1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 #include <linux/types.h>
9 #include <linux/bitops.h>
10 #include <linux/cred.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/kernel.h>
14 #include <linux/kmod.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/net.h>
19 #include <linux/poll.h>
20 #include <linux/skbuff.h>
21 #include <linux/smp.h>
22 #include <linux/socket.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/wait.h>
26 #include <linux/workqueue.h>
27 #include <net/sock.h>
28 #include <net/af_vsock.h>
29
30 #include "vmci_transport_notify.h"
31
32 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
33 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
34 static void vmci_transport_peer_detach_cb(u32 sub_id,
35 const struct vmci_event_data *ed,
36 void *client_data);
37 static void vmci_transport_recv_pkt_work(struct work_struct *work);
38 static void vmci_transport_cleanup(struct work_struct *work);
39 static int vmci_transport_recv_listen(struct sock *sk,
40 struct vmci_transport_packet *pkt);
41 static int vmci_transport_recv_connecting_server(
42 struct sock *sk,
43 struct sock *pending,
44 struct vmci_transport_packet *pkt);
45 static int vmci_transport_recv_connecting_client(
46 struct sock *sk,
47 struct vmci_transport_packet *pkt);
48 static int vmci_transport_recv_connecting_client_negotiate(
49 struct sock *sk,
50 struct vmci_transport_packet *pkt);
51 static int vmci_transport_recv_connecting_client_invalid(
52 struct sock *sk,
53 struct vmci_transport_packet *pkt);
54 static int vmci_transport_recv_connected(struct sock *sk,
55 struct vmci_transport_packet *pkt);
56 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
57 static u16 vmci_transport_new_proto_supported_versions(void);
58 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
59 bool old_pkt_proto);
60 static bool vmci_check_transport(struct vsock_sock *vsk);
61
62 struct vmci_transport_recv_pkt_info {
63 struct work_struct work;
64 struct sock *sk;
65 struct vmci_transport_packet pkt;
66 };
67
68 static LIST_HEAD(vmci_transport_cleanup_list);
69 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
70 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
71
72 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
73 VMCI_INVALID_ID };
74 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
75
76 static int PROTOCOL_OVERRIDE = -1;
77
78 static struct vsock_transport vmci_transport; /* forward declaration */
79
80 /* Helper function to convert from a VMCI error code to a VSock error code. */
81
vmci_transport_error_to_vsock_error(s32 vmci_error)82 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
83 {
84 switch (vmci_error) {
85 case VMCI_ERROR_NO_MEM:
86 return -ENOMEM;
87 case VMCI_ERROR_DUPLICATE_ENTRY:
88 case VMCI_ERROR_ALREADY_EXISTS:
89 return -EADDRINUSE;
90 case VMCI_ERROR_NO_ACCESS:
91 return -EPERM;
92 case VMCI_ERROR_NO_RESOURCES:
93 return -ENOBUFS;
94 case VMCI_ERROR_INVALID_RESOURCE:
95 return -EHOSTUNREACH;
96 case VMCI_ERROR_INVALID_ARGS:
97 default:
98 break;
99 }
100 return -EINVAL;
101 }
102
vmci_transport_peer_rid(u32 peer_cid)103 static u32 vmci_transport_peer_rid(u32 peer_cid)
104 {
105 if (VMADDR_CID_HYPERVISOR == peer_cid)
106 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
107
108 return VMCI_TRANSPORT_PACKET_RID;
109 }
110
111 static inline void
vmci_transport_packet_init(struct vmci_transport_packet * pkt,struct sockaddr_vm * src,struct sockaddr_vm * dst,u8 type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)112 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
113 struct sockaddr_vm *src,
114 struct sockaddr_vm *dst,
115 u8 type,
116 u64 size,
117 u64 mode,
118 struct vmci_transport_waiting_info *wait,
119 u16 proto,
120 struct vmci_handle handle)
121 {
122 /* We register the stream control handler as an any cid handle so we
123 * must always send from a source address of VMADDR_CID_ANY
124 */
125 pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
126 VMCI_TRANSPORT_PACKET_RID);
127 pkt->dg.dst = vmci_make_handle(dst->svm_cid,
128 vmci_transport_peer_rid(dst->svm_cid));
129 pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
130 pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
131 pkt->type = type;
132 pkt->src_port = src->svm_port;
133 pkt->dst_port = dst->svm_port;
134 memset(&pkt->proto, 0, sizeof(pkt->proto));
135 memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
136
137 switch (pkt->type) {
138 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
139 pkt->u.size = 0;
140 break;
141
142 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
143 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
144 pkt->u.size = size;
145 break;
146
147 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
148 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
149 pkt->u.handle = handle;
150 break;
151
152 case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
153 case VMCI_TRANSPORT_PACKET_TYPE_READ:
154 case VMCI_TRANSPORT_PACKET_TYPE_RST:
155 pkt->u.size = 0;
156 break;
157
158 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
159 pkt->u.mode = mode;
160 break;
161
162 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
163 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
164 memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
165 break;
166
167 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
168 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
169 pkt->u.size = size;
170 pkt->proto = proto;
171 break;
172 }
173 }
174
175 static inline void
vmci_transport_packet_get_addresses(struct vmci_transport_packet * pkt,struct sockaddr_vm * local,struct sockaddr_vm * remote)176 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
177 struct sockaddr_vm *local,
178 struct sockaddr_vm *remote)
179 {
180 vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
181 vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
182 }
183
184 static int
__vmci_transport_send_control_pkt(struct vmci_transport_packet * pkt,struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle,bool convert_error)185 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
186 struct sockaddr_vm *src,
187 struct sockaddr_vm *dst,
188 enum vmci_transport_packet_type type,
189 u64 size,
190 u64 mode,
191 struct vmci_transport_waiting_info *wait,
192 u16 proto,
193 struct vmci_handle handle,
194 bool convert_error)
195 {
196 int err;
197
198 vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
199 proto, handle);
200 err = vmci_datagram_send(&pkt->dg);
201 if (convert_error && (err < 0))
202 return vmci_transport_error_to_vsock_error(err);
203
204 return err;
205 }
206
207 static int
vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet * pkt,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,struct vmci_handle handle)208 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
209 enum vmci_transport_packet_type type,
210 u64 size,
211 u64 mode,
212 struct vmci_transport_waiting_info *wait,
213 struct vmci_handle handle)
214 {
215 struct vmci_transport_packet reply;
216 struct sockaddr_vm src, dst;
217
218 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
219 return 0;
220 } else {
221 vmci_transport_packet_get_addresses(pkt, &src, &dst);
222 return __vmci_transport_send_control_pkt(&reply, &src, &dst,
223 type,
224 size, mode, wait,
225 VSOCK_PROTO_INVALID,
226 handle, true);
227 }
228 }
229
230 static int
vmci_transport_send_control_pkt_bh(struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,struct vmci_handle handle)231 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
232 struct sockaddr_vm *dst,
233 enum vmci_transport_packet_type type,
234 u64 size,
235 u64 mode,
236 struct vmci_transport_waiting_info *wait,
237 struct vmci_handle handle)
238 {
239 /* Note that it is safe to use a single packet across all CPUs since
240 * two tasklets of the same type are guaranteed to not ever run
241 * simultaneously. If that ever changes, or VMCI stops using tasklets,
242 * we can use per-cpu packets.
243 */
244 static struct vmci_transport_packet pkt;
245
246 return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
247 size, mode, wait,
248 VSOCK_PROTO_INVALID, handle,
249 false);
250 }
251
252 static int
vmci_transport_alloc_send_control_pkt(struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)253 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
254 struct sockaddr_vm *dst,
255 enum vmci_transport_packet_type type,
256 u64 size,
257 u64 mode,
258 struct vmci_transport_waiting_info *wait,
259 u16 proto,
260 struct vmci_handle handle)
261 {
262 struct vmci_transport_packet *pkt;
263 int err;
264
265 pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
266 if (!pkt)
267 return -ENOMEM;
268
269 err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
270 mode, wait, proto, handle,
271 true);
272 kfree(pkt);
273
274 return err;
275 }
276
277 static int
vmci_transport_send_control_pkt(struct sock * sk,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)278 vmci_transport_send_control_pkt(struct sock *sk,
279 enum vmci_transport_packet_type type,
280 u64 size,
281 u64 mode,
282 struct vmci_transport_waiting_info *wait,
283 u16 proto,
284 struct vmci_handle handle)
285 {
286 struct vsock_sock *vsk;
287
288 vsk = vsock_sk(sk);
289
290 if (!vsock_addr_bound(&vsk->local_addr))
291 return -EINVAL;
292
293 if (!vsock_addr_bound(&vsk->remote_addr))
294 return -EINVAL;
295
296 return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
297 &vsk->remote_addr,
298 type, size, mode,
299 wait, proto, handle);
300 }
301
vmci_transport_send_reset_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src,struct vmci_transport_packet * pkt)302 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
303 struct sockaddr_vm *src,
304 struct vmci_transport_packet *pkt)
305 {
306 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
307 return 0;
308 return vmci_transport_send_control_pkt_bh(
309 dst, src,
310 VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
311 0, NULL, VMCI_INVALID_HANDLE);
312 }
313
vmci_transport_send_reset(struct sock * sk,struct vmci_transport_packet * pkt)314 static int vmci_transport_send_reset(struct sock *sk,
315 struct vmci_transport_packet *pkt)
316 {
317 struct sockaddr_vm *dst_ptr;
318 struct sockaddr_vm dst;
319 struct vsock_sock *vsk;
320
321 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
322 return 0;
323
324 vsk = vsock_sk(sk);
325
326 if (!vsock_addr_bound(&vsk->local_addr))
327 return -EINVAL;
328
329 if (vsock_addr_bound(&vsk->remote_addr)) {
330 dst_ptr = &vsk->remote_addr;
331 } else {
332 vsock_addr_init(&dst, pkt->dg.src.context,
333 pkt->src_port);
334 dst_ptr = &dst;
335 }
336 return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
337 VMCI_TRANSPORT_PACKET_TYPE_RST,
338 0, 0, NULL, VSOCK_PROTO_INVALID,
339 VMCI_INVALID_HANDLE);
340 }
341
vmci_transport_send_negotiate(struct sock * sk,size_t size)342 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
343 {
344 return vmci_transport_send_control_pkt(
345 sk,
346 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
347 size, 0, NULL,
348 VSOCK_PROTO_INVALID,
349 VMCI_INVALID_HANDLE);
350 }
351
vmci_transport_send_negotiate2(struct sock * sk,size_t size,u16 version)352 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
353 u16 version)
354 {
355 return vmci_transport_send_control_pkt(
356 sk,
357 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
358 size, 0, NULL, version,
359 VMCI_INVALID_HANDLE);
360 }
361
vmci_transport_send_qp_offer(struct sock * sk,struct vmci_handle handle)362 static int vmci_transport_send_qp_offer(struct sock *sk,
363 struct vmci_handle handle)
364 {
365 return vmci_transport_send_control_pkt(
366 sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
367 0, NULL,
368 VSOCK_PROTO_INVALID, handle);
369 }
370
vmci_transport_send_attach(struct sock * sk,struct vmci_handle handle)371 static int vmci_transport_send_attach(struct sock *sk,
372 struct vmci_handle handle)
373 {
374 return vmci_transport_send_control_pkt(
375 sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
376 0, 0, NULL, VSOCK_PROTO_INVALID,
377 handle);
378 }
379
vmci_transport_reply_reset(struct vmci_transport_packet * pkt)380 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
381 {
382 return vmci_transport_reply_control_pkt_fast(
383 pkt,
384 VMCI_TRANSPORT_PACKET_TYPE_RST,
385 0, 0, NULL,
386 VMCI_INVALID_HANDLE);
387 }
388
vmci_transport_send_invalid_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)389 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
390 struct sockaddr_vm *src)
391 {
392 return vmci_transport_send_control_pkt_bh(
393 dst, src,
394 VMCI_TRANSPORT_PACKET_TYPE_INVALID,
395 0, 0, NULL, VMCI_INVALID_HANDLE);
396 }
397
vmci_transport_send_wrote_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)398 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
399 struct sockaddr_vm *src)
400 {
401 return vmci_transport_send_control_pkt_bh(
402 dst, src,
403 VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
404 0, NULL, VMCI_INVALID_HANDLE);
405 }
406
vmci_transport_send_read_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)407 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
408 struct sockaddr_vm *src)
409 {
410 return vmci_transport_send_control_pkt_bh(
411 dst, src,
412 VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
413 0, NULL, VMCI_INVALID_HANDLE);
414 }
415
vmci_transport_send_wrote(struct sock * sk)416 int vmci_transport_send_wrote(struct sock *sk)
417 {
418 return vmci_transport_send_control_pkt(
419 sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
420 0, NULL, VSOCK_PROTO_INVALID,
421 VMCI_INVALID_HANDLE);
422 }
423
vmci_transport_send_read(struct sock * sk)424 int vmci_transport_send_read(struct sock *sk)
425 {
426 return vmci_transport_send_control_pkt(
427 sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
428 0, NULL, VSOCK_PROTO_INVALID,
429 VMCI_INVALID_HANDLE);
430 }
431
vmci_transport_send_waiting_write(struct sock * sk,struct vmci_transport_waiting_info * wait)432 int vmci_transport_send_waiting_write(struct sock *sk,
433 struct vmci_transport_waiting_info *wait)
434 {
435 return vmci_transport_send_control_pkt(
436 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
437 0, 0, wait, VSOCK_PROTO_INVALID,
438 VMCI_INVALID_HANDLE);
439 }
440
vmci_transport_send_waiting_read(struct sock * sk,struct vmci_transport_waiting_info * wait)441 int vmci_transport_send_waiting_read(struct sock *sk,
442 struct vmci_transport_waiting_info *wait)
443 {
444 return vmci_transport_send_control_pkt(
445 sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
446 0, 0, wait, VSOCK_PROTO_INVALID,
447 VMCI_INVALID_HANDLE);
448 }
449
vmci_transport_shutdown(struct vsock_sock * vsk,int mode)450 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
451 {
452 return vmci_transport_send_control_pkt(
453 &vsk->sk,
454 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
455 0, mode, NULL,
456 VSOCK_PROTO_INVALID,
457 VMCI_INVALID_HANDLE);
458 }
459
vmci_transport_send_conn_request(struct sock * sk,size_t size)460 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
461 {
462 return vmci_transport_send_control_pkt(sk,
463 VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
464 size, 0, NULL,
465 VSOCK_PROTO_INVALID,
466 VMCI_INVALID_HANDLE);
467 }
468
vmci_transport_send_conn_request2(struct sock * sk,size_t size,u16 version)469 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
470 u16 version)
471 {
472 return vmci_transport_send_control_pkt(
473 sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
474 size, 0, NULL, version,
475 VMCI_INVALID_HANDLE);
476 }
477
vmci_transport_get_pending(struct sock * listener,struct vmci_transport_packet * pkt)478 static struct sock *vmci_transport_get_pending(
479 struct sock *listener,
480 struct vmci_transport_packet *pkt)
481 {
482 struct vsock_sock *vlistener;
483 struct vsock_sock *vpending;
484 struct sock *pending;
485 struct sockaddr_vm src;
486
487 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
488
489 vlistener = vsock_sk(listener);
490
491 list_for_each_entry(vpending, &vlistener->pending_links,
492 pending_links) {
493 if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
494 pkt->dst_port == vpending->local_addr.svm_port) {
495 pending = sk_vsock(vpending);
496 sock_hold(pending);
497 goto found;
498 }
499 }
500
501 pending = NULL;
502 found:
503 return pending;
504
505 }
506
vmci_transport_release_pending(struct sock * pending)507 static void vmci_transport_release_pending(struct sock *pending)
508 {
509 sock_put(pending);
510 }
511
512 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
513 * trusted sockets 2) sockets from applications running as the same user as the
514 * VM (this is only true for the host side and only when using hosted products)
515 */
516
vmci_transport_is_trusted(struct vsock_sock * vsock,u32 peer_cid)517 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
518 {
519 return vsock->trusted ||
520 vmci_is_context_owner(peer_cid, vsock->owner->uid);
521 }
522
523 /* We allow sending datagrams to and receiving datagrams from a restricted VM
524 * only if it is trusted as described in vmci_transport_is_trusted.
525 */
526
vmci_transport_allow_dgram(struct vsock_sock * vsock,u32 peer_cid)527 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
528 {
529 if (VMADDR_CID_HYPERVISOR == peer_cid)
530 return true;
531
532 if (vsock->cached_peer != peer_cid) {
533 vsock->cached_peer = peer_cid;
534 if (!vmci_transport_is_trusted(vsock, peer_cid) &&
535 (vmci_context_get_priv_flags(peer_cid) &
536 VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
537 vsock->cached_peer_allow_dgram = false;
538 } else {
539 vsock->cached_peer_allow_dgram = true;
540 }
541 }
542
543 return vsock->cached_peer_allow_dgram;
544 }
545
546 static int
vmci_transport_queue_pair_alloc(struct vmci_qp ** qpair,struct vmci_handle * handle,u64 produce_size,u64 consume_size,u32 peer,u32 flags,bool trusted)547 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
548 struct vmci_handle *handle,
549 u64 produce_size,
550 u64 consume_size,
551 u32 peer, u32 flags, bool trusted)
552 {
553 int err = 0;
554
555 if (trusted) {
556 /* Try to allocate our queue pair as trusted. This will only
557 * work if vsock is running in the host.
558 */
559
560 err = vmci_qpair_alloc(qpair, handle, produce_size,
561 consume_size,
562 peer, flags,
563 VMCI_PRIVILEGE_FLAG_TRUSTED);
564 if (err != VMCI_ERROR_NO_ACCESS)
565 goto out;
566
567 }
568
569 err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
570 peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
571 out:
572 if (err < 0) {
573 pr_err_once("Could not attach to queue pair with %d\n", err);
574 err = vmci_transport_error_to_vsock_error(err);
575 }
576
577 return err;
578 }
579
580 static int
vmci_transport_datagram_create_hnd(u32 resource_id,u32 flags,vmci_datagram_recv_cb recv_cb,void * client_data,struct vmci_handle * out_handle)581 vmci_transport_datagram_create_hnd(u32 resource_id,
582 u32 flags,
583 vmci_datagram_recv_cb recv_cb,
584 void *client_data,
585 struct vmci_handle *out_handle)
586 {
587 int err = 0;
588
589 /* Try to allocate our datagram handler as trusted. This will only work
590 * if vsock is running in the host.
591 */
592
593 err = vmci_datagram_create_handle_priv(resource_id, flags,
594 VMCI_PRIVILEGE_FLAG_TRUSTED,
595 recv_cb,
596 client_data, out_handle);
597
598 if (err == VMCI_ERROR_NO_ACCESS)
599 err = vmci_datagram_create_handle(resource_id, flags,
600 recv_cb, client_data,
601 out_handle);
602
603 return err;
604 }
605
606 /* This is invoked as part of a tasklet that's scheduled when the VMCI
607 * interrupt fires. This is run in bottom-half context and if it ever needs to
608 * sleep it should defer that work to a work queue.
609 */
610
vmci_transport_recv_dgram_cb(void * data,struct vmci_datagram * dg)611 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
612 {
613 struct sock *sk;
614 size_t size;
615 struct sk_buff *skb;
616 struct vsock_sock *vsk;
617
618 sk = (struct sock *)data;
619
620 /* This handler is privileged when this module is running on the host.
621 * We will get datagrams from all endpoints (even VMs that are in a
622 * restricted context). If we get one from a restricted context then
623 * the destination socket must be trusted.
624 *
625 * NOTE: We access the socket struct without holding the lock here.
626 * This is ok because the field we are interested is never modified
627 * outside of the create and destruct socket functions.
628 */
629 vsk = vsock_sk(sk);
630 if (!vmci_transport_allow_dgram(vsk, dg->src.context))
631 return VMCI_ERROR_NO_ACCESS;
632
633 size = VMCI_DG_SIZE(dg);
634
635 /* Attach the packet to the socket's receive queue as an sk_buff. */
636 skb = alloc_skb(size, GFP_ATOMIC);
637 if (!skb)
638 return VMCI_ERROR_NO_MEM;
639
640 /* sk_receive_skb() will do a sock_put(), so hold here. */
641 sock_hold(sk);
642 skb_put(skb, size);
643 memcpy(skb->data, dg, size);
644 sk_receive_skb(sk, skb, 0);
645
646 return VMCI_SUCCESS;
647 }
648
vmci_transport_stream_allow(u32 cid,u32 port)649 static bool vmci_transport_stream_allow(u32 cid, u32 port)
650 {
651 static const u32 non_socket_contexts[] = {
652 VMADDR_CID_LOCAL,
653 };
654 int i;
655
656 BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
657
658 for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
659 if (cid == non_socket_contexts[i])
660 return false;
661 }
662
663 return true;
664 }
665
666 /* This is invoked as part of a tasklet that's scheduled when the VMCI
667 * interrupt fires. This is run in bottom-half context but it defers most of
668 * its work to the packet handling work queue.
669 */
670
vmci_transport_recv_stream_cb(void * data,struct vmci_datagram * dg)671 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
672 {
673 struct sock *sk;
674 struct sockaddr_vm dst;
675 struct sockaddr_vm src;
676 struct vmci_transport_packet *pkt;
677 struct vsock_sock *vsk;
678 bool bh_process_pkt;
679 int err;
680
681 sk = NULL;
682 err = VMCI_SUCCESS;
683 bh_process_pkt = false;
684
685 /* Ignore incoming packets from contexts without sockets, or resources
686 * that aren't vsock implementations.
687 */
688
689 if (!vmci_transport_stream_allow(dg->src.context, -1)
690 || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
691 return VMCI_ERROR_NO_ACCESS;
692
693 if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
694 /* Drop datagrams that do not contain full VSock packets. */
695 return VMCI_ERROR_INVALID_ARGS;
696
697 pkt = (struct vmci_transport_packet *)dg;
698
699 /* Find the socket that should handle this packet. First we look for a
700 * connected socket and if there is none we look for a socket bound to
701 * the destintation address.
702 */
703 vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
704 vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
705
706 sk = vsock_find_connected_socket(&src, &dst);
707 if (!sk) {
708 sk = vsock_find_bound_socket(&dst);
709 if (!sk) {
710 /* We could not find a socket for this specified
711 * address. If this packet is a RST, we just drop it.
712 * If it is another packet, we send a RST. Note that
713 * we do not send a RST reply to RSTs so that we do not
714 * continually send RSTs between two endpoints.
715 *
716 * Note that since this is a reply, dst is src and src
717 * is dst.
718 */
719 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
720 pr_err("unable to send reset\n");
721
722 err = VMCI_ERROR_NOT_FOUND;
723 goto out;
724 }
725 }
726
727 /* If the received packet type is beyond all types known to this
728 * implementation, reply with an invalid message. Hopefully this will
729 * help when implementing backwards compatibility in the future.
730 */
731 if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
732 vmci_transport_send_invalid_bh(&dst, &src);
733 err = VMCI_ERROR_INVALID_ARGS;
734 goto out;
735 }
736
737 /* This handler is privileged when this module is running on the host.
738 * We will get datagram connect requests from all endpoints (even VMs
739 * that are in a restricted context). If we get one from a restricted
740 * context then the destination socket must be trusted.
741 *
742 * NOTE: We access the socket struct without holding the lock here.
743 * This is ok because the field we are interested is never modified
744 * outside of the create and destruct socket functions.
745 */
746 vsk = vsock_sk(sk);
747 if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
748 err = VMCI_ERROR_NO_ACCESS;
749 goto out;
750 }
751
752 /* We do most everything in a work queue, but let's fast path the
753 * notification of reads and writes to help data transfer performance.
754 * We can only do this if there is no process context code executing
755 * for this socket since that may change the state.
756 */
757 bh_lock_sock(sk);
758
759 if (!sock_owned_by_user(sk)) {
760 /* The local context ID may be out of date, update it. */
761 vsk->local_addr.svm_cid = dst.svm_cid;
762
763 if (sk->sk_state == TCP_ESTABLISHED)
764 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
765 sk, pkt, true, &dst, &src,
766 &bh_process_pkt);
767 }
768
769 bh_unlock_sock(sk);
770
771 if (!bh_process_pkt) {
772 struct vmci_transport_recv_pkt_info *recv_pkt_info;
773
774 recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
775 if (!recv_pkt_info) {
776 if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
777 pr_err("unable to send reset\n");
778
779 err = VMCI_ERROR_NO_MEM;
780 goto out;
781 }
782
783 recv_pkt_info->sk = sk;
784 memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
785 INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
786
787 schedule_work(&recv_pkt_info->work);
788 /* Clear sk so that the reference count incremented by one of
789 * the Find functions above is not decremented below. We need
790 * that reference count for the packet handler we've scheduled
791 * to run.
792 */
793 sk = NULL;
794 }
795
796 out:
797 if (sk)
798 sock_put(sk);
799
800 return err;
801 }
802
vmci_transport_handle_detach(struct sock * sk)803 static void vmci_transport_handle_detach(struct sock *sk)
804 {
805 struct vsock_sock *vsk;
806
807 vsk = vsock_sk(sk);
808
809 /* Only handle our own sockets */
810 if (vsk->transport != &vmci_transport)
811 return;
812
813 if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
814 sock_set_flag(sk, SOCK_DONE);
815
816 /* On a detach the peer will not be sending or receiving
817 * anymore.
818 */
819 vsk->peer_shutdown = SHUTDOWN_MASK;
820
821 /* We should not be sending anymore since the peer won't be
822 * there to receive, but we can still receive if there is data
823 * left in our consume queue. If the local endpoint is a host,
824 * we can't call vsock_stream_has_data, since that may block,
825 * but a host endpoint can't read data once the VM has
826 * detached, so there is no available data in that case.
827 */
828 if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
829 vsock_stream_has_data(vsk) <= 0) {
830 if (sk->sk_state == TCP_SYN_SENT) {
831 /* The peer may detach from a queue pair while
832 * we are still in the connecting state, i.e.,
833 * if the peer VM is killed after attaching to
834 * a queue pair, but before we complete the
835 * handshake. In that case, we treat the detach
836 * event like a reset.
837 */
838
839 sk->sk_state = TCP_CLOSE;
840 sk->sk_err = ECONNRESET;
841 sk->sk_error_report(sk);
842 return;
843 }
844 sk->sk_state = TCP_CLOSE;
845 }
846 sk->sk_state_change(sk);
847 }
848 }
849
vmci_transport_peer_detach_cb(u32 sub_id,const struct vmci_event_data * e_data,void * client_data)850 static void vmci_transport_peer_detach_cb(u32 sub_id,
851 const struct vmci_event_data *e_data,
852 void *client_data)
853 {
854 struct vmci_transport *trans = client_data;
855 const struct vmci_event_payload_qp *e_payload;
856
857 e_payload = vmci_event_data_const_payload(e_data);
858
859 /* XXX This is lame, we should provide a way to lookup sockets by
860 * qp_handle.
861 */
862 if (vmci_handle_is_invalid(e_payload->handle) ||
863 !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
864 return;
865
866 /* We don't ask for delayed CBs when we subscribe to this event (we
867 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no
868 * guarantees in that case about what context we might be running in,
869 * so it could be BH or process, blockable or non-blockable. So we
870 * need to account for all possible contexts here.
871 */
872 spin_lock_bh(&trans->lock);
873 if (!trans->sk)
874 goto out;
875
876 /* Apart from here, trans->lock is only grabbed as part of sk destruct,
877 * where trans->sk isn't locked.
878 */
879 bh_lock_sock(trans->sk);
880
881 vmci_transport_handle_detach(trans->sk);
882
883 bh_unlock_sock(trans->sk);
884 out:
885 spin_unlock_bh(&trans->lock);
886 }
887
vmci_transport_qp_resumed_cb(u32 sub_id,const struct vmci_event_data * e_data,void * client_data)888 static void vmci_transport_qp_resumed_cb(u32 sub_id,
889 const struct vmci_event_data *e_data,
890 void *client_data)
891 {
892 vsock_for_each_connected_socket(vmci_transport_handle_detach);
893 }
894
vmci_transport_recv_pkt_work(struct work_struct * work)895 static void vmci_transport_recv_pkt_work(struct work_struct *work)
896 {
897 struct vmci_transport_recv_pkt_info *recv_pkt_info;
898 struct vmci_transport_packet *pkt;
899 struct sock *sk;
900
901 recv_pkt_info =
902 container_of(work, struct vmci_transport_recv_pkt_info, work);
903 sk = recv_pkt_info->sk;
904 pkt = &recv_pkt_info->pkt;
905
906 lock_sock(sk);
907
908 /* The local context ID may be out of date. */
909 vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
910
911 switch (sk->sk_state) {
912 case TCP_LISTEN:
913 vmci_transport_recv_listen(sk, pkt);
914 break;
915 case TCP_SYN_SENT:
916 /* Processing of pending connections for servers goes through
917 * the listening socket, so see vmci_transport_recv_listen()
918 * for that path.
919 */
920 vmci_transport_recv_connecting_client(sk, pkt);
921 break;
922 case TCP_ESTABLISHED:
923 vmci_transport_recv_connected(sk, pkt);
924 break;
925 default:
926 /* Because this function does not run in the same context as
927 * vmci_transport_recv_stream_cb it is possible that the
928 * socket has closed. We need to let the other side know or it
929 * could be sitting in a connect and hang forever. Send a
930 * reset to prevent that.
931 */
932 vmci_transport_send_reset(sk, pkt);
933 break;
934 }
935
936 release_sock(sk);
937 kfree(recv_pkt_info);
938 /* Release reference obtained in the stream callback when we fetched
939 * this socket out of the bound or connected list.
940 */
941 sock_put(sk);
942 }
943
vmci_transport_recv_listen(struct sock * sk,struct vmci_transport_packet * pkt)944 static int vmci_transport_recv_listen(struct sock *sk,
945 struct vmci_transport_packet *pkt)
946 {
947 struct sock *pending;
948 struct vsock_sock *vpending;
949 int err;
950 u64 qp_size;
951 bool old_request = false;
952 bool old_pkt_proto = false;
953
954 err = 0;
955
956 /* Because we are in the listen state, we could be receiving a packet
957 * for ourself or any previous connection requests that we received.
958 * If it's the latter, we try to find a socket in our list of pending
959 * connections and, if we do, call the appropriate handler for the
960 * state that that socket is in. Otherwise we try to service the
961 * connection request.
962 */
963 pending = vmci_transport_get_pending(sk, pkt);
964 if (pending) {
965 lock_sock(pending);
966
967 /* The local context ID may be out of date. */
968 vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
969
970 switch (pending->sk_state) {
971 case TCP_SYN_SENT:
972 err = vmci_transport_recv_connecting_server(sk,
973 pending,
974 pkt);
975 break;
976 default:
977 vmci_transport_send_reset(pending, pkt);
978 err = -EINVAL;
979 }
980
981 if (err < 0)
982 vsock_remove_pending(sk, pending);
983
984 release_sock(pending);
985 vmci_transport_release_pending(pending);
986
987 return err;
988 }
989
990 /* The listen state only accepts connection requests. Reply with a
991 * reset unless we received a reset.
992 */
993
994 if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
995 pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
996 vmci_transport_reply_reset(pkt);
997 return -EINVAL;
998 }
999
1000 if (pkt->u.size == 0) {
1001 vmci_transport_reply_reset(pkt);
1002 return -EINVAL;
1003 }
1004
1005 /* If this socket can't accommodate this connection request, we send a
1006 * reset. Otherwise we create and initialize a child socket and reply
1007 * with a connection negotiation.
1008 */
1009 if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1010 vmci_transport_reply_reset(pkt);
1011 return -ECONNREFUSED;
1012 }
1013
1014 pending = vsock_create_connected(sk);
1015 if (!pending) {
1016 vmci_transport_send_reset(sk, pkt);
1017 return -ENOMEM;
1018 }
1019
1020 vpending = vsock_sk(pending);
1021
1022 vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1023 pkt->dst_port);
1024 vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1025 pkt->src_port);
1026
1027 err = vsock_assign_transport(vpending, vsock_sk(sk));
1028 /* Transport assigned (looking at remote_addr) must be the same
1029 * where we received the request.
1030 */
1031 if (err || !vmci_check_transport(vpending)) {
1032 vmci_transport_send_reset(sk, pkt);
1033 sock_put(pending);
1034 return err;
1035 }
1036
1037 /* If the proposed size fits within our min/max, accept it. Otherwise
1038 * propose our own size.
1039 */
1040 if (pkt->u.size >= vpending->buffer_min_size &&
1041 pkt->u.size <= vpending->buffer_max_size) {
1042 qp_size = pkt->u.size;
1043 } else {
1044 qp_size = vpending->buffer_size;
1045 }
1046
1047 /* Figure out if we are using old or new requests based on the
1048 * overrides pkt types sent by our peer.
1049 */
1050 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1051 old_request = old_pkt_proto;
1052 } else {
1053 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1054 old_request = true;
1055 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1056 old_request = false;
1057
1058 }
1059
1060 if (old_request) {
1061 /* Handle a REQUEST (or override) */
1062 u16 version = VSOCK_PROTO_INVALID;
1063 if (vmci_transport_proto_to_notify_struct(
1064 pending, &version, true))
1065 err = vmci_transport_send_negotiate(pending, qp_size);
1066 else
1067 err = -EINVAL;
1068
1069 } else {
1070 /* Handle a REQUEST2 (or override) */
1071 int proto_int = pkt->proto;
1072 int pos;
1073 u16 active_proto_version = 0;
1074
1075 /* The list of possible protocols is the intersection of all
1076 * protocols the client supports ... plus all the protocols we
1077 * support.
1078 */
1079 proto_int &= vmci_transport_new_proto_supported_versions();
1080
1081 /* We choose the highest possible protocol version and use that
1082 * one.
1083 */
1084 pos = fls(proto_int);
1085 if (pos) {
1086 active_proto_version = (1 << (pos - 1));
1087 if (vmci_transport_proto_to_notify_struct(
1088 pending, &active_proto_version, false))
1089 err = vmci_transport_send_negotiate2(pending,
1090 qp_size,
1091 active_proto_version);
1092 else
1093 err = -EINVAL;
1094
1095 } else {
1096 err = -EINVAL;
1097 }
1098 }
1099
1100 if (err < 0) {
1101 vmci_transport_send_reset(sk, pkt);
1102 sock_put(pending);
1103 err = vmci_transport_error_to_vsock_error(err);
1104 goto out;
1105 }
1106
1107 vsock_add_pending(sk, pending);
1108 sk_acceptq_added(sk);
1109
1110 pending->sk_state = TCP_SYN_SENT;
1111 vmci_trans(vpending)->produce_size =
1112 vmci_trans(vpending)->consume_size = qp_size;
1113 vpending->buffer_size = qp_size;
1114
1115 vmci_trans(vpending)->notify_ops->process_request(pending);
1116
1117 /* We might never receive another message for this socket and it's not
1118 * connected to any process, so we have to ensure it gets cleaned up
1119 * ourself. Our delayed work function will take care of that. Note
1120 * that we do not ever cancel this function since we have few
1121 * guarantees about its state when calling cancel_delayed_work().
1122 * Instead we hold a reference on the socket for that function and make
1123 * it capable of handling cases where it needs to do nothing but
1124 * release that reference.
1125 */
1126 vpending->listener = sk;
1127 sock_hold(sk);
1128 sock_hold(pending);
1129 schedule_delayed_work(&vpending->pending_work, HZ);
1130
1131 out:
1132 return err;
1133 }
1134
1135 static int
vmci_transport_recv_connecting_server(struct sock * listener,struct sock * pending,struct vmci_transport_packet * pkt)1136 vmci_transport_recv_connecting_server(struct sock *listener,
1137 struct sock *pending,
1138 struct vmci_transport_packet *pkt)
1139 {
1140 struct vsock_sock *vpending;
1141 struct vmci_handle handle;
1142 struct vmci_qp *qpair;
1143 bool is_local;
1144 u32 flags;
1145 u32 detach_sub_id;
1146 int err;
1147 int skerr;
1148
1149 vpending = vsock_sk(pending);
1150 detach_sub_id = VMCI_INVALID_ID;
1151
1152 switch (pkt->type) {
1153 case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1154 if (vmci_handle_is_invalid(pkt->u.handle)) {
1155 vmci_transport_send_reset(pending, pkt);
1156 skerr = EPROTO;
1157 err = -EINVAL;
1158 goto destroy;
1159 }
1160 break;
1161 default:
1162 /* Close and cleanup the connection. */
1163 vmci_transport_send_reset(pending, pkt);
1164 skerr = EPROTO;
1165 err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1166 goto destroy;
1167 }
1168
1169 /* In order to complete the connection we need to attach to the offered
1170 * queue pair and send an attach notification. We also subscribe to the
1171 * detach event so we know when our peer goes away, and we do that
1172 * before attaching so we don't miss an event. If all this succeeds,
1173 * we update our state and wakeup anything waiting in accept() for a
1174 * connection.
1175 */
1176
1177 /* We don't care about attach since we ensure the other side has
1178 * attached by specifying the ATTACH_ONLY flag below.
1179 */
1180 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1181 vmci_transport_peer_detach_cb,
1182 vmci_trans(vpending), &detach_sub_id);
1183 if (err < VMCI_SUCCESS) {
1184 vmci_transport_send_reset(pending, pkt);
1185 err = vmci_transport_error_to_vsock_error(err);
1186 skerr = -err;
1187 goto destroy;
1188 }
1189
1190 vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1191
1192 /* Now attach to the queue pair the client created. */
1193 handle = pkt->u.handle;
1194
1195 /* vpending->local_addr always has a context id so we do not need to
1196 * worry about VMADDR_CID_ANY in this case.
1197 */
1198 is_local =
1199 vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1200 flags = VMCI_QPFLAG_ATTACH_ONLY;
1201 flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1202
1203 err = vmci_transport_queue_pair_alloc(
1204 &qpair,
1205 &handle,
1206 vmci_trans(vpending)->produce_size,
1207 vmci_trans(vpending)->consume_size,
1208 pkt->dg.src.context,
1209 flags,
1210 vmci_transport_is_trusted(
1211 vpending,
1212 vpending->remote_addr.svm_cid));
1213 if (err < 0) {
1214 vmci_transport_send_reset(pending, pkt);
1215 skerr = -err;
1216 goto destroy;
1217 }
1218
1219 vmci_trans(vpending)->qp_handle = handle;
1220 vmci_trans(vpending)->qpair = qpair;
1221
1222 /* When we send the attach message, we must be ready to handle incoming
1223 * control messages on the newly connected socket. So we move the
1224 * pending socket to the connected state before sending the attach
1225 * message. Otherwise, an incoming packet triggered by the attach being
1226 * received by the peer may be processed concurrently with what happens
1227 * below after sending the attach message, and that incoming packet
1228 * will find the listening socket instead of the (currently) pending
1229 * socket. Note that enqueueing the socket increments the reference
1230 * count, so even if a reset comes before the connection is accepted,
1231 * the socket will be valid until it is removed from the queue.
1232 *
1233 * If we fail sending the attach below, we remove the socket from the
1234 * connected list and move the socket to TCP_CLOSE before
1235 * releasing the lock, so a pending slow path processing of an incoming
1236 * packet will not see the socket in the connected state in that case.
1237 */
1238 pending->sk_state = TCP_ESTABLISHED;
1239
1240 vsock_insert_connected(vpending);
1241
1242 /* Notify our peer of our attach. */
1243 err = vmci_transport_send_attach(pending, handle);
1244 if (err < 0) {
1245 vsock_remove_connected(vpending);
1246 pr_err("Could not send attach\n");
1247 vmci_transport_send_reset(pending, pkt);
1248 err = vmci_transport_error_to_vsock_error(err);
1249 skerr = -err;
1250 goto destroy;
1251 }
1252
1253 /* We have a connection. Move the now connected socket from the
1254 * listener's pending list to the accept queue so callers of accept()
1255 * can find it.
1256 */
1257 vsock_remove_pending(listener, pending);
1258 vsock_enqueue_accept(listener, pending);
1259
1260 /* Callers of accept() will be be waiting on the listening socket, not
1261 * the pending socket.
1262 */
1263 listener->sk_data_ready(listener);
1264
1265 return 0;
1266
1267 destroy:
1268 pending->sk_err = skerr;
1269 pending->sk_state = TCP_CLOSE;
1270 /* As long as we drop our reference, all necessary cleanup will handle
1271 * when the cleanup function drops its reference and our destruct
1272 * implementation is called. Note that since the listen handler will
1273 * remove pending from the pending list upon our failure, the cleanup
1274 * function won't drop the additional reference, which is why we do it
1275 * here.
1276 */
1277 sock_put(pending);
1278
1279 return err;
1280 }
1281
1282 static int
vmci_transport_recv_connecting_client(struct sock * sk,struct vmci_transport_packet * pkt)1283 vmci_transport_recv_connecting_client(struct sock *sk,
1284 struct vmci_transport_packet *pkt)
1285 {
1286 struct vsock_sock *vsk;
1287 int err;
1288 int skerr;
1289
1290 vsk = vsock_sk(sk);
1291
1292 switch (pkt->type) {
1293 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1294 if (vmci_handle_is_invalid(pkt->u.handle) ||
1295 !vmci_handle_is_equal(pkt->u.handle,
1296 vmci_trans(vsk)->qp_handle)) {
1297 skerr = EPROTO;
1298 err = -EINVAL;
1299 goto destroy;
1300 }
1301
1302 /* Signify the socket is connected and wakeup the waiter in
1303 * connect(). Also place the socket in the connected table for
1304 * accounting (it can already be found since it's in the bound
1305 * table).
1306 */
1307 sk->sk_state = TCP_ESTABLISHED;
1308 sk->sk_socket->state = SS_CONNECTED;
1309 vsock_insert_connected(vsk);
1310 sk->sk_state_change(sk);
1311
1312 break;
1313 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1314 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1315 if (pkt->u.size == 0
1316 || pkt->dg.src.context != vsk->remote_addr.svm_cid
1317 || pkt->src_port != vsk->remote_addr.svm_port
1318 || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1319 || vmci_trans(vsk)->qpair
1320 || vmci_trans(vsk)->produce_size != 0
1321 || vmci_trans(vsk)->consume_size != 0
1322 || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1323 skerr = EPROTO;
1324 err = -EINVAL;
1325
1326 goto destroy;
1327 }
1328
1329 err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1330 if (err) {
1331 skerr = -err;
1332 goto destroy;
1333 }
1334
1335 break;
1336 case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1337 err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1338 if (err) {
1339 skerr = -err;
1340 goto destroy;
1341 }
1342
1343 break;
1344 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1345 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1346 * continue processing here after they sent an INVALID packet.
1347 * This meant that we got a RST after the INVALID. We ignore a
1348 * RST after an INVALID. The common code doesn't send the RST
1349 * ... so we can hang if an old version of the common code
1350 * fails between getting a REQUEST and sending an OFFER back.
1351 * Not much we can do about it... except hope that it doesn't
1352 * happen.
1353 */
1354 if (vsk->ignore_connecting_rst) {
1355 vsk->ignore_connecting_rst = false;
1356 } else {
1357 skerr = ECONNRESET;
1358 err = 0;
1359 goto destroy;
1360 }
1361
1362 break;
1363 default:
1364 /* Close and cleanup the connection. */
1365 skerr = EPROTO;
1366 err = -EINVAL;
1367 goto destroy;
1368 }
1369
1370 return 0;
1371
1372 destroy:
1373 vmci_transport_send_reset(sk, pkt);
1374
1375 sk->sk_state = TCP_CLOSE;
1376 sk->sk_err = skerr;
1377 sk->sk_error_report(sk);
1378 return err;
1379 }
1380
vmci_transport_recv_connecting_client_negotiate(struct sock * sk,struct vmci_transport_packet * pkt)1381 static int vmci_transport_recv_connecting_client_negotiate(
1382 struct sock *sk,
1383 struct vmci_transport_packet *pkt)
1384 {
1385 int err;
1386 struct vsock_sock *vsk;
1387 struct vmci_handle handle;
1388 struct vmci_qp *qpair;
1389 u32 detach_sub_id;
1390 bool is_local;
1391 u32 flags;
1392 bool old_proto = true;
1393 bool old_pkt_proto;
1394 u16 version;
1395
1396 vsk = vsock_sk(sk);
1397 handle = VMCI_INVALID_HANDLE;
1398 detach_sub_id = VMCI_INVALID_ID;
1399
1400 /* If we have gotten here then we should be past the point where old
1401 * linux vsock could have sent the bogus rst.
1402 */
1403 vsk->sent_request = false;
1404 vsk->ignore_connecting_rst = false;
1405
1406 /* Verify that we're OK with the proposed queue pair size */
1407 if (pkt->u.size < vsk->buffer_min_size ||
1408 pkt->u.size > vsk->buffer_max_size) {
1409 err = -EINVAL;
1410 goto destroy;
1411 }
1412
1413 /* At this point we know the CID the peer is using to talk to us. */
1414
1415 if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1416 vsk->local_addr.svm_cid = pkt->dg.dst.context;
1417
1418 /* Setup the notify ops to be the highest supported version that both
1419 * the server and the client support.
1420 */
1421
1422 if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1423 old_proto = old_pkt_proto;
1424 } else {
1425 if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1426 old_proto = true;
1427 else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1428 old_proto = false;
1429
1430 }
1431
1432 if (old_proto)
1433 version = VSOCK_PROTO_INVALID;
1434 else
1435 version = pkt->proto;
1436
1437 if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1438 err = -EINVAL;
1439 goto destroy;
1440 }
1441
1442 /* Subscribe to detach events first.
1443 *
1444 * XXX We attach once for each queue pair created for now so it is easy
1445 * to find the socket (it's provided), but later we should only
1446 * subscribe once and add a way to lookup sockets by queue pair handle.
1447 */
1448 err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1449 vmci_transport_peer_detach_cb,
1450 vmci_trans(vsk), &detach_sub_id);
1451 if (err < VMCI_SUCCESS) {
1452 err = vmci_transport_error_to_vsock_error(err);
1453 goto destroy;
1454 }
1455
1456 /* Make VMCI select the handle for us. */
1457 handle = VMCI_INVALID_HANDLE;
1458 is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1459 flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1460
1461 err = vmci_transport_queue_pair_alloc(&qpair,
1462 &handle,
1463 pkt->u.size,
1464 pkt->u.size,
1465 vsk->remote_addr.svm_cid,
1466 flags,
1467 vmci_transport_is_trusted(
1468 vsk,
1469 vsk->
1470 remote_addr.svm_cid));
1471 if (err < 0)
1472 goto destroy;
1473
1474 err = vmci_transport_send_qp_offer(sk, handle);
1475 if (err < 0) {
1476 err = vmci_transport_error_to_vsock_error(err);
1477 goto destroy;
1478 }
1479
1480 vmci_trans(vsk)->qp_handle = handle;
1481 vmci_trans(vsk)->qpair = qpair;
1482
1483 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1484 pkt->u.size;
1485
1486 vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1487
1488 vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1489
1490 return 0;
1491
1492 destroy:
1493 if (detach_sub_id != VMCI_INVALID_ID)
1494 vmci_event_unsubscribe(detach_sub_id);
1495
1496 if (!vmci_handle_is_invalid(handle))
1497 vmci_qpair_detach(&qpair);
1498
1499 return err;
1500 }
1501
1502 static int
vmci_transport_recv_connecting_client_invalid(struct sock * sk,struct vmci_transport_packet * pkt)1503 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1504 struct vmci_transport_packet *pkt)
1505 {
1506 int err = 0;
1507 struct vsock_sock *vsk = vsock_sk(sk);
1508
1509 if (vsk->sent_request) {
1510 vsk->sent_request = false;
1511 vsk->ignore_connecting_rst = true;
1512
1513 err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1514 if (err < 0)
1515 err = vmci_transport_error_to_vsock_error(err);
1516 else
1517 err = 0;
1518
1519 }
1520
1521 return err;
1522 }
1523
vmci_transport_recv_connected(struct sock * sk,struct vmci_transport_packet * pkt)1524 static int vmci_transport_recv_connected(struct sock *sk,
1525 struct vmci_transport_packet *pkt)
1526 {
1527 struct vsock_sock *vsk;
1528 bool pkt_processed = false;
1529
1530 /* In cases where we are closing the connection, it's sufficient to
1531 * mark the state change (and maybe error) and wake up any waiting
1532 * threads. Since this is a connected socket, it's owned by a user
1533 * process and will be cleaned up when the failure is passed back on
1534 * the current or next system call. Our system call implementations
1535 * must therefore check for error and state changes on entry and when
1536 * being awoken.
1537 */
1538 switch (pkt->type) {
1539 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1540 if (pkt->u.mode) {
1541 vsk = vsock_sk(sk);
1542
1543 vsk->peer_shutdown |= pkt->u.mode;
1544 sk->sk_state_change(sk);
1545 }
1546 break;
1547
1548 case VMCI_TRANSPORT_PACKET_TYPE_RST:
1549 vsk = vsock_sk(sk);
1550 /* It is possible that we sent our peer a message (e.g a
1551 * WAITING_READ) right before we got notified that the peer had
1552 * detached. If that happens then we can get a RST pkt back
1553 * from our peer even though there is data available for us to
1554 * read. In that case, don't shutdown the socket completely but
1555 * instead allow the local client to finish reading data off
1556 * the queuepair. Always treat a RST pkt in connected mode like
1557 * a clean shutdown.
1558 */
1559 sock_set_flag(sk, SOCK_DONE);
1560 vsk->peer_shutdown = SHUTDOWN_MASK;
1561 if (vsock_stream_has_data(vsk) <= 0)
1562 sk->sk_state = TCP_CLOSING;
1563
1564 sk->sk_state_change(sk);
1565 break;
1566
1567 default:
1568 vsk = vsock_sk(sk);
1569 vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1570 sk, pkt, false, NULL, NULL,
1571 &pkt_processed);
1572 if (!pkt_processed)
1573 return -EINVAL;
1574
1575 break;
1576 }
1577
1578 return 0;
1579 }
1580
vmci_transport_socket_init(struct vsock_sock * vsk,struct vsock_sock * psk)1581 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1582 struct vsock_sock *psk)
1583 {
1584 vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1585 if (!vsk->trans)
1586 return -ENOMEM;
1587
1588 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1589 vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1590 vmci_trans(vsk)->qpair = NULL;
1591 vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1592 vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1593 vmci_trans(vsk)->notify_ops = NULL;
1594 INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1595 vmci_trans(vsk)->sk = &vsk->sk;
1596 spin_lock_init(&vmci_trans(vsk)->lock);
1597
1598 return 0;
1599 }
1600
vmci_transport_free_resources(struct list_head * transport_list)1601 static void vmci_transport_free_resources(struct list_head *transport_list)
1602 {
1603 while (!list_empty(transport_list)) {
1604 struct vmci_transport *transport =
1605 list_first_entry(transport_list, struct vmci_transport,
1606 elem);
1607 list_del(&transport->elem);
1608
1609 if (transport->detach_sub_id != VMCI_INVALID_ID) {
1610 vmci_event_unsubscribe(transport->detach_sub_id);
1611 transport->detach_sub_id = VMCI_INVALID_ID;
1612 }
1613
1614 if (!vmci_handle_is_invalid(transport->qp_handle)) {
1615 vmci_qpair_detach(&transport->qpair);
1616 transport->qp_handle = VMCI_INVALID_HANDLE;
1617 transport->produce_size = 0;
1618 transport->consume_size = 0;
1619 }
1620
1621 kfree(transport);
1622 }
1623 }
1624
vmci_transport_cleanup(struct work_struct * work)1625 static void vmci_transport_cleanup(struct work_struct *work)
1626 {
1627 LIST_HEAD(pending);
1628
1629 spin_lock_bh(&vmci_transport_cleanup_lock);
1630 list_replace_init(&vmci_transport_cleanup_list, &pending);
1631 spin_unlock_bh(&vmci_transport_cleanup_lock);
1632 vmci_transport_free_resources(&pending);
1633 }
1634
vmci_transport_destruct(struct vsock_sock * vsk)1635 static void vmci_transport_destruct(struct vsock_sock *vsk)
1636 {
1637 /* transport can be NULL if we hit a failure at init() time */
1638 if (!vmci_trans(vsk))
1639 return;
1640
1641 /* Ensure that the detach callback doesn't use the sk/vsk
1642 * we are about to destruct.
1643 */
1644 spin_lock_bh(&vmci_trans(vsk)->lock);
1645 vmci_trans(vsk)->sk = NULL;
1646 spin_unlock_bh(&vmci_trans(vsk)->lock);
1647
1648 if (vmci_trans(vsk)->notify_ops)
1649 vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1650
1651 spin_lock_bh(&vmci_transport_cleanup_lock);
1652 list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1653 spin_unlock_bh(&vmci_transport_cleanup_lock);
1654 schedule_work(&vmci_transport_cleanup_work);
1655
1656 vsk->trans = NULL;
1657 }
1658
vmci_transport_release(struct vsock_sock * vsk)1659 static void vmci_transport_release(struct vsock_sock *vsk)
1660 {
1661 vsock_remove_sock(vsk);
1662
1663 if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1664 vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1665 vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1666 }
1667 }
1668
vmci_transport_dgram_bind(struct vsock_sock * vsk,struct sockaddr_vm * addr)1669 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1670 struct sockaddr_vm *addr)
1671 {
1672 u32 port;
1673 u32 flags;
1674 int err;
1675
1676 /* VMCI will select a resource ID for us if we provide
1677 * VMCI_INVALID_ID.
1678 */
1679 port = addr->svm_port == VMADDR_PORT_ANY ?
1680 VMCI_INVALID_ID : addr->svm_port;
1681
1682 if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1683 return -EACCES;
1684
1685 flags = addr->svm_cid == VMADDR_CID_ANY ?
1686 VMCI_FLAG_ANYCID_DG_HND : 0;
1687
1688 err = vmci_transport_datagram_create_hnd(port, flags,
1689 vmci_transport_recv_dgram_cb,
1690 &vsk->sk,
1691 &vmci_trans(vsk)->dg_handle);
1692 if (err < VMCI_SUCCESS)
1693 return vmci_transport_error_to_vsock_error(err);
1694 vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1695 vmci_trans(vsk)->dg_handle.resource);
1696
1697 return 0;
1698 }
1699
vmci_transport_dgram_enqueue(struct vsock_sock * vsk,struct sockaddr_vm * remote_addr,struct msghdr * msg,size_t len)1700 static int vmci_transport_dgram_enqueue(
1701 struct vsock_sock *vsk,
1702 struct sockaddr_vm *remote_addr,
1703 struct msghdr *msg,
1704 size_t len)
1705 {
1706 int err;
1707 struct vmci_datagram *dg;
1708
1709 if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1710 return -EMSGSIZE;
1711
1712 if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1713 return -EPERM;
1714
1715 /* Allocate a buffer for the user's message and our packet header. */
1716 dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1717 if (!dg)
1718 return -ENOMEM;
1719
1720 err = memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1721 if (err) {
1722 kfree(dg);
1723 return err;
1724 }
1725
1726 dg->dst = vmci_make_handle(remote_addr->svm_cid,
1727 remote_addr->svm_port);
1728 dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1729 vsk->local_addr.svm_port);
1730 dg->payload_size = len;
1731
1732 err = vmci_datagram_send(dg);
1733 kfree(dg);
1734 if (err < 0)
1735 return vmci_transport_error_to_vsock_error(err);
1736
1737 return err - sizeof(*dg);
1738 }
1739
vmci_transport_dgram_dequeue(struct vsock_sock * vsk,struct msghdr * msg,size_t len,int flags)1740 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1741 struct msghdr *msg, size_t len,
1742 int flags)
1743 {
1744 int err;
1745 int noblock;
1746 struct vmci_datagram *dg;
1747 size_t payload_len;
1748 struct sk_buff *skb;
1749
1750 noblock = flags & MSG_DONTWAIT;
1751
1752 if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1753 return -EOPNOTSUPP;
1754
1755 /* Retrieve the head sk_buff from the socket's receive queue. */
1756 err = 0;
1757 skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1758 if (!skb)
1759 return err;
1760
1761 dg = (struct vmci_datagram *)skb->data;
1762 if (!dg)
1763 /* err is 0, meaning we read zero bytes. */
1764 goto out;
1765
1766 payload_len = dg->payload_size;
1767 /* Ensure the sk_buff matches the payload size claimed in the packet. */
1768 if (payload_len != skb->len - sizeof(*dg)) {
1769 err = -EINVAL;
1770 goto out;
1771 }
1772
1773 if (payload_len > len) {
1774 payload_len = len;
1775 msg->msg_flags |= MSG_TRUNC;
1776 }
1777
1778 /* Place the datagram payload in the user's iovec. */
1779 err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1780 if (err)
1781 goto out;
1782
1783 if (msg->msg_name) {
1784 /* Provide the address of the sender. */
1785 DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1786 vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1787 msg->msg_namelen = sizeof(*vm_addr);
1788 }
1789 err = payload_len;
1790
1791 out:
1792 skb_free_datagram(&vsk->sk, skb);
1793 return err;
1794 }
1795
vmci_transport_dgram_allow(u32 cid,u32 port)1796 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1797 {
1798 if (cid == VMADDR_CID_HYPERVISOR) {
1799 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1800 * state and are allowed.
1801 */
1802 return port == VMCI_UNITY_PBRPC_REGISTER;
1803 }
1804
1805 return true;
1806 }
1807
vmci_transport_connect(struct vsock_sock * vsk)1808 static int vmci_transport_connect(struct vsock_sock *vsk)
1809 {
1810 int err;
1811 bool old_pkt_proto = false;
1812 struct sock *sk = &vsk->sk;
1813
1814 if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1815 old_pkt_proto) {
1816 err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1817 if (err < 0) {
1818 sk->sk_state = TCP_CLOSE;
1819 return err;
1820 }
1821 } else {
1822 int supported_proto_versions =
1823 vmci_transport_new_proto_supported_versions();
1824 err = vmci_transport_send_conn_request2(sk, vsk->buffer_size,
1825 supported_proto_versions);
1826 if (err < 0) {
1827 sk->sk_state = TCP_CLOSE;
1828 return err;
1829 }
1830
1831 vsk->sent_request = true;
1832 }
1833
1834 return err;
1835 }
1836
vmci_transport_stream_dequeue(struct vsock_sock * vsk,struct msghdr * msg,size_t len,int flags)1837 static ssize_t vmci_transport_stream_dequeue(
1838 struct vsock_sock *vsk,
1839 struct msghdr *msg,
1840 size_t len,
1841 int flags)
1842 {
1843 if (flags & MSG_PEEK)
1844 return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1845 else
1846 return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1847 }
1848
vmci_transport_stream_enqueue(struct vsock_sock * vsk,struct msghdr * msg,size_t len)1849 static ssize_t vmci_transport_stream_enqueue(
1850 struct vsock_sock *vsk,
1851 struct msghdr *msg,
1852 size_t len)
1853 {
1854 return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1855 }
1856
vmci_transport_stream_has_data(struct vsock_sock * vsk)1857 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1858 {
1859 return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1860 }
1861
vmci_transport_stream_has_space(struct vsock_sock * vsk)1862 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1863 {
1864 return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1865 }
1866
vmci_transport_stream_rcvhiwat(struct vsock_sock * vsk)1867 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1868 {
1869 return vmci_trans(vsk)->consume_size;
1870 }
1871
vmci_transport_stream_is_active(struct vsock_sock * vsk)1872 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1873 {
1874 return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1875 }
1876
vmci_transport_notify_poll_in(struct vsock_sock * vsk,size_t target,bool * data_ready_now)1877 static int vmci_transport_notify_poll_in(
1878 struct vsock_sock *vsk,
1879 size_t target,
1880 bool *data_ready_now)
1881 {
1882 return vmci_trans(vsk)->notify_ops->poll_in(
1883 &vsk->sk, target, data_ready_now);
1884 }
1885
vmci_transport_notify_poll_out(struct vsock_sock * vsk,size_t target,bool * space_available_now)1886 static int vmci_transport_notify_poll_out(
1887 struct vsock_sock *vsk,
1888 size_t target,
1889 bool *space_available_now)
1890 {
1891 return vmci_trans(vsk)->notify_ops->poll_out(
1892 &vsk->sk, target, space_available_now);
1893 }
1894
vmci_transport_notify_recv_init(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1895 static int vmci_transport_notify_recv_init(
1896 struct vsock_sock *vsk,
1897 size_t target,
1898 struct vsock_transport_recv_notify_data *data)
1899 {
1900 return vmci_trans(vsk)->notify_ops->recv_init(
1901 &vsk->sk, target,
1902 (struct vmci_transport_recv_notify_data *)data);
1903 }
1904
vmci_transport_notify_recv_pre_block(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1905 static int vmci_transport_notify_recv_pre_block(
1906 struct vsock_sock *vsk,
1907 size_t target,
1908 struct vsock_transport_recv_notify_data *data)
1909 {
1910 return vmci_trans(vsk)->notify_ops->recv_pre_block(
1911 &vsk->sk, target,
1912 (struct vmci_transport_recv_notify_data *)data);
1913 }
1914
vmci_transport_notify_recv_pre_dequeue(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1915 static int vmci_transport_notify_recv_pre_dequeue(
1916 struct vsock_sock *vsk,
1917 size_t target,
1918 struct vsock_transport_recv_notify_data *data)
1919 {
1920 return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1921 &vsk->sk, target,
1922 (struct vmci_transport_recv_notify_data *)data);
1923 }
1924
vmci_transport_notify_recv_post_dequeue(struct vsock_sock * vsk,size_t target,ssize_t copied,bool data_read,struct vsock_transport_recv_notify_data * data)1925 static int vmci_transport_notify_recv_post_dequeue(
1926 struct vsock_sock *vsk,
1927 size_t target,
1928 ssize_t copied,
1929 bool data_read,
1930 struct vsock_transport_recv_notify_data *data)
1931 {
1932 return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1933 &vsk->sk, target, copied, data_read,
1934 (struct vmci_transport_recv_notify_data *)data);
1935 }
1936
vmci_transport_notify_send_init(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)1937 static int vmci_transport_notify_send_init(
1938 struct vsock_sock *vsk,
1939 struct vsock_transport_send_notify_data *data)
1940 {
1941 return vmci_trans(vsk)->notify_ops->send_init(
1942 &vsk->sk,
1943 (struct vmci_transport_send_notify_data *)data);
1944 }
1945
vmci_transport_notify_send_pre_block(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)1946 static int vmci_transport_notify_send_pre_block(
1947 struct vsock_sock *vsk,
1948 struct vsock_transport_send_notify_data *data)
1949 {
1950 return vmci_trans(vsk)->notify_ops->send_pre_block(
1951 &vsk->sk,
1952 (struct vmci_transport_send_notify_data *)data);
1953 }
1954
vmci_transport_notify_send_pre_enqueue(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)1955 static int vmci_transport_notify_send_pre_enqueue(
1956 struct vsock_sock *vsk,
1957 struct vsock_transport_send_notify_data *data)
1958 {
1959 return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1960 &vsk->sk,
1961 (struct vmci_transport_send_notify_data *)data);
1962 }
1963
vmci_transport_notify_send_post_enqueue(struct vsock_sock * vsk,ssize_t written,struct vsock_transport_send_notify_data * data)1964 static int vmci_transport_notify_send_post_enqueue(
1965 struct vsock_sock *vsk,
1966 ssize_t written,
1967 struct vsock_transport_send_notify_data *data)
1968 {
1969 return vmci_trans(vsk)->notify_ops->send_post_enqueue(
1970 &vsk->sk, written,
1971 (struct vmci_transport_send_notify_data *)data);
1972 }
1973
vmci_transport_old_proto_override(bool * old_pkt_proto)1974 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
1975 {
1976 if (PROTOCOL_OVERRIDE != -1) {
1977 if (PROTOCOL_OVERRIDE == 0)
1978 *old_pkt_proto = true;
1979 else
1980 *old_pkt_proto = false;
1981
1982 pr_info("Proto override in use\n");
1983 return true;
1984 }
1985
1986 return false;
1987 }
1988
vmci_transport_proto_to_notify_struct(struct sock * sk,u16 * proto,bool old_pkt_proto)1989 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
1990 u16 *proto,
1991 bool old_pkt_proto)
1992 {
1993 struct vsock_sock *vsk = vsock_sk(sk);
1994
1995 if (old_pkt_proto) {
1996 if (*proto != VSOCK_PROTO_INVALID) {
1997 pr_err("Can't set both an old and new protocol\n");
1998 return false;
1999 }
2000 vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2001 goto exit;
2002 }
2003
2004 switch (*proto) {
2005 case VSOCK_PROTO_PKT_ON_NOTIFY:
2006 vmci_trans(vsk)->notify_ops =
2007 &vmci_transport_notify_pkt_q_state_ops;
2008 break;
2009 default:
2010 pr_err("Unknown notify protocol version\n");
2011 return false;
2012 }
2013
2014 exit:
2015 vmci_trans(vsk)->notify_ops->socket_init(sk);
2016 return true;
2017 }
2018
vmci_transport_new_proto_supported_versions(void)2019 static u16 vmci_transport_new_proto_supported_versions(void)
2020 {
2021 if (PROTOCOL_OVERRIDE != -1)
2022 return PROTOCOL_OVERRIDE;
2023
2024 return VSOCK_PROTO_ALL_SUPPORTED;
2025 }
2026
vmci_transport_get_local_cid(void)2027 static u32 vmci_transport_get_local_cid(void)
2028 {
2029 return vmci_get_context_id();
2030 }
2031
2032 static struct vsock_transport vmci_transport = {
2033 .module = THIS_MODULE,
2034 .init = vmci_transport_socket_init,
2035 .destruct = vmci_transport_destruct,
2036 .release = vmci_transport_release,
2037 .connect = vmci_transport_connect,
2038 .dgram_bind = vmci_transport_dgram_bind,
2039 .dgram_dequeue = vmci_transport_dgram_dequeue,
2040 .dgram_enqueue = vmci_transport_dgram_enqueue,
2041 .dgram_allow = vmci_transport_dgram_allow,
2042 .stream_dequeue = vmci_transport_stream_dequeue,
2043 .stream_enqueue = vmci_transport_stream_enqueue,
2044 .stream_has_data = vmci_transport_stream_has_data,
2045 .stream_has_space = vmci_transport_stream_has_space,
2046 .stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2047 .stream_is_active = vmci_transport_stream_is_active,
2048 .stream_allow = vmci_transport_stream_allow,
2049 .notify_poll_in = vmci_transport_notify_poll_in,
2050 .notify_poll_out = vmci_transport_notify_poll_out,
2051 .notify_recv_init = vmci_transport_notify_recv_init,
2052 .notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2053 .notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2054 .notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2055 .notify_send_init = vmci_transport_notify_send_init,
2056 .notify_send_pre_block = vmci_transport_notify_send_pre_block,
2057 .notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2058 .notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2059 .shutdown = vmci_transport_shutdown,
2060 .get_local_cid = vmci_transport_get_local_cid,
2061 };
2062
vmci_check_transport(struct vsock_sock * vsk)2063 static bool vmci_check_transport(struct vsock_sock *vsk)
2064 {
2065 return vsk->transport == &vmci_transport;
2066 }
2067
vmci_vsock_transport_cb(bool is_host)2068 static void vmci_vsock_transport_cb(bool is_host)
2069 {
2070 int features;
2071
2072 if (is_host)
2073 features = VSOCK_TRANSPORT_F_H2G;
2074 else
2075 features = VSOCK_TRANSPORT_F_G2H;
2076
2077 vsock_core_register(&vmci_transport, features);
2078 }
2079
vmci_transport_init(void)2080 static int __init vmci_transport_init(void)
2081 {
2082 int err;
2083
2084 /* Create the datagram handle that we will use to send and receive all
2085 * VSocket control messages for this context.
2086 */
2087 err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2088 VMCI_FLAG_ANYCID_DG_HND,
2089 vmci_transport_recv_stream_cb,
2090 NULL,
2091 &vmci_transport_stream_handle);
2092 if (err < VMCI_SUCCESS) {
2093 pr_err("Unable to create datagram handle. (%d)\n", err);
2094 return vmci_transport_error_to_vsock_error(err);
2095 }
2096 err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2097 vmci_transport_qp_resumed_cb,
2098 NULL, &vmci_transport_qp_resumed_sub_id);
2099 if (err < VMCI_SUCCESS) {
2100 pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2101 err = vmci_transport_error_to_vsock_error(err);
2102 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2103 goto err_destroy_stream_handle;
2104 }
2105
2106 /* Register only with dgram feature, other features (H2G, G2H) will be
2107 * registered when the first host or guest becomes active.
2108 */
2109 err = vsock_core_register(&vmci_transport, VSOCK_TRANSPORT_F_DGRAM);
2110 if (err < 0)
2111 goto err_unsubscribe;
2112
2113 err = vmci_register_vsock_callback(vmci_vsock_transport_cb);
2114 if (err < 0)
2115 goto err_unregister;
2116
2117 return 0;
2118
2119 err_unregister:
2120 vsock_core_unregister(&vmci_transport);
2121 err_unsubscribe:
2122 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2123 err_destroy_stream_handle:
2124 vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2125 return err;
2126 }
2127 module_init(vmci_transport_init);
2128
vmci_transport_exit(void)2129 static void __exit vmci_transport_exit(void)
2130 {
2131 cancel_work_sync(&vmci_transport_cleanup_work);
2132 vmci_transport_free_resources(&vmci_transport_cleanup_list);
2133
2134 if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2135 if (vmci_datagram_destroy_handle(
2136 vmci_transport_stream_handle) != VMCI_SUCCESS)
2137 pr_err("Couldn't destroy datagram handle\n");
2138 vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2139 }
2140
2141 if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2142 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2143 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2144 }
2145
2146 vmci_register_vsock_callback(NULL);
2147 vsock_core_unregister(&vmci_transport);
2148 }
2149 module_exit(vmci_transport_exit);
2150
2151 MODULE_AUTHOR("VMware, Inc.");
2152 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2153 MODULE_VERSION("1.0.5.0-k");
2154 MODULE_LICENSE("GPL v2");
2155 MODULE_ALIAS("vmware_vsock");
2156 MODULE_ALIAS_NETPROTO(PF_VSOCK);
2157