1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
54 #include <linux/pagewalk.h>
55 #include <linux/shmem_fs.h>
56 #include <linux/ctype.h>
57 #include <linux/debugfs.h>
58
59 #include <asm/tlbflush.h>
60 #include <asm/div64.h>
61
62 #include <linux/swapops.h>
63 #include <linux/balloon_compaction.h>
64
65 #include "internal.h"
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/vmscan.h>
69
70 #undef CREATE_TRACE_POINTS
71 #include <trace/hooks/vmscan.h>
72
73 #undef CREATE_TRACE_POINTS
74 #include <trace/hooks/mm.h>
75
76 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_vmscan_direct_reclaim_begin);
77 EXPORT_TRACEPOINT_SYMBOL_GPL(mm_vmscan_direct_reclaim_end);
78
79 struct scan_control {
80 /* How many pages shrink_list() should reclaim */
81 unsigned long nr_to_reclaim;
82
83 /*
84 * Nodemask of nodes allowed by the caller. If NULL, all nodes
85 * are scanned.
86 */
87 nodemask_t *nodemask;
88
89 /*
90 * The memory cgroup that hit its limit and as a result is the
91 * primary target of this reclaim invocation.
92 */
93 struct mem_cgroup *target_mem_cgroup;
94
95 /*
96 * Scan pressure balancing between anon and file LRUs
97 */
98 unsigned long anon_cost;
99 unsigned long file_cost;
100
101 /* Can active pages be deactivated as part of reclaim? */
102 #define DEACTIVATE_ANON 1
103 #define DEACTIVATE_FILE 2
104 unsigned int may_deactivate:2;
105 unsigned int force_deactivate:1;
106 unsigned int skipped_deactivate:1;
107
108 /* Writepage batching in laptop mode; RECLAIM_WRITE */
109 unsigned int may_writepage:1;
110
111 /* Can mapped pages be reclaimed? */
112 unsigned int may_unmap:1;
113
114 /* Can pages be swapped as part of reclaim? */
115 unsigned int may_swap:1;
116
117 /*
118 * Cgroup memory below memory.low is protected as long as we
119 * don't threaten to OOM. If any cgroup is reclaimed at
120 * reduced force or passed over entirely due to its memory.low
121 * setting (memcg_low_skipped), and nothing is reclaimed as a
122 * result, then go back for one more cycle that reclaims the protected
123 * memory (memcg_low_reclaim) to avert OOM.
124 */
125 unsigned int memcg_low_reclaim:1;
126 unsigned int memcg_low_skipped:1;
127
128 unsigned int hibernation_mode:1;
129
130 /* One of the zones is ready for compaction */
131 unsigned int compaction_ready:1;
132
133 /* There is easily reclaimable cold cache in the current node */
134 unsigned int cache_trim_mode:1;
135
136 /* The file pages on the current node are dangerously low */
137 unsigned int file_is_tiny:1;
138
139 #ifdef CONFIG_LRU_GEN
140 /* help kswapd make better choices among multiple memcgs */
141 unsigned int memcgs_need_aging:1;
142 unsigned long last_reclaimed;
143 #endif
144
145 /* Allocation order */
146 s8 order;
147
148 /* Scan (total_size >> priority) pages at once */
149 s8 priority;
150
151 /* The highest zone to isolate pages for reclaim from */
152 s8 reclaim_idx;
153
154 /* This context's GFP mask */
155 gfp_t gfp_mask;
156
157 /* Incremented by the number of inactive pages that were scanned */
158 unsigned long nr_scanned;
159
160 /* Number of pages freed so far during a call to shrink_zones() */
161 unsigned long nr_reclaimed;
162
163 struct {
164 unsigned int dirty;
165 unsigned int unqueued_dirty;
166 unsigned int congested;
167 unsigned int writeback;
168 unsigned int immediate;
169 unsigned int file_taken;
170 unsigned int taken;
171 } nr;
172
173 /* for recording the reclaimed slab by now */
174 struct reclaim_state reclaim_state;
175 };
176
177 #ifdef ARCH_HAS_PREFETCHW
178 #define prefetchw_prev_lru_page(_page, _base, _field) \
179 do { \
180 if ((_page)->lru.prev != _base) { \
181 struct page *prev; \
182 \
183 prev = lru_to_page(&(_page->lru)); \
184 prefetchw(&prev->_field); \
185 } \
186 } while (0)
187 #else
188 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
189 #endif
190
191 /*
192 * From 0 .. 200. Higher means more swappy.
193 */
194 int vm_swappiness = 60;
195
196 #define DEF_KSWAPD_THREADS_PER_NODE 1
197 static int kswapd_threads = DEF_KSWAPD_THREADS_PER_NODE;
kswapd_per_node_setup(char * str)198 static int __init kswapd_per_node_setup(char *str)
199 {
200 int tmp;
201
202 if (kstrtoint(str, 0, &tmp) < 0)
203 return 0;
204
205 if (tmp > MAX_KSWAPD_THREADS || tmp <= 0)
206 return 0;
207
208 kswapd_threads = tmp;
209 return 1;
210 }
211 __setup("kswapd_per_node=", kswapd_per_node_setup);
212
set_task_reclaim_state(struct task_struct * task,struct reclaim_state * rs)213 static void set_task_reclaim_state(struct task_struct *task,
214 struct reclaim_state *rs)
215 {
216 /* Check for an overwrite */
217 WARN_ON_ONCE(rs && task->reclaim_state);
218
219 /* Check for the nulling of an already-nulled member */
220 WARN_ON_ONCE(!rs && !task->reclaim_state);
221
222 task->reclaim_state = rs;
223 }
224
225 static LIST_HEAD(shrinker_list);
226 static DECLARE_RWSEM(shrinker_rwsem);
227
228 #ifdef CONFIG_MEMCG
229 /*
230 * We allow subsystems to populate their shrinker-related
231 * LRU lists before register_shrinker_prepared() is called
232 * for the shrinker, since we don't want to impose
233 * restrictions on their internal registration order.
234 * In this case shrink_slab_memcg() may find corresponding
235 * bit is set in the shrinkers map.
236 *
237 * This value is used by the function to detect registering
238 * shrinkers and to skip do_shrink_slab() calls for them.
239 */
240 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
241
242 static DEFINE_IDR(shrinker_idr);
243 static int shrinker_nr_max;
244
prealloc_memcg_shrinker(struct shrinker * shrinker)245 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
246 {
247 int id, ret = -ENOMEM;
248
249 down_write(&shrinker_rwsem);
250 /* This may call shrinker, so it must use down_read_trylock() */
251 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
252 if (id < 0)
253 goto unlock;
254
255 if (id >= shrinker_nr_max) {
256 if (memcg_expand_shrinker_maps(id)) {
257 idr_remove(&shrinker_idr, id);
258 goto unlock;
259 }
260
261 shrinker_nr_max = id + 1;
262 }
263 shrinker->id = id;
264 ret = 0;
265 unlock:
266 up_write(&shrinker_rwsem);
267 return ret;
268 }
269
unregister_memcg_shrinker(struct shrinker * shrinker)270 static void unregister_memcg_shrinker(struct shrinker *shrinker)
271 {
272 int id = shrinker->id;
273
274 BUG_ON(id < 0);
275
276 down_write(&shrinker_rwsem);
277 idr_remove(&shrinker_idr, id);
278 up_write(&shrinker_rwsem);
279 }
280
cgroup_reclaim(struct scan_control * sc)281 static bool cgroup_reclaim(struct scan_control *sc)
282 {
283 return sc->target_mem_cgroup;
284 }
285
286 /**
287 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
288 * @sc: scan_control in question
289 *
290 * The normal page dirty throttling mechanism in balance_dirty_pages() is
291 * completely broken with the legacy memcg and direct stalling in
292 * shrink_page_list() is used for throttling instead, which lacks all the
293 * niceties such as fairness, adaptive pausing, bandwidth proportional
294 * allocation and configurability.
295 *
296 * This function tests whether the vmscan currently in progress can assume
297 * that the normal dirty throttling mechanism is operational.
298 */
writeback_throttling_sane(struct scan_control * sc)299 static bool writeback_throttling_sane(struct scan_control *sc)
300 {
301 if (!cgroup_reclaim(sc))
302 return true;
303 #ifdef CONFIG_CGROUP_WRITEBACK
304 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
305 return true;
306 #endif
307 return false;
308 }
309 #else
prealloc_memcg_shrinker(struct shrinker * shrinker)310 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
311 {
312 return 0;
313 }
314
unregister_memcg_shrinker(struct shrinker * shrinker)315 static void unregister_memcg_shrinker(struct shrinker *shrinker)
316 {
317 }
318
cgroup_reclaim(struct scan_control * sc)319 static bool cgroup_reclaim(struct scan_control *sc)
320 {
321 return false;
322 }
323
writeback_throttling_sane(struct scan_control * sc)324 static bool writeback_throttling_sane(struct scan_control *sc)
325 {
326 return true;
327 }
328 #endif
329
330 /*
331 * This misses isolated pages which are not accounted for to save counters.
332 * As the data only determines if reclaim or compaction continues, it is
333 * not expected that isolated pages will be a dominating factor.
334 */
zone_reclaimable_pages(struct zone * zone)335 unsigned long zone_reclaimable_pages(struct zone *zone)
336 {
337 unsigned long nr;
338
339 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
340 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
341 if (get_nr_swap_pages() > 0)
342 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
343 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
344
345 return nr;
346 }
347
348 /**
349 * lruvec_lru_size - Returns the number of pages on the given LRU list.
350 * @lruvec: lru vector
351 * @lru: lru to use
352 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
353 */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)354 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
355 {
356 unsigned long size = 0;
357 int zid;
358
359 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
360 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
361
362 if (!managed_zone(zone))
363 continue;
364
365 if (!mem_cgroup_disabled())
366 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
367 else
368 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
369 }
370 return size;
371 }
372
373 /*
374 * Add a shrinker callback to be called from the vm.
375 */
prealloc_shrinker(struct shrinker * shrinker)376 int prealloc_shrinker(struct shrinker *shrinker)
377 {
378 unsigned int size = sizeof(*shrinker->nr_deferred);
379
380 if (shrinker->flags & SHRINKER_NUMA_AWARE)
381 size *= nr_node_ids;
382
383 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
384 if (!shrinker->nr_deferred)
385 return -ENOMEM;
386
387 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
388 if (prealloc_memcg_shrinker(shrinker))
389 goto free_deferred;
390 }
391
392 return 0;
393
394 free_deferred:
395 kfree(shrinker->nr_deferred);
396 shrinker->nr_deferred = NULL;
397 return -ENOMEM;
398 }
399
free_prealloced_shrinker(struct shrinker * shrinker)400 void free_prealloced_shrinker(struct shrinker *shrinker)
401 {
402 if (!shrinker->nr_deferred)
403 return;
404
405 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
406 unregister_memcg_shrinker(shrinker);
407
408 kfree(shrinker->nr_deferred);
409 shrinker->nr_deferred = NULL;
410 }
411
register_shrinker_prepared(struct shrinker * shrinker)412 void register_shrinker_prepared(struct shrinker *shrinker)
413 {
414 down_write(&shrinker_rwsem);
415 list_add_tail(&shrinker->list, &shrinker_list);
416 #ifdef CONFIG_MEMCG
417 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
418 idr_replace(&shrinker_idr, shrinker, shrinker->id);
419 #endif
420 up_write(&shrinker_rwsem);
421 }
422
register_shrinker(struct shrinker * shrinker)423 int register_shrinker(struct shrinker *shrinker)
424 {
425 int err = prealloc_shrinker(shrinker);
426
427 if (err)
428 return err;
429 register_shrinker_prepared(shrinker);
430 return 0;
431 }
432 EXPORT_SYMBOL(register_shrinker);
433
434 /*
435 * Remove one
436 */
unregister_shrinker(struct shrinker * shrinker)437 void unregister_shrinker(struct shrinker *shrinker)
438 {
439 if (!shrinker->nr_deferred)
440 return;
441 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
442 unregister_memcg_shrinker(shrinker);
443 down_write(&shrinker_rwsem);
444 list_del(&shrinker->list);
445 up_write(&shrinker_rwsem);
446 kfree(shrinker->nr_deferred);
447 shrinker->nr_deferred = NULL;
448 }
449 EXPORT_SYMBOL(unregister_shrinker);
450
451 #define SHRINK_BATCH 128
452
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,int priority)453 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
454 struct shrinker *shrinker, int priority)
455 {
456 unsigned long freed = 0;
457 unsigned long long delta;
458 long total_scan;
459 long freeable;
460 long nr;
461 long new_nr;
462 int nid = shrinkctl->nid;
463 long batch_size = shrinker->batch ? shrinker->batch
464 : SHRINK_BATCH;
465 long scanned = 0, next_deferred;
466
467 trace_android_vh_do_shrink_slab(shrinker, shrinkctl, priority);
468
469 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
470 nid = 0;
471
472 freeable = shrinker->count_objects(shrinker, shrinkctl);
473 if (freeable == 0 || freeable == SHRINK_EMPTY)
474 return freeable;
475
476 /*
477 * copy the current shrinker scan count into a local variable
478 * and zero it so that other concurrent shrinker invocations
479 * don't also do this scanning work.
480 */
481 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
482
483 total_scan = nr;
484 if (shrinker->seeks) {
485 delta = freeable >> priority;
486 delta *= 4;
487 do_div(delta, shrinker->seeks);
488 } else {
489 /*
490 * These objects don't require any IO to create. Trim
491 * them aggressively under memory pressure to keep
492 * them from causing refetches in the IO caches.
493 */
494 delta = freeable / 2;
495 }
496
497 total_scan += delta;
498 if (total_scan < 0) {
499 pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
500 shrinker->scan_objects, total_scan);
501 total_scan = freeable;
502 next_deferred = nr;
503 } else
504 next_deferred = total_scan;
505
506 /*
507 * We need to avoid excessive windup on filesystem shrinkers
508 * due to large numbers of GFP_NOFS allocations causing the
509 * shrinkers to return -1 all the time. This results in a large
510 * nr being built up so when a shrink that can do some work
511 * comes along it empties the entire cache due to nr >>>
512 * freeable. This is bad for sustaining a working set in
513 * memory.
514 *
515 * Hence only allow the shrinker to scan the entire cache when
516 * a large delta change is calculated directly.
517 */
518 if (delta < freeable / 4)
519 total_scan = min(total_scan, freeable / 2);
520
521 /*
522 * Avoid risking looping forever due to too large nr value:
523 * never try to free more than twice the estimate number of
524 * freeable entries.
525 */
526 if (total_scan > freeable * 2)
527 total_scan = freeable * 2;
528
529 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
530 freeable, delta, total_scan, priority);
531
532 /*
533 * Normally, we should not scan less than batch_size objects in one
534 * pass to avoid too frequent shrinker calls, but if the slab has less
535 * than batch_size objects in total and we are really tight on memory,
536 * we will try to reclaim all available objects, otherwise we can end
537 * up failing allocations although there are plenty of reclaimable
538 * objects spread over several slabs with usage less than the
539 * batch_size.
540 *
541 * We detect the "tight on memory" situations by looking at the total
542 * number of objects we want to scan (total_scan). If it is greater
543 * than the total number of objects on slab (freeable), we must be
544 * scanning at high prio and therefore should try to reclaim as much as
545 * possible.
546 */
547 while (total_scan >= batch_size ||
548 total_scan >= freeable) {
549 unsigned long ret;
550 unsigned long nr_to_scan = min(batch_size, total_scan);
551
552 shrinkctl->nr_to_scan = nr_to_scan;
553 shrinkctl->nr_scanned = nr_to_scan;
554 ret = shrinker->scan_objects(shrinker, shrinkctl);
555 if (ret == SHRINK_STOP)
556 break;
557 freed += ret;
558
559 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
560 total_scan -= shrinkctl->nr_scanned;
561 scanned += shrinkctl->nr_scanned;
562
563 cond_resched();
564 }
565
566 if (next_deferred >= scanned)
567 next_deferred -= scanned;
568 else
569 next_deferred = 0;
570 /*
571 * move the unused scan count back into the shrinker in a
572 * manner that handles concurrent updates. If we exhausted the
573 * scan, there is no need to do an update.
574 */
575 if (next_deferred > 0)
576 new_nr = atomic_long_add_return(next_deferred,
577 &shrinker->nr_deferred[nid]);
578 else
579 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
580
581 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
582 return freed;
583 }
584
585 #ifdef CONFIG_MEMCG
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)586 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
587 struct mem_cgroup *memcg, int priority)
588 {
589 struct memcg_shrinker_map *map;
590 unsigned long ret, freed = 0;
591 int i;
592
593 if (!mem_cgroup_online(memcg))
594 return 0;
595
596 if (!down_read_trylock(&shrinker_rwsem))
597 return 0;
598
599 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
600 true);
601 if (unlikely(!map))
602 goto unlock;
603
604 for_each_set_bit(i, map->map, shrinker_nr_max) {
605 struct shrink_control sc = {
606 .gfp_mask = gfp_mask,
607 .nid = nid,
608 .memcg = memcg,
609 };
610 struct shrinker *shrinker;
611
612 shrinker = idr_find(&shrinker_idr, i);
613 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
614 if (!shrinker)
615 clear_bit(i, map->map);
616 continue;
617 }
618
619 /* Call non-slab shrinkers even though kmem is disabled */
620 if (!memcg_kmem_enabled() &&
621 !(shrinker->flags & SHRINKER_NONSLAB))
622 continue;
623
624 ret = do_shrink_slab(&sc, shrinker, priority);
625 if (ret == SHRINK_EMPTY) {
626 clear_bit(i, map->map);
627 /*
628 * After the shrinker reported that it had no objects to
629 * free, but before we cleared the corresponding bit in
630 * the memcg shrinker map, a new object might have been
631 * added. To make sure, we have the bit set in this
632 * case, we invoke the shrinker one more time and reset
633 * the bit if it reports that it is not empty anymore.
634 * The memory barrier here pairs with the barrier in
635 * memcg_set_shrinker_bit():
636 *
637 * list_lru_add() shrink_slab_memcg()
638 * list_add_tail() clear_bit()
639 * <MB> <MB>
640 * set_bit() do_shrink_slab()
641 */
642 smp_mb__after_atomic();
643 ret = do_shrink_slab(&sc, shrinker, priority);
644 if (ret == SHRINK_EMPTY)
645 ret = 0;
646 else
647 memcg_set_shrinker_bit(memcg, nid, i);
648 }
649 freed += ret;
650
651 if (rwsem_is_contended(&shrinker_rwsem)) {
652 freed = freed ? : 1;
653 break;
654 }
655 }
656 unlock:
657 up_read(&shrinker_rwsem);
658 return freed;
659 }
660 #else /* CONFIG_MEMCG */
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)661 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
662 struct mem_cgroup *memcg, int priority)
663 {
664 return 0;
665 }
666 #endif /* CONFIG_MEMCG */
667
668 /**
669 * shrink_slab - shrink slab caches
670 * @gfp_mask: allocation context
671 * @nid: node whose slab caches to target
672 * @memcg: memory cgroup whose slab caches to target
673 * @priority: the reclaim priority
674 *
675 * Call the shrink functions to age shrinkable caches.
676 *
677 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
678 * unaware shrinkers will receive a node id of 0 instead.
679 *
680 * @memcg specifies the memory cgroup to target. Unaware shrinkers
681 * are called only if it is the root cgroup.
682 *
683 * @priority is sc->priority, we take the number of objects and >> by priority
684 * in order to get the scan target.
685 *
686 * Returns the number of reclaimed slab objects.
687 */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)688 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
689 struct mem_cgroup *memcg,
690 int priority)
691 {
692 unsigned long ret, freed = 0;
693 struct shrinker *shrinker;
694 bool bypass = false;
695
696 trace_android_vh_shrink_slab_bypass(gfp_mask, nid, memcg, priority, &bypass);
697 if (bypass)
698 return 0;
699
700 /*
701 * The root memcg might be allocated even though memcg is disabled
702 * via "cgroup_disable=memory" boot parameter. This could make
703 * mem_cgroup_is_root() return false, then just run memcg slab
704 * shrink, but skip global shrink. This may result in premature
705 * oom.
706 */
707 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
708 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
709
710 if (!down_read_trylock(&shrinker_rwsem))
711 goto out;
712
713 list_for_each_entry(shrinker, &shrinker_list, list) {
714 struct shrink_control sc = {
715 .gfp_mask = gfp_mask,
716 .nid = nid,
717 .memcg = memcg,
718 };
719
720 ret = do_shrink_slab(&sc, shrinker, priority);
721 if (ret == SHRINK_EMPTY)
722 ret = 0;
723 freed += ret;
724 /*
725 * Bail out if someone want to register a new shrinker to
726 * prevent the registration from being stalled for long periods
727 * by parallel ongoing shrinking.
728 */
729 if (rwsem_is_contended(&shrinker_rwsem)) {
730 freed = freed ? : 1;
731 break;
732 }
733 }
734
735 up_read(&shrinker_rwsem);
736 out:
737 cond_resched();
738 return freed;
739 }
740
drop_slab_node(int nid)741 void drop_slab_node(int nid)
742 {
743 unsigned long freed;
744
745 do {
746 struct mem_cgroup *memcg = NULL;
747
748 if (fatal_signal_pending(current))
749 return;
750
751 freed = 0;
752 memcg = mem_cgroup_iter(NULL, NULL, NULL);
753 do {
754 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
755 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
756 } while (freed > 10);
757 }
758
drop_slab(void)759 void drop_slab(void)
760 {
761 int nid;
762
763 for_each_online_node(nid)
764 drop_slab_node(nid);
765 }
766
is_page_cache_freeable(struct page * page)767 static inline int is_page_cache_freeable(struct page *page)
768 {
769 /*
770 * A freeable page cache page is referenced only by the caller
771 * that isolated the page, the page cache and optional buffer
772 * heads at page->private.
773 */
774 int page_cache_pins = thp_nr_pages(page);
775 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
776 }
777
may_write_to_inode(struct inode * inode)778 static int may_write_to_inode(struct inode *inode)
779 {
780 if (current->flags & PF_SWAPWRITE)
781 return 1;
782 if (!inode_write_congested(inode))
783 return 1;
784 if (inode_to_bdi(inode) == current->backing_dev_info)
785 return 1;
786 return 0;
787 }
788
789 /*
790 * We detected a synchronous write error writing a page out. Probably
791 * -ENOSPC. We need to propagate that into the address_space for a subsequent
792 * fsync(), msync() or close().
793 *
794 * The tricky part is that after writepage we cannot touch the mapping: nothing
795 * prevents it from being freed up. But we have a ref on the page and once
796 * that page is locked, the mapping is pinned.
797 *
798 * We're allowed to run sleeping lock_page() here because we know the caller has
799 * __GFP_FS.
800 */
handle_write_error(struct address_space * mapping,struct page * page,int error)801 static void handle_write_error(struct address_space *mapping,
802 struct page *page, int error)
803 {
804 lock_page(page);
805 if (page_mapping(page) == mapping)
806 mapping_set_error(mapping, error);
807 unlock_page(page);
808 }
809
810 /* possible outcome of pageout() */
811 typedef enum {
812 /* failed to write page out, page is locked */
813 PAGE_KEEP,
814 /* move page to the active list, page is locked */
815 PAGE_ACTIVATE,
816 /* page has been sent to the disk successfully, page is unlocked */
817 PAGE_SUCCESS,
818 /* page is clean and locked */
819 PAGE_CLEAN,
820 } pageout_t;
821
822 /*
823 * pageout is called by shrink_page_list() for each dirty page.
824 * Calls ->writepage().
825 */
pageout(struct page * page,struct address_space * mapping)826 static pageout_t pageout(struct page *page, struct address_space *mapping)
827 {
828 /*
829 * If the page is dirty, only perform writeback if that write
830 * will be non-blocking. To prevent this allocation from being
831 * stalled by pagecache activity. But note that there may be
832 * stalls if we need to run get_block(). We could test
833 * PagePrivate for that.
834 *
835 * If this process is currently in __generic_file_write_iter() against
836 * this page's queue, we can perform writeback even if that
837 * will block.
838 *
839 * If the page is swapcache, write it back even if that would
840 * block, for some throttling. This happens by accident, because
841 * swap_backing_dev_info is bust: it doesn't reflect the
842 * congestion state of the swapdevs. Easy to fix, if needed.
843 */
844 if (!is_page_cache_freeable(page))
845 return PAGE_KEEP;
846 if (!mapping) {
847 /*
848 * Some data journaling orphaned pages can have
849 * page->mapping == NULL while being dirty with clean buffers.
850 */
851 if (page_has_private(page)) {
852 if (try_to_free_buffers(page)) {
853 ClearPageDirty(page);
854 pr_info("%s: orphaned page\n", __func__);
855 return PAGE_CLEAN;
856 }
857 }
858 return PAGE_KEEP;
859 }
860 if (mapping->a_ops->writepage == NULL)
861 return PAGE_ACTIVATE;
862 if (!may_write_to_inode(mapping->host))
863 return PAGE_KEEP;
864
865 if (clear_page_dirty_for_io(page)) {
866 int res;
867 struct writeback_control wbc = {
868 .sync_mode = WB_SYNC_NONE,
869 .nr_to_write = SWAP_CLUSTER_MAX,
870 .range_start = 0,
871 .range_end = LLONG_MAX,
872 .for_reclaim = 1,
873 };
874
875 SetPageReclaim(page);
876 res = mapping->a_ops->writepage(page, &wbc);
877 if (res < 0)
878 handle_write_error(mapping, page, res);
879 if (res == AOP_WRITEPAGE_ACTIVATE) {
880 ClearPageReclaim(page);
881 return PAGE_ACTIVATE;
882 }
883
884 if (!PageWriteback(page)) {
885 /* synchronous write or broken a_ops? */
886 ClearPageReclaim(page);
887 }
888 trace_mm_vmscan_writepage(page);
889 inc_node_page_state(page, NR_VMSCAN_WRITE);
890 return PAGE_SUCCESS;
891 }
892
893 return PAGE_CLEAN;
894 }
895
896 /*
897 * Same as remove_mapping, but if the page is removed from the mapping, it
898 * gets returned with a refcount of 0.
899 */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed,struct mem_cgroup * target_memcg)900 static int __remove_mapping(struct address_space *mapping, struct page *page,
901 bool reclaimed, struct mem_cgroup *target_memcg)
902 {
903 unsigned long flags;
904 int refcount;
905 void *shadow = NULL;
906
907 BUG_ON(!PageLocked(page));
908 BUG_ON(mapping != page_mapping(page));
909
910 xa_lock_irqsave(&mapping->i_pages, flags);
911 /*
912 * The non racy check for a busy page.
913 *
914 * Must be careful with the order of the tests. When someone has
915 * a ref to the page, it may be possible that they dirty it then
916 * drop the reference. So if PageDirty is tested before page_count
917 * here, then the following race may occur:
918 *
919 * get_user_pages(&page);
920 * [user mapping goes away]
921 * write_to(page);
922 * !PageDirty(page) [good]
923 * SetPageDirty(page);
924 * put_page(page);
925 * !page_count(page) [good, discard it]
926 *
927 * [oops, our write_to data is lost]
928 *
929 * Reversing the order of the tests ensures such a situation cannot
930 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
931 * load is not satisfied before that of page->_refcount.
932 *
933 * Note that if SetPageDirty is always performed via set_page_dirty,
934 * and thus under the i_pages lock, then this ordering is not required.
935 */
936 refcount = 1 + compound_nr(page);
937 if (!page_ref_freeze(page, refcount))
938 goto cannot_free;
939 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
940 if (unlikely(PageDirty(page))) {
941 page_ref_unfreeze(page, refcount);
942 goto cannot_free;
943 }
944
945 if (PageSwapCache(page)) {
946 swp_entry_t swap = { .val = page_private(page) };
947
948 /* get a shadow entry before mem_cgroup_swapout() clears page_memcg() */
949 if (reclaimed && !mapping_exiting(mapping))
950 shadow = workingset_eviction(page, target_memcg);
951 mem_cgroup_swapout(page, swap);
952 __delete_from_swap_cache(page, swap, shadow);
953 xa_unlock_irqrestore(&mapping->i_pages, flags);
954 put_swap_page(page, swap);
955 } else {
956 void (*freepage)(struct page *);
957
958 freepage = mapping->a_ops->freepage;
959 /*
960 * Remember a shadow entry for reclaimed file cache in
961 * order to detect refaults, thus thrashing, later on.
962 *
963 * But don't store shadows in an address space that is
964 * already exiting. This is not just an optimization,
965 * inode reclaim needs to empty out the radix tree or
966 * the nodes are lost. Don't plant shadows behind its
967 * back.
968 *
969 * We also don't store shadows for DAX mappings because the
970 * only page cache pages found in these are zero pages
971 * covering holes, and because we don't want to mix DAX
972 * exceptional entries and shadow exceptional entries in the
973 * same address_space.
974 */
975 if (reclaimed && page_is_file_lru(page) &&
976 !mapping_exiting(mapping) && !dax_mapping(mapping))
977 shadow = workingset_eviction(page, target_memcg);
978 __delete_from_page_cache(page, shadow);
979 xa_unlock_irqrestore(&mapping->i_pages, flags);
980
981 if (freepage != NULL)
982 freepage(page);
983 }
984
985 return 1;
986
987 cannot_free:
988 xa_unlock_irqrestore(&mapping->i_pages, flags);
989 return 0;
990 }
991
992 /*
993 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
994 * someone else has a ref on the page, abort and return 0. If it was
995 * successfully detached, return 1. Assumes the caller has a single ref on
996 * this page.
997 */
remove_mapping(struct address_space * mapping,struct page * page)998 int remove_mapping(struct address_space *mapping, struct page *page)
999 {
1000 if (__remove_mapping(mapping, page, false, NULL)) {
1001 /*
1002 * Unfreezing the refcount with 1 rather than 2 effectively
1003 * drops the pagecache ref for us without requiring another
1004 * atomic operation.
1005 */
1006 page_ref_unfreeze(page, 1);
1007 return 1;
1008 }
1009 return 0;
1010 }
1011
1012 /**
1013 * putback_lru_page - put previously isolated page onto appropriate LRU list
1014 * @page: page to be put back to appropriate lru list
1015 *
1016 * Add previously isolated @page to appropriate LRU list.
1017 * Page may still be unevictable for other reasons.
1018 *
1019 * lru_lock must not be held, interrupts must be enabled.
1020 */
putback_lru_page(struct page * page)1021 void putback_lru_page(struct page *page)
1022 {
1023 lru_cache_add(page);
1024 put_page(page); /* drop ref from isolate */
1025 }
1026
1027 enum page_references {
1028 PAGEREF_RECLAIM,
1029 PAGEREF_RECLAIM_CLEAN,
1030 PAGEREF_KEEP,
1031 PAGEREF_ACTIVATE,
1032 };
1033
page_check_references(struct page * page,struct scan_control * sc)1034 static enum page_references page_check_references(struct page *page,
1035 struct scan_control *sc)
1036 {
1037 int referenced_ptes, referenced_page;
1038 unsigned long vm_flags;
1039
1040 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1041 &vm_flags);
1042 referenced_page = TestClearPageReferenced(page);
1043
1044 /*
1045 * Mlock lost the isolation race with us. Let try_to_unmap()
1046 * move the page to the unevictable list.
1047 */
1048 if (vm_flags & VM_LOCKED)
1049 return PAGEREF_RECLAIM;
1050
1051 /* rmap lock contention: rotate */
1052 if (referenced_ptes == -1)
1053 return PAGEREF_KEEP;
1054
1055 if (referenced_ptes) {
1056 /*
1057 * All mapped pages start out with page table
1058 * references from the instantiating fault, so we need
1059 * to look twice if a mapped file page is used more
1060 * than once.
1061 *
1062 * Mark it and spare it for another trip around the
1063 * inactive list. Another page table reference will
1064 * lead to its activation.
1065 *
1066 * Note: the mark is set for activated pages as well
1067 * so that recently deactivated but used pages are
1068 * quickly recovered.
1069 */
1070 SetPageReferenced(page);
1071
1072 if (referenced_page || referenced_ptes > 1)
1073 return PAGEREF_ACTIVATE;
1074
1075 /*
1076 * Activate file-backed executable pages after first usage.
1077 */
1078 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1079 return PAGEREF_ACTIVATE;
1080
1081 return PAGEREF_KEEP;
1082 }
1083
1084 /* Reclaim if clean, defer dirty pages to writeback */
1085 if (referenced_page && !PageSwapBacked(page))
1086 return PAGEREF_RECLAIM_CLEAN;
1087
1088 return PAGEREF_RECLAIM;
1089 }
1090
1091 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)1092 static void page_check_dirty_writeback(struct page *page,
1093 bool *dirty, bool *writeback)
1094 {
1095 struct address_space *mapping;
1096
1097 /*
1098 * Anonymous pages are not handled by flushers and must be written
1099 * from reclaim context. Do not stall reclaim based on them
1100 */
1101 if (!page_is_file_lru(page) ||
1102 (PageAnon(page) && !PageSwapBacked(page))) {
1103 *dirty = false;
1104 *writeback = false;
1105 return;
1106 }
1107
1108 /* By default assume that the page flags are accurate */
1109 *dirty = PageDirty(page);
1110 *writeback = PageWriteback(page);
1111
1112 /* Verify dirty/writeback state if the filesystem supports it */
1113 if (!page_has_private(page))
1114 return;
1115
1116 mapping = page_mapping(page);
1117 if (mapping && mapping->a_ops->is_dirty_writeback)
1118 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1119 }
1120
1121 /*
1122 * shrink_page_list() returns the number of reclaimed pages
1123 */
shrink_page_list(struct list_head * page_list,struct pglist_data * pgdat,struct scan_control * sc,struct reclaim_stat * stat,bool ignore_references)1124 static unsigned int shrink_page_list(struct list_head *page_list,
1125 struct pglist_data *pgdat,
1126 struct scan_control *sc,
1127 struct reclaim_stat *stat,
1128 bool ignore_references)
1129 {
1130 LIST_HEAD(ret_pages);
1131 LIST_HEAD(free_pages);
1132 unsigned int nr_reclaimed = 0;
1133 unsigned int pgactivate = 0;
1134
1135 memset(stat, 0, sizeof(*stat));
1136 cond_resched();
1137
1138 while (!list_empty(page_list)) {
1139 struct address_space *mapping;
1140 struct page *page;
1141 enum page_references references = PAGEREF_RECLAIM;
1142 bool dirty, writeback, may_enter_fs;
1143 unsigned int nr_pages;
1144
1145 cond_resched();
1146
1147 page = lru_to_page(page_list);
1148 list_del(&page->lru);
1149
1150 if (!trylock_page(page))
1151 goto keep;
1152
1153 VM_BUG_ON_PAGE(PageActive(page), page);
1154
1155 nr_pages = compound_nr(page);
1156
1157 /* Account the number of base pages even though THP */
1158 sc->nr_scanned += nr_pages;
1159
1160 if (unlikely(!page_evictable(page)))
1161 goto activate_locked;
1162
1163 if (!sc->may_unmap && page_mapped(page))
1164 goto keep_locked;
1165
1166 /* page_update_gen() tried to promote this page? */
1167 if (lru_gen_enabled() && !ignore_references &&
1168 page_mapped(page) && PageReferenced(page))
1169 goto keep_locked;
1170
1171 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1172 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1173
1174 /*
1175 * The number of dirty pages determines if a node is marked
1176 * reclaim_congested which affects wait_iff_congested. kswapd
1177 * will stall and start writing pages if the tail of the LRU
1178 * is all dirty unqueued pages.
1179 */
1180 page_check_dirty_writeback(page, &dirty, &writeback);
1181 if (dirty || writeback)
1182 stat->nr_dirty++;
1183
1184 if (dirty && !writeback)
1185 stat->nr_unqueued_dirty++;
1186
1187 /*
1188 * Treat this page as congested if the underlying BDI is or if
1189 * pages are cycling through the LRU so quickly that the
1190 * pages marked for immediate reclaim are making it to the
1191 * end of the LRU a second time.
1192 */
1193 mapping = page_mapping(page);
1194 if (((dirty || writeback) && mapping &&
1195 inode_write_congested(mapping->host)) ||
1196 (writeback && PageReclaim(page)))
1197 stat->nr_congested++;
1198
1199 /*
1200 * If a page at the tail of the LRU is under writeback, there
1201 * are three cases to consider.
1202 *
1203 * 1) If reclaim is encountering an excessive number of pages
1204 * under writeback and this page is both under writeback and
1205 * PageReclaim then it indicates that pages are being queued
1206 * for IO but are being recycled through the LRU before the
1207 * IO can complete. Waiting on the page itself risks an
1208 * indefinite stall if it is impossible to writeback the
1209 * page due to IO error or disconnected storage so instead
1210 * note that the LRU is being scanned too quickly and the
1211 * caller can stall after page list has been processed.
1212 *
1213 * 2) Global or new memcg reclaim encounters a page that is
1214 * not marked for immediate reclaim, or the caller does not
1215 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1216 * not to fs). In this case mark the page for immediate
1217 * reclaim and continue scanning.
1218 *
1219 * Require may_enter_fs because we would wait on fs, which
1220 * may not have submitted IO yet. And the loop driver might
1221 * enter reclaim, and deadlock if it waits on a page for
1222 * which it is needed to do the write (loop masks off
1223 * __GFP_IO|__GFP_FS for this reason); but more thought
1224 * would probably show more reasons.
1225 *
1226 * 3) Legacy memcg encounters a page that is already marked
1227 * PageReclaim. memcg does not have any dirty pages
1228 * throttling so we could easily OOM just because too many
1229 * pages are in writeback and there is nothing else to
1230 * reclaim. Wait for the writeback to complete.
1231 *
1232 * In cases 1) and 2) we activate the pages to get them out of
1233 * the way while we continue scanning for clean pages on the
1234 * inactive list and refilling from the active list. The
1235 * observation here is that waiting for disk writes is more
1236 * expensive than potentially causing reloads down the line.
1237 * Since they're marked for immediate reclaim, they won't put
1238 * memory pressure on the cache working set any longer than it
1239 * takes to write them to disk.
1240 */
1241 if (PageWriteback(page)) {
1242 /* Case 1 above */
1243 if (current_is_kswapd() &&
1244 PageReclaim(page) &&
1245 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1246 stat->nr_immediate++;
1247 goto activate_locked;
1248
1249 /* Case 2 above */
1250 } else if (writeback_throttling_sane(sc) ||
1251 !PageReclaim(page) || !may_enter_fs) {
1252 /*
1253 * This is slightly racy - end_page_writeback()
1254 * might have just cleared PageReclaim, then
1255 * setting PageReclaim here end up interpreted
1256 * as PageReadahead - but that does not matter
1257 * enough to care. What we do want is for this
1258 * page to have PageReclaim set next time memcg
1259 * reclaim reaches the tests above, so it will
1260 * then wait_on_page_writeback() to avoid OOM;
1261 * and it's also appropriate in global reclaim.
1262 */
1263 SetPageReclaim(page);
1264 stat->nr_writeback++;
1265 goto activate_locked;
1266
1267 /* Case 3 above */
1268 } else {
1269 unlock_page(page);
1270 wait_on_page_writeback(page);
1271 /* then go back and try same page again */
1272 list_add_tail(&page->lru, page_list);
1273 continue;
1274 }
1275 }
1276
1277 if (!ignore_references)
1278 references = page_check_references(page, sc);
1279
1280 switch (references) {
1281 case PAGEREF_ACTIVATE:
1282 goto activate_locked;
1283 case PAGEREF_KEEP:
1284 stat->nr_ref_keep += nr_pages;
1285 goto keep_locked;
1286 case PAGEREF_RECLAIM:
1287 case PAGEREF_RECLAIM_CLEAN:
1288 ; /* try to reclaim the page below */
1289 }
1290
1291 /*
1292 * Anonymous process memory has backing store?
1293 * Try to allocate it some swap space here.
1294 * Lazyfree page could be freed directly
1295 */
1296 if (PageAnon(page) && PageSwapBacked(page)) {
1297 if (!PageSwapCache(page)) {
1298 if (!(sc->gfp_mask & __GFP_IO))
1299 goto keep_locked;
1300 if (page_maybe_dma_pinned(page))
1301 goto keep_locked;
1302 if (PageTransHuge(page)) {
1303 /* cannot split THP, skip it */
1304 if (!can_split_huge_page(page, NULL))
1305 goto activate_locked;
1306 /*
1307 * Split pages without a PMD map right
1308 * away. Chances are some or all of the
1309 * tail pages can be freed without IO.
1310 */
1311 if (!compound_mapcount(page) &&
1312 split_huge_page_to_list(page,
1313 page_list))
1314 goto activate_locked;
1315 }
1316 if (!add_to_swap(page)) {
1317 if (!PageTransHuge(page))
1318 goto activate_locked_split;
1319 /* Fallback to swap normal pages */
1320 if (split_huge_page_to_list(page,
1321 page_list))
1322 goto activate_locked;
1323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1324 count_vm_event(THP_SWPOUT_FALLBACK);
1325 #endif
1326 if (!add_to_swap(page))
1327 goto activate_locked_split;
1328 }
1329
1330 may_enter_fs = true;
1331
1332 /* Adding to swap updated mapping */
1333 mapping = page_mapping(page);
1334 }
1335 } else if (unlikely(PageTransHuge(page))) {
1336 /* Split file THP */
1337 if (split_huge_page_to_list(page, page_list))
1338 goto keep_locked;
1339 }
1340
1341 /*
1342 * THP may get split above, need minus tail pages and update
1343 * nr_pages to avoid accounting tail pages twice.
1344 *
1345 * The tail pages that are added into swap cache successfully
1346 * reach here.
1347 */
1348 if ((nr_pages > 1) && !PageTransHuge(page)) {
1349 sc->nr_scanned -= (nr_pages - 1);
1350 nr_pages = 1;
1351 }
1352
1353 /*
1354 * The page is mapped into the page tables of one or more
1355 * processes. Try to unmap it here.
1356 */
1357 if (page_mapped(page)) {
1358 enum ttu_flags flags = TTU_BATCH_FLUSH;
1359 bool was_swapbacked = PageSwapBacked(page);
1360
1361 if (unlikely(PageTransHuge(page)))
1362 flags |= TTU_SPLIT_HUGE_PMD;
1363
1364 if (!try_to_unmap(page, flags)) {
1365 stat->nr_unmap_fail += nr_pages;
1366 if (!was_swapbacked && PageSwapBacked(page))
1367 stat->nr_lazyfree_fail += nr_pages;
1368 goto activate_locked;
1369 }
1370 }
1371
1372 if (PageDirty(page)) {
1373 /*
1374 * Only kswapd can writeback filesystem pages
1375 * to avoid risk of stack overflow. But avoid
1376 * injecting inefficient single-page IO into
1377 * flusher writeback as much as possible: only
1378 * write pages when we've encountered many
1379 * dirty pages, and when we've already scanned
1380 * the rest of the LRU for clean pages and see
1381 * the same dirty pages again (PageReclaim).
1382 */
1383 if (page_is_file_lru(page) &&
1384 (!current_is_kswapd() || !PageReclaim(page) ||
1385 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1386 /*
1387 * Immediately reclaim when written back.
1388 * Similar in principal to deactivate_page()
1389 * except we already have the page isolated
1390 * and know it's dirty
1391 */
1392 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1393 SetPageReclaim(page);
1394
1395 goto activate_locked;
1396 }
1397
1398 if (references == PAGEREF_RECLAIM_CLEAN)
1399 goto keep_locked;
1400 if (!may_enter_fs)
1401 goto keep_locked;
1402 if (!sc->may_writepage)
1403 goto keep_locked;
1404
1405 /*
1406 * Page is dirty. Flush the TLB if a writable entry
1407 * potentially exists to avoid CPU writes after IO
1408 * starts and then write it out here.
1409 */
1410 try_to_unmap_flush_dirty();
1411 switch (pageout(page, mapping)) {
1412 case PAGE_KEEP:
1413 goto keep_locked;
1414 case PAGE_ACTIVATE:
1415 goto activate_locked;
1416 case PAGE_SUCCESS:
1417 stat->nr_pageout += thp_nr_pages(page);
1418
1419 if (PageWriteback(page))
1420 goto keep;
1421 if (PageDirty(page))
1422 goto keep;
1423
1424 /*
1425 * A synchronous write - probably a ramdisk. Go
1426 * ahead and try to reclaim the page.
1427 */
1428 if (!trylock_page(page))
1429 goto keep;
1430 if (PageDirty(page) || PageWriteback(page))
1431 goto keep_locked;
1432 mapping = page_mapping(page);
1433 case PAGE_CLEAN:
1434 ; /* try to free the page below */
1435 }
1436 }
1437
1438 /*
1439 * If the page has buffers, try to free the buffer mappings
1440 * associated with this page. If we succeed we try to free
1441 * the page as well.
1442 *
1443 * We do this even if the page is PageDirty().
1444 * try_to_release_page() does not perform I/O, but it is
1445 * possible for a page to have PageDirty set, but it is actually
1446 * clean (all its buffers are clean). This happens if the
1447 * buffers were written out directly, with submit_bh(). ext3
1448 * will do this, as well as the blockdev mapping.
1449 * try_to_release_page() will discover that cleanness and will
1450 * drop the buffers and mark the page clean - it can be freed.
1451 *
1452 * Rarely, pages can have buffers and no ->mapping. These are
1453 * the pages which were not successfully invalidated in
1454 * truncate_complete_page(). We try to drop those buffers here
1455 * and if that worked, and the page is no longer mapped into
1456 * process address space (page_count == 1) it can be freed.
1457 * Otherwise, leave the page on the LRU so it is swappable.
1458 */
1459 if (page_has_private(page)) {
1460 if (!try_to_release_page(page, sc->gfp_mask))
1461 goto activate_locked;
1462 if (!mapping && page_count(page) == 1) {
1463 unlock_page(page);
1464 if (put_page_testzero(page))
1465 goto free_it;
1466 else {
1467 /*
1468 * rare race with speculative reference.
1469 * the speculative reference will free
1470 * this page shortly, so we may
1471 * increment nr_reclaimed here (and
1472 * leave it off the LRU).
1473 */
1474 nr_reclaimed++;
1475 continue;
1476 }
1477 }
1478 }
1479
1480 if (PageAnon(page) && !PageSwapBacked(page)) {
1481 /* follow __remove_mapping for reference */
1482 if (!page_ref_freeze(page, 1))
1483 goto keep_locked;
1484 if (PageDirty(page)) {
1485 page_ref_unfreeze(page, 1);
1486 goto keep_locked;
1487 }
1488
1489 count_vm_event(PGLAZYFREED);
1490 count_memcg_page_event(page, PGLAZYFREED);
1491 } else if (!mapping || !__remove_mapping(mapping, page, true,
1492 sc->target_mem_cgroup))
1493 goto keep_locked;
1494
1495 unlock_page(page);
1496 free_it:
1497 /*
1498 * THP may get swapped out in a whole, need account
1499 * all base pages.
1500 */
1501 nr_reclaimed += nr_pages;
1502
1503 /*
1504 * Is there need to periodically free_page_list? It would
1505 * appear not as the counts should be low
1506 */
1507 if (unlikely(PageTransHuge(page)))
1508 destroy_compound_page(page);
1509 else
1510 list_add(&page->lru, &free_pages);
1511 continue;
1512
1513 activate_locked_split:
1514 /*
1515 * The tail pages that are failed to add into swap cache
1516 * reach here. Fixup nr_scanned and nr_pages.
1517 */
1518 if (nr_pages > 1) {
1519 sc->nr_scanned -= (nr_pages - 1);
1520 nr_pages = 1;
1521 }
1522 activate_locked:
1523 /* Not a candidate for swapping, so reclaim swap space. */
1524 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1525 PageMlocked(page)))
1526 try_to_free_swap(page);
1527 VM_BUG_ON_PAGE(PageActive(page), page);
1528 if (!PageMlocked(page)) {
1529 int type = page_is_file_lru(page);
1530 SetPageActive(page);
1531 stat->nr_activate[type] += nr_pages;
1532 count_memcg_page_event(page, PGACTIVATE);
1533 }
1534 keep_locked:
1535 unlock_page(page);
1536 keep:
1537 list_add(&page->lru, &ret_pages);
1538 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1539 }
1540
1541 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1542
1543 mem_cgroup_uncharge_list(&free_pages);
1544 try_to_unmap_flush();
1545 free_unref_page_list(&free_pages);
1546
1547 list_splice(&ret_pages, page_list);
1548 count_vm_events(PGACTIVATE, pgactivate);
1549
1550 return nr_reclaimed;
1551 }
1552
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1553 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1554 struct list_head *page_list)
1555 {
1556 struct scan_control sc = {
1557 .gfp_mask = GFP_KERNEL,
1558 .priority = DEF_PRIORITY,
1559 .may_unmap = 1,
1560 };
1561 struct reclaim_stat stat;
1562 unsigned int nr_reclaimed;
1563 struct page *page, *next;
1564 LIST_HEAD(clean_pages);
1565
1566 list_for_each_entry_safe(page, next, page_list, lru) {
1567 if (page_is_file_lru(page) && !PageDirty(page) &&
1568 !__PageMovable(page) && !PageUnevictable(page)) {
1569 ClearPageActive(page);
1570 list_move(&page->lru, &clean_pages);
1571 }
1572 }
1573
1574 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1575 &stat, true);
1576 list_splice(&clean_pages, page_list);
1577 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1578 -(long)nr_reclaimed);
1579 /*
1580 * Since lazyfree pages are isolated from file LRU from the beginning,
1581 * they will rotate back to anonymous LRU in the end if it failed to
1582 * discard so isolated count will be mismatched.
1583 * Compensate the isolated count for both LRU lists.
1584 */
1585 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1586 stat.nr_lazyfree_fail);
1587 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1588 -(long)stat.nr_lazyfree_fail);
1589 return nr_reclaimed;
1590 }
1591
reclaim_pages_from_list(struct list_head * page_list)1592 int reclaim_pages_from_list(struct list_head *page_list)
1593 {
1594 struct scan_control sc = {
1595 .gfp_mask = GFP_KERNEL,
1596 .priority = DEF_PRIORITY,
1597 .may_writepage = 1,
1598 .may_unmap = 1,
1599 .may_swap = 1,
1600 };
1601 unsigned long nr_reclaimed;
1602 struct reclaim_stat dummy_stat;
1603 struct page *page;
1604
1605 list_for_each_entry(page, page_list, lru)
1606 ClearPageActive(page);
1607
1608 nr_reclaimed = shrink_page_list(page_list, NULL, &sc,
1609 &dummy_stat, false);
1610 while (!list_empty(page_list)) {
1611
1612 page = lru_to_page(page_list);
1613 list_del(&page->lru);
1614 dec_node_page_state(page, NR_ISOLATED_ANON +
1615 page_is_file_lru(page));
1616 putback_lru_page(page);
1617 }
1618
1619 return nr_reclaimed;
1620 }
1621
1622 /*
1623 * Attempt to remove the specified page from its LRU. Only take this page
1624 * if it is of the appropriate PageActive status. Pages which are being
1625 * freed elsewhere are also ignored.
1626 *
1627 * page: page to consider
1628 * mode: one of the LRU isolation modes defined above
1629 *
1630 * returns 0 on success, -ve errno on failure.
1631 */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1632 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1633 {
1634 int ret = -EINVAL;
1635
1636 /* Only take pages on the LRU. */
1637 if (!PageLRU(page))
1638 return ret;
1639
1640 /* Compaction should not handle unevictable pages but CMA can do so */
1641 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1642 return ret;
1643
1644 ret = -EBUSY;
1645
1646 /*
1647 * To minimise LRU disruption, the caller can indicate that it only
1648 * wants to isolate pages it will be able to operate on without
1649 * blocking - clean pages for the most part.
1650 *
1651 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1652 * that it is possible to migrate without blocking
1653 */
1654 if (mode & ISOLATE_ASYNC_MIGRATE) {
1655 /* All the caller can do on PageWriteback is block */
1656 if (PageWriteback(page))
1657 return ret;
1658
1659 if (PageDirty(page)) {
1660 struct address_space *mapping;
1661 bool migrate_dirty;
1662
1663 /*
1664 * Only pages without mappings or that have a
1665 * ->migratepage callback are possible to migrate
1666 * without blocking. However, we can be racing with
1667 * truncation so it's necessary to lock the page
1668 * to stabilise the mapping as truncation holds
1669 * the page lock until after the page is removed
1670 * from the page cache.
1671 */
1672 if (!trylock_page(page))
1673 return ret;
1674
1675 mapping = page_mapping(page);
1676 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1677 unlock_page(page);
1678 if (!migrate_dirty)
1679 return ret;
1680 }
1681 }
1682
1683 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1684 return ret;
1685
1686 if (likely(get_page_unless_zero(page))) {
1687 /*
1688 * Be careful not to clear PageLRU until after we're
1689 * sure the page is not being freed elsewhere -- the
1690 * page release code relies on it.
1691 */
1692 ClearPageLRU(page);
1693 ret = 0;
1694 }
1695
1696 return ret;
1697 }
1698
1699
1700 /*
1701 * Update LRU sizes after isolating pages. The LRU size updates must
1702 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1703 */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1704 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1705 enum lru_list lru, unsigned long *nr_zone_taken)
1706 {
1707 int zid;
1708
1709 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1710 if (!nr_zone_taken[zid])
1711 continue;
1712
1713 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1714 }
1715
1716 }
1717
1718 #ifdef CONFIG_CMA
1719 /*
1720 * It is waste of effort to scan and reclaim CMA pages if it is not available
1721 * for current allocation context. Kswapd can not be enrolled as it can not
1722 * distinguish this scenario by using sc->gfp_mask = GFP_KERNEL
1723 */
skip_cma(struct page * page,struct scan_control * sc)1724 static bool skip_cma(struct page *page, struct scan_control *sc)
1725 {
1726 return !current_is_kswapd() &&
1727 gfp_migratetype(sc->gfp_mask) != MIGRATE_MOVABLE &&
1728 get_pageblock_migratetype(page) == MIGRATE_CMA;
1729 }
1730 #else
skip_cma(struct page * page,struct scan_control * sc)1731 static bool skip_cma(struct page *page, struct scan_control *sc)
1732 {
1733 return false;
1734 }
1735 #endif
1736
1737 /**
1738 * pgdat->lru_lock is heavily contended. Some of the functions that
1739 * shrink the lists perform better by taking out a batch of pages
1740 * and working on them outside the LRU lock.
1741 *
1742 * For pagecache intensive workloads, this function is the hottest
1743 * spot in the kernel (apart from copy_*_user functions).
1744 *
1745 * Appropriate locks must be held before calling this function.
1746 *
1747 * @nr_to_scan: The number of eligible pages to look through on the list.
1748 * @lruvec: The LRU vector to pull pages from.
1749 * @dst: The temp list to put pages on to.
1750 * @nr_scanned: The number of pages that were scanned.
1751 * @sc: The scan_control struct for this reclaim session
1752 * @lru: LRU list id for isolating
1753 *
1754 * returns how many pages were moved onto *@dst.
1755 */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,enum lru_list lru)1756 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1757 struct lruvec *lruvec, struct list_head *dst,
1758 unsigned long *nr_scanned, struct scan_control *sc,
1759 enum lru_list lru)
1760 {
1761 struct list_head *src = &lruvec->lists[lru];
1762 unsigned long nr_taken = 0;
1763 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1764 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1765 unsigned long skipped = 0;
1766 unsigned long scan, total_scan, nr_pages;
1767 LIST_HEAD(pages_skipped);
1768 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1769
1770 total_scan = 0;
1771 scan = 0;
1772 while (scan < nr_to_scan && !list_empty(src)) {
1773 struct page *page;
1774
1775 page = lru_to_page(src);
1776 prefetchw_prev_lru_page(page, src, flags);
1777
1778 VM_BUG_ON_PAGE(!PageLRU(page), page);
1779
1780 nr_pages = compound_nr(page);
1781 total_scan += nr_pages;
1782
1783 if (page_zonenum(page) > sc->reclaim_idx ||
1784 skip_cma(page, sc)) {
1785 list_move(&page->lru, &pages_skipped);
1786 nr_skipped[page_zonenum(page)] += nr_pages;
1787 continue;
1788 }
1789
1790 /*
1791 * Do not count skipped pages because that makes the function
1792 * return with no isolated pages if the LRU mostly contains
1793 * ineligible pages. This causes the VM to not reclaim any
1794 * pages, triggering a premature OOM.
1795 *
1796 * Account all tail pages of THP. This would not cause
1797 * premature OOM since __isolate_lru_page() returns -EBUSY
1798 * only when the page is being freed somewhere else.
1799 */
1800 scan += nr_pages;
1801 switch (__isolate_lru_page(page, mode)) {
1802 case 0:
1803 nr_taken += nr_pages;
1804 nr_zone_taken[page_zonenum(page)] += nr_pages;
1805 list_move(&page->lru, dst);
1806 break;
1807
1808 case -EBUSY:
1809 /* else it is being freed elsewhere */
1810 list_move(&page->lru, src);
1811 continue;
1812
1813 default:
1814 BUG();
1815 }
1816 }
1817
1818 /*
1819 * Splice any skipped pages to the start of the LRU list. Note that
1820 * this disrupts the LRU order when reclaiming for lower zones but
1821 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1822 * scanning would soon rescan the same pages to skip and put the
1823 * system at risk of premature OOM.
1824 */
1825 if (!list_empty(&pages_skipped)) {
1826 int zid;
1827
1828 list_splice(&pages_skipped, src);
1829 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1830 if (!nr_skipped[zid])
1831 continue;
1832
1833 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1834 skipped += nr_skipped[zid];
1835 }
1836 }
1837 *nr_scanned = total_scan;
1838 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1839 total_scan, skipped, nr_taken, mode, lru);
1840 update_lru_sizes(lruvec, lru, nr_zone_taken);
1841 return nr_taken;
1842 }
1843
1844 /**
1845 * isolate_lru_page - tries to isolate a page from its LRU list
1846 * @page: page to isolate from its LRU list
1847 *
1848 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1849 * vmstat statistic corresponding to whatever LRU list the page was on.
1850 *
1851 * Returns 0 if the page was removed from an LRU list.
1852 * Returns -EBUSY if the page was not on an LRU list.
1853 *
1854 * The returned page will have PageLRU() cleared. If it was found on
1855 * the active list, it will have PageActive set. If it was found on
1856 * the unevictable list, it will have the PageUnevictable bit set. That flag
1857 * may need to be cleared by the caller before letting the page go.
1858 *
1859 * The vmstat statistic corresponding to the list on which the page was
1860 * found will be decremented.
1861 *
1862 * Restrictions:
1863 *
1864 * (1) Must be called with an elevated refcount on the page. This is a
1865 * fundamental difference from isolate_lru_pages (which is called
1866 * without a stable reference).
1867 * (2) the lru_lock must not be held.
1868 * (3) interrupts must be enabled.
1869 */
isolate_lru_page(struct page * page)1870 int isolate_lru_page(struct page *page)
1871 {
1872 int ret = -EBUSY;
1873
1874 VM_BUG_ON_PAGE(!page_count(page), page);
1875 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1876
1877 if (PageLRU(page)) {
1878 pg_data_t *pgdat = page_pgdat(page);
1879 struct lruvec *lruvec;
1880
1881 spin_lock_irq(&pgdat->lru_lock);
1882 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1883 if (PageLRU(page)) {
1884 get_page(page);
1885 ClearPageLRU(page);
1886 del_page_from_lru_list(page, lruvec);
1887 ret = 0;
1888 }
1889 spin_unlock_irq(&pgdat->lru_lock);
1890 }
1891 return ret;
1892 }
1893
1894 /*
1895 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1896 * then get rescheduled. When there are massive number of tasks doing page
1897 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1898 * the LRU list will go small and be scanned faster than necessary, leading to
1899 * unnecessary swapping, thrashing and OOM.
1900 */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1901 static int too_many_isolated(struct pglist_data *pgdat, int file,
1902 struct scan_control *sc)
1903 {
1904 unsigned long inactive, isolated;
1905
1906 if (current_is_kswapd())
1907 return 0;
1908
1909 if (!writeback_throttling_sane(sc))
1910 return 0;
1911
1912 if (file) {
1913 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1914 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1915 } else {
1916 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1917 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1918 }
1919
1920 /*
1921 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1922 * won't get blocked by normal direct-reclaimers, forming a circular
1923 * deadlock.
1924 */
1925 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1926 inactive >>= 3;
1927
1928 return isolated > inactive;
1929 }
1930
1931 /*
1932 * This moves pages from @list to corresponding LRU list.
1933 *
1934 * We move them the other way if the page is referenced by one or more
1935 * processes, from rmap.
1936 *
1937 * If the pages are mostly unmapped, the processing is fast and it is
1938 * appropriate to hold zone_lru_lock across the whole operation. But if
1939 * the pages are mapped, the processing is slow (page_referenced()) so we
1940 * should drop zone_lru_lock around each page. It's impossible to balance
1941 * this, so instead we remove the pages from the LRU while processing them.
1942 * It is safe to rely on PG_active against the non-LRU pages in here because
1943 * nobody will play with that bit on a non-LRU page.
1944 *
1945 * The downside is that we have to touch page->_refcount against each page.
1946 * But we had to alter page->flags anyway.
1947 *
1948 * Returns the number of pages moved to the given lruvec.
1949 */
1950
move_pages_to_lru(struct lruvec * lruvec,struct list_head * list)1951 static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1952 struct list_head *list)
1953 {
1954 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1955 int nr_pages, nr_moved = 0;
1956 LIST_HEAD(pages_to_free);
1957 struct page *page;
1958
1959 while (!list_empty(list)) {
1960 page = lru_to_page(list);
1961 VM_BUG_ON_PAGE(PageLRU(page), page);
1962 list_del(&page->lru);
1963 if (unlikely(!page_evictable(page))) {
1964 spin_unlock_irq(&pgdat->lru_lock);
1965 putback_lru_page(page);
1966 spin_lock_irq(&pgdat->lru_lock);
1967 continue;
1968 }
1969 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1970
1971 SetPageLRU(page);
1972 add_page_to_lru_list(page, lruvec);
1973
1974 if (put_page_testzero(page)) {
1975 del_page_from_lru_list(page, lruvec);
1976 __clear_page_lru_flags(page);
1977
1978 if (unlikely(PageCompound(page))) {
1979 spin_unlock_irq(&pgdat->lru_lock);
1980 destroy_compound_page(page);
1981 spin_lock_irq(&pgdat->lru_lock);
1982 } else
1983 list_add(&page->lru, &pages_to_free);
1984 } else {
1985 nr_pages = thp_nr_pages(page);
1986 nr_moved += nr_pages;
1987 if (PageActive(page))
1988 workingset_age_nonresident(lruvec, nr_pages);
1989 }
1990 }
1991
1992 /*
1993 * To save our caller's stack, now use input list for pages to free.
1994 */
1995 list_splice(&pages_to_free, list);
1996
1997 return nr_moved;
1998 }
1999
2000 /*
2001 * If a kernel thread (such as nfsd for loop-back mounts) services
2002 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2003 * In that case we should only throttle if the backing device it is
2004 * writing to is congested. In other cases it is safe to throttle.
2005 */
current_may_throttle(void)2006 static int current_may_throttle(void)
2007 {
2008 return !(current->flags & PF_LOCAL_THROTTLE) ||
2009 current->backing_dev_info == NULL ||
2010 bdi_write_congested(current->backing_dev_info);
2011 }
2012
2013 /*
2014 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2015 * of reclaimed pages
2016 */
2017 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2018 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2019 struct scan_control *sc, enum lru_list lru)
2020 {
2021 LIST_HEAD(page_list);
2022 unsigned long nr_scanned;
2023 unsigned int nr_reclaimed = 0;
2024 unsigned long nr_taken;
2025 struct reclaim_stat stat;
2026 bool file = is_file_lru(lru);
2027 enum vm_event_item item;
2028 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2029 bool stalled = false;
2030 struct blk_plug plug;
2031 bool do_plug = false;
2032
2033 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2034 if (stalled)
2035 return 0;
2036
2037 /* wait a bit for the reclaimer. */
2038 msleep(100);
2039 stalled = true;
2040
2041 /* We are about to die and free our memory. Return now. */
2042 if (fatal_signal_pending(current))
2043 return SWAP_CLUSTER_MAX;
2044 }
2045
2046 lru_add_drain();
2047
2048 spin_lock_irq(&pgdat->lru_lock);
2049
2050 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2051 &nr_scanned, sc, lru);
2052
2053 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2054 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2055 if (!cgroup_reclaim(sc))
2056 __count_vm_events(item, nr_scanned);
2057 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2058 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2059
2060 spin_unlock_irq(&pgdat->lru_lock);
2061
2062 if (nr_taken == 0)
2063 return 0;
2064
2065 trace_android_vh_shrink_inactive_list_blk_plug(&do_plug);
2066 if (do_plug)
2067 blk_start_plug(&plug);
2068 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2069
2070 spin_lock_irq(&pgdat->lru_lock);
2071
2072 move_pages_to_lru(lruvec, &page_list);
2073
2074 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2075 lru_note_cost(lruvec, file, stat.nr_pageout);
2076 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2077 if (!cgroup_reclaim(sc))
2078 __count_vm_events(item, nr_reclaimed);
2079 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2080 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2081
2082 spin_unlock_irq(&pgdat->lru_lock);
2083
2084 if (do_plug)
2085 blk_finish_plug(&plug);
2086
2087 mem_cgroup_uncharge_list(&page_list);
2088 free_unref_page_list(&page_list);
2089
2090 /*
2091 * If dirty pages are scanned that are not queued for IO, it
2092 * implies that flushers are not doing their job. This can
2093 * happen when memory pressure pushes dirty pages to the end of
2094 * the LRU before the dirty limits are breached and the dirty
2095 * data has expired. It can also happen when the proportion of
2096 * dirty pages grows not through writes but through memory
2097 * pressure reclaiming all the clean cache. And in some cases,
2098 * the flushers simply cannot keep up with the allocation
2099 * rate. Nudge the flusher threads in case they are asleep.
2100 */
2101 if (stat.nr_unqueued_dirty == nr_taken)
2102 wakeup_flusher_threads(WB_REASON_VMSCAN);
2103
2104 sc->nr.dirty += stat.nr_dirty;
2105 sc->nr.congested += stat.nr_congested;
2106 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2107 sc->nr.writeback += stat.nr_writeback;
2108 sc->nr.immediate += stat.nr_immediate;
2109 sc->nr.taken += nr_taken;
2110 if (file)
2111 sc->nr.file_taken += nr_taken;
2112
2113 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2114 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2115 return nr_reclaimed;
2116 }
2117
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2118 static void shrink_active_list(unsigned long nr_to_scan,
2119 struct lruvec *lruvec,
2120 struct scan_control *sc,
2121 enum lru_list lru)
2122 {
2123 unsigned long nr_taken;
2124 unsigned long nr_scanned;
2125 unsigned long vm_flags;
2126 LIST_HEAD(l_hold); /* The pages which were snipped off */
2127 LIST_HEAD(l_active);
2128 LIST_HEAD(l_inactive);
2129 struct page *page;
2130 unsigned nr_deactivate, nr_activate;
2131 unsigned nr_rotated = 0;
2132 int file = is_file_lru(lru);
2133 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2134
2135 lru_add_drain();
2136
2137 spin_lock_irq(&pgdat->lru_lock);
2138
2139 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2140 &nr_scanned, sc, lru);
2141
2142 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2143
2144 if (!cgroup_reclaim(sc))
2145 __count_vm_events(PGREFILL, nr_scanned);
2146 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2147
2148 spin_unlock_irq(&pgdat->lru_lock);
2149
2150 while (!list_empty(&l_hold)) {
2151 cond_resched();
2152 page = lru_to_page(&l_hold);
2153 list_del(&page->lru);
2154
2155 if (unlikely(!page_evictable(page))) {
2156 putback_lru_page(page);
2157 continue;
2158 }
2159
2160 if (unlikely(buffer_heads_over_limit)) {
2161 if (page_has_private(page) && trylock_page(page)) {
2162 if (page_has_private(page))
2163 try_to_release_page(page, 0);
2164 unlock_page(page);
2165 }
2166 }
2167
2168 /* Referenced or rmap lock contention: rotate */
2169 if (page_referenced(page, 0, sc->target_mem_cgroup,
2170 &vm_flags) != 0) {
2171 /*
2172 * Identify referenced, file-backed active pages and
2173 * give them one more trip around the active list. So
2174 * that executable code get better chances to stay in
2175 * memory under moderate memory pressure. Anon pages
2176 * are not likely to be evicted by use-once streaming
2177 * IO, plus JVM can create lots of anon VM_EXEC pages,
2178 * so we ignore them here.
2179 */
2180 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2181 nr_rotated += thp_nr_pages(page);
2182 list_add(&page->lru, &l_active);
2183 continue;
2184 }
2185 }
2186
2187 ClearPageActive(page); /* we are de-activating */
2188 SetPageWorkingset(page);
2189 list_add(&page->lru, &l_inactive);
2190 }
2191
2192 /*
2193 * Move pages back to the lru list.
2194 */
2195 spin_lock_irq(&pgdat->lru_lock);
2196
2197 nr_activate = move_pages_to_lru(lruvec, &l_active);
2198 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2199 /* Keep all free pages in l_active list */
2200 list_splice(&l_inactive, &l_active);
2201
2202 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2203 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2204
2205 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2206 spin_unlock_irq(&pgdat->lru_lock);
2207
2208 mem_cgroup_uncharge_list(&l_active);
2209 free_unref_page_list(&l_active);
2210 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2211 nr_deactivate, nr_rotated, sc->priority, file);
2212 }
2213
reclaim_pages(struct list_head * page_list)2214 unsigned long reclaim_pages(struct list_head *page_list)
2215 {
2216 int nid = NUMA_NO_NODE;
2217 unsigned int nr_reclaimed = 0;
2218 LIST_HEAD(node_page_list);
2219 struct reclaim_stat dummy_stat;
2220 struct page *page;
2221 struct blk_plug plug;
2222 bool do_plug = false;
2223 struct scan_control sc = {
2224 .gfp_mask = GFP_KERNEL,
2225 .priority = DEF_PRIORITY,
2226 .may_writepage = 1,
2227 .may_unmap = 1,
2228 .may_swap = 1,
2229 };
2230
2231 trace_android_vh_reclaim_pages_plug(&do_plug);
2232 if (do_plug)
2233 blk_start_plug(&plug);
2234
2235 while (!list_empty(page_list)) {
2236 page = lru_to_page(page_list);
2237 if (nid == NUMA_NO_NODE) {
2238 nid = page_to_nid(page);
2239 INIT_LIST_HEAD(&node_page_list);
2240 }
2241
2242 if (nid == page_to_nid(page)) {
2243 ClearPageActive(page);
2244 list_move(&page->lru, &node_page_list);
2245 continue;
2246 }
2247
2248 nr_reclaimed += shrink_page_list(&node_page_list,
2249 NODE_DATA(nid),
2250 &sc, &dummy_stat, false);
2251 while (!list_empty(&node_page_list)) {
2252 page = lru_to_page(&node_page_list);
2253 list_del(&page->lru);
2254 putback_lru_page(page);
2255 }
2256
2257 nid = NUMA_NO_NODE;
2258 }
2259
2260 if (!list_empty(&node_page_list)) {
2261 nr_reclaimed += shrink_page_list(&node_page_list,
2262 NODE_DATA(nid),
2263 &sc, &dummy_stat, false);
2264 while (!list_empty(&node_page_list)) {
2265 page = lru_to_page(&node_page_list);
2266 list_del(&page->lru);
2267 putback_lru_page(page);
2268 }
2269 }
2270 if (do_plug)
2271 blk_finish_plug(&plug);
2272
2273 return nr_reclaimed;
2274 }
2275
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc)2276 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2277 struct lruvec *lruvec, struct scan_control *sc)
2278 {
2279 if (is_active_lru(lru)) {
2280 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2281 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2282 else
2283 sc->skipped_deactivate = 1;
2284 return 0;
2285 }
2286
2287 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2288 }
2289
2290 /*
2291 * The inactive anon list should be small enough that the VM never has
2292 * to do too much work.
2293 *
2294 * The inactive file list should be small enough to leave most memory
2295 * to the established workingset on the scan-resistant active list,
2296 * but large enough to avoid thrashing the aggregate readahead window.
2297 *
2298 * Both inactive lists should also be large enough that each inactive
2299 * page has a chance to be referenced again before it is reclaimed.
2300 *
2301 * If that fails and refaulting is observed, the inactive list grows.
2302 *
2303 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2304 * on this LRU, maintained by the pageout code. An inactive_ratio
2305 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2306 *
2307 * total target max
2308 * memory ratio inactive
2309 * -------------------------------------
2310 * 10MB 1 5MB
2311 * 100MB 1 50MB
2312 * 1GB 3 250MB
2313 * 10GB 10 0.9GB
2314 * 100GB 31 3GB
2315 * 1TB 101 10GB
2316 * 10TB 320 32GB
2317 */
inactive_is_low(struct lruvec * lruvec,enum lru_list inactive_lru)2318 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2319 {
2320 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2321 unsigned long inactive, active;
2322 unsigned long inactive_ratio;
2323 unsigned long gb;
2324
2325 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2326 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2327
2328 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2329 if (gb)
2330 inactive_ratio = int_sqrt(10 * gb);
2331 else
2332 inactive_ratio = 1;
2333
2334 trace_android_vh_tune_inactive_ratio(&inactive_ratio, is_file_lru(inactive_lru));
2335
2336 return inactive * inactive_ratio < active;
2337 }
2338
2339 enum scan_balance {
2340 SCAN_EQUAL,
2341 SCAN_FRACT,
2342 SCAN_ANON,
2343 SCAN_FILE,
2344 };
2345
prepare_scan_count(pg_data_t * pgdat,struct scan_control * sc)2346 static void prepare_scan_count(pg_data_t *pgdat, struct scan_control *sc)
2347 {
2348 unsigned long file;
2349 struct lruvec *target_lruvec;
2350
2351 if (lru_gen_enabled())
2352 return;
2353
2354 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2355
2356 /*
2357 * Determine the scan balance between anon and file LRUs.
2358 */
2359 spin_lock_irq(&pgdat->lru_lock);
2360 sc->anon_cost = target_lruvec->anon_cost;
2361 sc->file_cost = target_lruvec->file_cost;
2362 spin_unlock_irq(&pgdat->lru_lock);
2363
2364 /*
2365 * Target desirable inactive:active list ratios for the anon
2366 * and file LRU lists.
2367 */
2368 if (!sc->force_deactivate) {
2369 unsigned long refaults;
2370
2371 refaults = lruvec_page_state(target_lruvec,
2372 WORKINGSET_ACTIVATE_ANON);
2373 if (refaults != target_lruvec->refaults[0] ||
2374 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2375 sc->may_deactivate |= DEACTIVATE_ANON;
2376 else
2377 sc->may_deactivate &= ~DEACTIVATE_ANON;
2378
2379 /*
2380 * When refaults are being observed, it means a new
2381 * workingset is being established. Deactivate to get
2382 * rid of any stale active pages quickly.
2383 */
2384 refaults = lruvec_page_state(target_lruvec,
2385 WORKINGSET_ACTIVATE_FILE);
2386 if (refaults != target_lruvec->refaults[1] ||
2387 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2388 sc->may_deactivate |= DEACTIVATE_FILE;
2389 else
2390 sc->may_deactivate &= ~DEACTIVATE_FILE;
2391 } else
2392 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2393
2394 /*
2395 * If we have plenty of inactive file pages that aren't
2396 * thrashing, try to reclaim those first before touching
2397 * anonymous pages.
2398 */
2399 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2400 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
2401 sc->cache_trim_mode = 1;
2402 else
2403 sc->cache_trim_mode = 0;
2404
2405 /*
2406 * Prevent the reclaimer from falling into the cache trap: as
2407 * cache pages start out inactive, every cache fault will tip
2408 * the scan balance towards the file LRU. And as the file LRU
2409 * shrinks, so does the window for rotation from references.
2410 * This means we have a runaway feedback loop where a tiny
2411 * thrashing file LRU becomes infinitely more attractive than
2412 * anon pages. Try to detect this based on file LRU size.
2413 */
2414 if (!cgroup_reclaim(sc)) {
2415 unsigned long total_high_wmark = 0;
2416 unsigned long free, anon;
2417 int z;
2418
2419 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2420 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2421 node_page_state(pgdat, NR_INACTIVE_FILE);
2422
2423 for (z = 0; z < MAX_NR_ZONES; z++) {
2424 struct zone *zone = &pgdat->node_zones[z];
2425
2426 if (!managed_zone(zone))
2427 continue;
2428
2429 total_high_wmark += high_wmark_pages(zone);
2430 }
2431
2432 /*
2433 * Consider anon: if that's low too, this isn't a
2434 * runaway file reclaim problem, but rather just
2435 * extreme pressure. Reclaim as per usual then.
2436 */
2437 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2438
2439 sc->file_is_tiny =
2440 file + free <= total_high_wmark &&
2441 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2442 anon >> sc->priority;
2443 }
2444 }
2445
2446 /*
2447 * Determine how aggressively the anon and file LRU lists should be
2448 * scanned. The relative value of each set of LRU lists is determined
2449 * by looking at the fraction of the pages scanned we did rotate back
2450 * onto the active list instead of evict.
2451 *
2452 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2453 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2454 */
get_scan_count(struct lruvec * lruvec,struct scan_control * sc,unsigned long * nr)2455 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2456 unsigned long *nr)
2457 {
2458 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2459 unsigned long anon_cost, file_cost, total_cost;
2460 int swappiness = mem_cgroup_swappiness(memcg);
2461 u64 fraction[ANON_AND_FILE];
2462 u64 denominator = 0; /* gcc */
2463 enum scan_balance scan_balance;
2464 unsigned long ap, fp;
2465 enum lru_list lru;
2466 bool balance_anon_file_reclaim = false;
2467
2468 /* If we have no swap space, do not bother scanning anon pages. */
2469 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2470 scan_balance = SCAN_FILE;
2471 goto out;
2472 }
2473
2474 trace_android_vh_tune_swappiness(&swappiness);
2475 /*
2476 * Global reclaim will swap to prevent OOM even with no
2477 * swappiness, but memcg users want to use this knob to
2478 * disable swapping for individual groups completely when
2479 * using the memory controller's swap limit feature would be
2480 * too expensive.
2481 */
2482 if (cgroup_reclaim(sc) && !swappiness) {
2483 scan_balance = SCAN_FILE;
2484 goto out;
2485 }
2486
2487 /*
2488 * Do not apply any pressure balancing cleverness when the
2489 * system is close to OOM, scan both anon and file equally
2490 * (unless the swappiness setting disagrees with swapping).
2491 */
2492 if (!sc->priority && swappiness) {
2493 scan_balance = SCAN_EQUAL;
2494 goto out;
2495 }
2496
2497 /*
2498 * If the system is almost out of file pages, force-scan anon.
2499 */
2500 if (sc->file_is_tiny) {
2501 scan_balance = SCAN_ANON;
2502 goto out;
2503 }
2504
2505 trace_android_rvh_set_balance_anon_file_reclaim(&balance_anon_file_reclaim);
2506
2507 /*
2508 * If there is enough inactive page cache, we do not reclaim
2509 * anything from the anonymous working right now. But when balancing
2510 * anon and page cache files for reclaim, allow swapping of anon pages
2511 * even if there are a number of inactive file cache pages.
2512 */
2513 if (!balance_anon_file_reclaim && sc->cache_trim_mode) {
2514 scan_balance = SCAN_FILE;
2515 goto out;
2516 }
2517
2518 scan_balance = SCAN_FRACT;
2519 /*
2520 * Calculate the pressure balance between anon and file pages.
2521 *
2522 * The amount of pressure we put on each LRU is inversely
2523 * proportional to the cost of reclaiming each list, as
2524 * determined by the share of pages that are refaulting, times
2525 * the relative IO cost of bringing back a swapped out
2526 * anonymous page vs reloading a filesystem page (swappiness).
2527 *
2528 * Although we limit that influence to ensure no list gets
2529 * left behind completely: at least a third of the pressure is
2530 * applied, before swappiness.
2531 *
2532 * With swappiness at 100, anon and file have equal IO cost.
2533 */
2534 total_cost = sc->anon_cost + sc->file_cost;
2535 anon_cost = total_cost + sc->anon_cost;
2536 file_cost = total_cost + sc->file_cost;
2537 total_cost = anon_cost + file_cost;
2538
2539 ap = swappiness * (total_cost + 1);
2540 ap /= anon_cost + 1;
2541
2542 fp = (200 - swappiness) * (total_cost + 1);
2543 fp /= file_cost + 1;
2544
2545 fraction[0] = ap;
2546 fraction[1] = fp;
2547 denominator = ap + fp;
2548 out:
2549 trace_android_vh_tune_scan_type((char *)(&scan_balance));
2550 trace_android_vh_tune_memcg_scan_type(memcg, (char *)(&scan_balance));
2551 for_each_evictable_lru(lru) {
2552 int file = is_file_lru(lru);
2553 unsigned long lruvec_size;
2554 unsigned long low, min;
2555 unsigned long scan;
2556
2557 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2558 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2559 &min, &low);
2560
2561 if (min || low) {
2562 /*
2563 * Scale a cgroup's reclaim pressure by proportioning
2564 * its current usage to its memory.low or memory.min
2565 * setting.
2566 *
2567 * This is important, as otherwise scanning aggression
2568 * becomes extremely binary -- from nothing as we
2569 * approach the memory protection threshold, to totally
2570 * nominal as we exceed it. This results in requiring
2571 * setting extremely liberal protection thresholds. It
2572 * also means we simply get no protection at all if we
2573 * set it too low, which is not ideal.
2574 *
2575 * If there is any protection in place, we reduce scan
2576 * pressure by how much of the total memory used is
2577 * within protection thresholds.
2578 *
2579 * There is one special case: in the first reclaim pass,
2580 * we skip over all groups that are within their low
2581 * protection. If that fails to reclaim enough pages to
2582 * satisfy the reclaim goal, we come back and override
2583 * the best-effort low protection. However, we still
2584 * ideally want to honor how well-behaved groups are in
2585 * that case instead of simply punishing them all
2586 * equally. As such, we reclaim them based on how much
2587 * memory they are using, reducing the scan pressure
2588 * again by how much of the total memory used is under
2589 * hard protection.
2590 */
2591 unsigned long cgroup_size = mem_cgroup_size(memcg);
2592 unsigned long protection;
2593
2594 /* memory.low scaling, make sure we retry before OOM */
2595 if (!sc->memcg_low_reclaim && low > min) {
2596 protection = low;
2597 sc->memcg_low_skipped = 1;
2598 } else {
2599 protection = min;
2600 }
2601
2602 /* Avoid TOCTOU with earlier protection check */
2603 cgroup_size = max(cgroup_size, protection);
2604
2605 scan = lruvec_size - lruvec_size * protection /
2606 (cgroup_size + 1);
2607
2608 /*
2609 * Minimally target SWAP_CLUSTER_MAX pages to keep
2610 * reclaim moving forwards, avoiding decrementing
2611 * sc->priority further than desirable.
2612 */
2613 scan = max(scan, SWAP_CLUSTER_MAX);
2614 } else {
2615 scan = lruvec_size;
2616 }
2617
2618 scan >>= sc->priority;
2619
2620 /*
2621 * If the cgroup's already been deleted, make sure to
2622 * scrape out the remaining cache.
2623 */
2624 if (!scan && !mem_cgroup_online(memcg))
2625 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2626
2627 switch (scan_balance) {
2628 case SCAN_EQUAL:
2629 /* Scan lists relative to size */
2630 break;
2631 case SCAN_FRACT:
2632 /*
2633 * Scan types proportional to swappiness and
2634 * their relative recent reclaim efficiency.
2635 * Make sure we don't miss the last page on
2636 * the offlined memory cgroups because of a
2637 * round-off error.
2638 */
2639 scan = mem_cgroup_online(memcg) ?
2640 div64_u64(scan * fraction[file], denominator) :
2641 DIV64_U64_ROUND_UP(scan * fraction[file],
2642 denominator);
2643 break;
2644 case SCAN_FILE:
2645 case SCAN_ANON:
2646 /* Scan one type exclusively */
2647 if ((scan_balance == SCAN_FILE) != file)
2648 scan = 0;
2649 break;
2650 default:
2651 /* Look ma, no brain */
2652 BUG();
2653 }
2654
2655 nr[lru] = scan;
2656 }
2657 }
2658
2659 #ifdef CONFIG_LRU_GEN
2660
2661 #ifdef CONFIG_LRU_GEN_ENABLED
2662 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2663 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
2664 #else
2665 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2666 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
2667 #endif
2668
2669 /******************************************************************************
2670 * shorthand helpers
2671 ******************************************************************************/
2672
2673 #define LRU_REFS_FLAGS (BIT(PG_referenced) | BIT(PG_workingset))
2674
2675 #define DEFINE_MAX_SEQ(lruvec) \
2676 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2677
2678 #define DEFINE_MIN_SEQ(lruvec) \
2679 unsigned long min_seq[ANON_AND_FILE] = { \
2680 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
2681 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
2682 }
2683
2684 #define for_each_gen_type_zone(gen, type, zone) \
2685 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
2686 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
2687 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2688
get_lruvec(struct mem_cgroup * memcg,int nid)2689 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2690 {
2691 struct pglist_data *pgdat = NODE_DATA(nid);
2692
2693 #ifdef CONFIG_MEMCG
2694 if (memcg) {
2695 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2696
2697 /* for hotadd_new_pgdat() */
2698 if (!lruvec->pgdat)
2699 lruvec->pgdat = pgdat;
2700
2701 return lruvec;
2702 }
2703 #endif
2704 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2705
2706 return pgdat ? &pgdat->__lruvec : NULL;
2707 }
2708
get_swappiness(struct lruvec * lruvec,struct scan_control * sc)2709 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2710 {
2711 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2712
2713 if (mem_cgroup_get_nr_swap_pages(memcg) <= 0)
2714 return 0;
2715
2716 return mem_cgroup_swappiness(memcg);
2717 }
2718
get_nr_gens(struct lruvec * lruvec,int type)2719 static int get_nr_gens(struct lruvec *lruvec, int type)
2720 {
2721 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2722 }
2723
seq_is_valid(struct lruvec * lruvec)2724 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2725 {
2726 /* see the comment on lru_gen_struct */
2727 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2728 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
2729 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
2730 }
2731
2732 /******************************************************************************
2733 * mm_struct list
2734 ******************************************************************************/
2735
get_mm_list(struct mem_cgroup * memcg)2736 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2737 {
2738 static struct lru_gen_mm_list mm_list = {
2739 .fifo = LIST_HEAD_INIT(mm_list.fifo),
2740 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2741 };
2742
2743 #ifdef CONFIG_MEMCG
2744 if (memcg)
2745 return &memcg->mm_list;
2746 #endif
2747 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2748
2749 return &mm_list;
2750 }
2751
lru_gen_add_mm(struct mm_struct * mm)2752 void lru_gen_add_mm(struct mm_struct *mm)
2753 {
2754 int nid;
2755 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2756 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2757
2758 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2759 #ifdef CONFIG_MEMCG
2760 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2761 mm->lru_gen.memcg = memcg;
2762 #endif
2763 spin_lock(&mm_list->lock);
2764
2765 for_each_node_state(nid, N_MEMORY) {
2766 struct lruvec *lruvec = get_lruvec(memcg, nid);
2767
2768 if (!lruvec)
2769 continue;
2770
2771 /* the first addition since the last iteration */
2772 if (lruvec->mm_state.tail == &mm_list->fifo)
2773 lruvec->mm_state.tail = &mm->lru_gen.list;
2774 }
2775
2776 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2777
2778 spin_unlock(&mm_list->lock);
2779 }
2780
lru_gen_del_mm(struct mm_struct * mm)2781 void lru_gen_del_mm(struct mm_struct *mm)
2782 {
2783 int nid;
2784 struct lru_gen_mm_list *mm_list;
2785 struct mem_cgroup *memcg = NULL;
2786
2787 if (list_empty(&mm->lru_gen.list))
2788 return;
2789
2790 #ifdef CONFIG_MEMCG
2791 memcg = mm->lru_gen.memcg;
2792 #endif
2793 mm_list = get_mm_list(memcg);
2794
2795 spin_lock(&mm_list->lock);
2796
2797 for_each_node(nid) {
2798 struct lruvec *lruvec = get_lruvec(memcg, nid);
2799
2800 if (!lruvec)
2801 continue;
2802
2803 /* where the current iteration continues after */
2804 if (lruvec->mm_state.head == &mm->lru_gen.list)
2805 lruvec->mm_state.head = lruvec->mm_state.head->prev;
2806
2807 /* where the last iteration ended before */
2808 if (lruvec->mm_state.tail == &mm->lru_gen.list)
2809 lruvec->mm_state.tail = lruvec->mm_state.tail->next;
2810 }
2811
2812 list_del_init(&mm->lru_gen.list);
2813
2814 spin_unlock(&mm_list->lock);
2815
2816 #ifdef CONFIG_MEMCG
2817 mem_cgroup_put(mm->lru_gen.memcg);
2818 mm->lru_gen.memcg = NULL;
2819 #endif
2820 }
2821
2822 #ifdef CONFIG_MEMCG
lru_gen_migrate_mm(struct mm_struct * mm)2823 void lru_gen_migrate_mm(struct mm_struct *mm)
2824 {
2825 struct mem_cgroup *memcg;
2826 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2827
2828 VM_WARN_ON_ONCE(task->mm != mm);
2829 lockdep_assert_held(&task->alloc_lock);
2830
2831 /* for mm_update_next_owner() */
2832 if (mem_cgroup_disabled())
2833 return;
2834
2835 /* migration can happen before addition */
2836 if (!mm->lru_gen.memcg)
2837 return;
2838
2839 rcu_read_lock();
2840 memcg = mem_cgroup_from_task(task);
2841 rcu_read_unlock();
2842 if (memcg == mm->lru_gen.memcg)
2843 return;
2844
2845 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2846
2847 lru_gen_del_mm(mm);
2848 lru_gen_add_mm(mm);
2849 }
2850 #endif
2851
2852 /*
2853 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2854 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2855 * bits in a bitmap, k is the number of hash functions and n is the number of
2856 * inserted items.
2857 *
2858 * Page table walkers use one of the two filters to reduce their search space.
2859 * To get rid of non-leaf entries that no longer have enough leaf entries, the
2860 * aging uses the double-buffering technique to flip to the other filter each
2861 * time it produces a new generation. For non-leaf entries that have enough
2862 * leaf entries, the aging carries them over to the next generation in
2863 * walk_pmd_range(); the eviction also report them when walking the rmap
2864 * in lru_gen_look_around().
2865 *
2866 * For future optimizations:
2867 * 1. It's not necessary to keep both filters all the time. The spare one can be
2868 * freed after the RCU grace period and reallocated if needed again.
2869 * 2. And when reallocating, it's worth scaling its size according to the number
2870 * of inserted entries in the other filter, to reduce the memory overhead on
2871 * small systems and false positives on large systems.
2872 * 3. Jenkins' hash function is an alternative to Knuth's.
2873 */
2874 #define BLOOM_FILTER_SHIFT 15
2875
filter_gen_from_seq(unsigned long seq)2876 static inline int filter_gen_from_seq(unsigned long seq)
2877 {
2878 return seq % NR_BLOOM_FILTERS;
2879 }
2880
get_item_key(void * item,int * key)2881 static void get_item_key(void *item, int *key)
2882 {
2883 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2884
2885 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2886
2887 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2888 key[1] = hash >> BLOOM_FILTER_SHIFT;
2889 }
2890
reset_bloom_filter(struct lruvec * lruvec,unsigned long seq)2891 static void reset_bloom_filter(struct lruvec *lruvec, unsigned long seq)
2892 {
2893 unsigned long *filter;
2894 int gen = filter_gen_from_seq(seq);
2895
2896 filter = lruvec->mm_state.filters[gen];
2897 if (filter) {
2898 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2899 return;
2900 }
2901
2902 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2903 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2904 WRITE_ONCE(lruvec->mm_state.filters[gen], filter);
2905 }
2906
update_bloom_filter(struct lruvec * lruvec,unsigned long seq,void * item)2907 static void update_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
2908 {
2909 int key[2];
2910 unsigned long *filter;
2911 int gen = filter_gen_from_seq(seq);
2912
2913 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
2914 if (!filter)
2915 return;
2916
2917 get_item_key(item, key);
2918
2919 if (!test_bit(key[0], filter))
2920 set_bit(key[0], filter);
2921 if (!test_bit(key[1], filter))
2922 set_bit(key[1], filter);
2923 }
2924
test_bloom_filter(struct lruvec * lruvec,unsigned long seq,void * item)2925 static bool test_bloom_filter(struct lruvec *lruvec, unsigned long seq, void *item)
2926 {
2927 int key[2];
2928 unsigned long *filter;
2929 int gen = filter_gen_from_seq(seq);
2930
2931 filter = READ_ONCE(lruvec->mm_state.filters[gen]);
2932 if (!filter)
2933 return true;
2934
2935 get_item_key(item, key);
2936
2937 return test_bit(key[0], filter) && test_bit(key[1], filter);
2938 }
2939
reset_mm_stats(struct lruvec * lruvec,struct lru_gen_mm_walk * walk,bool last)2940 static void reset_mm_stats(struct lruvec *lruvec, struct lru_gen_mm_walk *walk, bool last)
2941 {
2942 int i;
2943 int hist;
2944
2945 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2946
2947 if (walk) {
2948 hist = lru_hist_from_seq(walk->max_seq);
2949
2950 for (i = 0; i < NR_MM_STATS; i++) {
2951 WRITE_ONCE(lruvec->mm_state.stats[hist][i],
2952 lruvec->mm_state.stats[hist][i] + walk->mm_stats[i]);
2953 walk->mm_stats[i] = 0;
2954 }
2955 }
2956
2957 if (NR_HIST_GENS > 1 && last) {
2958 hist = lru_hist_from_seq(lruvec->mm_state.seq + 1);
2959
2960 for (i = 0; i < NR_MM_STATS; i++)
2961 WRITE_ONCE(lruvec->mm_state.stats[hist][i], 0);
2962 }
2963 }
2964
should_skip_mm(struct mm_struct * mm,struct lru_gen_mm_walk * walk)2965 static bool should_skip_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
2966 {
2967 int type;
2968 unsigned long size = 0;
2969 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2970 int key = pgdat->node_id;
2971
2972 if (!walk->full_scan && !node_isset(key, mm->lru_gen.nodes))
2973 return true;
2974
2975 node_clear(key, mm->lru_gen.nodes);
2976
2977 for (type = !walk->can_swap; type < ANON_AND_FILE; type++) {
2978 size += type ? get_mm_counter(mm, MM_FILEPAGES) :
2979 get_mm_counter(mm, MM_ANONPAGES) +
2980 get_mm_counter(mm, MM_SHMEMPAGES);
2981 }
2982
2983 if (size < MIN_LRU_BATCH)
2984 return true;
2985
2986 return !mmget_not_zero(mm);
2987 }
2988
iterate_mm_list(struct lruvec * lruvec,struct lru_gen_mm_walk * walk,struct mm_struct ** iter)2989 static bool iterate_mm_list(struct lruvec *lruvec, struct lru_gen_mm_walk *walk,
2990 struct mm_struct **iter)
2991 {
2992 bool first = false;
2993 bool last = false;
2994 struct mm_struct *mm = NULL;
2995 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2996 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2997 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
2998
2999 /*
3000 * mm_state->seq is incremented after each iteration of mm_list. There
3001 * are three interesting cases for this page table walker:
3002 * 1. It tries to start a new iteration with a stale max_seq: there is
3003 * nothing left to do.
3004 * 2. It started the next iteration: it needs to reset the Bloom filter
3005 * so that a fresh set of PTE tables can be recorded.
3006 * 3. It ended the current iteration: it needs to reset the mm stats
3007 * counters and tell its caller to increment max_seq.
3008 */
3009 spin_lock(&mm_list->lock);
3010
3011 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->max_seq);
3012
3013 if (walk->max_seq <= mm_state->seq)
3014 goto done;
3015
3016 if (!mm_state->head)
3017 mm_state->head = &mm_list->fifo;
3018
3019 if (mm_state->head == &mm_list->fifo)
3020 first = true;
3021
3022 do {
3023 mm_state->head = mm_state->head->next;
3024 if (mm_state->head == &mm_list->fifo) {
3025 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3026 last = true;
3027 break;
3028 }
3029
3030 /* force scan for those added after the last iteration */
3031 if (!mm_state->tail || mm_state->tail == mm_state->head) {
3032 mm_state->tail = mm_state->head->next;
3033 walk->full_scan = true;
3034 }
3035
3036 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
3037 if (should_skip_mm(mm, walk))
3038 mm = NULL;
3039 } while (!mm);
3040 done:
3041 if (*iter || last)
3042 reset_mm_stats(lruvec, walk, last);
3043
3044 spin_unlock(&mm_list->lock);
3045
3046 if (mm && first)
3047 reset_bloom_filter(lruvec, walk->max_seq + 1);
3048
3049 if (*iter)
3050 mmput_async(*iter);
3051
3052 *iter = mm;
3053
3054 return last;
3055 }
3056
iterate_mm_list_nowalk(struct lruvec * lruvec,unsigned long max_seq)3057 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long max_seq)
3058 {
3059 bool success = false;
3060 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3061 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3062 struct lru_gen_mm_state *mm_state = &lruvec->mm_state;
3063
3064 spin_lock(&mm_list->lock);
3065
3066 VM_WARN_ON_ONCE(mm_state->seq + 1 < max_seq);
3067
3068 if (max_seq > mm_state->seq) {
3069 mm_state->head = NULL;
3070 mm_state->tail = NULL;
3071 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3072 reset_mm_stats(lruvec, NULL, true);
3073 success = true;
3074 }
3075
3076 spin_unlock(&mm_list->lock);
3077
3078 return success;
3079 }
3080
3081 /******************************************************************************
3082 * refault feedback loop
3083 ******************************************************************************/
3084
3085 /*
3086 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3087 *
3088 * The P term is refaulted/(evicted+protected) from a tier in the generation
3089 * currently being evicted; the I term is the exponential moving average of the
3090 * P term over the generations previously evicted, using the smoothing factor
3091 * 1/2; the D term isn't supported.
3092 *
3093 * The setpoint (SP) is always the first tier of one type; the process variable
3094 * (PV) is either any tier of the other type or any other tier of the same
3095 * type.
3096 *
3097 * The error is the difference between the SP and the PV; the correction is to
3098 * turn off protection when SP>PV or turn on protection when SP<PV.
3099 *
3100 * For future optimizations:
3101 * 1. The D term may discount the other two terms over time so that long-lived
3102 * generations can resist stale information.
3103 */
3104 struct ctrl_pos {
3105 unsigned long refaulted;
3106 unsigned long total;
3107 int gain;
3108 };
3109
read_ctrl_pos(struct lruvec * lruvec,int type,int tier,int gain,struct ctrl_pos * pos)3110 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3111 struct ctrl_pos *pos)
3112 {
3113 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3114 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3115
3116 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3117 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3118 pos->total = lrugen->avg_total[type][tier] +
3119 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3120 if (tier)
3121 pos->total += lrugen->protected[hist][type][tier - 1];
3122 pos->gain = gain;
3123 }
3124
reset_ctrl_pos(struct lruvec * lruvec,int type,bool carryover)3125 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3126 {
3127 int hist, tier;
3128 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3129 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3130 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3131
3132 lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
3133
3134 if (!carryover && !clear)
3135 return;
3136
3137 hist = lru_hist_from_seq(seq);
3138
3139 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3140 if (carryover) {
3141 unsigned long sum;
3142
3143 sum = lrugen->avg_refaulted[type][tier] +
3144 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3145 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3146
3147 sum = lrugen->avg_total[type][tier] +
3148 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3149 if (tier)
3150 sum += lrugen->protected[hist][type][tier - 1];
3151 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3152 }
3153
3154 if (clear) {
3155 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3156 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3157 if (tier)
3158 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3159 }
3160 }
3161 }
3162
positive_ctrl_err(struct ctrl_pos * sp,struct ctrl_pos * pv)3163 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3164 {
3165 /*
3166 * Return true if the PV has a limited number of refaults or a lower
3167 * refaulted/total than the SP.
3168 */
3169 return pv->refaulted < MIN_LRU_BATCH ||
3170 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3171 (sp->refaulted + 1) * pv->total * pv->gain;
3172 }
3173
3174 /******************************************************************************
3175 * the aging
3176 ******************************************************************************/
3177
3178 /* promote pages accessed through page tables */
page_update_gen(struct page * page,int gen)3179 static int page_update_gen(struct page *page, int gen)
3180 {
3181 unsigned long new_flags, old_flags;
3182
3183 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3184 VM_WARN_ON_ONCE(!rcu_read_lock_held());
3185
3186 do {
3187 old_flags = READ_ONCE(page->flags);
3188
3189 /* lru_gen_del_page() has isolated this page? */
3190 if (!(old_flags & LRU_GEN_MASK)) {
3191 /* for shrink_page_list() */
3192 new_flags = old_flags | BIT(PG_referenced);
3193 continue;
3194 }
3195
3196 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3197 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3198 } while (cmpxchg(&page->flags, old_flags, new_flags) != old_flags);
3199
3200 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3201 }
3202
3203 /* protect pages accessed multiple times through file descriptors */
page_inc_gen(struct lruvec * lruvec,struct page * page,bool reclaiming)3204 static int page_inc_gen(struct lruvec *lruvec, struct page *page, bool reclaiming)
3205 {
3206 int type = page_is_file_lru(page);
3207 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3208 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3209 unsigned long new_flags, old_flags;
3210
3211 do {
3212 old_flags = READ_ONCE(page->flags);
3213
3214 VM_WARN_ON_ONCE_PAGE(!(old_flags & LRU_GEN_MASK), page);
3215
3216 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3217 /* page_update_gen() has promoted this page? */
3218 if (new_gen >= 0 && new_gen != old_gen)
3219 return new_gen;
3220
3221 new_gen = (old_gen + 1) % MAX_NR_GENS;
3222
3223 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3224 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3225 /* for end_page_writeback() */
3226 if (reclaiming)
3227 new_flags |= BIT(PG_reclaim);
3228 } while (cmpxchg(&page->flags, old_flags, new_flags) != old_flags);
3229
3230 lru_gen_update_size(lruvec, page, old_gen, new_gen);
3231
3232 return new_gen;
3233 }
3234
update_batch_size(struct lru_gen_mm_walk * walk,struct page * page,int old_gen,int new_gen)3235 static void update_batch_size(struct lru_gen_mm_walk *walk, struct page *page,
3236 int old_gen, int new_gen)
3237 {
3238 int type = page_is_file_lru(page);
3239 int zone = page_zonenum(page);
3240 int delta = thp_nr_pages(page);
3241
3242 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3243 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3244
3245 walk->batched++;
3246
3247 walk->nr_pages[old_gen][type][zone] -= delta;
3248 walk->nr_pages[new_gen][type][zone] += delta;
3249 }
3250
reset_batch_size(struct lruvec * lruvec,struct lru_gen_mm_walk * walk)3251 static void reset_batch_size(struct lruvec *lruvec, struct lru_gen_mm_walk *walk)
3252 {
3253 int gen, type, zone;
3254 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3255
3256 walk->batched = 0;
3257
3258 for_each_gen_type_zone(gen, type, zone) {
3259 enum lru_list lru = type * LRU_INACTIVE_FILE;
3260 int delta = walk->nr_pages[gen][type][zone];
3261
3262 if (!delta)
3263 continue;
3264
3265 walk->nr_pages[gen][type][zone] = 0;
3266 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3267 lrugen->nr_pages[gen][type][zone] + delta);
3268
3269 if (lru_gen_is_active(lruvec, gen))
3270 lru += LRU_ACTIVE;
3271 __update_lru_size(lruvec, lru, zone, delta);
3272 }
3273 }
3274
should_skip_vma(unsigned long start,unsigned long end,struct mm_walk * args)3275 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3276 {
3277 struct address_space *mapping;
3278 struct vm_area_struct *vma = args->vma;
3279 struct lru_gen_mm_walk *walk = args->private;
3280
3281 if (!vma_is_accessible(vma))
3282 return true;
3283
3284 if (is_vm_hugetlb_page(vma))
3285 return true;
3286
3287 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL | VM_SEQ_READ | VM_RAND_READ))
3288 return true;
3289
3290 if (vma == get_gate_vma(vma->vm_mm))
3291 return true;
3292
3293 if (vma_is_anonymous(vma))
3294 return !walk->can_swap;
3295
3296 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3297 return true;
3298
3299 mapping = vma->vm_file->f_mapping;
3300 if (mapping_unevictable(mapping))
3301 return true;
3302
3303 if (shmem_mapping(mapping))
3304 return !walk->can_swap;
3305
3306 /* to exclude special mappings like dax, etc. */
3307 return !mapping->a_ops->readpage;
3308 }
3309
3310 /*
3311 * Some userspace memory allocators map many single-page VMAs. Instead of
3312 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3313 * table to reduce zigzags and improve cache performance.
3314 */
get_next_vma(unsigned long mask,unsigned long size,struct mm_walk * args,unsigned long * vm_start,unsigned long * vm_end)3315 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3316 unsigned long *vm_start, unsigned long *vm_end)
3317 {
3318 unsigned long start = round_up(*vm_end, size);
3319 unsigned long end = (start | ~mask) + 1;
3320
3321 VM_WARN_ON_ONCE(mask & size);
3322 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3323
3324 while (args->vma) {
3325 if (start >= args->vma->vm_end) {
3326 args->vma = args->vma->vm_next;
3327 continue;
3328 }
3329
3330 if (end && end <= args->vma->vm_start)
3331 return false;
3332
3333 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args)) {
3334 args->vma = args->vma->vm_next;
3335 continue;
3336 }
3337
3338 *vm_start = max(start, args->vma->vm_start);
3339 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3340
3341 return true;
3342 }
3343
3344 return false;
3345 }
3346
get_pte_pfn(pte_t pte,struct vm_area_struct * vma,unsigned long addr)3347 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr)
3348 {
3349 unsigned long pfn = pte_pfn(pte);
3350
3351 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3352
3353 if (!pte_present(pte) || is_zero_pfn(pfn))
3354 return -1;
3355
3356 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3357 return -1;
3358
3359 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3360 return -1;
3361
3362 return pfn;
3363 }
3364
3365 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
get_pmd_pfn(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)3366 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr)
3367 {
3368 unsigned long pfn = pmd_pfn(pmd);
3369
3370 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3371
3372 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3373 return -1;
3374
3375 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3376 return -1;
3377
3378 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3379 return -1;
3380
3381 return pfn;
3382 }
3383 #endif
3384
get_pfn_page(unsigned long pfn,struct mem_cgroup * memcg,struct pglist_data * pgdat,bool can_swap)3385 static struct page *get_pfn_page(unsigned long pfn, struct mem_cgroup *memcg,
3386 struct pglist_data *pgdat, bool can_swap)
3387 {
3388 struct page *page;
3389
3390 /* try to avoid unnecessary memory loads */
3391 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3392 return NULL;
3393
3394 page = compound_head(pfn_to_page(pfn));
3395 if (page_to_nid(page) != pgdat->node_id)
3396 return NULL;
3397
3398 if (page_memcg_rcu(page) != memcg)
3399 return NULL;
3400
3401 /* file VMAs can contain anon pages from COW */
3402 if (!page_is_file_lru(page) && !can_swap)
3403 return NULL;
3404
3405 return page;
3406 }
3407
suitable_to_scan(int total,int young)3408 static bool suitable_to_scan(int total, int young)
3409 {
3410 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3411
3412 /* suitable if the average number of young PTEs per cacheline is >=1 */
3413 return young * n >= total;
3414 }
3415
walk_pte_range(pmd_t * pmd,unsigned long start,unsigned long end,struct mm_walk * args)3416 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3417 struct mm_walk *args)
3418 {
3419 int i;
3420 pte_t *pte;
3421 spinlock_t *ptl;
3422 unsigned long addr;
3423 int total = 0;
3424 int young = 0;
3425 struct lru_gen_mm_walk *walk = args->private;
3426 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3427 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3428 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3429
3430 VM_WARN_ON_ONCE(pmd_leaf(*pmd));
3431
3432 ptl = pte_lockptr(args->mm, pmd);
3433 if (!spin_trylock(ptl))
3434 return false;
3435
3436 arch_enter_lazy_mmu_mode();
3437
3438 pte = pte_offset_map(pmd, start & PMD_MASK);
3439 restart:
3440 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3441 unsigned long pfn;
3442 struct page *page;
3443
3444 total++;
3445 walk->mm_stats[MM_LEAF_TOTAL]++;
3446
3447 pfn = get_pte_pfn(pte[i], args->vma, addr);
3448 if (pfn == -1)
3449 continue;
3450
3451 if (!pte_young(pte[i])) {
3452 walk->mm_stats[MM_LEAF_OLD]++;
3453 continue;
3454 }
3455
3456 page = get_pfn_page(pfn, memcg, pgdat, walk->can_swap);
3457 if (!page)
3458 continue;
3459
3460 if (!ptep_test_and_clear_young(args->vma, addr, pte + i))
3461 VM_WARN_ON_ONCE(true);
3462
3463 young++;
3464 walk->mm_stats[MM_LEAF_YOUNG]++;
3465
3466 if (pte_dirty(pte[i]) && !PageDirty(page) &&
3467 !(PageAnon(page) && PageSwapBacked(page) &&
3468 !PageSwapCache(page)))
3469 set_page_dirty(page);
3470
3471 old_gen = page_update_gen(page, new_gen);
3472 if (old_gen >= 0 && old_gen != new_gen)
3473 update_batch_size(walk, page, old_gen, new_gen);
3474 }
3475
3476 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3477 goto restart;
3478
3479 pte_unmap(pte);
3480
3481 arch_leave_lazy_mmu_mode();
3482 spin_unlock(ptl);
3483
3484 return suitable_to_scan(total, young);
3485 }
3486
3487 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
walk_pmd_range_locked(pud_t * pud,unsigned long next,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * start)3488 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
3489 struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
3490 {
3491 int i;
3492 pmd_t *pmd;
3493 spinlock_t *ptl;
3494 struct lru_gen_mm_walk *walk = args->private;
3495 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3496 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3497 int old_gen, new_gen = lru_gen_from_seq(walk->max_seq);
3498
3499 VM_WARN_ON_ONCE(pud_leaf(*pud));
3500
3501 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3502 if (*start == -1) {
3503 *start = next;
3504 return;
3505 }
3506
3507 i = next == -1 ? 0 : pmd_index(next) - pmd_index(*start);
3508 if (i && i <= MIN_LRU_BATCH) {
3509 __set_bit(i - 1, bitmap);
3510 return;
3511 }
3512
3513 pmd = pmd_offset(pud, *start);
3514
3515 ptl = pmd_lockptr(args->mm, pmd);
3516 if (!spin_trylock(ptl))
3517 goto done;
3518
3519 arch_enter_lazy_mmu_mode();
3520
3521 do {
3522 unsigned long pfn;
3523 struct page *page;
3524 unsigned long addr = i ? (*start & PMD_MASK) + i * PMD_SIZE : *start;
3525
3526 pfn = get_pmd_pfn(pmd[i], vma, addr);
3527 if (pfn == -1)
3528 goto next;
3529
3530 if (!pmd_trans_huge(pmd[i])) {
3531 if (IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) &&
3532 get_cap(LRU_GEN_NONLEAF_YOUNG))
3533 pmdp_test_and_clear_young(vma, addr, pmd + i);
3534 goto next;
3535 }
3536
3537 page = get_pfn_page(pfn, memcg, pgdat, walk->can_swap);
3538 if (!page)
3539 goto next;
3540
3541 if (!pmdp_test_and_clear_young(vma, addr, pmd + i))
3542 goto next;
3543
3544 walk->mm_stats[MM_LEAF_YOUNG]++;
3545
3546 if (pmd_dirty(pmd[i]) && !PageDirty(page) &&
3547 !(PageAnon(page) && PageSwapBacked(page) &&
3548 !PageSwapCache(page)))
3549 set_page_dirty(page);
3550
3551 old_gen = page_update_gen(page, new_gen);
3552 if (old_gen >= 0 && old_gen != new_gen)
3553 update_batch_size(walk, page, old_gen, new_gen);
3554 next:
3555 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3556 } while (i <= MIN_LRU_BATCH);
3557
3558 arch_leave_lazy_mmu_mode();
3559 spin_unlock(ptl);
3560 done:
3561 *start = -1;
3562 bitmap_zero(bitmap, MIN_LRU_BATCH);
3563 }
3564 #else
walk_pmd_range_locked(pud_t * pud,unsigned long next,struct vm_area_struct * vma,struct mm_walk * args,unsigned long * bitmap,unsigned long * start)3565 static void walk_pmd_range_locked(pud_t *pud, unsigned long next, struct vm_area_struct *vma,
3566 struct mm_walk *args, unsigned long *bitmap, unsigned long *start)
3567 {
3568 }
3569 #endif
3570
walk_pmd_range(pud_t * pud,unsigned long start,unsigned long end,struct mm_walk * args)3571 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3572 struct mm_walk *args)
3573 {
3574 int i;
3575 pmd_t *pmd;
3576 unsigned long next;
3577 unsigned long addr;
3578 struct vm_area_struct *vma;
3579 unsigned long pos = -1;
3580 struct lru_gen_mm_walk *walk = args->private;
3581 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
3582
3583 VM_WARN_ON_ONCE(pud_leaf(*pud));
3584
3585 /*
3586 * Finish an entire PMD in two passes: the first only reaches to PTE
3587 * tables to avoid taking the PMD lock; the second, if necessary, takes
3588 * the PMD lock to clear the accessed bit in PMD entries.
3589 */
3590 pmd = pmd_offset(pud, start & PUD_MASK);
3591 restart:
3592 /* walk_pte_range() may call get_next_vma() */
3593 vma = args->vma;
3594 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3595 pmd_t val = pmd_read_atomic(pmd + i);
3596
3597 /* for pmd_read_atomic() */
3598 barrier();
3599
3600 next = pmd_addr_end(addr, end);
3601
3602 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3603 walk->mm_stats[MM_LEAF_TOTAL]++;
3604 continue;
3605 }
3606
3607 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3608 if (pmd_trans_huge(val)) {
3609 unsigned long pfn = pmd_pfn(val);
3610 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3611
3612 walk->mm_stats[MM_LEAF_TOTAL]++;
3613
3614 if (!pmd_young(val)) {
3615 walk->mm_stats[MM_LEAF_OLD]++;
3616 continue;
3617 }
3618
3619 /* try to avoid unnecessary memory loads */
3620 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3621 continue;
3622
3623 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
3624 continue;
3625 }
3626 #endif
3627 walk->mm_stats[MM_NONLEAF_TOTAL]++;
3628
3629 #ifdef CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
3630 if (get_cap(LRU_GEN_NONLEAF_YOUNG)) {
3631 if (!pmd_young(val))
3632 continue;
3633
3634 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &pos);
3635 }
3636 #endif
3637 if (!walk->full_scan && !test_bloom_filter(walk->lruvec, walk->max_seq, pmd + i))
3638 continue;
3639
3640 walk->mm_stats[MM_NONLEAF_FOUND]++;
3641
3642 if (!walk_pte_range(&val, addr, next, args))
3643 continue;
3644
3645 walk->mm_stats[MM_NONLEAF_ADDED]++;
3646
3647 /* carry over to the next generation */
3648 update_bloom_filter(walk->lruvec, walk->max_seq + 1, pmd + i);
3649 }
3650
3651 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &pos);
3652
3653 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3654 goto restart;
3655 }
3656
walk_pud_range(p4d_t * p4d,unsigned long start,unsigned long end,struct mm_walk * args)3657 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3658 struct mm_walk *args)
3659 {
3660 int i;
3661 pud_t *pud;
3662 unsigned long addr;
3663 unsigned long next;
3664 struct lru_gen_mm_walk *walk = args->private;
3665
3666 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3667
3668 pud = pud_offset(p4d, start & P4D_MASK);
3669 restart:
3670 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3671 pud_t val = READ_ONCE(pud[i]);
3672
3673 next = pud_addr_end(addr, end);
3674
3675 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3676 continue;
3677
3678 walk_pmd_range(&val, addr, next, args);
3679
3680 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3681 end = (addr | ~PUD_MASK) + 1;
3682 goto done;
3683 }
3684 }
3685
3686 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3687 goto restart;
3688
3689 end = round_up(end, P4D_SIZE);
3690 done:
3691 if (!end || !args->vma)
3692 return 1;
3693
3694 walk->next_addr = max(end, args->vma->vm_start);
3695
3696 return -EAGAIN;
3697 }
3698
walk_mm(struct lruvec * lruvec,struct mm_struct * mm,struct lru_gen_mm_walk * walk)3699 static void walk_mm(struct lruvec *lruvec, struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3700 {
3701 static const struct mm_walk_ops mm_walk_ops = {
3702 .test_walk = should_skip_vma,
3703 .p4d_entry = walk_pud_range,
3704 };
3705
3706 int err;
3707 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3708 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3709
3710 walk->next_addr = FIRST_USER_ADDRESS;
3711
3712 do {
3713 DEFINE_MAX_SEQ(lruvec);
3714
3715 err = -EBUSY;
3716
3717 /* another thread might have called inc_max_seq() */
3718 if (walk->max_seq != max_seq)
3719 break;
3720
3721 /* page_update_gen() requires stable page_memcg() */
3722 if (!mem_cgroup_trylock_pages(memcg))
3723 break;
3724
3725 /* the caller might be holding the lock for write */
3726 if (mmap_read_trylock(mm)) {
3727 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3728
3729 mmap_read_unlock(mm);
3730 }
3731
3732 mem_cgroup_unlock_pages();
3733
3734 if (walk->batched) {
3735 spin_lock_irq(&pgdat->lru_lock);
3736 reset_batch_size(lruvec, walk);
3737 spin_unlock_irq(&pgdat->lru_lock);
3738 }
3739
3740 cond_resched();
3741 } while (err == -EAGAIN);
3742 }
3743
set_mm_walk(struct pglist_data * pgdat)3744 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat)
3745 {
3746 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3747
3748 if (pgdat && current_is_kswapd()) {
3749 VM_WARN_ON_ONCE(walk);
3750
3751 walk = &pgdat->mm_walk;
3752 } else if (!pgdat && !walk) {
3753 VM_WARN_ON_ONCE(current_is_kswapd());
3754
3755 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3756 }
3757
3758 current->reclaim_state->mm_walk = walk;
3759
3760 return walk;
3761 }
3762
clear_mm_walk(void)3763 static void clear_mm_walk(void)
3764 {
3765 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3766
3767 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3768 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3769
3770 current->reclaim_state->mm_walk = NULL;
3771
3772 if (!current_is_kswapd())
3773 kfree(walk);
3774 }
3775
inc_min_seq(struct lruvec * lruvec,int type,bool can_swap)3776 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3777 {
3778 int zone;
3779 int remaining = MAX_LRU_BATCH;
3780 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3781 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3782
3783 if (type == LRU_GEN_ANON && !can_swap)
3784 goto done;
3785
3786 /* prevent cold/hot inversion if full_scan is true */
3787 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3788 struct list_head *head = &lrugen->lists[old_gen][type][zone];
3789
3790 while (!list_empty(head)) {
3791 struct page *page = lru_to_page(head);
3792
3793 VM_WARN_ON_ONCE_PAGE(PageUnevictable(page), page);
3794 VM_WARN_ON_ONCE_PAGE(PageActive(page), page);
3795 VM_WARN_ON_ONCE_PAGE(page_is_file_lru(page) != type, page);
3796 VM_WARN_ON_ONCE_PAGE(page_zonenum(page) != zone, page);
3797
3798 new_gen = page_inc_gen(lruvec, page, false);
3799 list_move_tail(&page->lru, &lrugen->lists[new_gen][type][zone]);
3800
3801 if (!--remaining)
3802 return false;
3803 }
3804 }
3805 done:
3806 reset_ctrl_pos(lruvec, type, true);
3807 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3808
3809 return true;
3810 }
3811
try_to_inc_min_seq(struct lruvec * lruvec,bool can_swap)3812 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3813 {
3814 int gen, type, zone;
3815 bool success = false;
3816 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3817 DEFINE_MIN_SEQ(lruvec);
3818
3819 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3820
3821 /* find the oldest populated generation */
3822 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3823 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3824 gen = lru_gen_from_seq(min_seq[type]);
3825
3826 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3827 if (!list_empty(&lrugen->lists[gen][type][zone]))
3828 goto next;
3829 }
3830
3831 min_seq[type]++;
3832 }
3833 next:
3834 ;
3835 }
3836
3837 /* see the comment on lru_gen_struct */
3838 if (can_swap) {
3839 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3840 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3841 }
3842
3843 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3844 if (min_seq[type] == lrugen->min_seq[type])
3845 continue;
3846
3847 reset_ctrl_pos(lruvec, type, true);
3848 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3849 success = true;
3850 }
3851
3852 return success;
3853 }
3854
inc_max_seq(struct lruvec * lruvec,bool can_swap,bool full_scan)3855 static void inc_max_seq(struct lruvec *lruvec, bool can_swap, bool full_scan)
3856 {
3857 int prev, next;
3858 int type, zone;
3859 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3860 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3861 restart:
3862 spin_lock_irq(&pgdat->lru_lock);
3863
3864 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3865
3866 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3867 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3868 continue;
3869
3870 VM_WARN_ON_ONCE(!full_scan && (type == LRU_GEN_FILE || can_swap));
3871
3872 if (inc_min_seq(lruvec, type, can_swap))
3873 continue;
3874
3875 spin_unlock_irq(&pgdat->lru_lock);
3876 cond_resched();
3877 goto restart;
3878 }
3879
3880 /*
3881 * Update the active/inactive LRU sizes for compatibility. Both sides of
3882 * the current max_seq need to be covered, since max_seq+1 can overlap
3883 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3884 * overlap, cold/hot inversion happens.
3885 */
3886 prev = lru_gen_from_seq(lrugen->max_seq - 1);
3887 next = lru_gen_from_seq(lrugen->max_seq + 1);
3888
3889 for (type = 0; type < ANON_AND_FILE; type++) {
3890 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3891 enum lru_list lru = type * LRU_INACTIVE_FILE;
3892 long delta = lrugen->nr_pages[prev][type][zone] -
3893 lrugen->nr_pages[next][type][zone];
3894
3895 if (!delta)
3896 continue;
3897
3898 __update_lru_size(lruvec, lru, zone, delta);
3899 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3900 }
3901 }
3902
3903 for (type = 0; type < ANON_AND_FILE; type++)
3904 reset_ctrl_pos(lruvec, type, false);
3905
3906 WRITE_ONCE(lrugen->timestamps[next], jiffies);
3907 /* make sure preceding modifications appear */
3908 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3909
3910 spin_unlock_irq(&pgdat->lru_lock);
3911 }
3912
try_to_inc_max_seq(struct lruvec * lruvec,unsigned long max_seq,struct scan_control * sc,bool can_swap,bool full_scan)3913 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long max_seq,
3914 struct scan_control *sc, bool can_swap, bool full_scan)
3915 {
3916 bool success;
3917 struct lru_gen_mm_walk *walk;
3918 struct mm_struct *mm = NULL;
3919 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3920
3921 VM_WARN_ON_ONCE(max_seq > READ_ONCE(lrugen->max_seq));
3922
3923 /* see the comment in iterate_mm_list() */
3924 if (max_seq <= READ_ONCE(lruvec->mm_state.seq)) {
3925 success = false;
3926 goto done;
3927 }
3928
3929 /*
3930 * If the hardware doesn't automatically set the accessed bit, fallback
3931 * to lru_gen_look_around(), which only clears the accessed bit in a
3932 * handful of PTEs. Spreading the work out over a period of time usually
3933 * is less efficient, but it avoids bursty page faults.
3934 */
3935 if (!full_scan && !(arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))) {
3936 success = iterate_mm_list_nowalk(lruvec, max_seq);
3937 goto done;
3938 }
3939
3940 walk = set_mm_walk(NULL);
3941 if (!walk) {
3942 success = iterate_mm_list_nowalk(lruvec, max_seq);
3943 goto done;
3944 }
3945
3946 walk->lruvec = lruvec;
3947 walk->max_seq = max_seq;
3948 walk->can_swap = can_swap;
3949 walk->full_scan = full_scan;
3950
3951 do {
3952 success = iterate_mm_list(lruvec, walk, &mm);
3953 if (mm)
3954 walk_mm(lruvec, mm, walk);
3955 } while (mm);
3956 done:
3957 if (success)
3958 inc_max_seq(lruvec, can_swap, full_scan);
3959
3960 return success;
3961 }
3962
should_run_aging(struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,struct scan_control * sc,bool can_swap,unsigned long * nr_to_scan)3963 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq, unsigned long *min_seq,
3964 struct scan_control *sc, bool can_swap, unsigned long *nr_to_scan)
3965 {
3966 int gen, type, zone;
3967 unsigned long old = 0;
3968 unsigned long young = 0;
3969 unsigned long total = 0;
3970 struct lru_gen_struct *lrugen = &lruvec->lrugen;
3971 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3972
3973 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3974 unsigned long seq;
3975
3976 for (seq = min_seq[type]; seq <= max_seq; seq++) {
3977 unsigned long size = 0;
3978
3979 gen = lru_gen_from_seq(seq);
3980
3981 for (zone = 0; zone < MAX_NR_ZONES; zone++)
3982 size += max_t(long, READ_ONCE(lrugen->nr_pages[gen][type][zone]),
3983 0);
3984
3985 total += size;
3986 if (seq == max_seq)
3987 young += size;
3988 else if (seq + MIN_NR_GENS == max_seq)
3989 old += size;
3990 }
3991 }
3992
3993 /* try to scrape all its memory if this memcg was deleted */
3994 *nr_to_scan = mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
3995
3996 /*
3997 * The aging tries to be lazy to reduce the overhead, while the eviction
3998 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
3999 * ideal number of generations is MIN_NR_GENS+1.
4000 */
4001 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq)
4002 return true;
4003 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4004 return false;
4005
4006 /*
4007 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4008 * of the total number of pages for each generation. A reasonable range
4009 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4010 * aging cares about the upper bound of hot pages, while the eviction
4011 * cares about the lower bound of cold pages.
4012 */
4013 if (young * MIN_NR_GENS > total)
4014 return true;
4015 if (old * (MIN_NR_GENS + 2) < total)
4016 return true;
4017
4018 return false;
4019 }
4020
age_lruvec(struct lruvec * lruvec,struct scan_control * sc,unsigned long min_ttl)4021 static bool age_lruvec(struct lruvec *lruvec, struct scan_control *sc, unsigned long min_ttl)
4022 {
4023 bool need_aging;
4024 unsigned long nr_to_scan;
4025 int swappiness = get_swappiness(lruvec, sc);
4026 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4027 DEFINE_MAX_SEQ(lruvec);
4028 DEFINE_MIN_SEQ(lruvec);
4029
4030 VM_WARN_ON_ONCE(sc->memcg_low_reclaim);
4031
4032 mem_cgroup_calculate_protection(NULL, memcg);
4033
4034 if (mem_cgroup_below_min(memcg))
4035 return false;
4036
4037 need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, swappiness, &nr_to_scan);
4038
4039 if (min_ttl) {
4040 int gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
4041 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
4042
4043 if (time_is_after_jiffies(birth + min_ttl))
4044 return false;
4045
4046 /* the size is likely too small to be helpful */
4047 if (!nr_to_scan && sc->priority != DEF_PRIORITY)
4048 return false;
4049 }
4050
4051 if (need_aging)
4052 try_to_inc_max_seq(lruvec, max_seq, sc, swappiness, false);
4053
4054 return true;
4055 }
4056
4057 /* to protect the working set of the last N jiffies */
4058 static unsigned long lru_gen_min_ttl __read_mostly;
4059
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)4060 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4061 {
4062 struct mem_cgroup *memcg;
4063 bool success = false;
4064 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4065
4066 VM_WARN_ON_ONCE(!current_is_kswapd());
4067
4068 sc->last_reclaimed = sc->nr_reclaimed;
4069
4070 /*
4071 * To reduce the chance of going into the aging path, which can be
4072 * costly, optimistically skip it if the flag below was cleared in the
4073 * eviction path. This improves the overall performance when multiple
4074 * memcgs are available.
4075 */
4076 if (!sc->memcgs_need_aging) {
4077 sc->memcgs_need_aging = true;
4078 return;
4079 }
4080
4081 set_mm_walk(pgdat);
4082
4083 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4084 do {
4085 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4086
4087 if (age_lruvec(lruvec, sc, min_ttl))
4088 success = true;
4089
4090 cond_resched();
4091 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4092
4093 clear_mm_walk();
4094
4095 /* check the order to exclude compaction-induced reclaim */
4096 if (success || !min_ttl || sc->order)
4097 return;
4098
4099 /*
4100 * The main goal is to OOM kill if every generation from all memcgs is
4101 * younger than min_ttl. However, another possibility is all memcgs are
4102 * either below min or empty.
4103 */
4104 if (mutex_trylock(&oom_lock)) {
4105 struct oom_control oc = {
4106 .gfp_mask = sc->gfp_mask,
4107 };
4108
4109 out_of_memory(&oc);
4110
4111 mutex_unlock(&oom_lock);
4112 }
4113 }
4114
4115 /*
4116 * This function exploits spatial locality when shrink_page_list() walks the
4117 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4118 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4119 * the PTE table to the Bloom filter. This forms a feedback loop between the
4120 * eviction and the aging.
4121 */
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)4122 void lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4123 {
4124 int i;
4125 pte_t *pte;
4126 unsigned long start;
4127 unsigned long end;
4128 unsigned long addr;
4129 struct lru_gen_mm_walk *walk;
4130 int young = 0;
4131 unsigned long bitmap[BITS_TO_LONGS(MIN_LRU_BATCH)] = {};
4132 struct page *page = pvmw->page;
4133 bool can_swap = !page_is_file_lru(page);
4134 struct mem_cgroup *memcg = page_memcg(page);
4135 struct pglist_data *pgdat = page_pgdat(page);
4136 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4137 DEFINE_MAX_SEQ(lruvec);
4138 int old_gen, new_gen = lru_gen_from_seq(max_seq);
4139
4140 lockdep_assert_held(pvmw->ptl);
4141 VM_WARN_ON_ONCE_PAGE(PageLRU(page), page);
4142
4143 if (spin_is_contended(pvmw->ptl))
4144 return;
4145
4146 /* avoid taking the LRU lock under the PTL when possible */
4147 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4148
4149 start = max(pvmw->address & PMD_MASK, pvmw->vma->vm_start);
4150 end = min(pvmw->address | ~PMD_MASK, pvmw->vma->vm_end - 1) + 1;
4151
4152 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4153 if (pvmw->address - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4154 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4155 else if (end - pvmw->address < MIN_LRU_BATCH * PAGE_SIZE / 2)
4156 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4157 else {
4158 start = pvmw->address - MIN_LRU_BATCH * PAGE_SIZE / 2;
4159 end = pvmw->address + MIN_LRU_BATCH * PAGE_SIZE / 2;
4160 }
4161 }
4162
4163 pte = pvmw->pte - (pvmw->address - start) / PAGE_SIZE;
4164
4165 rcu_read_lock();
4166 arch_enter_lazy_mmu_mode();
4167
4168 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4169 unsigned long pfn;
4170
4171 pfn = get_pte_pfn(pte[i], pvmw->vma, addr);
4172 if (pfn == -1)
4173 continue;
4174
4175 if (!pte_young(pte[i]))
4176 continue;
4177
4178 page = get_pfn_page(pfn, memcg, pgdat, can_swap);
4179 if (!page)
4180 continue;
4181
4182 if (!ptep_test_and_clear_young(pvmw->vma, addr, pte + i))
4183 VM_WARN_ON_ONCE(true);
4184
4185 young++;
4186
4187 if (pte_dirty(pte[i]) && !PageDirty(page) &&
4188 !(PageAnon(page) && PageSwapBacked(page) &&
4189 !PageSwapCache(page)))
4190 set_page_dirty(page);
4191
4192 old_gen = page_lru_gen(page);
4193 if (old_gen < 0)
4194 SetPageReferenced(page);
4195 else if (old_gen != new_gen)
4196 __set_bit(i, bitmap);
4197 }
4198
4199 arch_leave_lazy_mmu_mode();
4200 rcu_read_unlock();
4201
4202 /* feedback from rmap walkers to page table walkers */
4203 if (suitable_to_scan(i, young))
4204 update_bloom_filter(lruvec, max_seq, pvmw->pmd);
4205
4206 if (!walk && bitmap_weight(bitmap, MIN_LRU_BATCH) < PAGEVEC_SIZE) {
4207 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4208 page = pte_page(pte[i]);
4209 activate_page(page);
4210 }
4211 return;
4212 }
4213
4214 /* page_update_gen() requires stable page_memcg() */
4215 if (!mem_cgroup_trylock_pages(memcg))
4216 return;
4217
4218 if (!walk) {
4219 spin_lock_irq(&pgdat->lru_lock);
4220 new_gen = lru_gen_from_seq(lruvec->lrugen.max_seq);
4221 }
4222
4223 for_each_set_bit(i, bitmap, MIN_LRU_BATCH) {
4224 page = compound_head(pte_page(pte[i]));
4225 if (page_memcg_rcu(page) != memcg)
4226 continue;
4227
4228 old_gen = page_update_gen(page, new_gen);
4229 if (old_gen < 0 || old_gen == new_gen)
4230 continue;
4231
4232 if (walk)
4233 update_batch_size(walk, page, old_gen, new_gen);
4234 else
4235 lru_gen_update_size(lruvec, page, old_gen, new_gen);
4236 }
4237
4238 if (!walk)
4239 spin_unlock_irq(&pgdat->lru_lock);
4240
4241 mem_cgroup_unlock_pages();
4242 }
4243
4244 /******************************************************************************
4245 * the eviction
4246 ******************************************************************************/
4247
sort_page(struct lruvec * lruvec,struct page * page,struct scan_control * sc,int tier_idx)4248 static bool sort_page(struct lruvec *lruvec, struct page *page, struct scan_control *sc,
4249 int tier_idx)
4250 {
4251 bool success;
4252 int gen = page_lru_gen(page);
4253 int type = page_is_file_lru(page);
4254 int zone = page_zonenum(page);
4255 int delta = thp_nr_pages(page);
4256 int refs = page_lru_refs(page);
4257 int tier = lru_tier_from_refs(refs);
4258 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4259
4260 VM_WARN_ON_ONCE_PAGE(gen >= MAX_NR_GENS, page);
4261
4262 /* unevictable */
4263 if (!page_evictable(page)) {
4264 success = lru_gen_del_page(lruvec, page, true);
4265 VM_WARN_ON_ONCE_PAGE(!success, page);
4266 SetPageUnevictable(page);
4267 add_page_to_lru_list(page, lruvec);
4268 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4269 return true;
4270 }
4271
4272 /* dirty lazyfree */
4273 if (type == LRU_GEN_FILE && PageAnon(page) && PageDirty(page)) {
4274 success = lru_gen_del_page(lruvec, page, true);
4275 VM_WARN_ON_ONCE_PAGE(!success, page);
4276 SetPageSwapBacked(page);
4277 add_page_to_lru_list_tail(page, lruvec);
4278 return true;
4279 }
4280
4281 /* promoted */
4282 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4283 list_move(&page->lru, &lrugen->lists[gen][type][zone]);
4284 return true;
4285 }
4286
4287 /* protected */
4288 if (tier > tier_idx) {
4289 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4290
4291 gen = page_inc_gen(lruvec, page, false);
4292 list_move_tail(&page->lru, &lrugen->lists[gen][type][zone]);
4293
4294 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4295 lrugen->protected[hist][type][tier - 1] + delta);
4296 return true;
4297 }
4298
4299 /* ineligible */
4300 if (zone > sc->reclaim_idx || skip_cma(page, sc)) {
4301 gen = page_inc_gen(lruvec, page, false);
4302 list_move_tail(&page->lru, &lrugen->lists[gen][type][zone]);
4303 return true;
4304 }
4305
4306 /* waiting for writeback */
4307 if (PageLocked(page) || PageWriteback(page) ||
4308 (type == LRU_GEN_FILE && PageDirty(page))) {
4309 gen = page_inc_gen(lruvec, page, true);
4310 list_move(&page->lru, &lrugen->lists[gen][type][zone]);
4311 return true;
4312 }
4313
4314 return false;
4315 }
4316
isolate_page(struct lruvec * lruvec,struct page * page,struct scan_control * sc)4317 static bool isolate_page(struct lruvec *lruvec, struct page *page, struct scan_control *sc)
4318 {
4319 bool success;
4320
4321 /* unmapping inhibited */
4322 if (!sc->may_unmap && page_mapped(page))
4323 return false;
4324
4325 /* swapping inhibited */
4326 if (!(sc->may_writepage && (sc->gfp_mask & __GFP_IO)) &&
4327 (PageDirty(page) ||
4328 (PageAnon(page) && !PageSwapCache(page))))
4329 return false;
4330
4331 /* raced with release_pages() */
4332 if (!get_page_unless_zero(page))
4333 return false;
4334
4335 ClearPageLRU(page);
4336
4337 /* see the comment on MAX_NR_TIERS */
4338 if (!PageReferenced(page))
4339 set_mask_bits(&page->flags, LRU_REFS_MASK | LRU_REFS_FLAGS, 0);
4340
4341 /* for shrink_page_list() */
4342 ClearPageReclaim(page);
4343 ClearPageReferenced(page);
4344
4345 success = lru_gen_del_page(lruvec, page, true);
4346 VM_WARN_ON_ONCE_PAGE(!success, page);
4347
4348 return true;
4349 }
4350
scan_pages(struct lruvec * lruvec,struct scan_control * sc,int type,int tier,struct list_head * list)4351 static int scan_pages(struct lruvec *lruvec, struct scan_control *sc,
4352 int type, int tier, struct list_head *list)
4353 {
4354 int i;
4355 int gen;
4356 enum vm_event_item item;
4357 int sorted = 0;
4358 int scanned = 0;
4359 int isolated = 0;
4360 int remaining = MAX_LRU_BATCH;
4361 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4362 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4363
4364 VM_WARN_ON_ONCE(!list_empty(list));
4365
4366 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4367 return 0;
4368
4369 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4370
4371 for (i = MAX_NR_ZONES; i > 0; i--) {
4372 LIST_HEAD(moved);
4373 int skipped = 0;
4374 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4375 struct list_head *head = &lrugen->lists[gen][type][zone];
4376
4377 while (!list_empty(head)) {
4378 struct page *page = lru_to_page(head);
4379 int delta = thp_nr_pages(page);
4380
4381 VM_WARN_ON_ONCE_PAGE(PageUnevictable(page), page);
4382 VM_WARN_ON_ONCE_PAGE(PageActive(page), page);
4383 VM_WARN_ON_ONCE_PAGE(page_is_file_lru(page) != type, page);
4384 VM_WARN_ON_ONCE_PAGE(page_zonenum(page) != zone, page);
4385
4386 scanned += delta;
4387
4388 if (sort_page(lruvec, page, sc, tier))
4389 sorted += delta;
4390 else if (isolate_page(lruvec, page, sc)) {
4391 list_add(&page->lru, list);
4392 isolated += delta;
4393 } else {
4394 list_move(&page->lru, &moved);
4395 skipped += delta;
4396 }
4397
4398 if (!--remaining || max(isolated, skipped) >= MIN_LRU_BATCH)
4399 break;
4400 }
4401
4402 if (skipped) {
4403 list_splice(&moved, head);
4404 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped);
4405 }
4406
4407 if (!remaining || isolated >= MIN_LRU_BATCH)
4408 break;
4409 }
4410
4411 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
4412 if (!cgroup_reclaim(sc)) {
4413 __count_vm_events(item, isolated);
4414 __count_vm_events(PGREFILL, sorted);
4415 }
4416 __count_memcg_events(memcg, item, isolated);
4417 __count_memcg_events(memcg, PGREFILL, sorted);
4418 __count_vm_events(PGSCAN_ANON + type, isolated);
4419
4420 /*
4421 * There might not be eligible pages due to reclaim_idx, may_unmap and
4422 * may_writepage. Check the remaining to prevent livelock if it's not
4423 * making progress.
4424 */
4425 return isolated || !remaining ? scanned : 0;
4426 }
4427
get_tier_idx(struct lruvec * lruvec,int type)4428 static int get_tier_idx(struct lruvec *lruvec, int type)
4429 {
4430 int tier;
4431 struct ctrl_pos sp, pv;
4432
4433 /*
4434 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4435 * This value is chosen because any other tier would have at least twice
4436 * as many refaults as the first tier.
4437 */
4438 read_ctrl_pos(lruvec, type, 0, 1, &sp);
4439 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4440 read_ctrl_pos(lruvec, type, tier, 2, &pv);
4441 if (!positive_ctrl_err(&sp, &pv))
4442 break;
4443 }
4444
4445 return tier - 1;
4446 }
4447
get_type_to_scan(struct lruvec * lruvec,int swappiness,int * tier_idx)4448 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4449 {
4450 int type, tier;
4451 struct ctrl_pos sp, pv;
4452 int gain[ANON_AND_FILE] = { swappiness, 200 - swappiness };
4453
4454 /*
4455 * Compare the first tier of anon with that of file to determine which
4456 * type to scan. Also need to compare other tiers of the selected type
4457 * with the first tier of the other type to determine the last tier (of
4458 * the selected type) to evict.
4459 */
4460 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4461 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4462 type = positive_ctrl_err(&sp, &pv);
4463
4464 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4465 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4466 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4467 if (!positive_ctrl_err(&sp, &pv))
4468 break;
4469 }
4470
4471 *tier_idx = tier - 1;
4472
4473 return type;
4474 }
4475
isolate_pages(struct lruvec * lruvec,struct scan_control * sc,int swappiness,int * type_scanned,struct list_head * list)4476 static int isolate_pages(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4477 int *type_scanned, struct list_head *list)
4478 {
4479 int i;
4480 int type;
4481 int scanned;
4482 int tier = -1;
4483 DEFINE_MIN_SEQ(lruvec);
4484
4485 /*
4486 * Try to make the obvious choice first. When anon and file are both
4487 * available from the same generation, interpret swappiness 1 as file
4488 * first and 200 as anon first.
4489 */
4490 if (!swappiness)
4491 type = LRU_GEN_FILE;
4492 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4493 type = LRU_GEN_ANON;
4494 else if (swappiness == 1)
4495 type = LRU_GEN_FILE;
4496 else if (swappiness == 200)
4497 type = LRU_GEN_ANON;
4498 else
4499 type = get_type_to_scan(lruvec, swappiness, &tier);
4500
4501 for (i = !swappiness; i < ANON_AND_FILE; i++) {
4502 if (tier < 0)
4503 tier = get_tier_idx(lruvec, type);
4504
4505 scanned = scan_pages(lruvec, sc, type, tier, list);
4506 if (scanned)
4507 break;
4508
4509 type = !type;
4510 tier = -1;
4511 }
4512
4513 *type_scanned = type;
4514
4515 return scanned;
4516 }
4517
evict_pages(struct lruvec * lruvec,struct scan_control * sc,int swappiness,bool * need_swapping)4518 static int evict_pages(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4519 bool *need_swapping)
4520 {
4521 int type;
4522 int scanned;
4523 int reclaimed;
4524 LIST_HEAD(list);
4525 LIST_HEAD(clean);
4526 struct page *page;
4527 struct page *next;
4528 enum vm_event_item item;
4529 struct reclaim_stat stat;
4530 struct lru_gen_mm_walk *walk;
4531 bool skip_retry = false;
4532 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4533 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4534
4535 spin_lock_irq(&pgdat->lru_lock);
4536
4537 scanned = isolate_pages(lruvec, sc, swappiness, &type, &list);
4538
4539 scanned += try_to_inc_min_seq(lruvec, swappiness);
4540
4541 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4542 scanned = 0;
4543
4544 spin_unlock_irq(&pgdat->lru_lock);
4545
4546 if (list_empty(&list))
4547 return scanned;
4548 retry:
4549 reclaimed = shrink_page_list(&list, pgdat, sc, &stat, false);
4550 sc->nr_reclaimed += reclaimed;
4551
4552 list_for_each_entry_safe_reverse(page, next, &list, lru) {
4553 if (!page_evictable(page)) {
4554 list_del(&page->lru);
4555 putback_lru_page(page);
4556 continue;
4557 }
4558
4559 if (PageReclaim(page) &&
4560 (PageDirty(page) || PageWriteback(page))) {
4561 /* restore LRU_REFS_FLAGS cleared by isolate_page() */
4562 if (PageWorkingset(page))
4563 SetPageReferenced(page);
4564 continue;
4565 }
4566
4567 if (skip_retry || PageActive(page) || PageReferenced(page) ||
4568 page_mapped(page) || PageLocked(page) ||
4569 PageDirty(page) || PageWriteback(page)) {
4570 /* don't add rejected pages to the oldest generation */
4571 set_mask_bits(&page->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4572 BIT(PG_active));
4573 continue;
4574 }
4575
4576 /* retry pages that may have missed rotate_reclaimable_page() */
4577 list_move(&page->lru, &clean);
4578 sc->nr_scanned -= thp_nr_pages(page);
4579 }
4580
4581 spin_lock_irq(&pgdat->lru_lock);
4582
4583 move_pages_to_lru(lruvec, &list);
4584
4585 walk = current->reclaim_state->mm_walk;
4586 if (walk && walk->batched)
4587 reset_batch_size(lruvec, walk);
4588
4589 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
4590 if (!cgroup_reclaim(sc))
4591 __count_vm_events(item, reclaimed);
4592 __count_memcg_events(memcg, item, reclaimed);
4593 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
4594
4595 spin_unlock_irq(&pgdat->lru_lock);
4596
4597 mem_cgroup_uncharge_list(&list);
4598 free_unref_page_list(&list);
4599
4600 INIT_LIST_HEAD(&list);
4601 list_splice_init(&clean, &list);
4602
4603 if (!list_empty(&list)) {
4604 skip_retry = true;
4605 goto retry;
4606 }
4607
4608 if (need_swapping && type == LRU_GEN_ANON)
4609 *need_swapping = true;
4610
4611 return scanned;
4612 }
4613
4614 /*
4615 * For future optimizations:
4616 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4617 * reclaim.
4618 */
get_nr_to_scan(struct lruvec * lruvec,struct scan_control * sc,bool can_swap,bool * need_aging)4619 static unsigned long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc,
4620 bool can_swap, bool *need_aging)
4621 {
4622 unsigned long nr_to_scan;
4623 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4624 DEFINE_MAX_SEQ(lruvec);
4625 DEFINE_MIN_SEQ(lruvec);
4626
4627 if (mem_cgroup_below_min(memcg) ||
4628 (mem_cgroup_below_low(memcg) && !sc->memcg_low_reclaim))
4629 return 0;
4630
4631 *need_aging = should_run_aging(lruvec, max_seq, min_seq, sc, can_swap, &nr_to_scan);
4632 if (!*need_aging)
4633 return nr_to_scan;
4634
4635 /* skip the aging path at the default priority */
4636 if (sc->priority == DEF_PRIORITY)
4637 goto done;
4638
4639 /* leave the work to lru_gen_age_node() */
4640 if (current_is_kswapd())
4641 return 0;
4642
4643 if (try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, false))
4644 return nr_to_scan;
4645 done:
4646 return min_seq[!can_swap] + MIN_NR_GENS <= max_seq ? nr_to_scan : 0;
4647 }
4648
should_abort_scan(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,bool need_swapping)4649 static bool should_abort_scan(struct lruvec *lruvec, unsigned long seq,
4650 struct scan_control *sc, bool need_swapping)
4651 {
4652 int i;
4653 DEFINE_MAX_SEQ(lruvec);
4654
4655 if (!current_is_kswapd()) {
4656 /* age each memcg at most once to ensure fairness */
4657 if (max_seq - seq > 1)
4658 return true;
4659
4660 /* over-swapping can increase allocation latency */
4661 if (sc->nr_reclaimed >= sc->nr_to_reclaim && need_swapping)
4662 return true;
4663
4664 /* give this thread a chance to exit and free its memory */
4665 if (fatal_signal_pending(current)) {
4666 sc->nr_reclaimed += MIN_LRU_BATCH;
4667 return true;
4668 }
4669
4670 if (cgroup_reclaim(sc))
4671 return false;
4672 } else if (sc->nr_reclaimed - sc->last_reclaimed < sc->nr_to_reclaim)
4673 return false;
4674
4675 /* keep scanning at low priorities to ensure fairness */
4676 if (sc->priority > DEF_PRIORITY - 2)
4677 return false;
4678
4679 /*
4680 * A minimum amount of work was done under global memory pressure. For
4681 * kswapd, it may be overshooting. For direct reclaim, the allocation
4682 * may succeed if all suitable zones are somewhat safe. In either case,
4683 * it's better to stop now, and restart later if necessary.
4684 */
4685 for (i = 0; i <= sc->reclaim_idx; i++) {
4686 unsigned long wmark;
4687 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4688
4689 if (!managed_zone(zone))
4690 continue;
4691
4692 wmark = current_is_kswapd() ? high_wmark_pages(zone) : low_wmark_pages(zone);
4693 if (wmark > zone_page_state(zone, NR_FREE_PAGES))
4694 return false;
4695 }
4696
4697 sc->nr_reclaimed += MIN_LRU_BATCH;
4698
4699 return true;
4700 }
4701
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)4702 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4703 {
4704 struct blk_plug plug;
4705 bool need_aging = false;
4706 bool need_swapping = false;
4707 unsigned long scanned = 0;
4708 unsigned long reclaimed = sc->nr_reclaimed;
4709 DEFINE_MAX_SEQ(lruvec);
4710
4711 lru_add_drain();
4712
4713 blk_start_plug(&plug);
4714
4715 set_mm_walk(lruvec_pgdat(lruvec));
4716
4717 while (true) {
4718 int delta;
4719 int swappiness;
4720 unsigned long nr_to_scan;
4721
4722 if (sc->may_swap)
4723 swappiness = get_swappiness(lruvec, sc);
4724 else if (!cgroup_reclaim(sc) && get_swappiness(lruvec, sc))
4725 swappiness = 1;
4726 else
4727 swappiness = 0;
4728
4729 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness, &need_aging);
4730 if (!nr_to_scan)
4731 goto done;
4732
4733 delta = evict_pages(lruvec, sc, swappiness, &need_swapping);
4734 if (!delta)
4735 goto done;
4736
4737 scanned += delta;
4738 if (scanned >= nr_to_scan)
4739 break;
4740
4741 if (should_abort_scan(lruvec, max_seq, sc, need_swapping))
4742 break;
4743
4744 cond_resched();
4745 }
4746
4747 /* see the comment in lru_gen_age_node() */
4748 if (sc->nr_reclaimed - reclaimed >= MIN_LRU_BATCH && !need_aging)
4749 sc->memcgs_need_aging = false;
4750 done:
4751 clear_mm_walk();
4752
4753 blk_finish_plug(&plug);
4754 }
4755
4756 /******************************************************************************
4757 * state change
4758 ******************************************************************************/
4759
state_is_valid(struct lruvec * lruvec)4760 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
4761 {
4762 struct lru_gen_struct *lrugen = &lruvec->lrugen;
4763
4764 if (lrugen->enabled) {
4765 enum lru_list lru;
4766
4767 for_each_evictable_lru(lru) {
4768 if (!list_empty(&lruvec->lists[lru]))
4769 return false;
4770 }
4771 } else {
4772 int gen, type, zone;
4773
4774 for_each_gen_type_zone(gen, type, zone) {
4775 if (!list_empty(&lrugen->lists[gen][type][zone]))
4776 return false;
4777 }
4778 }
4779
4780 return true;
4781 }
4782
fill_evictable(struct lruvec * lruvec)4783 static bool fill_evictable(struct lruvec *lruvec)
4784 {
4785 enum lru_list lru;
4786 int remaining = MAX_LRU_BATCH;
4787
4788 for_each_evictable_lru(lru) {
4789 int type = is_file_lru(lru);
4790 bool active = is_active_lru(lru);
4791 struct list_head *head = &lruvec->lists[lru];
4792
4793 while (!list_empty(head)) {
4794 bool success;
4795 struct page *page = lru_to_page(head);
4796
4797 VM_WARN_ON_ONCE_PAGE(PageUnevictable(page), page);
4798 VM_WARN_ON_ONCE_PAGE(PageActive(page) != active, page);
4799 VM_WARN_ON_ONCE_PAGE(page_is_file_lru(page) != type, page);
4800 VM_WARN_ON_ONCE_PAGE(page_lru_gen(page) != -1, page);
4801
4802 del_page_from_lru_list(page, lruvec);
4803 success = lru_gen_add_page(lruvec, page, false);
4804 VM_WARN_ON_ONCE(!success);
4805
4806 if (!--remaining)
4807 return false;
4808 }
4809 }
4810
4811 return true;
4812 }
4813
drain_evictable(struct lruvec * lruvec)4814 static bool drain_evictable(struct lruvec *lruvec)
4815 {
4816 int gen, type, zone;
4817 int remaining = MAX_LRU_BATCH;
4818
4819 for_each_gen_type_zone(gen, type, zone) {
4820 struct list_head *head = &lruvec->lrugen.lists[gen][type][zone];
4821
4822 while (!list_empty(head)) {
4823 bool success;
4824 struct page *page = lru_to_page(head);
4825
4826 VM_WARN_ON_ONCE_PAGE(PageUnevictable(page), page);
4827 VM_WARN_ON_ONCE_PAGE(PageActive(page), page);
4828 VM_WARN_ON_ONCE_PAGE(page_is_file_lru(page) != type, page);
4829 VM_WARN_ON_ONCE_PAGE(page_zonenum(page) != zone, page);
4830
4831 success = lru_gen_del_page(lruvec, page, false);
4832 VM_WARN_ON_ONCE(!success);
4833 add_page_to_lru_list(page, lruvec);
4834
4835 if (!--remaining)
4836 return false;
4837 }
4838 }
4839
4840 return true;
4841 }
4842
lru_gen_change_state(bool enabled)4843 static void lru_gen_change_state(bool enabled)
4844 {
4845 static DEFINE_MUTEX(state_mutex);
4846
4847 struct mem_cgroup *memcg;
4848
4849 cgroup_lock();
4850 cpus_read_lock();
4851 get_online_mems();
4852 mutex_lock(&state_mutex);
4853
4854 if (enabled == lru_gen_enabled())
4855 goto unlock;
4856
4857 if (enabled)
4858 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
4859 else
4860 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
4861
4862 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4863 do {
4864 int nid;
4865
4866 for_each_node(nid) {
4867 struct pglist_data *pgdat = NODE_DATA(nid);
4868 struct lruvec *lruvec = get_lruvec(memcg, nid);
4869
4870 if (!lruvec)
4871 continue;
4872
4873 spin_lock_irq(&pgdat->lru_lock);
4874
4875 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
4876 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
4877
4878 lruvec->lrugen.enabled = enabled;
4879
4880 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
4881 spin_unlock_irq(&pgdat->lru_lock);
4882 cond_resched();
4883 spin_lock_irq(&pgdat->lru_lock);
4884 }
4885
4886 spin_unlock_irq(&pgdat->lru_lock);
4887 }
4888
4889 cond_resched();
4890 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4891 unlock:
4892 mutex_unlock(&state_mutex);
4893 put_online_mems();
4894 cpus_read_unlock();
4895 cgroup_unlock();
4896 }
4897
4898 /******************************************************************************
4899 * sysfs interface
4900 ******************************************************************************/
4901
show_min_ttl(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4902 static ssize_t show_min_ttl(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
4903 {
4904 return sprintf(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
4905 }
4906
4907 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
store_min_ttl(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4908 static ssize_t store_min_ttl(struct kobject *kobj, struct kobj_attribute *attr,
4909 const char *buf, size_t len)
4910 {
4911 unsigned int msecs;
4912
4913 if (kstrtouint(buf, 0, &msecs))
4914 return -EINVAL;
4915
4916 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
4917
4918 return len;
4919 }
4920
4921 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR(
4922 min_ttl_ms, 0644, show_min_ttl, store_min_ttl
4923 );
4924
show_enabled(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4925 static ssize_t show_enabled(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
4926 {
4927 unsigned int caps = 0;
4928
4929 if (get_cap(LRU_GEN_CORE))
4930 caps |= BIT(LRU_GEN_CORE);
4931
4932 if (arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK))
4933 caps |= BIT(LRU_GEN_MM_WALK);
4934
4935 if (IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG) && get_cap(LRU_GEN_NONLEAF_YOUNG))
4936 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
4937
4938 return snprintf(buf, PAGE_SIZE, "0x%04x\n", caps);
4939 }
4940
4941 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
store_enabled(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)4942 static ssize_t store_enabled(struct kobject *kobj, struct kobj_attribute *attr,
4943 const char *buf, size_t len)
4944 {
4945 int i;
4946 unsigned int caps;
4947
4948 if (tolower(*buf) == 'n')
4949 caps = 0;
4950 else if (tolower(*buf) == 'y')
4951 caps = -1;
4952 else if (kstrtouint(buf, 0, &caps))
4953 return -EINVAL;
4954
4955 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
4956 bool enabled = caps & BIT(i);
4957
4958 if (i == LRU_GEN_CORE)
4959 lru_gen_change_state(enabled);
4960 else if (enabled)
4961 static_branch_enable(&lru_gen_caps[i]);
4962 else
4963 static_branch_disable(&lru_gen_caps[i]);
4964 }
4965
4966 return len;
4967 }
4968
4969 static struct kobj_attribute lru_gen_enabled_attr = __ATTR(
4970 enabled, 0644, show_enabled, store_enabled
4971 );
4972
4973 static struct attribute *lru_gen_attrs[] = {
4974 &lru_gen_min_ttl_attr.attr,
4975 &lru_gen_enabled_attr.attr,
4976 NULL
4977 };
4978
4979 static struct attribute_group lru_gen_attr_group = {
4980 .name = "lru_gen",
4981 .attrs = lru_gen_attrs,
4982 };
4983
4984 /******************************************************************************
4985 * debugfs interface
4986 ******************************************************************************/
4987
lru_gen_seq_start(struct seq_file * m,loff_t * pos)4988 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
4989 {
4990 struct mem_cgroup *memcg;
4991 loff_t nr_to_skip = *pos;
4992
4993 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
4994 if (!m->private)
4995 return ERR_PTR(-ENOMEM);
4996
4997 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4998 do {
4999 int nid;
5000
5001 for_each_node_state(nid, N_MEMORY) {
5002 if (!nr_to_skip--)
5003 return get_lruvec(memcg, nid);
5004 }
5005 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5006
5007 return NULL;
5008 }
5009
lru_gen_seq_stop(struct seq_file * m,void * v)5010 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5011 {
5012 if (!IS_ERR_OR_NULL(v))
5013 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5014
5015 kvfree(m->private);
5016 m->private = NULL;
5017 }
5018
lru_gen_seq_next(struct seq_file * m,void * v,loff_t * pos)5019 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5020 {
5021 int nid = lruvec_pgdat(v)->node_id;
5022 struct mem_cgroup *memcg = lruvec_memcg(v);
5023
5024 ++*pos;
5025
5026 nid = next_memory_node(nid);
5027 if (nid == MAX_NUMNODES) {
5028 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5029 if (!memcg)
5030 return NULL;
5031
5032 nid = first_memory_node;
5033 }
5034
5035 return get_lruvec(memcg, nid);
5036 }
5037
lru_gen_seq_show_full(struct seq_file * m,struct lruvec * lruvec,unsigned long max_seq,unsigned long * min_seq,unsigned long seq)5038 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5039 unsigned long max_seq, unsigned long *min_seq,
5040 unsigned long seq)
5041 {
5042 int i;
5043 int type, tier;
5044 int hist = lru_hist_from_seq(seq);
5045 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5046
5047 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5048 seq_printf(m, " %10d", tier);
5049 for (type = 0; type < ANON_AND_FILE; type++) {
5050 const char *s = " ";
5051 unsigned long n[3] = {};
5052
5053 if (seq == max_seq) {
5054 s = "RT ";
5055 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5056 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5057 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5058 s = "rep";
5059 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5060 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5061 if (tier)
5062 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5063 }
5064
5065 for (i = 0; i < 3; i++)
5066 seq_printf(m, " %10lu%c", n[i], s[i]);
5067 }
5068 seq_putc(m, '\n');
5069 }
5070
5071 seq_puts(m, " ");
5072 for (i = 0; i < NR_MM_STATS; i++) {
5073 const char *s = " ";
5074 unsigned long n = 0;
5075
5076 if (seq == max_seq && NR_HIST_GENS == 1) {
5077 s = "LOYNFA";
5078 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5079 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5080 s = "loynfa";
5081 n = READ_ONCE(lruvec->mm_state.stats[hist][i]);
5082 }
5083
5084 seq_printf(m, " %10lu%c", n, s[i]);
5085 }
5086 seq_putc(m, '\n');
5087 }
5088
5089 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_show(struct seq_file * m,void * v)5090 static int lru_gen_seq_show(struct seq_file *m, void *v)
5091 {
5092 unsigned long seq;
5093 bool full = !debugfs_real_fops(m->file)->write;
5094 struct lruvec *lruvec = v;
5095 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5096 int nid = lruvec_pgdat(lruvec)->node_id;
5097 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5098 DEFINE_MAX_SEQ(lruvec);
5099 DEFINE_MIN_SEQ(lruvec);
5100
5101 if (nid == first_memory_node) {
5102 const char *path = memcg ? m->private : "";
5103
5104 #ifdef CONFIG_MEMCG
5105 if (memcg)
5106 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5107 #endif
5108 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5109 }
5110
5111 seq_printf(m, " node %5d\n", nid);
5112
5113 if (!full)
5114 seq = min_seq[LRU_GEN_ANON];
5115 else if (max_seq >= MAX_NR_GENS)
5116 seq = max_seq - MAX_NR_GENS + 1;
5117 else
5118 seq = 0;
5119
5120 for (; seq <= max_seq; seq++) {
5121 int type, zone;
5122 int gen = lru_gen_from_seq(seq);
5123 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5124
5125 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5126
5127 for (type = 0; type < ANON_AND_FILE; type++) {
5128 unsigned long size = 0;
5129 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5130
5131 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5132 size += max_t(long, READ_ONCE(lrugen->nr_pages[gen][type][zone]),
5133 0);
5134
5135 seq_printf(m, " %10lu%c", size, mark);
5136 }
5137
5138 seq_putc(m, '\n');
5139
5140 if (full)
5141 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5142 }
5143
5144 return 0;
5145 }
5146
5147 static const struct seq_operations lru_gen_seq_ops = {
5148 .start = lru_gen_seq_start,
5149 .stop = lru_gen_seq_stop,
5150 .next = lru_gen_seq_next,
5151 .show = lru_gen_seq_show,
5152 };
5153
run_aging(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,bool can_swap,bool full_scan)5154 static int run_aging(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5155 bool can_swap, bool full_scan)
5156 {
5157 DEFINE_MAX_SEQ(lruvec);
5158 DEFINE_MIN_SEQ(lruvec);
5159
5160 if (seq < max_seq)
5161 return 0;
5162
5163 if (seq > max_seq)
5164 return -EINVAL;
5165
5166 if (!full_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5167 return -ERANGE;
5168
5169 try_to_inc_max_seq(lruvec, max_seq, sc, can_swap, full_scan);
5170
5171 return 0;
5172 }
5173
run_eviction(struct lruvec * lruvec,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long nr_to_reclaim)5174 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5175 int swappiness, unsigned long nr_to_reclaim)
5176 {
5177 DEFINE_MAX_SEQ(lruvec);
5178
5179 if (seq + MIN_NR_GENS > max_seq)
5180 return -EINVAL;
5181
5182 sc->nr_reclaimed = 0;
5183
5184 while (!signal_pending(current)) {
5185 DEFINE_MIN_SEQ(lruvec);
5186
5187 if (seq < min_seq[!swappiness])
5188 return 0;
5189
5190 if (sc->nr_reclaimed >= nr_to_reclaim)
5191 return 0;
5192
5193 if (!evict_pages(lruvec, sc, swappiness, NULL))
5194 return 0;
5195
5196 cond_resched();
5197 }
5198
5199 return -EINTR;
5200 }
5201
run_cmd(char cmd,int memcg_id,int nid,unsigned long seq,struct scan_control * sc,int swappiness,unsigned long opt)5202 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5203 struct scan_control *sc, int swappiness, unsigned long opt)
5204 {
5205 struct lruvec *lruvec;
5206 int err = -EINVAL;
5207 struct mem_cgroup *memcg = NULL;
5208
5209 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5210 return -EINVAL;
5211
5212 if (!mem_cgroup_disabled()) {
5213 rcu_read_lock();
5214 memcg = mem_cgroup_from_id(memcg_id);
5215 #ifdef CONFIG_MEMCG
5216 if (memcg && !css_tryget(&memcg->css))
5217 memcg = NULL;
5218 #endif
5219 rcu_read_unlock();
5220
5221 if (!memcg)
5222 return -EINVAL;
5223 }
5224
5225 if (memcg_id != mem_cgroup_id(memcg))
5226 goto done;
5227
5228 lruvec = get_lruvec(memcg, nid);
5229
5230 if (swappiness < 0)
5231 swappiness = get_swappiness(lruvec, sc);
5232 else if (swappiness > 200)
5233 goto done;
5234
5235 switch (cmd) {
5236 case '+':
5237 err = run_aging(lruvec, seq, sc, swappiness, opt);
5238 break;
5239 case '-':
5240 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5241 break;
5242 }
5243 done:
5244 mem_cgroup_put(memcg);
5245
5246 return err;
5247 }
5248
5249 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
lru_gen_seq_write(struct file * file,const char __user * src,size_t len,loff_t * pos)5250 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5251 size_t len, loff_t *pos)
5252 {
5253 void *buf;
5254 char *cur, *next;
5255 unsigned int flags;
5256 struct blk_plug plug;
5257 int err = -EINVAL;
5258 struct scan_control sc = {
5259 .may_writepage = true,
5260 .may_unmap = true,
5261 .may_swap = true,
5262 .reclaim_idx = MAX_NR_ZONES - 1,
5263 .gfp_mask = GFP_KERNEL,
5264 };
5265
5266 buf = kvmalloc(len + 1, GFP_KERNEL);
5267 if (!buf)
5268 return -ENOMEM;
5269
5270 if (copy_from_user(buf, src, len)) {
5271 kvfree(buf);
5272 return -EFAULT;
5273 }
5274
5275 set_task_reclaim_state(current, &sc.reclaim_state);
5276 flags = memalloc_noreclaim_save();
5277 blk_start_plug(&plug);
5278 if (!set_mm_walk(NULL)) {
5279 err = -ENOMEM;
5280 goto done;
5281 }
5282
5283 next = buf;
5284 next[len] = '\0';
5285
5286 while ((cur = strsep(&next, ",;\n"))) {
5287 int n;
5288 int end;
5289 char cmd;
5290 unsigned int memcg_id;
5291 unsigned int nid;
5292 unsigned long seq;
5293 unsigned int swappiness = -1;
5294 unsigned long opt = -1;
5295
5296 cur = skip_spaces(cur);
5297 if (!*cur)
5298 continue;
5299
5300 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5301 &seq, &end, &swappiness, &end, &opt, &end);
5302 if (n < 4 || cur[end]) {
5303 err = -EINVAL;
5304 break;
5305 }
5306
5307 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5308 if (err)
5309 break;
5310 }
5311 done:
5312 clear_mm_walk();
5313 blk_finish_plug(&plug);
5314 memalloc_noreclaim_restore(flags);
5315 set_task_reclaim_state(current, NULL);
5316
5317 kvfree(buf);
5318
5319 return err ? : len;
5320 }
5321
lru_gen_seq_open(struct inode * inode,struct file * file)5322 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5323 {
5324 return seq_open(file, &lru_gen_seq_ops);
5325 }
5326
5327 static const struct file_operations lru_gen_rw_fops = {
5328 .open = lru_gen_seq_open,
5329 .read = seq_read,
5330 .write = lru_gen_seq_write,
5331 .llseek = seq_lseek,
5332 .release = seq_release,
5333 };
5334
5335 static const struct file_operations lru_gen_ro_fops = {
5336 .open = lru_gen_seq_open,
5337 .read = seq_read,
5338 .llseek = seq_lseek,
5339 .release = seq_release,
5340 };
5341
5342 /******************************************************************************
5343 * initialization
5344 ******************************************************************************/
5345
lru_gen_init_lruvec(struct lruvec * lruvec)5346 void lru_gen_init_lruvec(struct lruvec *lruvec)
5347 {
5348 int i;
5349 int gen, type, zone;
5350 struct lru_gen_struct *lrugen = &lruvec->lrugen;
5351
5352 lrugen->max_seq = MIN_NR_GENS + 1;
5353 lrugen->enabled = lru_gen_enabled();
5354
5355 for (i = 0; i <= MIN_NR_GENS + 1; i++)
5356 lrugen->timestamps[i] = jiffies;
5357
5358 for_each_gen_type_zone(gen, type, zone)
5359 INIT_LIST_HEAD(&lrugen->lists[gen][type][zone]);
5360
5361 lruvec->mm_state.seq = MIN_NR_GENS;
5362 }
5363
5364 #ifdef CONFIG_MEMCG
lru_gen_init_memcg(struct mem_cgroup * memcg)5365 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5366 {
5367 INIT_LIST_HEAD(&memcg->mm_list.fifo);
5368 spin_lock_init(&memcg->mm_list.lock);
5369 }
5370
lru_gen_exit_memcg(struct mem_cgroup * memcg)5371 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5372 {
5373 int i;
5374 int nid;
5375
5376 for_each_node(nid) {
5377 struct lruvec *lruvec = get_lruvec(memcg, nid);
5378
5379 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5380 sizeof(lruvec->lrugen.nr_pages)));
5381
5382 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5383 bitmap_free(lruvec->mm_state.filters[i]);
5384 lruvec->mm_state.filters[i] = NULL;
5385 }
5386 }
5387 }
5388 #endif
5389
init_lru_gen(void)5390 static int __init init_lru_gen(void)
5391 {
5392 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5393 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5394
5395 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5396 pr_err("lru_gen: failed to create sysfs group\n");
5397
5398 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5399 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5400
5401 return 0;
5402 };
5403 late_initcall(init_lru_gen);
5404
5405 #else /* !CONFIG_LRU_GEN */
5406
lru_gen_age_node(struct pglist_data * pgdat,struct scan_control * sc)5407 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5408 {
5409 }
5410
lru_gen_shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5411 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5412 {
5413 }
5414
5415 #endif /* CONFIG_LRU_GEN */
5416
shrink_lruvec(struct lruvec * lruvec,struct scan_control * sc)5417 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5418 {
5419 unsigned long nr[NR_LRU_LISTS];
5420 unsigned long targets[NR_LRU_LISTS];
5421 unsigned long nr_to_scan;
5422 enum lru_list lru;
5423 unsigned long nr_reclaimed = 0;
5424 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5425 bool proportional_reclaim;
5426 struct blk_plug plug;
5427 bool do_plug = true;
5428
5429 if (lru_gen_enabled()) {
5430 lru_gen_shrink_lruvec(lruvec, sc);
5431 return;
5432 }
5433
5434 get_scan_count(lruvec, sc, nr);
5435
5436 /* Record the original scan target for proportional adjustments later */
5437 memcpy(targets, nr, sizeof(nr));
5438
5439 /*
5440 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5441 * event that can occur when there is little memory pressure e.g.
5442 * multiple streaming readers/writers. Hence, we do not abort scanning
5443 * when the requested number of pages are reclaimed when scanning at
5444 * DEF_PRIORITY on the assumption that the fact we are direct
5445 * reclaiming implies that kswapd is not keeping up and it is best to
5446 * do a batch of work at once. For memcg reclaim one check is made to
5447 * abort proportional reclaim if either the file or anon lru has already
5448 * dropped to zero at the first pass.
5449 */
5450 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5451 sc->priority == DEF_PRIORITY);
5452
5453 trace_android_vh_shrink_lruvec_blk_plug(&do_plug);
5454 if (do_plug)
5455 blk_start_plug(&plug);
5456 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5457 nr[LRU_INACTIVE_FILE]) {
5458 unsigned long nr_anon, nr_file, percentage;
5459 unsigned long nr_scanned;
5460
5461 for_each_evictable_lru(lru) {
5462 if (nr[lru]) {
5463 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5464 nr[lru] -= nr_to_scan;
5465
5466 nr_reclaimed += shrink_list(lru, nr_to_scan,
5467 lruvec, sc);
5468 }
5469 }
5470
5471 cond_resched();
5472
5473 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5474 continue;
5475
5476 /*
5477 * For kswapd and memcg, reclaim at least the number of pages
5478 * requested. Ensure that the anon and file LRUs are scanned
5479 * proportionally what was requested by get_scan_count(). We
5480 * stop reclaiming one LRU and reduce the amount scanning
5481 * proportional to the original scan target.
5482 */
5483 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5484 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5485
5486 /*
5487 * It's just vindictive to attack the larger once the smaller
5488 * has gone to zero. And given the way we stop scanning the
5489 * smaller below, this makes sure that we only make one nudge
5490 * towards proportionality once we've got nr_to_reclaim.
5491 */
5492 if (!nr_file || !nr_anon)
5493 break;
5494
5495 if (nr_file > nr_anon) {
5496 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5497 targets[LRU_ACTIVE_ANON] + 1;
5498 lru = LRU_BASE;
5499 percentage = nr_anon * 100 / scan_target;
5500 } else {
5501 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5502 targets[LRU_ACTIVE_FILE] + 1;
5503 lru = LRU_FILE;
5504 percentage = nr_file * 100 / scan_target;
5505 }
5506
5507 /* Stop scanning the smaller of the LRU */
5508 nr[lru] = 0;
5509 nr[lru + LRU_ACTIVE] = 0;
5510
5511 /*
5512 * Recalculate the other LRU scan count based on its original
5513 * scan target and the percentage scanning already complete
5514 */
5515 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5516 nr_scanned = targets[lru] - nr[lru];
5517 nr[lru] = targets[lru] * (100 - percentage) / 100;
5518 nr[lru] -= min(nr[lru], nr_scanned);
5519
5520 lru += LRU_ACTIVE;
5521 nr_scanned = targets[lru] - nr[lru];
5522 nr[lru] = targets[lru] * (100 - percentage) / 100;
5523 nr[lru] -= min(nr[lru], nr_scanned);
5524 }
5525 if (do_plug)
5526 blk_finish_plug(&plug);
5527 sc->nr_reclaimed += nr_reclaimed;
5528
5529 /*
5530 * Even if we did not try to evict anon pages at all, we want to
5531 * rebalance the anon lru active/inactive ratio.
5532 */
5533 if (total_swap_pages && inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5534 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5535 sc, LRU_ACTIVE_ANON);
5536 }
5537
5538 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)5539 static bool in_reclaim_compaction(struct scan_control *sc)
5540 {
5541 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
5542 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5543 sc->priority < DEF_PRIORITY - 2))
5544 return true;
5545
5546 return false;
5547 }
5548
5549 /*
5550 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5551 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5552 * true if more pages should be reclaimed such that when the page allocator
5553 * calls try_to_compact_pages() that it will have enough free pages to succeed.
5554 * It will give up earlier than that if there is difficulty reclaiming pages.
5555 */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,struct scan_control * sc)5556 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5557 unsigned long nr_reclaimed,
5558 struct scan_control *sc)
5559 {
5560 unsigned long pages_for_compaction;
5561 unsigned long inactive_lru_pages;
5562 int z;
5563
5564 /* If not in reclaim/compaction mode, stop */
5565 if (!in_reclaim_compaction(sc))
5566 return false;
5567
5568 /*
5569 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5570 * number of pages that were scanned. This will return to the caller
5571 * with the risk reclaim/compaction and the resulting allocation attempt
5572 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5573 * allocations through requiring that the full LRU list has been scanned
5574 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5575 * scan, but that approximation was wrong, and there were corner cases
5576 * where always a non-zero amount of pages were scanned.
5577 */
5578 if (!nr_reclaimed)
5579 return false;
5580
5581 /* If compaction would go ahead or the allocation would succeed, stop */
5582 for (z = 0; z <= sc->reclaim_idx; z++) {
5583 struct zone *zone = &pgdat->node_zones[z];
5584 if (!managed_zone(zone))
5585 continue;
5586
5587 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
5588 case COMPACT_SUCCESS:
5589 case COMPACT_CONTINUE:
5590 return false;
5591 default:
5592 /* check next zone */
5593 ;
5594 }
5595 }
5596
5597 /*
5598 * If we have not reclaimed enough pages for compaction and the
5599 * inactive lists are large enough, continue reclaiming
5600 */
5601 pages_for_compaction = compact_gap(sc->order);
5602 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5603 if (get_nr_swap_pages() > 0)
5604 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5605
5606 return inactive_lru_pages > pages_for_compaction;
5607 }
5608
shrink_node_memcgs(pg_data_t * pgdat,struct scan_control * sc)5609 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5610 {
5611 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5612 struct mem_cgroup *memcg;
5613
5614 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
5615 do {
5616 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5617 unsigned long reclaimed;
5618 unsigned long scanned;
5619
5620 /*
5621 * This loop can become CPU-bound when target memcgs
5622 * aren't eligible for reclaim - either because they
5623 * don't have any reclaimable pages, or because their
5624 * memory is explicitly protected. Avoid soft lockups.
5625 */
5626 cond_resched();
5627
5628 mem_cgroup_calculate_protection(target_memcg, memcg);
5629
5630 if (mem_cgroup_below_min(memcg)) {
5631 /*
5632 * Hard protection.
5633 * If there is no reclaimable memory, OOM.
5634 */
5635 continue;
5636 } else if (mem_cgroup_below_low(memcg)) {
5637 /*
5638 * Soft protection.
5639 * Respect the protection only as long as
5640 * there is an unprotected supply
5641 * of reclaimable memory from other cgroups.
5642 */
5643 if (!sc->memcg_low_reclaim) {
5644 sc->memcg_low_skipped = 1;
5645 continue;
5646 }
5647 memcg_memory_event(memcg, MEMCG_LOW);
5648 }
5649
5650 reclaimed = sc->nr_reclaimed;
5651 scanned = sc->nr_scanned;
5652
5653 shrink_lruvec(lruvec, sc);
5654
5655 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5656 sc->priority);
5657
5658 /* Record the group's reclaim efficiency */
5659 vmpressure(sc->gfp_mask, memcg, false,
5660 sc->nr_scanned - scanned,
5661 sc->nr_reclaimed - reclaimed);
5662
5663 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
5664 }
5665
shrink_node(pg_data_t * pgdat,struct scan_control * sc)5666 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5667 {
5668 struct reclaim_state *reclaim_state = current->reclaim_state;
5669 unsigned long nr_reclaimed, nr_scanned;
5670 struct lruvec *target_lruvec;
5671 bool reclaimable = false;
5672
5673 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
5674
5675 again:
5676 memset(&sc->nr, 0, sizeof(sc->nr));
5677
5678 nr_reclaimed = sc->nr_reclaimed;
5679 nr_scanned = sc->nr_scanned;
5680
5681 prepare_scan_count(pgdat, sc);
5682
5683 shrink_node_memcgs(pgdat, sc);
5684
5685 if (reclaim_state) {
5686 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
5687 reclaim_state->reclaimed_slab = 0;
5688 }
5689
5690 /* Record the subtree's reclaim efficiency */
5691 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
5692 sc->nr_scanned - nr_scanned,
5693 sc->nr_reclaimed - nr_reclaimed);
5694
5695 if (sc->nr_reclaimed - nr_reclaimed)
5696 reclaimable = true;
5697
5698 if (current_is_kswapd()) {
5699 /*
5700 * If reclaim is isolating dirty pages under writeback,
5701 * it implies that the long-lived page allocation rate
5702 * is exceeding the page laundering rate. Either the
5703 * global limits are not being effective at throttling
5704 * processes due to the page distribution throughout
5705 * zones or there is heavy usage of a slow backing
5706 * device. The only option is to throttle from reclaim
5707 * context which is not ideal as there is no guarantee
5708 * the dirtying process is throttled in the same way
5709 * balance_dirty_pages() manages.
5710 *
5711 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
5712 * count the number of pages under pages flagged for
5713 * immediate reclaim and stall if any are encountered
5714 * in the nr_immediate check below.
5715 */
5716 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
5717 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
5718
5719 /* Allow kswapd to start writing pages during reclaim.*/
5720 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
5721 set_bit(PGDAT_DIRTY, &pgdat->flags);
5722
5723 /*
5724 * If kswapd scans pages marked for immediate
5725 * reclaim and under writeback (nr_immediate), it
5726 * implies that pages are cycling through the LRU
5727 * faster than they are written so also forcibly stall.
5728 */
5729 if (sc->nr.immediate)
5730 congestion_wait(BLK_RW_ASYNC, HZ/10);
5731 }
5732
5733 /*
5734 * Tag a node/memcg as congested if all the dirty pages
5735 * scanned were backed by a congested BDI and
5736 * wait_iff_congested will stall.
5737 *
5738 * Legacy memcg will stall in page writeback so avoid forcibly
5739 * stalling in wait_iff_congested().
5740 */
5741 if ((current_is_kswapd() ||
5742 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
5743 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
5744 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
5745
5746 /*
5747 * Stall direct reclaim for IO completions if underlying BDIs
5748 * and node is congested. Allow kswapd to continue until it
5749 * starts encountering unqueued dirty pages or cycling through
5750 * the LRU too quickly.
5751 */
5752 if (!current_is_kswapd() && current_may_throttle() &&
5753 !sc->hibernation_mode &&
5754 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
5755 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
5756
5757 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
5758 sc))
5759 goto again;
5760
5761 /*
5762 * Kswapd gives up on balancing particular nodes after too
5763 * many failures to reclaim anything from them and goes to
5764 * sleep. On reclaim progress, reset the failure counter. A
5765 * successful direct reclaim run will revive a dormant kswapd.
5766 */
5767 if (reclaimable)
5768 pgdat->kswapd_failures = 0;
5769 }
5770
5771 /*
5772 * Returns true if compaction should go ahead for a costly-order request, or
5773 * the allocation would already succeed without compaction. Return false if we
5774 * should reclaim first.
5775 */
compaction_ready(struct zone * zone,struct scan_control * sc)5776 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
5777 {
5778 unsigned long watermark;
5779 enum compact_result suitable;
5780
5781 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
5782 if (suitable == COMPACT_SUCCESS)
5783 /* Allocation should succeed already. Don't reclaim. */
5784 return true;
5785 if (suitable == COMPACT_SKIPPED)
5786 /* Compaction cannot yet proceed. Do reclaim. */
5787 return false;
5788
5789 /*
5790 * Compaction is already possible, but it takes time to run and there
5791 * are potentially other callers using the pages just freed. So proceed
5792 * with reclaim to make a buffer of free pages available to give
5793 * compaction a reasonable chance of completing and allocating the page.
5794 * Note that we won't actually reclaim the whole buffer in one attempt
5795 * as the target watermark in should_continue_reclaim() is lower. But if
5796 * we are already above the high+gap watermark, don't reclaim at all.
5797 */
5798 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
5799
5800 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
5801 }
5802
5803 /*
5804 * This is the direct reclaim path, for page-allocating processes. We only
5805 * try to reclaim pages from zones which will satisfy the caller's allocation
5806 * request.
5807 *
5808 * If a zone is deemed to be full of pinned pages then just give it a light
5809 * scan then give up on it.
5810 */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)5811 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
5812 {
5813 struct zoneref *z;
5814 struct zone *zone;
5815 unsigned long nr_soft_reclaimed;
5816 unsigned long nr_soft_scanned;
5817 gfp_t orig_mask;
5818 pg_data_t *last_pgdat = NULL;
5819
5820 /*
5821 * If the number of buffer_heads in the machine exceeds the maximum
5822 * allowed level, force direct reclaim to scan the highmem zone as
5823 * highmem pages could be pinning lowmem pages storing buffer_heads
5824 */
5825 orig_mask = sc->gfp_mask;
5826 if (buffer_heads_over_limit) {
5827 sc->gfp_mask |= __GFP_HIGHMEM;
5828 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
5829 }
5830
5831 for_each_zone_zonelist_nodemask(zone, z, zonelist,
5832 sc->reclaim_idx, sc->nodemask) {
5833 /*
5834 * Take care memory controller reclaiming has small influence
5835 * to global LRU.
5836 */
5837 if (!cgroup_reclaim(sc)) {
5838 if (!cpuset_zone_allowed(zone,
5839 GFP_KERNEL | __GFP_HARDWALL))
5840 continue;
5841
5842 /*
5843 * If we already have plenty of memory free for
5844 * compaction in this zone, don't free any more.
5845 * Even though compaction is invoked for any
5846 * non-zero order, only frequent costly order
5847 * reclamation is disruptive enough to become a
5848 * noticeable problem, like transparent huge
5849 * page allocations.
5850 */
5851 if (IS_ENABLED(CONFIG_COMPACTION) &&
5852 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
5853 compaction_ready(zone, sc)) {
5854 sc->compaction_ready = true;
5855 continue;
5856 }
5857
5858 /*
5859 * Shrink each node in the zonelist once. If the
5860 * zonelist is ordered by zone (not the default) then a
5861 * node may be shrunk multiple times but in that case
5862 * the user prefers lower zones being preserved.
5863 */
5864 if (zone->zone_pgdat == last_pgdat)
5865 continue;
5866
5867 /*
5868 * This steals pages from memory cgroups over softlimit
5869 * and returns the number of reclaimed pages and
5870 * scanned pages. This works for global memory pressure
5871 * and balancing, not for a memcg's limit.
5872 */
5873 nr_soft_scanned = 0;
5874 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
5875 sc->order, sc->gfp_mask,
5876 &nr_soft_scanned);
5877 sc->nr_reclaimed += nr_soft_reclaimed;
5878 sc->nr_scanned += nr_soft_scanned;
5879 /* need some check for avoid more shrink_zone() */
5880 }
5881
5882 /* See comment about same check for global reclaim above */
5883 if (zone->zone_pgdat == last_pgdat)
5884 continue;
5885 last_pgdat = zone->zone_pgdat;
5886 shrink_node(zone->zone_pgdat, sc);
5887 }
5888
5889 /*
5890 * Restore to original mask to avoid the impact on the caller if we
5891 * promoted it to __GFP_HIGHMEM.
5892 */
5893 sc->gfp_mask = orig_mask;
5894 }
5895
snapshot_refaults(struct mem_cgroup * target_memcg,pg_data_t * pgdat)5896 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
5897 {
5898 struct lruvec *target_lruvec;
5899 unsigned long refaults;
5900
5901 if (lru_gen_enabled())
5902 return;
5903
5904 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
5905 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
5906 target_lruvec->refaults[0] = refaults;
5907 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
5908 target_lruvec->refaults[1] = refaults;
5909 }
5910
5911 /*
5912 * This is the main entry point to direct page reclaim.
5913 *
5914 * If a full scan of the inactive list fails to free enough memory then we
5915 * are "out of memory" and something needs to be killed.
5916 *
5917 * If the caller is !__GFP_FS then the probability of a failure is reasonably
5918 * high - the zone may be full of dirty or under-writeback pages, which this
5919 * caller can't do much about. We kick the writeback threads and take explicit
5920 * naps in the hope that some of these pages can be written. But if the
5921 * allocating task holds filesystem locks which prevent writeout this might not
5922 * work, and the allocation attempt will fail.
5923 *
5924 * returns: 0, if no pages reclaimed
5925 * else, the number of pages reclaimed
5926 */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)5927 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
5928 struct scan_control *sc)
5929 {
5930 int initial_priority = sc->priority;
5931 pg_data_t *last_pgdat;
5932 struct zoneref *z;
5933 struct zone *zone;
5934 retry:
5935 delayacct_freepages_start();
5936
5937 if (!cgroup_reclaim(sc))
5938 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
5939
5940 do {
5941 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
5942 sc->priority);
5943 sc->nr_scanned = 0;
5944 shrink_zones(zonelist, sc);
5945
5946 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
5947 break;
5948
5949 if (sc->compaction_ready)
5950 break;
5951
5952 /*
5953 * If we're getting trouble reclaiming, start doing
5954 * writepage even in laptop mode.
5955 */
5956 if (sc->priority < DEF_PRIORITY - 2)
5957 sc->may_writepage = 1;
5958 } while (--sc->priority >= 0);
5959
5960 last_pgdat = NULL;
5961 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
5962 sc->nodemask) {
5963 if (zone->zone_pgdat == last_pgdat)
5964 continue;
5965 last_pgdat = zone->zone_pgdat;
5966
5967 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
5968
5969 if (cgroup_reclaim(sc)) {
5970 struct lruvec *lruvec;
5971
5972 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
5973 zone->zone_pgdat);
5974 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
5975 }
5976 }
5977
5978 delayacct_freepages_end();
5979
5980 if (sc->nr_reclaimed)
5981 return sc->nr_reclaimed;
5982
5983 /* Aborted reclaim to try compaction? don't OOM, then */
5984 if (sc->compaction_ready)
5985 return 1;
5986
5987 /*
5988 * We make inactive:active ratio decisions based on the node's
5989 * composition of memory, but a restrictive reclaim_idx or a
5990 * memory.low cgroup setting can exempt large amounts of
5991 * memory from reclaim. Neither of which are very common, so
5992 * instead of doing costly eligibility calculations of the
5993 * entire cgroup subtree up front, we assume the estimates are
5994 * good, and retry with forcible deactivation if that fails.
5995 */
5996 if (sc->skipped_deactivate) {
5997 sc->priority = initial_priority;
5998 sc->force_deactivate = 1;
5999 sc->skipped_deactivate = 0;
6000 goto retry;
6001 }
6002
6003 /* Untapped cgroup reserves? Don't OOM, retry. */
6004 if (sc->memcg_low_skipped) {
6005 sc->priority = initial_priority;
6006 sc->force_deactivate = 0;
6007 sc->memcg_low_reclaim = 1;
6008 sc->memcg_low_skipped = 0;
6009 goto retry;
6010 }
6011
6012 return 0;
6013 }
6014
allow_direct_reclaim(pg_data_t * pgdat)6015 static bool allow_direct_reclaim(pg_data_t *pgdat)
6016 {
6017 struct zone *zone;
6018 unsigned long pfmemalloc_reserve = 0;
6019 unsigned long free_pages = 0;
6020 int i;
6021 bool wmark_ok;
6022
6023 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6024 return true;
6025
6026 for (i = 0; i <= ZONE_NORMAL; i++) {
6027 zone = &pgdat->node_zones[i];
6028 if (!managed_zone(zone))
6029 continue;
6030
6031 if (!zone_reclaimable_pages(zone))
6032 continue;
6033
6034 pfmemalloc_reserve += min_wmark_pages(zone);
6035 free_pages += zone_page_state(zone, NR_FREE_PAGES);
6036 }
6037
6038 /* If there are no reserves (unexpected config) then do not throttle */
6039 if (!pfmemalloc_reserve)
6040 return true;
6041
6042 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6043
6044 /* kswapd must be awake if processes are being throttled */
6045 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6046 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6047 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6048
6049 wake_up_interruptible(&pgdat->kswapd_wait);
6050 }
6051
6052 return wmark_ok;
6053 }
6054
6055 /*
6056 * Throttle direct reclaimers if backing storage is backed by the network
6057 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6058 * depleted. kswapd will continue to make progress and wake the processes
6059 * when the low watermark is reached.
6060 *
6061 * Returns true if a fatal signal was delivered during throttling. If this
6062 * happens, the page allocator should not consider triggering the OOM killer.
6063 */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)6064 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6065 nodemask_t *nodemask)
6066 {
6067 struct zoneref *z;
6068 struct zone *zone;
6069 pg_data_t *pgdat = NULL;
6070
6071 /*
6072 * Kernel threads should not be throttled as they may be indirectly
6073 * responsible for cleaning pages necessary for reclaim to make forward
6074 * progress. kjournald for example may enter direct reclaim while
6075 * committing a transaction where throttling it could forcing other
6076 * processes to block on log_wait_commit().
6077 */
6078 if (current->flags & PF_KTHREAD)
6079 goto out;
6080
6081 /*
6082 * If a fatal signal is pending, this process should not throttle.
6083 * It should return quickly so it can exit and free its memory
6084 */
6085 if (fatal_signal_pending(current))
6086 goto out;
6087
6088 /*
6089 * Check if the pfmemalloc reserves are ok by finding the first node
6090 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6091 * GFP_KERNEL will be required for allocating network buffers when
6092 * swapping over the network so ZONE_HIGHMEM is unusable.
6093 *
6094 * Throttling is based on the first usable node and throttled processes
6095 * wait on a queue until kswapd makes progress and wakes them. There
6096 * is an affinity then between processes waking up and where reclaim
6097 * progress has been made assuming the process wakes on the same node.
6098 * More importantly, processes running on remote nodes will not compete
6099 * for remote pfmemalloc reserves and processes on different nodes
6100 * should make reasonable progress.
6101 */
6102 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6103 gfp_zone(gfp_mask), nodemask) {
6104 if (zone_idx(zone) > ZONE_NORMAL)
6105 continue;
6106
6107 /* Throttle based on the first usable node */
6108 pgdat = zone->zone_pgdat;
6109 if (allow_direct_reclaim(pgdat))
6110 goto out;
6111 break;
6112 }
6113
6114 /* If no zone was usable by the allocation flags then do not throttle */
6115 if (!pgdat)
6116 goto out;
6117
6118 /* Account for the throttling */
6119 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6120
6121 /*
6122 * If the caller cannot enter the filesystem, it's possible that it
6123 * is due to the caller holding an FS lock or performing a journal
6124 * transaction in the case of a filesystem like ext[3|4]. In this case,
6125 * it is not safe to block on pfmemalloc_wait as kswapd could be
6126 * blocked waiting on the same lock. Instead, throttle for up to a
6127 * second before continuing.
6128 */
6129 if (!(gfp_mask & __GFP_FS)) {
6130 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6131 allow_direct_reclaim(pgdat), HZ);
6132
6133 goto check_pending;
6134 }
6135
6136 /* Throttle until kswapd wakes the process */
6137 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6138 allow_direct_reclaim(pgdat));
6139
6140 check_pending:
6141 if (fatal_signal_pending(current))
6142 return true;
6143
6144 out:
6145 return false;
6146 }
6147
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)6148 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6149 gfp_t gfp_mask, nodemask_t *nodemask)
6150 {
6151 unsigned long nr_reclaimed;
6152 struct scan_control sc = {
6153 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6154 .gfp_mask = current_gfp_context(gfp_mask),
6155 .reclaim_idx = gfp_zone(gfp_mask),
6156 .order = order,
6157 .nodemask = nodemask,
6158 .priority = DEF_PRIORITY,
6159 .may_writepage = !laptop_mode,
6160 .may_unmap = 1,
6161 .may_swap = 1,
6162 };
6163
6164 /*
6165 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6166 * Confirm they are large enough for max values.
6167 */
6168 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
6169 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6170 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6171
6172 /*
6173 * Do not enter reclaim if fatal signal was delivered while throttled.
6174 * 1 is returned so that the page allocator does not OOM kill at this
6175 * point.
6176 */
6177 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6178 return 1;
6179
6180 set_task_reclaim_state(current, &sc.reclaim_state);
6181 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6182
6183 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6184
6185 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6186 set_task_reclaim_state(current, NULL);
6187
6188 return nr_reclaimed;
6189 }
6190
6191 #ifdef CONFIG_MEMCG
6192
6193 /* Only used by soft limit reclaim. Do not reuse for anything else. */
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)6194 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6195 gfp_t gfp_mask, bool noswap,
6196 pg_data_t *pgdat,
6197 unsigned long *nr_scanned)
6198 {
6199 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6200 struct scan_control sc = {
6201 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6202 .target_mem_cgroup = memcg,
6203 .may_writepage = !laptop_mode,
6204 .may_unmap = 1,
6205 .reclaim_idx = MAX_NR_ZONES - 1,
6206 .may_swap = !noswap,
6207 };
6208
6209 WARN_ON_ONCE(!current->reclaim_state);
6210
6211 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6212 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6213
6214 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6215 sc.gfp_mask);
6216
6217 /*
6218 * NOTE: Although we can get the priority field, using it
6219 * here is not a good idea, since it limits the pages we can scan.
6220 * if we don't reclaim here, the shrink_node from balance_pgdat
6221 * will pick up pages from other mem cgroup's as well. We hack
6222 * the priority and make it zero.
6223 */
6224 shrink_lruvec(lruvec, &sc);
6225
6226 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6227
6228 *nr_scanned = sc.nr_scanned;
6229
6230 return sc.nr_reclaimed;
6231 }
6232
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)6233 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6234 unsigned long nr_pages,
6235 gfp_t gfp_mask,
6236 bool may_swap)
6237 {
6238 unsigned long nr_reclaimed;
6239 unsigned int noreclaim_flag;
6240 struct scan_control sc = {
6241 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6242 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6243 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6244 .reclaim_idx = MAX_NR_ZONES - 1,
6245 .target_mem_cgroup = memcg,
6246 .priority = DEF_PRIORITY,
6247 .may_writepage = !laptop_mode,
6248 .may_unmap = 1,
6249 .may_swap = may_swap,
6250 };
6251 /*
6252 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6253 * equal pressure on all the nodes. This is based on the assumption that
6254 * the reclaim does not bail out early.
6255 */
6256 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6257
6258 set_task_reclaim_state(current, &sc.reclaim_state);
6259 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6260 noreclaim_flag = memalloc_noreclaim_save();
6261
6262 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6263
6264 memalloc_noreclaim_restore(noreclaim_flag);
6265 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6266 set_task_reclaim_state(current, NULL);
6267
6268 return nr_reclaimed;
6269 }
6270 EXPORT_SYMBOL_GPL(try_to_free_mem_cgroup_pages);
6271 #endif
6272
kswapd_age_node(struct pglist_data * pgdat,struct scan_control * sc)6273 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6274 {
6275 struct mem_cgroup *memcg;
6276 struct lruvec *lruvec;
6277
6278 if (lru_gen_enabled()) {
6279 lru_gen_age_node(pgdat, sc);
6280 return;
6281 }
6282
6283 if (!total_swap_pages)
6284 return;
6285
6286 lruvec = mem_cgroup_lruvec(NULL, pgdat);
6287 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6288 return;
6289
6290 memcg = mem_cgroup_iter(NULL, NULL, NULL);
6291 do {
6292 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6293 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6294 sc, LRU_ACTIVE_ANON);
6295 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6296 } while (memcg);
6297 }
6298
pgdat_watermark_boosted(pg_data_t * pgdat,int highest_zoneidx)6299 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6300 {
6301 int i;
6302 struct zone *zone;
6303
6304 /*
6305 * Check for watermark boosts top-down as the higher zones
6306 * are more likely to be boosted. Both watermarks and boosts
6307 * should not be checked at the same time as reclaim would
6308 * start prematurely when there is no boosting and a lower
6309 * zone is balanced.
6310 */
6311 for (i = highest_zoneidx; i >= 0; i--) {
6312 zone = pgdat->node_zones + i;
6313 if (!managed_zone(zone))
6314 continue;
6315
6316 if (zone->watermark_boost)
6317 return true;
6318 }
6319
6320 return false;
6321 }
6322
6323 /*
6324 * Returns true if there is an eligible zone balanced for the request order
6325 * and highest_zoneidx
6326 */
pgdat_balanced(pg_data_t * pgdat,int order,int highest_zoneidx)6327 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6328 {
6329 int i;
6330 unsigned long mark = -1;
6331 struct zone *zone;
6332
6333 /*
6334 * Check watermarks bottom-up as lower zones are more likely to
6335 * meet watermarks.
6336 */
6337 for (i = 0; i <= highest_zoneidx; i++) {
6338 zone = pgdat->node_zones + i;
6339
6340 if (!managed_zone(zone))
6341 continue;
6342
6343 mark = high_wmark_pages(zone);
6344 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6345 return true;
6346 }
6347
6348 /*
6349 * If a node has no populated zone within highest_zoneidx, it does not
6350 * need balancing by definition. This can happen if a zone-restricted
6351 * allocation tries to wake a remote kswapd.
6352 */
6353 if (mark == -1)
6354 return true;
6355
6356 return false;
6357 }
6358
6359 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)6360 static void clear_pgdat_congested(pg_data_t *pgdat)
6361 {
6362 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6363
6364 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
6365 clear_bit(PGDAT_DIRTY, &pgdat->flags);
6366 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6367 }
6368
6369 /*
6370 * Prepare kswapd for sleeping. This verifies that there are no processes
6371 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6372 *
6373 * Returns true if kswapd is ready to sleep
6374 */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int highest_zoneidx)6375 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6376 int highest_zoneidx)
6377 {
6378 /*
6379 * The throttled processes are normally woken up in balance_pgdat() as
6380 * soon as allow_direct_reclaim() is true. But there is a potential
6381 * race between when kswapd checks the watermarks and a process gets
6382 * throttled. There is also a potential race if processes get
6383 * throttled, kswapd wakes, a large process exits thereby balancing the
6384 * zones, which causes kswapd to exit balance_pgdat() before reaching
6385 * the wake up checks. If kswapd is going to sleep, no process should
6386 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6387 * the wake up is premature, processes will wake kswapd and get
6388 * throttled again. The difference from wake ups in balance_pgdat() is
6389 * that here we are under prepare_to_wait().
6390 */
6391 if (waitqueue_active(&pgdat->pfmemalloc_wait))
6392 wake_up_all(&pgdat->pfmemalloc_wait);
6393
6394 /* Hopeless node, leave it to direct reclaim */
6395 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6396 return true;
6397
6398 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6399 clear_pgdat_congested(pgdat);
6400 return true;
6401 }
6402
6403 return false;
6404 }
6405
6406 /*
6407 * kswapd shrinks a node of pages that are at or below the highest usable
6408 * zone that is currently unbalanced.
6409 *
6410 * Returns true if kswapd scanned at least the requested number of pages to
6411 * reclaim or if the lack of progress was due to pages under writeback.
6412 * This is used to determine if the scanning priority needs to be raised.
6413 */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)6414 static bool kswapd_shrink_node(pg_data_t *pgdat,
6415 struct scan_control *sc)
6416 {
6417 struct zone *zone;
6418 int z;
6419
6420 /* Reclaim a number of pages proportional to the number of zones */
6421 sc->nr_to_reclaim = 0;
6422 for (z = 0; z <= sc->reclaim_idx; z++) {
6423 zone = pgdat->node_zones + z;
6424 if (!managed_zone(zone))
6425 continue;
6426
6427 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6428 }
6429
6430 /*
6431 * Historically care was taken to put equal pressure on all zones but
6432 * now pressure is applied based on node LRU order.
6433 */
6434 shrink_node(pgdat, sc);
6435
6436 /*
6437 * Fragmentation may mean that the system cannot be rebalanced for
6438 * high-order allocations. If twice the allocation size has been
6439 * reclaimed then recheck watermarks only at order-0 to prevent
6440 * excessive reclaim. Assume that a process requested a high-order
6441 * can direct reclaim/compact.
6442 */
6443 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6444 sc->order = 0;
6445
6446 return sc->nr_scanned >= sc->nr_to_reclaim;
6447 }
6448
6449 /*
6450 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6451 * that are eligible for use by the caller until at least one zone is
6452 * balanced.
6453 *
6454 * Returns the order kswapd finished reclaiming at.
6455 *
6456 * kswapd scans the zones in the highmem->normal->dma direction. It skips
6457 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6458 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6459 * or lower is eligible for reclaim until at least one usable zone is
6460 * balanced.
6461 */
balance_pgdat(pg_data_t * pgdat,int order,int highest_zoneidx)6462 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6463 {
6464 int i;
6465 unsigned long nr_soft_reclaimed;
6466 unsigned long nr_soft_scanned;
6467 unsigned long pflags;
6468 unsigned long nr_boost_reclaim;
6469 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6470 bool boosted;
6471 struct zone *zone;
6472 struct scan_control sc = {
6473 .gfp_mask = GFP_KERNEL,
6474 .order = order,
6475 .may_unmap = 1,
6476 };
6477
6478 set_task_reclaim_state(current, &sc.reclaim_state);
6479 psi_memstall_enter(&pflags);
6480 __fs_reclaim_acquire();
6481
6482 count_vm_event(PAGEOUTRUN);
6483
6484 /*
6485 * Account for the reclaim boost. Note that the zone boost is left in
6486 * place so that parallel allocations that are near the watermark will
6487 * stall or direct reclaim until kswapd is finished.
6488 */
6489 nr_boost_reclaim = 0;
6490 for (i = 0; i <= highest_zoneidx; i++) {
6491 zone = pgdat->node_zones + i;
6492 if (!managed_zone(zone))
6493 continue;
6494
6495 nr_boost_reclaim += zone->watermark_boost;
6496 zone_boosts[i] = zone->watermark_boost;
6497 }
6498 boosted = nr_boost_reclaim;
6499
6500 restart:
6501 sc.priority = DEF_PRIORITY;
6502 do {
6503 unsigned long nr_reclaimed = sc.nr_reclaimed;
6504 bool raise_priority = true;
6505 bool balanced;
6506 bool ret;
6507
6508 sc.reclaim_idx = highest_zoneidx;
6509
6510 /*
6511 * If the number of buffer_heads exceeds the maximum allowed
6512 * then consider reclaiming from all zones. This has a dual
6513 * purpose -- on 64-bit systems it is expected that
6514 * buffer_heads are stripped during active rotation. On 32-bit
6515 * systems, highmem pages can pin lowmem memory and shrinking
6516 * buffers can relieve lowmem pressure. Reclaim may still not
6517 * go ahead if all eligible zones for the original allocation
6518 * request are balanced to avoid excessive reclaim from kswapd.
6519 */
6520 if (buffer_heads_over_limit) {
6521 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6522 zone = pgdat->node_zones + i;
6523 if (!managed_zone(zone))
6524 continue;
6525
6526 sc.reclaim_idx = i;
6527 break;
6528 }
6529 }
6530
6531 /*
6532 * If the pgdat is imbalanced then ignore boosting and preserve
6533 * the watermarks for a later time and restart. Note that the
6534 * zone watermarks will be still reset at the end of balancing
6535 * on the grounds that the normal reclaim should be enough to
6536 * re-evaluate if boosting is required when kswapd next wakes.
6537 */
6538 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6539 if (!balanced && nr_boost_reclaim) {
6540 nr_boost_reclaim = 0;
6541 goto restart;
6542 }
6543
6544 /*
6545 * If boosting is not active then only reclaim if there are no
6546 * eligible zones. Note that sc.reclaim_idx is not used as
6547 * buffer_heads_over_limit may have adjusted it.
6548 */
6549 if (!nr_boost_reclaim && balanced)
6550 goto out;
6551
6552 /* Limit the priority of boosting to avoid reclaim writeback */
6553 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6554 raise_priority = false;
6555
6556 /*
6557 * Do not writeback or swap pages for boosted reclaim. The
6558 * intent is to relieve pressure not issue sub-optimal IO
6559 * from reclaim context. If no pages are reclaimed, the
6560 * reclaim will be aborted.
6561 */
6562 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6563 sc.may_swap = !nr_boost_reclaim;
6564
6565 /*
6566 * Do some background aging, to give pages a chance to be
6567 * referenced before reclaiming. All pages are rotated
6568 * regardless of classzone as this is about consistent aging.
6569 */
6570 kswapd_age_node(pgdat, &sc);
6571
6572 /*
6573 * If we're getting trouble reclaiming, start doing writepage
6574 * even in laptop mode.
6575 */
6576 if (sc.priority < DEF_PRIORITY - 2)
6577 sc.may_writepage = 1;
6578
6579 /* Call soft limit reclaim before calling shrink_node. */
6580 sc.nr_scanned = 0;
6581 nr_soft_scanned = 0;
6582 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
6583 sc.gfp_mask, &nr_soft_scanned);
6584 sc.nr_reclaimed += nr_soft_reclaimed;
6585
6586 /*
6587 * There should be no need to raise the scanning priority if
6588 * enough pages are already being scanned that that high
6589 * watermark would be met at 100% efficiency.
6590 */
6591 if (kswapd_shrink_node(pgdat, &sc))
6592 raise_priority = false;
6593
6594 /*
6595 * If the low watermark is met there is no need for processes
6596 * to be throttled on pfmemalloc_wait as they should not be
6597 * able to safely make forward progress. Wake them
6598 */
6599 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
6600 allow_direct_reclaim(pgdat))
6601 wake_up_all(&pgdat->pfmemalloc_wait);
6602
6603 /* Check if kswapd should be suspending */
6604 __fs_reclaim_release();
6605 ret = try_to_freeze();
6606 __fs_reclaim_acquire();
6607 if (ret || kthread_should_stop())
6608 break;
6609
6610 /*
6611 * Raise priority if scanning rate is too low or there was no
6612 * progress in reclaiming pages
6613 */
6614 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
6615 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
6616
6617 /*
6618 * If reclaim made no progress for a boost, stop reclaim as
6619 * IO cannot be queued and it could be an infinite loop in
6620 * extreme circumstances.
6621 */
6622 if (nr_boost_reclaim && !nr_reclaimed)
6623 break;
6624
6625 if (raise_priority || !nr_reclaimed)
6626 sc.priority--;
6627 } while (sc.priority >= 1);
6628
6629 if (!sc.nr_reclaimed)
6630 pgdat->kswapd_failures++;
6631
6632 out:
6633 /* If reclaim was boosted, account for the reclaim done in this pass */
6634 if (boosted) {
6635 unsigned long flags;
6636
6637 for (i = 0; i <= highest_zoneidx; i++) {
6638 if (!zone_boosts[i])
6639 continue;
6640
6641 /* Increments are under the zone lock */
6642 zone = pgdat->node_zones + i;
6643 spin_lock_irqsave(&zone->lock, flags);
6644 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
6645 spin_unlock_irqrestore(&zone->lock, flags);
6646 }
6647
6648 /*
6649 * As there is now likely space, wakeup kcompact to defragment
6650 * pageblocks.
6651 */
6652 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
6653 }
6654
6655 snapshot_refaults(NULL, pgdat);
6656 __fs_reclaim_release();
6657 psi_memstall_leave(&pflags);
6658 set_task_reclaim_state(current, NULL);
6659
6660 /*
6661 * Return the order kswapd stopped reclaiming at as
6662 * prepare_kswapd_sleep() takes it into account. If another caller
6663 * entered the allocator slow path while kswapd was awake, order will
6664 * remain at the higher level.
6665 */
6666 return sc.order;
6667 }
6668
6669 /*
6670 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
6671 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
6672 * not a valid index then either kswapd runs for first time or kswapd couldn't
6673 * sleep after previous reclaim attempt (node is still unbalanced). In that
6674 * case return the zone index of the previous kswapd reclaim cycle.
6675 */
kswapd_highest_zoneidx(pg_data_t * pgdat,enum zone_type prev_highest_zoneidx)6676 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
6677 enum zone_type prev_highest_zoneidx)
6678 {
6679 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
6680
6681 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
6682 }
6683
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int highest_zoneidx)6684 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
6685 unsigned int highest_zoneidx)
6686 {
6687 long remaining = 0;
6688 DEFINE_WAIT(wait);
6689
6690 if (freezing(current) || kthread_should_stop())
6691 return;
6692
6693 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
6694
6695 /*
6696 * Try to sleep for a short interval. Note that kcompactd will only be
6697 * woken if it is possible to sleep for a short interval. This is
6698 * deliberate on the assumption that if reclaim cannot keep an
6699 * eligible zone balanced that it's also unlikely that compaction will
6700 * succeed.
6701 */
6702 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
6703 /*
6704 * Compaction records what page blocks it recently failed to
6705 * isolate pages from and skips them in the future scanning.
6706 * When kswapd is going to sleep, it is reasonable to assume
6707 * that pages and compaction may succeed so reset the cache.
6708 */
6709 reset_isolation_suitable(pgdat);
6710
6711 /*
6712 * We have freed the memory, now we should compact it to make
6713 * allocation of the requested order possible.
6714 */
6715 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
6716
6717 remaining = schedule_timeout(HZ/10);
6718
6719 /*
6720 * If woken prematurely then reset kswapd_highest_zoneidx and
6721 * order. The values will either be from a wakeup request or
6722 * the previous request that slept prematurely.
6723 */
6724 if (remaining) {
6725 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
6726 kswapd_highest_zoneidx(pgdat,
6727 highest_zoneidx));
6728
6729 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
6730 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
6731 }
6732
6733 finish_wait(&pgdat->kswapd_wait, &wait);
6734 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
6735 }
6736
6737 /*
6738 * After a short sleep, check if it was a premature sleep. If not, then
6739 * go fully to sleep until explicitly woken up.
6740 */
6741 if (!remaining &&
6742 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
6743 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
6744
6745 /*
6746 * vmstat counters are not perfectly accurate and the estimated
6747 * value for counters such as NR_FREE_PAGES can deviate from the
6748 * true value by nr_online_cpus * threshold. To avoid the zone
6749 * watermarks being breached while under pressure, we reduce the
6750 * per-cpu vmstat threshold while kswapd is awake and restore
6751 * them before going back to sleep.
6752 */
6753 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
6754
6755 if (!kthread_should_stop())
6756 schedule();
6757
6758 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
6759 } else {
6760 if (remaining)
6761 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
6762 else
6763 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
6764 }
6765 finish_wait(&pgdat->kswapd_wait, &wait);
6766 }
6767
6768 /*
6769 * The background pageout daemon, started as a kernel thread
6770 * from the init process.
6771 *
6772 * This basically trickles out pages so that we have _some_
6773 * free memory available even if there is no other activity
6774 * that frees anything up. This is needed for things like routing
6775 * etc, where we otherwise might have all activity going on in
6776 * asynchronous contexts that cannot page things out.
6777 *
6778 * If there are applications that are active memory-allocators
6779 * (most normal use), this basically shouldn't matter.
6780 */
kswapd(void * p)6781 static int kswapd(void *p)
6782 {
6783 unsigned int alloc_order, reclaim_order;
6784 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
6785 pg_data_t *pgdat = (pg_data_t*)p;
6786 struct task_struct *tsk = current;
6787 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
6788
6789 if (!cpumask_empty(cpumask))
6790 set_cpus_allowed_ptr(tsk, cpumask);
6791
6792 /*
6793 * Tell the memory management that we're a "memory allocator",
6794 * and that if we need more memory we should get access to it
6795 * regardless (see "__alloc_pages()"). "kswapd" should
6796 * never get caught in the normal page freeing logic.
6797 *
6798 * (Kswapd normally doesn't need memory anyway, but sometimes
6799 * you need a small amount of memory in order to be able to
6800 * page out something else, and this flag essentially protects
6801 * us from recursively trying to free more memory as we're
6802 * trying to free the first piece of memory in the first place).
6803 */
6804 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
6805 set_freezable();
6806
6807 WRITE_ONCE(pgdat->kswapd_order, 0);
6808 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
6809 for ( ; ; ) {
6810 bool ret;
6811
6812 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
6813 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
6814 highest_zoneidx);
6815
6816 kswapd_try_sleep:
6817 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
6818 highest_zoneidx);
6819
6820 /* Read the new order and highest_zoneidx */
6821 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
6822 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
6823 highest_zoneidx);
6824 WRITE_ONCE(pgdat->kswapd_order, 0);
6825 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
6826
6827 ret = try_to_freeze();
6828 if (kthread_should_stop())
6829 break;
6830
6831 /*
6832 * We can speed up thawing tasks if we don't call balance_pgdat
6833 * after returning from the refrigerator
6834 */
6835 if (ret)
6836 continue;
6837
6838 /*
6839 * Reclaim begins at the requested order but if a high-order
6840 * reclaim fails then kswapd falls back to reclaiming for
6841 * order-0. If that happens, kswapd will consider sleeping
6842 * for the order it finished reclaiming at (reclaim_order)
6843 * but kcompactd is woken to compact for the original
6844 * request (alloc_order).
6845 */
6846 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
6847 alloc_order);
6848 reclaim_order = balance_pgdat(pgdat, alloc_order,
6849 highest_zoneidx);
6850 if (reclaim_order < alloc_order)
6851 goto kswapd_try_sleep;
6852 }
6853
6854 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
6855
6856 return 0;
6857 }
6858
kswapd_per_node_run(int nid)6859 static int kswapd_per_node_run(int nid)
6860 {
6861 pg_data_t *pgdat = NODE_DATA(nid);
6862 int hid;
6863 int ret = 0;
6864
6865 for (hid = 0; hid < kswapd_threads; ++hid) {
6866 pgdat->mkswapd[hid] = kthread_run(kswapd, pgdat, "kswapd%d:%d",
6867 nid, hid);
6868 if (IS_ERR(pgdat->mkswapd[hid])) {
6869 /* failure at boot is fatal */
6870 WARN_ON(system_state < SYSTEM_RUNNING);
6871 pr_err("Failed to start kswapd%d on node %d\n",
6872 hid, nid);
6873 ret = PTR_ERR(pgdat->mkswapd[hid]);
6874 pgdat->mkswapd[hid] = NULL;
6875 continue;
6876 }
6877 if (!pgdat->kswapd)
6878 pgdat->kswapd = pgdat->mkswapd[hid];
6879 }
6880
6881 return ret;
6882 }
6883
kswapd_per_node_stop(int nid)6884 static void kswapd_per_node_stop(int nid)
6885 {
6886 int hid = 0;
6887 struct task_struct *kswapd;
6888
6889 for (hid = 0; hid < kswapd_threads; hid++) {
6890 kswapd = NODE_DATA(nid)->mkswapd[hid];
6891 if (kswapd) {
6892 kthread_stop(kswapd);
6893 NODE_DATA(nid)->mkswapd[hid] = NULL;
6894 }
6895 }
6896 NODE_DATA(nid)->kswapd = NULL;
6897 }
6898
6899 /*
6900 * A zone is low on free memory or too fragmented for high-order memory. If
6901 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
6902 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
6903 * has failed or is not needed, still wake up kcompactd if only compaction is
6904 * needed.
6905 */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type highest_zoneidx)6906 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
6907 enum zone_type highest_zoneidx)
6908 {
6909 pg_data_t *pgdat;
6910 enum zone_type curr_idx;
6911
6912 if (!managed_zone(zone))
6913 return;
6914
6915 if (!cpuset_zone_allowed(zone, gfp_flags))
6916 return;
6917
6918 pgdat = zone->zone_pgdat;
6919 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
6920
6921 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
6922 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
6923
6924 if (READ_ONCE(pgdat->kswapd_order) < order)
6925 WRITE_ONCE(pgdat->kswapd_order, order);
6926
6927 if (!waitqueue_active(&pgdat->kswapd_wait))
6928 return;
6929
6930 /* Hopeless node, leave it to direct reclaim if possible */
6931 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
6932 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
6933 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
6934 /*
6935 * There may be plenty of free memory available, but it's too
6936 * fragmented for high-order allocations. Wake up kcompactd
6937 * and rely on compaction_suitable() to determine if it's
6938 * needed. If it fails, it will defer subsequent attempts to
6939 * ratelimit its work.
6940 */
6941 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
6942 wakeup_kcompactd(pgdat, order, highest_zoneidx);
6943 return;
6944 }
6945
6946 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
6947 gfp_flags);
6948 wake_up_interruptible(&pgdat->kswapd_wait);
6949 }
6950
6951 #ifdef CONFIG_HIBERNATION
6952 /*
6953 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
6954 * freed pages.
6955 *
6956 * Rather than trying to age LRUs the aim is to preserve the overall
6957 * LRU order by reclaiming preferentially
6958 * inactive > active > active referenced > active mapped
6959 */
shrink_all_memory(unsigned long nr_to_reclaim)6960 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
6961 {
6962 struct scan_control sc = {
6963 .nr_to_reclaim = nr_to_reclaim,
6964 .gfp_mask = GFP_HIGHUSER_MOVABLE,
6965 .reclaim_idx = MAX_NR_ZONES - 1,
6966 .priority = DEF_PRIORITY,
6967 .may_writepage = 1,
6968 .may_unmap = 1,
6969 .may_swap = 1,
6970 .hibernation_mode = 1,
6971 };
6972 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6973 unsigned long nr_reclaimed;
6974 unsigned int noreclaim_flag;
6975
6976 fs_reclaim_acquire(sc.gfp_mask);
6977 noreclaim_flag = memalloc_noreclaim_save();
6978 set_task_reclaim_state(current, &sc.reclaim_state);
6979
6980 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6981
6982 set_task_reclaim_state(current, NULL);
6983 memalloc_noreclaim_restore(noreclaim_flag);
6984 fs_reclaim_release(sc.gfp_mask);
6985
6986 return nr_reclaimed;
6987 }
6988 #endif /* CONFIG_HIBERNATION */
6989
6990 /*
6991 * This kswapd start function will be called by init and node-hot-add.
6992 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
6993 */
kswapd_run(int nid)6994 int kswapd_run(int nid)
6995 {
6996 pg_data_t *pgdat = NODE_DATA(nid);
6997 int ret = 0;
6998
6999 if (pgdat->kswapd)
7000 return 0;
7001
7002 if (kswapd_threads > 1)
7003 return kswapd_per_node_run(nid);
7004
7005 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7006 if (IS_ERR(pgdat->kswapd)) {
7007 /* failure at boot is fatal */
7008 BUG_ON(system_state < SYSTEM_RUNNING);
7009 pr_err("Failed to start kswapd on node %d\n", nid);
7010 ret = PTR_ERR(pgdat->kswapd);
7011 pgdat->kswapd = NULL;
7012 }
7013 return ret;
7014 }
7015
7016 /*
7017 * Called by memory hotplug when all memory in a node is offlined. Caller must
7018 * hold mem_hotplug_begin/end().
7019 */
kswapd_stop(int nid)7020 void kswapd_stop(int nid)
7021 {
7022 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
7023
7024 if (kswapd_threads > 1) {
7025 kswapd_per_node_stop(nid);
7026 return;
7027 }
7028
7029 if (kswapd) {
7030 kthread_stop(kswapd);
7031 NODE_DATA(nid)->kswapd = NULL;
7032 }
7033 }
7034
kswapd_init(void)7035 static int __init kswapd_init(void)
7036 {
7037 int nid;
7038
7039 swap_setup();
7040 for_each_node_state(nid, N_MEMORY)
7041 kswapd_run(nid);
7042 return 0;
7043 }
7044
7045 module_init(kswapd_init)
7046
7047 #ifdef CONFIG_NUMA
7048 /*
7049 * Node reclaim mode
7050 *
7051 * If non-zero call node_reclaim when the number of free pages falls below
7052 * the watermarks.
7053 */
7054 int node_reclaim_mode __read_mostly;
7055
7056 /*
7057 * These bit locations are exposed in the vm.zone_reclaim_mode sysctl
7058 * ABI. New bits are OK, but existing bits can never change.
7059 */
7060 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
7061 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
7062 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
7063
7064 /*
7065 * Priority for NODE_RECLAIM. This determines the fraction of pages
7066 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7067 * a zone.
7068 */
7069 #define NODE_RECLAIM_PRIORITY 4
7070
7071 /*
7072 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7073 * occur.
7074 */
7075 int sysctl_min_unmapped_ratio = 1;
7076
7077 /*
7078 * If the number of slab pages in a zone grows beyond this percentage then
7079 * slab reclaim needs to occur.
7080 */
7081 int sysctl_min_slab_ratio = 5;
7082
node_unmapped_file_pages(struct pglist_data * pgdat)7083 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7084 {
7085 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7086 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7087 node_page_state(pgdat, NR_ACTIVE_FILE);
7088
7089 /*
7090 * It's possible for there to be more file mapped pages than
7091 * accounted for by the pages on the file LRU lists because
7092 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7093 */
7094 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7095 }
7096
7097 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)7098 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7099 {
7100 unsigned long nr_pagecache_reclaimable;
7101 unsigned long delta = 0;
7102
7103 /*
7104 * If RECLAIM_UNMAP is set, then all file pages are considered
7105 * potentially reclaimable. Otherwise, we have to worry about
7106 * pages like swapcache and node_unmapped_file_pages() provides
7107 * a better estimate
7108 */
7109 if (node_reclaim_mode & RECLAIM_UNMAP)
7110 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7111 else
7112 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7113
7114 /* If we can't clean pages, remove dirty pages from consideration */
7115 if (!(node_reclaim_mode & RECLAIM_WRITE))
7116 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7117
7118 /* Watch for any possible underflows due to delta */
7119 if (unlikely(delta > nr_pagecache_reclaimable))
7120 delta = nr_pagecache_reclaimable;
7121
7122 return nr_pagecache_reclaimable - delta;
7123 }
7124
7125 /*
7126 * Try to free up some pages from this node through reclaim.
7127 */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7128 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7129 {
7130 /* Minimum pages needed in order to stay on node */
7131 const unsigned long nr_pages = 1 << order;
7132 struct task_struct *p = current;
7133 unsigned int noreclaim_flag;
7134 struct scan_control sc = {
7135 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7136 .gfp_mask = current_gfp_context(gfp_mask),
7137 .order = order,
7138 .priority = NODE_RECLAIM_PRIORITY,
7139 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7140 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7141 .may_swap = 1,
7142 .reclaim_idx = gfp_zone(gfp_mask),
7143 };
7144
7145 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7146 sc.gfp_mask);
7147
7148 cond_resched();
7149 fs_reclaim_acquire(sc.gfp_mask);
7150 /*
7151 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7152 * and we also need to be able to write out pages for RECLAIM_WRITE
7153 * and RECLAIM_UNMAP.
7154 */
7155 noreclaim_flag = memalloc_noreclaim_save();
7156 p->flags |= PF_SWAPWRITE;
7157 set_task_reclaim_state(p, &sc.reclaim_state);
7158
7159 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
7160 /*
7161 * Free memory by calling shrink node with increasing
7162 * priorities until we have enough memory freed.
7163 */
7164 do {
7165 shrink_node(pgdat, &sc);
7166 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7167 }
7168
7169 set_task_reclaim_state(p, NULL);
7170 current->flags &= ~PF_SWAPWRITE;
7171 memalloc_noreclaim_restore(noreclaim_flag);
7172 fs_reclaim_release(sc.gfp_mask);
7173
7174 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7175
7176 return sc.nr_reclaimed >= nr_pages;
7177 }
7178
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)7179 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7180 {
7181 int ret;
7182
7183 /*
7184 * Node reclaim reclaims unmapped file backed pages and
7185 * slab pages if we are over the defined limits.
7186 *
7187 * A small portion of unmapped file backed pages is needed for
7188 * file I/O otherwise pages read by file I/O will be immediately
7189 * thrown out if the node is overallocated. So we do not reclaim
7190 * if less than a specified percentage of the node is used by
7191 * unmapped file backed pages.
7192 */
7193 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7194 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7195 pgdat->min_slab_pages)
7196 return NODE_RECLAIM_FULL;
7197
7198 /*
7199 * Do not scan if the allocation should not be delayed.
7200 */
7201 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7202 return NODE_RECLAIM_NOSCAN;
7203
7204 /*
7205 * Only run node reclaim on the local node or on nodes that do not
7206 * have associated processors. This will favor the local processor
7207 * over remote processors and spread off node memory allocations
7208 * as wide as possible.
7209 */
7210 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7211 return NODE_RECLAIM_NOSCAN;
7212
7213 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7214 return NODE_RECLAIM_NOSCAN;
7215
7216 ret = __node_reclaim(pgdat, gfp_mask, order);
7217 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7218
7219 if (!ret)
7220 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7221
7222 return ret;
7223 }
7224 #endif
7225
7226 /**
7227 * check_move_unevictable_pages - check pages for evictability and move to
7228 * appropriate zone lru list
7229 * @pvec: pagevec with lru pages to check
7230 *
7231 * Checks pages for evictability, if an evictable page is in the unevictable
7232 * lru list, moves it to the appropriate evictable lru list. This function
7233 * should be only used for lru pages.
7234 */
check_move_unevictable_pages(struct pagevec * pvec)7235 void check_move_unevictable_pages(struct pagevec *pvec)
7236 {
7237 struct lruvec *lruvec;
7238 struct pglist_data *pgdat = NULL;
7239 int pgscanned = 0;
7240 int pgrescued = 0;
7241 int i;
7242
7243 for (i = 0; i < pvec->nr; i++) {
7244 struct page *page = pvec->pages[i];
7245 struct pglist_data *pagepgdat = page_pgdat(page);
7246 int nr_pages;
7247
7248 if (PageTransTail(page))
7249 continue;
7250
7251 nr_pages = thp_nr_pages(page);
7252 pgscanned += nr_pages;
7253
7254 if (pagepgdat != pgdat) {
7255 if (pgdat)
7256 spin_unlock_irq(&pgdat->lru_lock);
7257 pgdat = pagepgdat;
7258 spin_lock_irq(&pgdat->lru_lock);
7259 }
7260 lruvec = mem_cgroup_page_lruvec(page, pgdat);
7261
7262 if (!PageLRU(page) || !PageUnevictable(page))
7263 continue;
7264
7265 if (page_evictable(page)) {
7266 del_page_from_lru_list(page, lruvec);
7267 ClearPageUnevictable(page);
7268 add_page_to_lru_list(page, lruvec);
7269 pgrescued += nr_pages;
7270 }
7271 }
7272
7273 if (pgdat) {
7274 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7275 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7276 spin_unlock_irq(&pgdat->lru_lock);
7277 }
7278 }
7279 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
7280