtc->bg_thresh;
1603 		}
1604 
1605 		if (mdtc) {
1606 			unsigned long filepages, headroom, writeback;
1607 
1608 			/*
1609 			 * If @wb belongs to !root memcg, repeat the same
1610 			 * basic calculations for the memcg domain.
1611 			 */
1612 			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1613 					    &mdtc->dirty, &writeback);
1614 			mdtc->dirty += writeback;
1615 			mdtc_calc_avail(mdtc, filepages, headroom);
1616 
1617 			domain_dirty_limits(mdtc);
1618 
1619 			if (unlikely(strictlimit)) {
1620 				wb_dirty_limits(mdtc);
1621 				m_dirty = mdtc->wb_dirty;
1622 				m_thresh = mdtc->wb_thresh;
1623 				m_bg_thresh = mdtc->wb_bg_thresh;
1624 			} else {
1625 				m_dirty = mdtc->dirty;
1626 				m_thresh = mdtc->thresh;
1627 				m_bg_thresh = mdtc->bg_thresh;
1628 			}
1629 		}
1630 
1631 		trace_android_vh_mm_dirty_limits(gdtc, strictlimit, dirty, bg_thresh,
1632 				nr_reclaimable, pages_dirtied);
1633 
1634 		/*
1635 		 * Throttle it only when the background writeback cannot
1636 		 * catch-up. This avoids (excessively) small writeouts
1637 		 * when the wb limits are ramping up in case of !strictlimit.
1638 		 *
1639 		 * In strictlimit case make decision based on the wb counters
1640 		 * and limits. Small writeouts when the wb limits are ramping
1641 		 * up are the price we consciously pay for strictlimit-ing.
1642 		 *
1643 		 * If memcg domain is in effect, @dirty should be under
1644 		 * both global and memcg freerun ceilings.
1645 		 */
1646 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1647 		    (!mdtc ||
1648 		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1649 			unsigned long intv;
1650 			unsigned long m_intv;
1651 
1652 free_running:
1653 			intv = dirty_poll_interval(dirty, thresh);
1654 			m_intv = ULONG_MAX;
1655 
1656 			current->dirty_paused_when = now;
1657 			current->nr_dirtied = 0;
1658 			if (mdtc)
1659 				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1660 			current->nr_dirtied_pause = min(intv, m_intv);
1661 			break;
1662 		}
1663 
1664 		if (unlikely(!writeback_in_progress(wb)))
1665 			wb_start_background_writeback(wb);
1666 
1667 		mem_cgroup_flush_foreign(wb);
1668 
1669 		/*
1670 		 * Calculate global domain's pos_ratio and select the
1671 		 * global dtc by default.
1672 		 */
1673 		if (!strictlimit) {
1674 			wb_dirty_limits(gdtc);
1675 
1676 			if ((current->flags & PF_LOCAL_THROTTLE) &&
1677 			    gdtc->wb_dirty <
1678 			    dirty_freerun_ceiling(gdtc->wb_thresh,
1679 						  gdtc->wb_bg_thresh))
1680 				/*
1681 				 * LOCAL_THROTTLE tasks must not be throttled
1682 				 * when below the per-wb freerun ceiling.
1683 				 */
1684 				goto free_running;
1685 		}
1686 
1687 		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1688 			((gdtc->dirty > gdtc->thresh) || strictlimit);
1689 
1690 		wb_position_ratio(gdtc);
1691 		sdtc = gdtc;
1692 
1693 		if (mdtc) {
1694 			/*
1695 			 * If memcg domain is in effect, calculate its
1696 			 * pos_ratio.  @wb should satisfy constraints from
1697 			 * both global and memcg domains.  Choose the one
1698 			 * w/ lower pos_ratio.
1699 			 */
1700 			if (!strictlimit) {
1701 				wb_dirty_limits(mdtc);
1702 
1703 				if ((current->flags & PF_LOCAL_THROTTLE) &&
1704 				    mdtc->wb_dirty <
1705 				    dirty_freerun_ceiling(mdtc->wb_thresh,
1706 							  mdtc->wb_bg_thresh))
1707 					/*
1708 					 * LOCAL_THROTTLE tasks must not be
1709 					 * throttled when below the per-wb
1710 					 * freerun ceiling.
1711 					 */
1712 					goto free_running;
1713 			}
1714 			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1715 				((mdtc->dirty > mdtc->thresh) || strictlimit);
1716 
1717 			wb_position_ratio(mdtc);
1718 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1719 				sdtc = mdtc;
1720 		}
1721 
1722 		if (dirty_exceeded && !wb->dirty_exceeded)
1723 			wb->dirty_exceeded = 1;
1724 
1725 		if (time_is_before_jiffies(wb->bw_time_stamp +
1726 					   BANDWIDTH_INTERVAL)) {
1727 			spin_lock(&wb->list_lock);
1728 			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1729 			spin_unlock(&wb->list_lock);
1730 		}
1731 
1732 		/* throttle according to the chosen dtc */
1733 		dirty_ratelimit = wb->dirty_ratelimit;
1734 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1735 							RATELIMIT_CALC_SHIFT;
1736 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1737 		min_pause = wb_min_pause(wb, max_pause,
1738 					 task_ratelimit, dirty_ratelimit,
1739 					 &nr_dirtied_pause);
1740 
1741 		if (unlikely(task_ratelimit == 0)) {
1742 			period = max_pause;
1743 			pause = max_pause;
1744 			goto pause;
1745 		}
1746 		period = HZ * pages_dirtied / task_ratelimit;
1747 		pause = period;
1748 		if (current->dirty_paused_when)
1749 			pause -= now - current->dirty_paused_when;
1750 		/*
1751 		 * For less than 1s think time (ext3/4 may block the dirtier
1752 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1753 		 * however at much less frequency), try to compensate it in
1754 		 * future periods by updating the virtual time; otherwise just
1755 		 * do a reset, as it may be a light dirtier.
1756 		 */
1757 		if (pause < min_pause) {
1758 			trace_balance_dirty_pages(wb,
1759 						  sdtc->thresh,
1760 						  sdtc->bg_thresh,
1761 						  sdtc->dirty,
1762 						  sdtc->wb_thresh,
1763 						  sdtc->wb_dirty,
1764 						  dirty_ratelimit,
1765 						  task_ratelimit,
1766 						  pages_dirtied,
1767 						  period,
1768 						  min(pause, 0L),
1769 						  start_time);
1770 			if (pause < -HZ) {
1771 				current->dirty_paused_when = now;
1772 				current->nr_dirtied = 0;
1773 			} else if (period) {
1774 				current->dirty_paused_when += period;
1775 				current->nr_dirtied = 0;
1776 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1777 				current->nr_dirtied_pause += pages_dirtied;
1778 			break;
1779 		}
1780 		if (unlikely(pause > max_pause)) {
1781 			/* for occasional dropped task_ratelimit */
1782 			now += min(pause - max_pause, max_pause);
1783 			pause = max_pause;
1784 		}
1785 
1786 pause:
1787 		trace_balance_dirty_pages(wb,
1788 					  sdtc->thresh,
1789 					  sdtc->bg_thresh,
1790 					  sdtc->dirty,
1791 					  sdtc->wb_thresh,
1792 					  sdtc->wb_dirty,
1793 					  dirty_ratelimit,
1794 					  task_ratelimit,
1795 					  pages_dirtied,
1796 					  period,
1797 					  pause,
1798 					  start_time);
1799 		__set_current_state(TASK_KILLABLE);
1800 		wb->dirty_sleep = now;
1801 		io_schedule_timeout(pause);
1802 
1803 		current->dirty_paused_when = now + pause;
1804 		current->nr_dirtied = 0;
1805 		current->nr_dirtied_pause = nr_dirtied_pause;
1806 
1807 		/*
1808 		 * This is typically equal to (dirty < thresh) and can also
1809 		 * keep "1000+ dd on a slow USB stick" under control.
1810 		 */
1811 		if (task_ratelimit)
1812 			break;
1813 
1814 		/*
1815 		 * In the case of an unresponding NFS server and the NFS dirty
1816 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1817 		 * to go through, so that tasks on them still remain responsive.
1818 		 *
1819 		 * In theory 1 page is enough to keep the consumer-producer
1820 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1821 		 * more page. However wb_dirty has accounting errors.  So use
1822 		 * the larger and more IO friendly wb_stat_error.
1823 		 */
1824 		if (sdtc->wb_dirty <= wb_stat_error())
1825 			break;
1826 
1827 		if (fatal_signal_pending(current))
1828 			break;
1829 	}
1830 
1831 	if (!dirty_exceeded && wb->dirty_exceeded)
1832 		wb->dirty_exceeded = 0;
1833 
1834 	if (writeback_in_progress(wb))
1835 		return;
1836 
1837 	/*
1838 	 * In laptop mode, we wait until hitting the higher threshold before
1839 	 * starting background writeout, and then write out all the way down
1840 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1841 	 *
1842 	 * In normal mode, we start background writeout at the lower
1843 	 * background_thresh, to keep the amount of dirty memory low.
1844 	 */
1845 	if (laptop_mode)
1846 		return;
1847 
1848 	if (nr_reclaimable > gdtc->bg_thresh)
1849 		wb_start_background_writeback(wb);
1850 }
1851 
1852 static DEFINE_PER_CPU(int, bdp_ratelimits);
1853 
1854 /*
1855  * Normal tasks are throttled by
1856  *	loop {
1857  *		dirty tsk->nr_dirtied_pause pages;
1858  *		take a snap in balance_dirty_pages();
1859  *	}
1860  * However there is a worst case. If every task exit immediately when dirtied
1861  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1862  * called to throttle the page dirties. The solution is to save the not yet
1863  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1864  * randomly into the running tasks. This works well for the above worst case,
1865  * as the new task will pick up and accumulate the old task's leaked dirty
1866  * count and eventually get throttled.
1867  */
1868 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1869 
1870 /**
1871  * balance_dirty_pages_ratelimited - balance dirty memory state
1872  * @mapping: address_space which was dirtied
1873  *
1874  * Processes which are dirtying memory should call in here once for each page
1875  * which was newly dirtied.  The function will periodically check the system's
1876  * dirty state and will initiate writeback if needed.
1877  *
1878  * On really big machines, get_writeback_state is expensive, so try to avoid
1879  * calling it too often (ratelimiting).  But once we're over the dirty memory
1880  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1881  * from overshooting the limit by (ratelimit_pages) each.
1882  */
balance_dirty_pages_ratelimited(struct address_space * mapping)1883 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1884 {
1885 	struct inode *inode = mapping->host;
1886 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1887 	struct bdi_writeback *wb = NULL;
1888 	int ratelimit;
1889 	int *p;
1890 
1891 	if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1892 		return;
1893 
1894 	if (inode_cgwb_enabled(inode))
1895 		wb = wb_get_create_current(bdi, GFP_KERNEL);
1896 	if (!wb)
1897 		wb = &bdi->wb;
1898 
1899 	ratelimit = current->nr_dirtied_pause;
1900 	if (wb->dirty_exceeded)
1901 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1902 
1903 	preempt_disable();
1904 	/*
1905 	 * This prevents one CPU to accumulate too many dirtied pages without
1906 	 * calling into balance_dirty_pages(), which can happen when there are
1907 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1908 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1909 	 */
1910 	p =  this_cpu_ptr(&bdp_ratelimits);
1911 	if (unlikely(current->nr_dirtied >= ratelimit))
1912 		*p = 0;
1913 	else if (unlikely(*p >= ratelimit_pages)) {
1914 		*p = 0;
1915 		ratelimit = 0;
1916 	}
1917 	/*
1918 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1919 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1920 	 * the dirty throttling and livelock other long-run dirtiers.
1921 	 */
1922 	p = this_cpu_ptr(&dirty_throttle_leaks);
1923 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1924 		unsigned long nr_pages_dirtied;
1925 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1926 		*p -= nr_pages_dirtied;
1927 		current->nr_dirtied += nr_pages_dirtied;
1928 	}
1929 	preempt_enable();
1930 
1931 	if (unlikely(current->nr_dirtied >= ratelimit))
1932 		balance_dirty_pages(wb, current->nr_dirtied);
1933 
1934 	wb_put(wb);
1935 }
1936 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1937 
1938 /**
1939  * wb_over_bg_thresh - does @wb need to be written back?
1940  * @wb: bdi_writeback of interest
1941  *
1942  * Determines whether background writeback should keep writing @wb or it's
1943  * clean enough.
1944  *
1945  * Return: %true if writeback should continue.
1946  */
wb_over_bg_thresh(struct bdi_writeback * wb)1947 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1948 {
1949 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1950 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1951 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1952 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1953 						     &mdtc_stor : NULL;
1954 
1955 	/*
1956 	 * Similar to balance_dirty_pages() but ignores pages being written
1957 	 * as we're trying to decide whether to put more under writeback.
1958 	 */
1959 	gdtc->avail = global_dirtyable_memory();
1960 	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1961 	domain_dirty_limits(gdtc);
1962 
1963 	if (gdtc->dirty > gdtc->bg_thresh)
1964 		return true;
1965 
1966 	if (wb_stat(wb, WB_RECLAIMABLE) >
1967 	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1968 		return true;
1969 
1970 	if (mdtc) {
1971 		unsigned long filepages, headroom, writeback;
1972 
1973 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1974 				    &writeback);
1975 		mdtc_calc_avail(mdtc, filepages, headroom);
1976 		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1977 
1978 		if (mdtc->dirty > mdtc->bg_thresh)
1979 			return true;
1980 
1981 		if (wb_stat(wb, WB_RECLAIMABLE) >
1982 		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1983 			return true;
1984 	}
1985 
1986 	return false;
1987 }
1988 
1989 /*
1990  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1991  */
dirty_writeback_centisecs_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)1992 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1993 		void *buffer, size_t *length, loff_t *ppos)
1994 {
1995 	unsigned int old_interval = dirty_writeback_interval;
1996 	int ret;
1997 
1998 	ret = proc_dointvec(table, write, buffer, length, ppos);
1999 
2000 	/*
2001 	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2002 	 * and a different non-zero value will wakeup the writeback threads.
2003 	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2004 	 * iterate over all bdis and wbs.
2005 	 * The reason we do this is to make the change take effect immediately.
2006 	 */
2007 	if (!ret && write && dirty_writeback_interval &&
2008 		dirty_writeback_interval != old_interval)
2009 		wakeup_flusher_threads(WB_REASON_PERIODIC);
2010 
2011 	return ret;
2012 }
2013 
2014 #ifdef CONFIG_BLOCK
laptop_mode_timer_fn(struct timer_list * t)2015 void laptop_mode_timer_fn(struct timer_list *t)
2016 {
2017 	struct backing_dev_info *backing_dev_info =
2018 		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2019 
2020 	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2021 }
2022 
2023 /*
2024  * We've spun up the disk and we're in laptop mode: schedule writeback
2025  * of all dirty data a few seconds from now.  If the flush is already scheduled
2026  * then push it back - the user is still using the disk.
2027  */
laptop_io_completion(struct backing_dev_info * info)2028 void laptop_io_completion(struct backing_dev_info *info)
2029 {
2030 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2031 }
2032 
2033 /*
2034  * We're in laptop mode and we've just synced. The sync's writes will have
2035  * caused another writeback to be scheduled by laptop_io_completion.
2036  * Nothing needs to be written back anymore, so we unschedule the writeback.
2037  */
laptop_sync_completion(void)2038 void laptop_sync_completion(void)
2039 {
2040 	struct backing_dev_info *bdi;
2041 
2042 	rcu_read_lock();
2043 
2044 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2045 		del_timer(&bdi->laptop_mode_wb_timer);
2046 
2047 	rcu_read_unlock();
2048 }
2049 #endif
2050 
2051 /*
2052  * If ratelimit_pages is too high then we can get into dirty-data overload
2053  * if a large number of processes all perform writes at the same time.
2054  * If it is too low then SMP machines will call the (expensive)
2055  * get_writeback_state too often.
2056  *
2057  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2058  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2059  * thresholds.
2060  */
2061 
writeback_set_ratelimit(void)2062 void writeback_set_ratelimit(void)
2063 {
2064 	struct wb_domain *dom = &global_wb_domain;
2065 	unsigned long background_thresh;
2066 	unsigned long dirty_thresh;
2067 
2068 	global_dirty_limits(&background_thresh, &dirty_thresh);
2069 	dom->dirty_limit = dirty_thresh;
2070 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2071 	if (ratelimit_pages < 16)
2072 		ratelimit_pages = 16;
2073 }
2074 
page_writeback_cpu_online(unsigned int cpu)2075 static int page_writeback_cpu_online(unsigned int cpu)
2076 {
2077 	writeback_set_ratelimit();
2078 	return 0;
2079 }
2080 
2081 /*
2082  * Called early on to tune the page writeback dirty limits.
2083  *
2084  * We used to scale dirty pages according to how total memory
2085  * related to pages that could be allocated for buffers.
2086  *
2087  * However, that was when we used "dirty_ratio" to scale with
2088  * all memory, and we don't do that any more. "dirty_ratio"
2089  * is now applied to total non-HIGHPAGE memory, and as such we can't
2090  * get into the old insane situation any more where we had
2091  * large amounts of dirty pages compared to a small amount of
2092  * non-HIGHMEM memory.
2093  *
2094  * But we might still want to scale the dirty_ratio by how
2095  * much memory the box has..
2096  */
page_writeback_init(void)2097 void __init page_writeback_init(void)
2098 {
2099 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2100 
2101 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2102 			  page_writeback_cpu_online, NULL);
2103 	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2104 			  page_writeback_cpu_online);
2105 }
2106 
2107 /**
2108  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2109  * @mapping: address space structure to write
2110  * @start: starting page index
2111  * @end: ending page index (inclusive)
2112  *
2113  * This function scans the page range from @start to @end (inclusive) and tags
2114  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2115  * that write_cache_pages (or whoever calls this function) will then use
2116  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2117  * used to avoid livelocking of writeback by a process steadily creating new
2118  * dirty pages in the file (thus it is important for this function to be quick
2119  * so that it can tag pages faster than a dirtying process can create them).
2120  */
tag_pages_for_writeback(struct address_space * mapping,pgoff_t start,pgoff_t end)2121 void tag_pages_for_writeback(struct address_space *mapping,
2122 			     pgoff_t start, pgoff_t end)
2123 {
2124 	XA_STATE(xas, &mapping->i_pages, start);
2125 	unsigned int tagged = 0;
2126 	void *page;
2127 
2128 	xas_lock_irq(&xas);
2129 	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2130 		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2131 		if (++tagged % XA_CHECK_SCHED)
2132 			continue;
2133 
2134 		xas_pause(&xas);
2135 		xas_unlock_irq(&xas);
2136 		cond_resched();
2137 		xas_lock_irq(&xas);
2138 	}
2139 	xas_unlock_irq(&xas);
2140 }
2141 EXPORT_SYMBOL(tag_pages_for_writeback);
2142 
2143 /**
2144  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2145  * @mapping: address space structure to write
2146  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2147  * @writepage: function called for each page
2148  * @data: data passed to writepage function
2149  *
2150  * If a page is already under I/O, write_cache_pages() skips it, even
2151  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2152  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2153  * and msync() need to guarantee that all the data which was dirty at the time
2154  * the call was made get new I/O started against them.  If wbc->sync_mode is
2155  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2156  * existing IO to complete.
2157  *
2158  * To avoid livelocks (when other process dirties new pages), we first tag
2159  * pages which should be written back with TOWRITE tag and only then start
2160  * writing them. For data-integrity sync we have to be careful so that we do
2161  * not miss some pages (e.g., because some other process has cleared TOWRITE
2162  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2163  * by the process clearing the DIRTY tag (and submitting the page for IO).
2164  *
2165  * To avoid deadlocks between range_cyclic writeback and callers that hold
2166  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2167  * we do not loop back to the start of the file. Doing so causes a page
2168  * lock/page writeback access order inversion - we should only ever lock
2169  * multiple pages in ascending page->index order, and looping back to the start
2170  * of the file violates that rule and causes deadlocks.
2171  *
2172  * Return: %0 on success, negative error code otherwise
2173  */
write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,writepage_t writepage,void * data)2174 int write_cache_pages(struct address_space *mapping,
2175 		      struct writeback_control *wbc, writepage_t writepage,
2176 		      void *data)
2177 {
2178 	int ret = 0;
2179 	int done = 0;
2180 	int error;
2181 	struct pagevec pvec;
2182 	int nr_pages;
2183 	pgoff_t index;
2184 	pgoff_t end;		/* Inclusive */
2185 	pgoff_t done_index;
2186 	int range_whole = 0;
2187 	xa_mark_t tag;
2188 
2189 	pagevec_init(&pvec);
2190 	if (wbc->range_cyclic) {
2191 		index = mapping->writeback_index; /* prev offset */
2192 		end = -1;
2193 	} else {
2194 		index = wbc->range_start >> PAGE_SHIFT;
2195 		end = wbc->range_end >> PAGE_SHIFT;
2196 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2197 			range_whole = 1;
2198 	}
2199 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2200 		tag_pages_for_writeback(mapping, index, end);
2201 		tag = PAGECACHE_TAG_TOWRITE;
2202 	} else {
2203 		tag = PAGECACHE_TAG_DIRTY;
2204 	}
2205 	done_index = index;
2206 	while (!done && (index <= end)) {
2207 		int i;
2208 
2209 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2210 				tag);
2211 		if (nr_pages == 0)
2212 			break;
2213 
2214 		for (i = 0; i < nr_pages; i++) {
2215 			struct page *page = pvec.pages[i];
2216 
2217 			done_index = page->index;
2218 
2219 			lock_page(page);
2220 
2221 			/*
2222 			 * Page truncated or invalidated. We can freely skip it
2223 			 * then, even for data integrity operations: the page
2224 			 * has disappeared concurrently, so there could be no
2225 			 * real expectation of this data interity operation
2226 			 * even if there is now a new, dirty page at the same
2227 			 * pagecache address.
2228 			 */
2229 			if (unlikely(page->mapping != mapping)) {
2230 continue_unlock:
2231 				unlock_page(page);
2232 				continue;
2233 			}
2234 
2235 			if (!PageDirty(page)) {
2236 				/* someone wrote it for us */
2237 				goto continue_unlock;
2238 			}
2239 
2240 			if (PageWriteback(page)) {
2241 				if (wbc->sync_mode != WB_SYNC_NONE)
2242 					wait_on_page_writeback(page);
2243 				else
2244 					goto continue_unlock;
2245 			}
2246 
2247 			BUG_ON(PageWriteback(page));
2248 			if (!clear_page_dirty_for_io(page))
2249 				goto continue_unlock;
2250 
2251 			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2252 			error = (*writepage)(page, wbc, data);
2253 			if (unlikely(error)) {
2254 				/*
2255 				 * Handle errors according to the type of
2256 				 * writeback. There's no need to continue for
2257 				 * background writeback. Just push done_index
2258 				 * past this page so media errors won't choke
2259 				 * writeout for the entire file. For integrity
2260 				 * writeback, we must process the entire dirty
2261 				 * set regardless of errors because the fs may
2262 				 * still have state to clear for each page. In
2263 				 * that case we continue processing and return
2264 				 * the first error.
2265 				 */
2266 				if (error == AOP_WRITEPAGE_ACTIVATE) {
2267 					unlock_page(page);
2268 					error = 0;
2269 				} else if (wbc->sync_mode != WB_SYNC_ALL) {
2270 					ret = error;
2271 					done_index = page->index + 1;
2272 					done = 1;
2273 					break;
2274 				}
2275 				if (!ret)
2276 					ret = error;
2277 			}
2278 
2279 			/*
2280 			 * We stop writing back only if we are not doing
2281 			 * integrity sync. In case of integrity sync we have to
2282 			 * keep going until we have written all the pages
2283 			 * we tagged for writeback prior to entering this loop.
2284 			 */
2285 			if (--wbc->nr_to_write <= 0 &&
2286 			    wbc->sync_mode == WB_SYNC_NONE) {
2287 				done = 1;
2288 				break;
2289 			}
2290 		}
2291 		pagevec_release(&pvec);
2292 		cond_resched();
2293 	}
2294 
2295 	/*
2296 	 * If we hit the last page and there is more work to be done: wrap
2297 	 * back the index back to the start of the file for the next
2298 	 * time we are called.
2299 	 */
2300 	if (wbc->range_cyclic && !done)
2301 		done_index = 0;
2302 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2303 		mapping->writeback_index = done_index;
2304 
2305 	return ret;
2306 }
2307 EXPORT_SYMBOL(write_cache_pages);
2308 
2309 /*
2310  * Function used by generic_writepages to call the real writepage
2311  * function and set the mapping flags on error
2312  */
__writepage(struct page * page,struct writeback_control * wbc,void * data)2313 static int __writepage(struct page *page, struct writeback_control *wbc,
2314 		       void *data)
2315 {
2316 	struct address_space *mapping = data;
2317 	int ret = mapping->a_ops->writepage(page, wbc);
2318 	mapping_set_error(mapping, ret);
2319 	return ret;
2320 }
2321 
2322 /**
2323  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2324  * @mapping: address space structure to write
2325  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2326  *
2327  * This is a library function, which implements the writepages()
2328  * address_space_operation.
2329  *
2330  * Return: %0 on success, negative error code otherwise
2331  */
generic_writepages(struct address_space * mapping,struct writeback_control * wbc)2332 int generic_writepages(struct address_space *mapping,
2333 		       struct writeback_control *wbc)
2334 {
2335 	struct blk_plug plug;
2336 	int ret;
2337 
2338 	/* deal with chardevs and other special file */
2339 	if (!mapping->a_ops->writepage)
2340 		return 0;
2341 
2342 	blk_start_plug(&plug);
2343 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2344 	blk_finish_plug(&plug);
2345 	return ret;
2346 }
2347 
2348 EXPORT_SYMBOL(generic_writepages);
2349 
do_writepages(struct address_space * mapping,struct writeback_control * wbc)2350 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2351 {
2352 	int ret;
2353 
2354 	if (wbc->nr_to_write <= 0)
2355 		return 0;
2356 	while (1) {
2357 		if (mapping->a_ops->writepages)
2358 			ret = mapping->a_ops->writepages(mapping, wbc);
2359 		else
2360 			ret = generic_writepages(mapping, wbc);
2361 		if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2362 			break;
2363 		cond_resched();
2364 		congestion_wait(BLK_RW_ASYNC, HZ/50);
2365 	}
2366 	return ret;
2367 }
2368 
2369 /**
2370  * write_one_page - write out a single page and wait on I/O
2371  * @page: the page to write
2372  *
2373  * The page must be locked by the caller and will be unlocked upon return.
2374  *
2375  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2376  * function returns.
2377  *
2378  * Return: %0 on success, negative error code otherwise
2379  */
write_one_page(struct page * page)2380 int write_one_page(struct page *page)
2381 {
2382 	struct address_space *mapping = page->mapping;
2383 	int ret = 0;
2384 	struct writeback_control wbc = {
2385 		.sync_mode = WB_SYNC_ALL,
2386 		.nr_to_write = 1,
2387 	};
2388 
2389 	BUG_ON(!PageLocked(page));
2390 
2391 	wait_on_page_writeback(page);
2392 
2393 	if (clear_page_dirty_for_io(page)) {
2394 		get_page(page);
2395 		ret = mapping->a_ops->writepage(page, &wbc);
2396 		if (ret == 0)
2397 			wait_on_page_writeback(page);
2398 		put_page(page);
2399 	} else {
2400 		unlock_page(page);
2401 	}
2402 
2403 	if (!ret)
2404 		ret = filemap_check_errors(mapping);
2405 	return ret;
2406 }
2407 EXPORT_SYMBOL(write_one_page);
2408 
2409 /*
2410  * For address_spaces which do not use buffers nor write back.
2411  */
__set_page_dirty_no_writeback(struct page * page)2412 int __set_page_dirty_no_writeback(struct page *page)
2413 {
2414 	if (!PageDirty(page))
2415 		return !TestSetPageDirty(page);
2416 	return 0;
2417 }
2418 
2419 /*
2420  * Helper function for set_page_dirty family.
2421  *
2422  * Caller must hold lock_page_memcg().
2423  *
2424  * NOTE: This relies on being atomic wrt interrupts.
2425  */
account_page_dirtied(struct page * page,struct address_space * mapping)2426 void account_page_dirtied(struct page *page, struct address_space *mapping)
2427 {
2428 	struct inode *inode = mapping->host;
2429 
2430 	trace_writeback_dirty_page(page, mapping);
2431 
2432 	if (mapping_can_writeback(mapping)) {
2433 		struct bdi_writeback *wb;
2434 
2435 		inode_attach_wb(inode, page);
2436 		wb = inode_to_wb(inode);
2437 
2438 		__inc_lruvec_page_state(page, NR_FILE_DIRTY);
2439 		__inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2440 		__inc_node_page_state(page, NR_DIRTIED);
2441 		inc_wb_stat(wb, WB_RECLAIMABLE);
2442 		inc_wb_stat(wb, WB_DIRTIED);
2443 		task_io_account_write(PAGE_SIZE);
2444 		current->nr_dirtied++;
2445 		this_cpu_inc(bdp_ratelimits);
2446 
2447 		mem_cgroup_track_foreign_dirty(page, wb);
2448 	}
2449 }
2450 
2451 /*
2452  * Helper function for deaccounting dirty page without writeback.
2453  *
2454  * Caller must hold lock_page_memcg().
2455  */
account_page_cleaned(struct page * page,struct address_space * mapping,struct bdi_writeback * wb)2456 void account_page_cleaned(struct page *page, struct address_space *mapping,
2457 			  struct bdi_writeback *wb)
2458 {
2459 	if (mapping_can_writeback(mapping)) {
2460 		dec_lruvec_page_state(page, NR_FILE_DIRTY);
2461 		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2462 		dec_wb_stat(wb, WB_RECLAIMABLE);
2463 		task_io_account_cancelled_write(PAGE_SIZE);
2464 	}
2465 }
2466 
2467 /*
2468  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2469  * the xarray.
2470  *
2471  * This is also used when a single buffer is being dirtied: we want to set the
2472  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2473  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2474  *
2475  * The caller must ensure this doesn't race with truncation.  Most will simply
2476  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2477  * the pte lock held, which also locks out truncation.
2478  */
__set_page_dirty_nobuffers(struct page * page)2479 int __set_page_dirty_nobuffers(struct page *page)
2480 {
2481 	lock_page_memcg(page);
2482 	if (!TestSetPageDirty(page)) {
2483 		struct address_space *mapping = page_mapping(page);
2484 		unsigned long flags;
2485 
2486 		if (!mapping) {
2487 			unlock_page_memcg(page);
2488 			return 1;
2489 		}
2490 
2491 		xa_lock_irqsave(&mapping->i_pages, flags);
2492 		BUG_ON(page_mapping(page) != mapping);
2493 		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2494 		account_page_dirtied(page, mapping);
2495 		__xa_set_mark(&mapping->i_pages, page_index(page),
2496 				   PAGECACHE_TAG_DIRTY);
2497 		xa_unlock_irqrestore(&mapping->i_pages, flags);
2498 		unlock_page_memcg(page);
2499 
2500 		if (mapping->host) {
2501 			/* !PageAnon && !swapper_space */
2502 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2503 		}
2504 		return 1;
2505 	}
2506 	unlock_page_memcg(page);
2507 	return 0;
2508 }
2509 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2510 
2511 /*
2512  * Call this whenever redirtying a page, to de-account the dirty counters
2513  * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2514  * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2515  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2516  * control.
2517  */
account_page_redirty(struct page * page)2518 void account_page_redirty(struct page *page)
2519 {
2520 	struct address_space *mapping = page->mapping;
2521 
2522 	if (mapping && mapping_can_writeback(mapping)) {
2523 		struct inode *inode = mapping->host;
2524 		struct bdi_writeback *wb;
2525 		struct wb_lock_cookie cookie = {};
2526 
2527 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2528 		current->nr_dirtied--;
2529 		dec_node_page_state(page, NR_DIRTIED);
2530 		dec_wb_stat(wb, WB_DIRTIED);
2531 		unlocked_inode_to_wb_end(inode, &cookie);
2532 	}
2533 }
2534 EXPORT_SYMBOL(account_page_redirty);
2535 
2536 /*
2537  * When a writepage implementation decides that it doesn't want to write this
2538  * page for some reason, it should redirty the locked page via
2539  * redirty_page_for_writepage() and it should then unlock the page and return 0
2540  */
redirty_page_for_writepage(struct writeback_control * wbc,struct page * page)2541 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2542 {
2543 	int ret;
2544 
2545 	wbc->pages_skipped++;
2546 	ret = __set_page_dirty_nobuffers(page);
2547 	account_page_redirty(page);
2548 	return ret;
2549 }
2550 EXPORT_SYMBOL(redirty_page_for_writepage);
2551 
2552 /*
2553  * Dirty a page.
2554  *
2555  * For pages with a mapping this should be done under the page lock
2556  * for the benefit of asynchronous memory errors who prefer a consistent
2557  * dirty state. This rule can be broken in some special cases,
2558  * but should be better not to.
2559  *
2560  * If the mapping doesn't provide a set_page_dirty a_op, then
2561  * just fall through and assume that it wants buffer_heads.
2562  */
set_page_dirty(struct page * page)2563 int set_page_dirty(struct page *page)
2564 {
2565 	struct address_space *mapping = page_mapping(page);
2566 
2567 	page = compound_head(page);
2568 	if (likely(mapping)) {
2569 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2570 		/*
2571 		 * readahead/lru_deactivate_page could remain
2572 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2573 		 * About readahead, if the page is written, the flags would be
2574 		 * reset. So no problem.
2575 		 * About lru_deactivate_page, if the page is redirty, the flag
2576 		 * will be reset. So no problem. but if the page is used by readahead
2577 		 * it will confuse readahead and make it restart the size rampup
2578 		 * process. But it's a trivial problem.
2579 		 */
2580 		if (PageReclaim(page))
2581 			ClearPageReclaim(page);
2582 #ifdef CONFIG_BLOCK
2583 		if (!spd)
2584 			spd = __set_page_dirty_buffers;
2585 #endif
2586 		return (*spd)(page);
2587 	}
2588 	if (!PageDirty(page)) {
2589 		if (!TestSetPageDirty(page))
2590 			return 1;
2591 	}
2592 	return 0;
2593 }
2594 EXPORT_SYMBOL(set_page_dirty);
2595 
2596 /*
2597  * set_page_dirty() is racy if the caller has no reference against
2598  * page->mapping->host, and if the page is unlocked.  This is because another
2599  * CPU could truncate the page off the mapping and then free the mapping.
2600  *
2601  * Usually, the page _is_ locked, or the caller is a user-space process which
2602  * holds a reference on the inode by having an open file.
2603  *
2604  * In other cases, the page should be locked before running set_page_dirty().
2605  */
set_page_dirty_lock(struct page * page)2606 int set_page_dirty_lock(struct page *page)
2607 {
2608 	int ret;
2609 
2610 	lock_page(page);
2611 	ret = set_page_dirty(page);
2612 	unlock_page(page);
2613 	return ret;
2614 }
2615 EXPORT_SYMBOL(set_page_dirty_lock);
2616 
2617 /*
2618  * This cancels just the dirty bit on the kernel page itself, it does NOT
2619  * actually remove dirty bits on any mmap's that may be around. It also
2620  * leaves the page tagged dirty, so any sync activity will still find it on
2621  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2622  * look at the dirty bits in the VM.
2623  *
2624  * Doing this should *normally* only ever be done when a page is truncated,
2625  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2626  * this when it notices that somebody has cleaned out all the buffers on a
2627  * page without actually doing it through the VM. Can you say "ext3 is
2628  * horribly ugly"? Thought you could.
2629  */
__cancel_dirty_page(struct page * page)2630 void __cancel_dirty_page(struct page *page)
2631 {
2632 	struct address_space *mapping = page_mapping(page);
2633 
2634 	if (mapping_can_writeback(mapping)) {
2635 		struct inode *inode = mapping->host;
2636 		struct bdi_writeback *wb;
2637 		struct wb_lock_cookie cookie = {};
2638 
2639 		lock_page_memcg(page);
2640 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2641 
2642 		if (TestClearPageDirty(page))
2643 			account_page_cleaned(page, mapping, wb);
2644 
2645 		unlocked_inode_to_wb_end(inode, &cookie);
2646 		unlock_page_memcg(page);
2647 	} else {
2648 		ClearPageDirty(page);
2649 	}
2650 }
2651 EXPORT_SYMBOL(__cancel_dirty_page);
2652 
2653 /*
2654  * Clear a page's dirty flag, while caring for dirty memory accounting.
2655  * Returns true if the page was previously dirty.
2656  *
2657  * This is for preparing to put the page under writeout.  We leave the page
2658  * tagged as dirty in the xarray so that a concurrent write-for-sync
2659  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2660  * implementation will run either set_page_writeback() or set_page_dirty(),
2661  * at which stage we bring the page's dirty flag and xarray dirty tag
2662  * back into sync.
2663  *
2664  * This incoherency between the page's dirty flag and xarray tag is
2665  * unfortunate, but it only exists while the page is locked.
2666  */
clear_page_dirty_for_io(struct page * page)2667 int clear_page_dirty_for_io(struct page *page)
2668 {
2669 	struct address_space *mapping = page_mapping(page);
2670 	int ret = 0;
2671 
2672 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2673 
2674 	if (mapping && mapping_can_writeback(mapping)) {
2675 		struct inode *inode = mapping->host;
2676 		struct bdi_writeback *wb;
2677 		struct wb_lock_cookie cookie = {};
2678 
2679 		/*
2680 		 * Yes, Virginia, this is indeed insane.
2681 		 *
2682 		 * We use this sequence to make sure that
2683 		 *  (a) we account for dirty stats properly
2684 		 *  (b) we tell the low-level filesystem to
2685 		 *      mark the whole page dirty if it was
2686 		 *      dirty in a pagetable. Only to then
2687 		 *  (c) clean the page again and return 1 to
2688 		 *      cause the writeback.
2689 		 *
2690 		 * This way we avoid all nasty races with the
2691 		 * dirty bit in multiple places and clearing
2692 		 * them concurrently from different threads.
2693 		 *
2694 		 * Note! Normally the "set_page_dirty(page)"
2695 		 * has no effect on the actual dirty bit - since
2696 		 * that will already usually be set. But we
2697 		 * need the side effects, and it can help us
2698 		 * avoid races.
2699 		 *
2700 		 * We basically use the page "master dirty bit"
2701 		 * as a serialization point for all the different
2702 		 * threads doing their things.
2703 		 */
2704 		if (page_mkclean(page))
2705 			set_page_dirty(page);
2706 		/*
2707 		 * We carefully synchronise fault handlers against
2708 		 * installing a dirty pte and marking the page dirty
2709 		 * at this point.  We do this by having them hold the
2710 		 * page lock while dirtying the page, and pages are
2711 		 * always locked coming in here, so we get the desired
2712 		 * exclusion.
2713 		 */
2714 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2715 		if (TestClearPageDirty(page)) {
2716 			dec_lruvec_page_state(page, NR_FILE_DIRTY);
2717 			dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2718 			dec_wb_stat(wb, WB_RECLAIMABLE);
2719 			ret = 1;
2720 		}
2721 		unlocked_inode_to_wb_end(inode, &cookie);
2722 		return ret;
2723 	}
2724 	return TestClearPageDirty(page);
2725 }
2726 EXPORT_SYMBOL(clear_page_dirty_for_io);
2727 
test_clear_page_writeback(struct page * page)2728 int test_clear_page_writeback(struct page *page)
2729 {
2730 	struct address_space *mapping = page_mapping(page);
2731 	struct mem_cgroup *memcg;
2732 	struct lruvec *lruvec;
2733 	int ret;
2734 
2735 	memcg = lock_page_memcg(page);
2736 	lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
2737 	if (mapping && mapping_use_writeback_tags(mapping)) {
2738 		struct inode *inode = mapping->host;
2739 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2740 		unsigned long flags;
2741 
2742 		xa_lock_irqsave(&mapping->i_pages, flags);
2743 		ret = TestClearPageWriteback(page);
2744 		if (ret) {
2745 			__xa_clear_mark(&mapping->i_pages, page_index(page),
2746 						PAGECACHE_TAG_WRITEBACK);
2747 			if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2748 				struct bdi_writeback *wb = inode_to_wb(inode);
2749 
2750 				dec_wb_stat(wb, WB_WRITEBACK);
2751 				__wb_writeout_inc(wb);
2752 			}
2753 		}
2754 
2755 		if (mapping->host && !mapping_tagged(mapping,
2756 						     PAGECACHE_TAG_WRITEBACK))
2757 			sb_clear_inode_writeback(mapping->host);
2758 
2759 		xa_unlock_irqrestore(&mapping->i_pages, flags);
2760 	} else {
2761 		ret = TestClearPageWriteback(page);
2762 	}
2763 	if (ret) {
2764 		dec_lruvec_state(lruvec, NR_WRITEBACK);
2765 		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2766 		inc_node_page_state(page, NR_WRITTEN);
2767 	}
2768 	__unlock_page_memcg(memcg);
2769 	return ret;
2770 }
2771 
__test_set_page_writeback(struct page * page,bool keep_write)2772 int __test_set_page_writeback(struct page *page, bool keep_write)
2773 {
2774 	struct address_space *mapping = page_mapping(page);
2775 	int ret, access_ret;
2776 
2777 	lock_page_memcg(page);
2778 	if (mapping && mapping_use_writeback_tags(mapping)) {
2779 		XA_STATE(xas, &mapping->i_pages, page_index(page));
2780 		struct inode *inode = mapping->host;
2781 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2782 		unsigned long flags;
2783 
2784 		xas_lock_irqsave(&xas, flags);
2785 		xas_load(&xas);
2786 		ret = TestSetPageWriteback(page);
2787 		if (!ret) {
2788 			bool on_wblist;
2789 
2790 			on_wblist = mapping_tagged(mapping,
2791 						   PAGECACHE_TAG_WRITEBACK);
2792 
2793 			xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2794 			if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT)
2795 				inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2796 
2797 			/*
2798 			 * We can come through here when swapping anonymous
2799 			 * pages, so we don't necessarily have an inode to track
2800 			 * for sync.
2801 			 */
2802 			if (mapping->host && !on_wblist)
2803 				sb_mark_inode_writeback(mapping->host);
2804 		}
2805 		if (!PageDirty(page))
2806 			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2807 		if (!keep_write)
2808 			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2809 		xas_unlock_irqrestore(&xas, flags);
2810 	} else {
2811 		ret = TestSetPageWriteback(page);
2812 	}
2813 	if (!ret) {
2814 		inc_lruvec_page_state(page, NR_WRITEBACK);
2815 		inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2816 	}
2817 	unlock_page_memcg(page);
2818 	access_ret = arch_make_page_accessible(page);
2819 	/*
2820 	 * If writeback has been triggered on a page that cannot be made
2821 	 * accessible, it is too late to recover here.
2822 	 */
2823 	VM_BUG_ON_PAGE(access_ret != 0, page);
2824 
2825 	return ret;
2826 
2827 }
2828 EXPORT_SYMBOL(__test_set_page_writeback);
2829 
2830 /*
2831  * Wait for a page to complete writeback
2832  */
wait_on_page_writeback(struct page * page)2833 void wait_on_page_writeback(struct page *page)
2834 {
2835 	while (PageWriteback(page)) {
2836 		trace_wait_on_page_writeback(page, page_mapping(page));
2837 		wait_on_page_bit(page, PG_writeback);
2838 	}
2839 }
2840 EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2841 
2842 /**
2843  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2844  * @page:	The page to wait on.
2845  *
2846  * This function determines if the given page is related to a backing device
2847  * that requires page contents to be held stable during writeback.  If so, then
2848  * it will wait for any pending writeback to complete.
2849  */
wait_for_stable_page(struct page * page)2850 void wait_for_stable_page(struct page *page)
2851 {
2852 	page = thp_head(page);
2853 	if (page->mapping->host->i_sb->s_iflags & SB_I_STABLE_WRITES)
2854 		wait_on_page_writeback(page);
2855 }
2856 EXPORT_SYMBOL_GPL(wait_for_stable_page);
2857