• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VMware vSockets Driver
4  *
5  * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6  */
7 
8 #include <linux/types.h>
9 #include <linux/bitops.h>
10 #include <linux/cred.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/kernel.h>
14 #include <linux/kmod.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/net.h>
19 #include <linux/poll.h>
20 #include <linux/skbuff.h>
21 #include <linux/smp.h>
22 #include <linux/socket.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/wait.h>
26 #include <linux/workqueue.h>
27 #include <net/sock.h>
28 #include <net/af_vsock.h>
29 
30 #include "vmci_transport_notify.h"
31 
32 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg);
33 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg);
34 static void vmci_transport_peer_detach_cb(u32 sub_id,
35 					  const struct vmci_event_data *ed,
36 					  void *client_data);
37 static void vmci_transport_recv_pkt_work(struct work_struct *work);
38 static void vmci_transport_cleanup(struct work_struct *work);
39 static int vmci_transport_recv_listen(struct sock *sk,
40 				      struct vmci_transport_packet *pkt);
41 static int vmci_transport_recv_connecting_server(
42 					struct sock *sk,
43 					struct sock *pending,
44 					struct vmci_transport_packet *pkt);
45 static int vmci_transport_recv_connecting_client(
46 					struct sock *sk,
47 					struct vmci_transport_packet *pkt);
48 static int vmci_transport_recv_connecting_client_negotiate(
49 					struct sock *sk,
50 					struct vmci_transport_packet *pkt);
51 static int vmci_transport_recv_connecting_client_invalid(
52 					struct sock *sk,
53 					struct vmci_transport_packet *pkt);
54 static int vmci_transport_recv_connected(struct sock *sk,
55 					 struct vmci_transport_packet *pkt);
56 static bool vmci_transport_old_proto_override(bool *old_pkt_proto);
57 static u16 vmci_transport_new_proto_supported_versions(void);
58 static bool vmci_transport_proto_to_notify_struct(struct sock *sk, u16 *proto,
59 						  bool old_pkt_proto);
60 static bool vmci_check_transport(struct vsock_sock *vsk);
61 
62 struct vmci_transport_recv_pkt_info {
63 	struct work_struct work;
64 	struct sock *sk;
65 	struct vmci_transport_packet pkt;
66 };
67 
68 static LIST_HEAD(vmci_transport_cleanup_list);
69 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock);
70 static DECLARE_WORK(vmci_transport_cleanup_work, vmci_transport_cleanup);
71 
72 static struct vmci_handle vmci_transport_stream_handle = { VMCI_INVALID_ID,
73 							   VMCI_INVALID_ID };
74 static u32 vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
75 
76 static int PROTOCOL_OVERRIDE = -1;
77 
78 static struct vsock_transport vmci_transport; /* forward declaration */
79 
80 /* Helper function to convert from a VMCI error code to a VSock error code. */
81 
vmci_transport_error_to_vsock_error(s32 vmci_error)82 static s32 vmci_transport_error_to_vsock_error(s32 vmci_error)
83 {
84 	switch (vmci_error) {
85 	case VMCI_ERROR_NO_MEM:
86 		return -ENOMEM;
87 	case VMCI_ERROR_DUPLICATE_ENTRY:
88 	case VMCI_ERROR_ALREADY_EXISTS:
89 		return -EADDRINUSE;
90 	case VMCI_ERROR_NO_ACCESS:
91 		return -EPERM;
92 	case VMCI_ERROR_NO_RESOURCES:
93 		return -ENOBUFS;
94 	case VMCI_ERROR_INVALID_RESOURCE:
95 		return -EHOSTUNREACH;
96 	case VMCI_ERROR_INVALID_ARGS:
97 	default:
98 		break;
99 	}
100 	return -EINVAL;
101 }
102 
vmci_transport_peer_rid(u32 peer_cid)103 static u32 vmci_transport_peer_rid(u32 peer_cid)
104 {
105 	if (VMADDR_CID_HYPERVISOR == peer_cid)
106 		return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID;
107 
108 	return VMCI_TRANSPORT_PACKET_RID;
109 }
110 
111 static inline void
vmci_transport_packet_init(struct vmci_transport_packet * pkt,struct sockaddr_vm * src,struct sockaddr_vm * dst,u8 type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)112 vmci_transport_packet_init(struct vmci_transport_packet *pkt,
113 			   struct sockaddr_vm *src,
114 			   struct sockaddr_vm *dst,
115 			   u8 type,
116 			   u64 size,
117 			   u64 mode,
118 			   struct vmci_transport_waiting_info *wait,
119 			   u16 proto,
120 			   struct vmci_handle handle)
121 {
122 	/* We register the stream control handler as an any cid handle so we
123 	 * must always send from a source address of VMADDR_CID_ANY
124 	 */
125 	pkt->dg.src = vmci_make_handle(VMADDR_CID_ANY,
126 				       VMCI_TRANSPORT_PACKET_RID);
127 	pkt->dg.dst = vmci_make_handle(dst->svm_cid,
128 				       vmci_transport_peer_rid(dst->svm_cid));
129 	pkt->dg.payload_size = sizeof(*pkt) - sizeof(pkt->dg);
130 	pkt->version = VMCI_TRANSPORT_PACKET_VERSION;
131 	pkt->type = type;
132 	pkt->src_port = src->svm_port;
133 	pkt->dst_port = dst->svm_port;
134 	memset(&pkt->proto, 0, sizeof(pkt->proto));
135 	memset(&pkt->_reserved2, 0, sizeof(pkt->_reserved2));
136 
137 	switch (pkt->type) {
138 	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
139 		pkt->u.size = 0;
140 		break;
141 
142 	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST:
143 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
144 		pkt->u.size = size;
145 		break;
146 
147 	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
148 	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
149 		pkt->u.handle = handle;
150 		break;
151 
152 	case VMCI_TRANSPORT_PACKET_TYPE_WROTE:
153 	case VMCI_TRANSPORT_PACKET_TYPE_READ:
154 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
155 		pkt->u.size = 0;
156 		break;
157 
158 	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
159 		pkt->u.mode = mode;
160 		break;
161 
162 	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ:
163 	case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE:
164 		memcpy(&pkt->u.wait, wait, sizeof(pkt->u.wait));
165 		break;
166 
167 	case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2:
168 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
169 		pkt->u.size = size;
170 		pkt->proto = proto;
171 		break;
172 	}
173 }
174 
175 static inline void
vmci_transport_packet_get_addresses(struct vmci_transport_packet * pkt,struct sockaddr_vm * local,struct sockaddr_vm * remote)176 vmci_transport_packet_get_addresses(struct vmci_transport_packet *pkt,
177 				    struct sockaddr_vm *local,
178 				    struct sockaddr_vm *remote)
179 {
180 	vsock_addr_init(local, pkt->dg.dst.context, pkt->dst_port);
181 	vsock_addr_init(remote, pkt->dg.src.context, pkt->src_port);
182 }
183 
184 static int
__vmci_transport_send_control_pkt(struct vmci_transport_packet * pkt,struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle,bool convert_error)185 __vmci_transport_send_control_pkt(struct vmci_transport_packet *pkt,
186 				  struct sockaddr_vm *src,
187 				  struct sockaddr_vm *dst,
188 				  enum vmci_transport_packet_type type,
189 				  u64 size,
190 				  u64 mode,
191 				  struct vmci_transport_waiting_info *wait,
192 				  u16 proto,
193 				  struct vmci_handle handle,
194 				  bool convert_error)
195 {
196 	int err;
197 
198 	vmci_transport_packet_init(pkt, src, dst, type, size, mode, wait,
199 				   proto, handle);
200 	err = vmci_datagram_send(&pkt->dg);
201 	if (convert_error && (err < 0))
202 		return vmci_transport_error_to_vsock_error(err);
203 
204 	return err;
205 }
206 
207 static int
vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet * pkt,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,struct vmci_handle handle)208 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet *pkt,
209 				      enum vmci_transport_packet_type type,
210 				      u64 size,
211 				      u64 mode,
212 				      struct vmci_transport_waiting_info *wait,
213 				      struct vmci_handle handle)
214 {
215 	struct vmci_transport_packet reply;
216 	struct sockaddr_vm src, dst;
217 
218 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST) {
219 		return 0;
220 	} else {
221 		vmci_transport_packet_get_addresses(pkt, &src, &dst);
222 		return __vmci_transport_send_control_pkt(&reply, &src, &dst,
223 							 type,
224 							 size, mode, wait,
225 							 VSOCK_PROTO_INVALID,
226 							 handle, true);
227 	}
228 }
229 
230 static int
vmci_transport_send_control_pkt_bh(struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,struct vmci_handle handle)231 vmci_transport_send_control_pkt_bh(struct sockaddr_vm *src,
232 				   struct sockaddr_vm *dst,
233 				   enum vmci_transport_packet_type type,
234 				   u64 size,
235 				   u64 mode,
236 				   struct vmci_transport_waiting_info *wait,
237 				   struct vmci_handle handle)
238 {
239 	/* Note that it is safe to use a single packet across all CPUs since
240 	 * two tasklets of the same type are guaranteed to not ever run
241 	 * simultaneously. If that ever changes, or VMCI stops using tasklets,
242 	 * we can use per-cpu packets.
243 	 */
244 	static struct vmci_transport_packet pkt;
245 
246 	return __vmci_transport_send_control_pkt(&pkt, src, dst, type,
247 						 size, mode, wait,
248 						 VSOCK_PROTO_INVALID, handle,
249 						 false);
250 }
251 
252 static int
vmci_transport_alloc_send_control_pkt(struct sockaddr_vm * src,struct sockaddr_vm * dst,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)253 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm *src,
254 				      struct sockaddr_vm *dst,
255 				      enum vmci_transport_packet_type type,
256 				      u64 size,
257 				      u64 mode,
258 				      struct vmci_transport_waiting_info *wait,
259 				      u16 proto,
260 				      struct vmci_handle handle)
261 {
262 	struct vmci_transport_packet *pkt;
263 	int err;
264 
265 	pkt = kmalloc(sizeof(*pkt), GFP_KERNEL);
266 	if (!pkt)
267 		return -ENOMEM;
268 
269 	err = __vmci_transport_send_control_pkt(pkt, src, dst, type, size,
270 						mode, wait, proto, handle,
271 						true);
272 	kfree(pkt);
273 
274 	return err;
275 }
276 
277 static int
vmci_transport_send_control_pkt(struct sock * sk,enum vmci_transport_packet_type type,u64 size,u64 mode,struct vmci_transport_waiting_info * wait,u16 proto,struct vmci_handle handle)278 vmci_transport_send_control_pkt(struct sock *sk,
279 				enum vmci_transport_packet_type type,
280 				u64 size,
281 				u64 mode,
282 				struct vmci_transport_waiting_info *wait,
283 				u16 proto,
284 				struct vmci_handle handle)
285 {
286 	struct vsock_sock *vsk;
287 
288 	vsk = vsock_sk(sk);
289 
290 	if (!vsock_addr_bound(&vsk->local_addr))
291 		return -EINVAL;
292 
293 	if (!vsock_addr_bound(&vsk->remote_addr))
294 		return -EINVAL;
295 
296 	return vmci_transport_alloc_send_control_pkt(&vsk->local_addr,
297 						     &vsk->remote_addr,
298 						     type, size, mode,
299 						     wait, proto, handle);
300 }
301 
vmci_transport_send_reset_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src,struct vmci_transport_packet * pkt)302 static int vmci_transport_send_reset_bh(struct sockaddr_vm *dst,
303 					struct sockaddr_vm *src,
304 					struct vmci_transport_packet *pkt)
305 {
306 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
307 		return 0;
308 	return vmci_transport_send_control_pkt_bh(
309 					dst, src,
310 					VMCI_TRANSPORT_PACKET_TYPE_RST, 0,
311 					0, NULL, VMCI_INVALID_HANDLE);
312 }
313 
vmci_transport_send_reset(struct sock * sk,struct vmci_transport_packet * pkt)314 static int vmci_transport_send_reset(struct sock *sk,
315 				     struct vmci_transport_packet *pkt)
316 {
317 	struct sockaddr_vm *dst_ptr;
318 	struct sockaddr_vm dst;
319 	struct vsock_sock *vsk;
320 
321 	if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST)
322 		return 0;
323 
324 	vsk = vsock_sk(sk);
325 
326 	if (!vsock_addr_bound(&vsk->local_addr))
327 		return -EINVAL;
328 
329 	if (vsock_addr_bound(&vsk->remote_addr)) {
330 		dst_ptr = &vsk->remote_addr;
331 	} else {
332 		vsock_addr_init(&dst, pkt->dg.src.context,
333 				pkt->src_port);
334 		dst_ptr = &dst;
335 	}
336 	return vmci_transport_alloc_send_control_pkt(&vsk->local_addr, dst_ptr,
337 					     VMCI_TRANSPORT_PACKET_TYPE_RST,
338 					     0, 0, NULL, VSOCK_PROTO_INVALID,
339 					     VMCI_INVALID_HANDLE);
340 }
341 
vmci_transport_send_negotiate(struct sock * sk,size_t size)342 static int vmci_transport_send_negotiate(struct sock *sk, size_t size)
343 {
344 	return vmci_transport_send_control_pkt(
345 					sk,
346 					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE,
347 					size, 0, NULL,
348 					VSOCK_PROTO_INVALID,
349 					VMCI_INVALID_HANDLE);
350 }
351 
vmci_transport_send_negotiate2(struct sock * sk,size_t size,u16 version)352 static int vmci_transport_send_negotiate2(struct sock *sk, size_t size,
353 					  u16 version)
354 {
355 	return vmci_transport_send_control_pkt(
356 					sk,
357 					VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2,
358 					size, 0, NULL, version,
359 					VMCI_INVALID_HANDLE);
360 }
361 
vmci_transport_send_qp_offer(struct sock * sk,struct vmci_handle handle)362 static int vmci_transport_send_qp_offer(struct sock *sk,
363 					struct vmci_handle handle)
364 {
365 	return vmci_transport_send_control_pkt(
366 					sk, VMCI_TRANSPORT_PACKET_TYPE_OFFER, 0,
367 					0, NULL,
368 					VSOCK_PROTO_INVALID, handle);
369 }
370 
vmci_transport_send_attach(struct sock * sk,struct vmci_handle handle)371 static int vmci_transport_send_attach(struct sock *sk,
372 				      struct vmci_handle handle)
373 {
374 	return vmci_transport_send_control_pkt(
375 					sk, VMCI_TRANSPORT_PACKET_TYPE_ATTACH,
376 					0, 0, NULL, VSOCK_PROTO_INVALID,
377 					handle);
378 }
379 
vmci_transport_reply_reset(struct vmci_transport_packet * pkt)380 static int vmci_transport_reply_reset(struct vmci_transport_packet *pkt)
381 {
382 	return vmci_transport_reply_control_pkt_fast(
383 						pkt,
384 						VMCI_TRANSPORT_PACKET_TYPE_RST,
385 						0, 0, NULL,
386 						VMCI_INVALID_HANDLE);
387 }
388 
vmci_transport_send_invalid_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)389 static int vmci_transport_send_invalid_bh(struct sockaddr_vm *dst,
390 					  struct sockaddr_vm *src)
391 {
392 	return vmci_transport_send_control_pkt_bh(
393 					dst, src,
394 					VMCI_TRANSPORT_PACKET_TYPE_INVALID,
395 					0, 0, NULL, VMCI_INVALID_HANDLE);
396 }
397 
vmci_transport_send_wrote_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)398 int vmci_transport_send_wrote_bh(struct sockaddr_vm *dst,
399 				 struct sockaddr_vm *src)
400 {
401 	return vmci_transport_send_control_pkt_bh(
402 					dst, src,
403 					VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
404 					0, NULL, VMCI_INVALID_HANDLE);
405 }
406 
vmci_transport_send_read_bh(struct sockaddr_vm * dst,struct sockaddr_vm * src)407 int vmci_transport_send_read_bh(struct sockaddr_vm *dst,
408 				struct sockaddr_vm *src)
409 {
410 	return vmci_transport_send_control_pkt_bh(
411 					dst, src,
412 					VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
413 					0, NULL, VMCI_INVALID_HANDLE);
414 }
415 
vmci_transport_send_wrote(struct sock * sk)416 int vmci_transport_send_wrote(struct sock *sk)
417 {
418 	return vmci_transport_send_control_pkt(
419 					sk, VMCI_TRANSPORT_PACKET_TYPE_WROTE, 0,
420 					0, NULL, VSOCK_PROTO_INVALID,
421 					VMCI_INVALID_HANDLE);
422 }
423 
vmci_transport_send_read(struct sock * sk)424 int vmci_transport_send_read(struct sock *sk)
425 {
426 	return vmci_transport_send_control_pkt(
427 					sk, VMCI_TRANSPORT_PACKET_TYPE_READ, 0,
428 					0, NULL, VSOCK_PROTO_INVALID,
429 					VMCI_INVALID_HANDLE);
430 }
431 
vmci_transport_send_waiting_write(struct sock * sk,struct vmci_transport_waiting_info * wait)432 int vmci_transport_send_waiting_write(struct sock *sk,
433 				      struct vmci_transport_waiting_info *wait)
434 {
435 	return vmci_transport_send_control_pkt(
436 				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE,
437 				0, 0, wait, VSOCK_PROTO_INVALID,
438 				VMCI_INVALID_HANDLE);
439 }
440 
vmci_transport_send_waiting_read(struct sock * sk,struct vmci_transport_waiting_info * wait)441 int vmci_transport_send_waiting_read(struct sock *sk,
442 				     struct vmci_transport_waiting_info *wait)
443 {
444 	return vmci_transport_send_control_pkt(
445 				sk, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ,
446 				0, 0, wait, VSOCK_PROTO_INVALID,
447 				VMCI_INVALID_HANDLE);
448 }
449 
vmci_transport_shutdown(struct vsock_sock * vsk,int mode)450 static int vmci_transport_shutdown(struct vsock_sock *vsk, int mode)
451 {
452 	return vmci_transport_send_control_pkt(
453 					&vsk->sk,
454 					VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN,
455 					0, mode, NULL,
456 					VSOCK_PROTO_INVALID,
457 					VMCI_INVALID_HANDLE);
458 }
459 
vmci_transport_send_conn_request(struct sock * sk,size_t size)460 static int vmci_transport_send_conn_request(struct sock *sk, size_t size)
461 {
462 	return vmci_transport_send_control_pkt(sk,
463 					VMCI_TRANSPORT_PACKET_TYPE_REQUEST,
464 					size, 0, NULL,
465 					VSOCK_PROTO_INVALID,
466 					VMCI_INVALID_HANDLE);
467 }
468 
vmci_transport_send_conn_request2(struct sock * sk,size_t size,u16 version)469 static int vmci_transport_send_conn_request2(struct sock *sk, size_t size,
470 					     u16 version)
471 {
472 	return vmci_transport_send_control_pkt(
473 					sk, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2,
474 					size, 0, NULL, version,
475 					VMCI_INVALID_HANDLE);
476 }
477 
vmci_transport_get_pending(struct sock * listener,struct vmci_transport_packet * pkt)478 static struct sock *vmci_transport_get_pending(
479 					struct sock *listener,
480 					struct vmci_transport_packet *pkt)
481 {
482 	struct vsock_sock *vlistener;
483 	struct vsock_sock *vpending;
484 	struct sock *pending;
485 	struct sockaddr_vm src;
486 
487 	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
488 
489 	vlistener = vsock_sk(listener);
490 
491 	list_for_each_entry(vpending, &vlistener->pending_links,
492 			    pending_links) {
493 		if (vsock_addr_equals_addr(&src, &vpending->remote_addr) &&
494 		    pkt->dst_port == vpending->local_addr.svm_port) {
495 			pending = sk_vsock(vpending);
496 			sock_hold(pending);
497 			goto found;
498 		}
499 	}
500 
501 	pending = NULL;
502 found:
503 	return pending;
504 
505 }
506 
vmci_transport_release_pending(struct sock * pending)507 static void vmci_transport_release_pending(struct sock *pending)
508 {
509 	sock_put(pending);
510 }
511 
512 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
513  * trusted sockets 2) sockets from applications running as the same user as the
514  * VM (this is only true for the host side and only when using hosted products)
515  */
516 
vmci_transport_is_trusted(struct vsock_sock * vsock,u32 peer_cid)517 static bool vmci_transport_is_trusted(struct vsock_sock *vsock, u32 peer_cid)
518 {
519 	return vsock->trusted ||
520 	       vmci_is_context_owner(peer_cid, vsock->owner->uid);
521 }
522 
523 /* We allow sending datagrams to and receiving datagrams from a restricted VM
524  * only if it is trusted as described in vmci_transport_is_trusted.
525  */
526 
vmci_transport_allow_dgram(struct vsock_sock * vsock,u32 peer_cid)527 static bool vmci_transport_allow_dgram(struct vsock_sock *vsock, u32 peer_cid)
528 {
529 	if (VMADDR_CID_HYPERVISOR == peer_cid)
530 		return true;
531 
532 	if (vsock->cached_peer != peer_cid) {
533 		vsock->cached_peer = peer_cid;
534 		if (!vmci_transport_is_trusted(vsock, peer_cid) &&
535 		    (vmci_context_get_priv_flags(peer_cid) &
536 		     VMCI_PRIVILEGE_FLAG_RESTRICTED)) {
537 			vsock->cached_peer_allow_dgram = false;
538 		} else {
539 			vsock->cached_peer_allow_dgram = true;
540 		}
541 	}
542 
543 	return vsock->cached_peer_allow_dgram;
544 }
545 
546 static int
vmci_transport_queue_pair_alloc(struct vmci_qp ** qpair,struct vmci_handle * handle,u64 produce_size,u64 consume_size,u32 peer,u32 flags,bool trusted)547 vmci_transport_queue_pair_alloc(struct vmci_qp **qpair,
548 				struct vmci_handle *handle,
549 				u64 produce_size,
550 				u64 consume_size,
551 				u32 peer, u32 flags, bool trusted)
552 {
553 	int err = 0;
554 
555 	if (trusted) {
556 		/* Try to allocate our queue pair as trusted. This will only
557 		 * work if vsock is running in the host.
558 		 */
559 
560 		err = vmci_qpair_alloc(qpair, handle, produce_size,
561 				       consume_size,
562 				       peer, flags,
563 				       VMCI_PRIVILEGE_FLAG_TRUSTED);
564 		if (err != VMCI_ERROR_NO_ACCESS)
565 			goto out;
566 
567 	}
568 
569 	err = vmci_qpair_alloc(qpair, handle, produce_size, consume_size,
570 			       peer, flags, VMCI_NO_PRIVILEGE_FLAGS);
571 out:
572 	if (err < 0) {
573 		pr_err_once("Could not attach to queue pair with %d\n", err);
574 		err = vmci_transport_error_to_vsock_error(err);
575 	}
576 
577 	return err;
578 }
579 
580 static int
vmci_transport_datagram_create_hnd(u32 resource_id,u32 flags,vmci_datagram_recv_cb recv_cb,void * client_data,struct vmci_handle * out_handle)581 vmci_transport_datagram_create_hnd(u32 resource_id,
582 				   u32 flags,
583 				   vmci_datagram_recv_cb recv_cb,
584 				   void *client_data,
585 				   struct vmci_handle *out_handle)
586 {
587 	int err = 0;
588 
589 	/* Try to allocate our datagram handler as trusted. This will only work
590 	 * if vsock is running in the host.
591 	 */
592 
593 	err = vmci_datagram_create_handle_priv(resource_id, flags,
594 					       VMCI_PRIVILEGE_FLAG_TRUSTED,
595 					       recv_cb,
596 					       client_data, out_handle);
597 
598 	if (err == VMCI_ERROR_NO_ACCESS)
599 		err = vmci_datagram_create_handle(resource_id, flags,
600 						  recv_cb, client_data,
601 						  out_handle);
602 
603 	return err;
604 }
605 
606 /* This is invoked as part of a tasklet that's scheduled when the VMCI
607  * interrupt fires.  This is run in bottom-half context and if it ever needs to
608  * sleep it should defer that work to a work queue.
609  */
610 
vmci_transport_recv_dgram_cb(void * data,struct vmci_datagram * dg)611 static int vmci_transport_recv_dgram_cb(void *data, struct vmci_datagram *dg)
612 {
613 	struct sock *sk;
614 	size_t size;
615 	struct sk_buff *skb;
616 	struct vsock_sock *vsk;
617 
618 	sk = (struct sock *)data;
619 
620 	/* This handler is privileged when this module is running on the host.
621 	 * We will get datagrams from all endpoints (even VMs that are in a
622 	 * restricted context). If we get one from a restricted context then
623 	 * the destination socket must be trusted.
624 	 *
625 	 * NOTE: We access the socket struct without holding the lock here.
626 	 * This is ok because the field we are interested is never modified
627 	 * outside of the create and destruct socket functions.
628 	 */
629 	vsk = vsock_sk(sk);
630 	if (!vmci_transport_allow_dgram(vsk, dg->src.context))
631 		return VMCI_ERROR_NO_ACCESS;
632 
633 	size = VMCI_DG_SIZE(dg);
634 
635 	/* Attach the packet to the socket's receive queue as an sk_buff. */
636 	skb = alloc_skb(size, GFP_ATOMIC);
637 	if (!skb)
638 		return VMCI_ERROR_NO_MEM;
639 
640 	/* sk_receive_skb() will do a sock_put(), so hold here. */
641 	sock_hold(sk);
642 	skb_put(skb, size);
643 	memcpy(skb->data, dg, size);
644 	sk_receive_skb(sk, skb, 0);
645 
646 	return VMCI_SUCCESS;
647 }
648 
vmci_transport_stream_allow(u32 cid,u32 port)649 static bool vmci_transport_stream_allow(u32 cid, u32 port)
650 {
651 	static const u32 non_socket_contexts[] = {
652 		VMADDR_CID_LOCAL,
653 	};
654 	int i;
655 
656 	BUILD_BUG_ON(sizeof(cid) != sizeof(*non_socket_contexts));
657 
658 	for (i = 0; i < ARRAY_SIZE(non_socket_contexts); i++) {
659 		if (cid == non_socket_contexts[i])
660 			return false;
661 	}
662 
663 	return true;
664 }
665 
666 /* This is invoked as part of a tasklet that's scheduled when the VMCI
667  * interrupt fires.  This is run in bottom-half context but it defers most of
668  * its work to the packet handling work queue.
669  */
670 
vmci_transport_recv_stream_cb(void * data,struct vmci_datagram * dg)671 static int vmci_transport_recv_stream_cb(void *data, struct vmci_datagram *dg)
672 {
673 	struct sock *sk;
674 	struct sockaddr_vm dst;
675 	struct sockaddr_vm src;
676 	struct vmci_transport_packet *pkt;
677 	struct vsock_sock *vsk;
678 	bool bh_process_pkt;
679 	int err;
680 
681 	sk = NULL;
682 	err = VMCI_SUCCESS;
683 	bh_process_pkt = false;
684 
685 	/* Ignore incoming packets from contexts without sockets, or resources
686 	 * that aren't vsock implementations.
687 	 */
688 
689 	if (!vmci_transport_stream_allow(dg->src.context, -1)
690 	    || vmci_transport_peer_rid(dg->src.context) != dg->src.resource)
691 		return VMCI_ERROR_NO_ACCESS;
692 
693 	if (VMCI_DG_SIZE(dg) < sizeof(*pkt))
694 		/* Drop datagrams that do not contain full VSock packets. */
695 		return VMCI_ERROR_INVALID_ARGS;
696 
697 	pkt = (struct vmci_transport_packet *)dg;
698 
699 	/* Find the socket that should handle this packet.  First we look for a
700 	 * connected socket and if there is none we look for a socket bound to
701 	 * the destintation address.
702 	 */
703 	vsock_addr_init(&src, pkt->dg.src.context, pkt->src_port);
704 	vsock_addr_init(&dst, pkt->dg.dst.context, pkt->dst_port);
705 
706 	sk = vsock_find_connected_socket(&src, &dst);
707 	if (!sk) {
708 		sk = vsock_find_bound_socket(&dst);
709 		if (!sk) {
710 			/* We could not find a socket for this specified
711 			 * address.  If this packet is a RST, we just drop it.
712 			 * If it is another packet, we send a RST.  Note that
713 			 * we do not send a RST reply to RSTs so that we do not
714 			 * continually send RSTs between two endpoints.
715 			 *
716 			 * Note that since this is a reply, dst is src and src
717 			 * is dst.
718 			 */
719 			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
720 				pr_err("unable to send reset\n");
721 
722 			err = VMCI_ERROR_NOT_FOUND;
723 			goto out;
724 		}
725 	}
726 
727 	/* If the received packet type is beyond all types known to this
728 	 * implementation, reply with an invalid message.  Hopefully this will
729 	 * help when implementing backwards compatibility in the future.
730 	 */
731 	if (pkt->type >= VMCI_TRANSPORT_PACKET_TYPE_MAX) {
732 		vmci_transport_send_invalid_bh(&dst, &src);
733 		err = VMCI_ERROR_INVALID_ARGS;
734 		goto out;
735 	}
736 
737 	/* This handler is privileged when this module is running on the host.
738 	 * We will get datagram connect requests from all endpoints (even VMs
739 	 * that are in a restricted context). If we get one from a restricted
740 	 * context then the destination socket must be trusted.
741 	 *
742 	 * NOTE: We access the socket struct without holding the lock here.
743 	 * This is ok because the field we are interested is never modified
744 	 * outside of the create and destruct socket functions.
745 	 */
746 	vsk = vsock_sk(sk);
747 	if (!vmci_transport_allow_dgram(vsk, pkt->dg.src.context)) {
748 		err = VMCI_ERROR_NO_ACCESS;
749 		goto out;
750 	}
751 
752 	/* We do most everything in a work queue, but let's fast path the
753 	 * notification of reads and writes to help data transfer performance.
754 	 * We can only do this if there is no process context code executing
755 	 * for this socket since that may change the state.
756 	 */
757 	bh_lock_sock(sk);
758 
759 	if (!sock_owned_by_user(sk)) {
760 		/* The local context ID may be out of date, update it. */
761 		vsk->local_addr.svm_cid = dst.svm_cid;
762 
763 		if (sk->sk_state == TCP_ESTABLISHED)
764 			vmci_trans(vsk)->notify_ops->handle_notify_pkt(
765 					sk, pkt, true, &dst, &src,
766 					&bh_process_pkt);
767 	}
768 
769 	bh_unlock_sock(sk);
770 
771 	if (!bh_process_pkt) {
772 		struct vmci_transport_recv_pkt_info *recv_pkt_info;
773 
774 		recv_pkt_info = kmalloc(sizeof(*recv_pkt_info), GFP_ATOMIC);
775 		if (!recv_pkt_info) {
776 			if (vmci_transport_send_reset_bh(&dst, &src, pkt) < 0)
777 				pr_err("unable to send reset\n");
778 
779 			err = VMCI_ERROR_NO_MEM;
780 			goto out;
781 		}
782 
783 		recv_pkt_info->sk = sk;
784 		memcpy(&recv_pkt_info->pkt, pkt, sizeof(recv_pkt_info->pkt));
785 		INIT_WORK(&recv_pkt_info->work, vmci_transport_recv_pkt_work);
786 
787 		schedule_work(&recv_pkt_info->work);
788 		/* Clear sk so that the reference count incremented by one of
789 		 * the Find functions above is not decremented below.  We need
790 		 * that reference count for the packet handler we've scheduled
791 		 * to run.
792 		 */
793 		sk = NULL;
794 	}
795 
796 out:
797 	if (sk)
798 		sock_put(sk);
799 
800 	return err;
801 }
802 
vmci_transport_handle_detach(struct sock * sk)803 static void vmci_transport_handle_detach(struct sock *sk)
804 {
805 	struct vsock_sock *vsk;
806 
807 	vsk = vsock_sk(sk);
808 
809 	/* Only handle our own sockets */
810 	if (vsk->transport != &vmci_transport)
811 		return;
812 
813 	if (!vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)) {
814 		sock_set_flag(sk, SOCK_DONE);
815 
816 		/* On a detach the peer will not be sending or receiving
817 		 * anymore.
818 		 */
819 		vsk->peer_shutdown = SHUTDOWN_MASK;
820 
821 		/* We should not be sending anymore since the peer won't be
822 		 * there to receive, but we can still receive if there is data
823 		 * left in our consume queue. If the local endpoint is a host,
824 		 * we can't call vsock_stream_has_data, since that may block,
825 		 * but a host endpoint can't read data once the VM has
826 		 * detached, so there is no available data in that case.
827 		 */
828 		if (vsk->local_addr.svm_cid == VMADDR_CID_HOST ||
829 		    vsock_stream_has_data(vsk) <= 0) {
830 			if (sk->sk_state == TCP_SYN_SENT) {
831 				/* The peer may detach from a queue pair while
832 				 * we are still in the connecting state, i.e.,
833 				 * if the peer VM is killed after attaching to
834 				 * a queue pair, but before we complete the
835 				 * handshake. In that case, we treat the detach
836 				 * event like a reset.
837 				 */
838 
839 				sk->sk_state = TCP_CLOSE;
840 				sk->sk_err = ECONNRESET;
841 				sk->sk_error_report(sk);
842 				return;
843 			}
844 			sk->sk_state = TCP_CLOSE;
845 		}
846 		sk->sk_state_change(sk);
847 	}
848 }
849 
vmci_transport_peer_detach_cb(u32 sub_id,const struct vmci_event_data * e_data,void * client_data)850 static void vmci_transport_peer_detach_cb(u32 sub_id,
851 					  const struct vmci_event_data *e_data,
852 					  void *client_data)
853 {
854 	struct vmci_transport *trans = client_data;
855 	const struct vmci_event_payload_qp *e_payload;
856 
857 	e_payload = vmci_event_data_const_payload(e_data);
858 
859 	/* XXX This is lame, we should provide a way to lookup sockets by
860 	 * qp_handle.
861 	 */
862 	if (vmci_handle_is_invalid(e_payload->handle) ||
863 	    !vmci_handle_is_equal(trans->qp_handle, e_payload->handle))
864 		return;
865 
866 	/* We don't ask for delayed CBs when we subscribe to this event (we
867 	 * pass 0 as flags to vmci_event_subscribe()).  VMCI makes no
868 	 * guarantees in that case about what context we might be running in,
869 	 * so it could be BH or process, blockable or non-blockable.  So we
870 	 * need to account for all possible contexts here.
871 	 */
872 	spin_lock_bh(&trans->lock);
873 	if (!trans->sk)
874 		goto out;
875 
876 	/* Apart from here, trans->lock is only grabbed as part of sk destruct,
877 	 * where trans->sk isn't locked.
878 	 */
879 	bh_lock_sock(trans->sk);
880 
881 	vmci_transport_handle_detach(trans->sk);
882 
883 	bh_unlock_sock(trans->sk);
884  out:
885 	spin_unlock_bh(&trans->lock);
886 }
887 
vmci_transport_qp_resumed_cb(u32 sub_id,const struct vmci_event_data * e_data,void * client_data)888 static void vmci_transport_qp_resumed_cb(u32 sub_id,
889 					 const struct vmci_event_data *e_data,
890 					 void *client_data)
891 {
892 	vsock_for_each_connected_socket(vmci_transport_handle_detach);
893 }
894 
vmci_transport_recv_pkt_work(struct work_struct * work)895 static void vmci_transport_recv_pkt_work(struct work_struct *work)
896 {
897 	struct vmci_transport_recv_pkt_info *recv_pkt_info;
898 	struct vmci_transport_packet *pkt;
899 	struct sock *sk;
900 
901 	recv_pkt_info =
902 		container_of(work, struct vmci_transport_recv_pkt_info, work);
903 	sk = recv_pkt_info->sk;
904 	pkt = &recv_pkt_info->pkt;
905 
906 	lock_sock(sk);
907 
908 	/* The local context ID may be out of date. */
909 	vsock_sk(sk)->local_addr.svm_cid = pkt->dg.dst.context;
910 
911 	switch (sk->sk_state) {
912 	case TCP_LISTEN:
913 		vmci_transport_recv_listen(sk, pkt);
914 		break;
915 	case TCP_SYN_SENT:
916 		/* Processing of pending connections for servers goes through
917 		 * the listening socket, so see vmci_transport_recv_listen()
918 		 * for that path.
919 		 */
920 		vmci_transport_recv_connecting_client(sk, pkt);
921 		break;
922 	case TCP_ESTABLISHED:
923 		vmci_transport_recv_connected(sk, pkt);
924 		break;
925 	default:
926 		/* Because this function does not run in the same context as
927 		 * vmci_transport_recv_stream_cb it is possible that the
928 		 * socket has closed. We need to let the other side know or it
929 		 * could be sitting in a connect and hang forever. Send a
930 		 * reset to prevent that.
931 		 */
932 		vmci_transport_send_reset(sk, pkt);
933 		break;
934 	}
935 
936 	release_sock(sk);
937 	kfree(recv_pkt_info);
938 	/* Release reference obtained in the stream callback when we fetched
939 	 * this socket out of the bound or connected list.
940 	 */
941 	sock_put(sk);
942 }
943 
vmci_transport_recv_listen(struct sock * sk,struct vmci_transport_packet * pkt)944 static int vmci_transport_recv_listen(struct sock *sk,
945 				      struct vmci_transport_packet *pkt)
946 {
947 	struct sock *pending;
948 	struct vsock_sock *vpending;
949 	int err;
950 	u64 qp_size;
951 	bool old_request = false;
952 	bool old_pkt_proto = false;
953 
954 	err = 0;
955 
956 	/* Because we are in the listen state, we could be receiving a packet
957 	 * for ourself or any previous connection requests that we received.
958 	 * If it's the latter, we try to find a socket in our list of pending
959 	 * connections and, if we do, call the appropriate handler for the
960 	 * state that that socket is in.  Otherwise we try to service the
961 	 * connection request.
962 	 */
963 	pending = vmci_transport_get_pending(sk, pkt);
964 	if (pending) {
965 		lock_sock(pending);
966 
967 		/* The local context ID may be out of date. */
968 		vsock_sk(pending)->local_addr.svm_cid = pkt->dg.dst.context;
969 
970 		switch (pending->sk_state) {
971 		case TCP_SYN_SENT:
972 			err = vmci_transport_recv_connecting_server(sk,
973 								    pending,
974 								    pkt);
975 			break;
976 		default:
977 			vmci_transport_send_reset(pending, pkt);
978 			err = -EINVAL;
979 		}
980 
981 		if (err < 0)
982 			vsock_remove_pending(sk, pending);
983 
984 		release_sock(pending);
985 		vmci_transport_release_pending(pending);
986 
987 		return err;
988 	}
989 
990 	/* The listen state only accepts connection requests.  Reply with a
991 	 * reset unless we received a reset.
992 	 */
993 
994 	if (!(pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST ||
995 	      pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)) {
996 		vmci_transport_reply_reset(pkt);
997 		return -EINVAL;
998 	}
999 
1000 	if (pkt->u.size == 0) {
1001 		vmci_transport_reply_reset(pkt);
1002 		return -EINVAL;
1003 	}
1004 
1005 	/* If this socket can't accommodate this connection request, we send a
1006 	 * reset.  Otherwise we create and initialize a child socket and reply
1007 	 * with a connection negotiation.
1008 	 */
1009 	if (sk->sk_ack_backlog >= sk->sk_max_ack_backlog) {
1010 		vmci_transport_reply_reset(pkt);
1011 		return -ECONNREFUSED;
1012 	}
1013 
1014 	pending = vsock_create_connected(sk);
1015 	if (!pending) {
1016 		vmci_transport_send_reset(sk, pkt);
1017 		return -ENOMEM;
1018 	}
1019 
1020 	vpending = vsock_sk(pending);
1021 
1022 	vsock_addr_init(&vpending->local_addr, pkt->dg.dst.context,
1023 			pkt->dst_port);
1024 	vsock_addr_init(&vpending->remote_addr, pkt->dg.src.context,
1025 			pkt->src_port);
1026 
1027 	err = vsock_assign_transport(vpending, vsock_sk(sk));
1028 	/* Transport assigned (looking at remote_addr) must be the same
1029 	 * where we received the request.
1030 	 */
1031 	if (err || !vmci_check_transport(vpending)) {
1032 		vmci_transport_send_reset(sk, pkt);
1033 		sock_put(pending);
1034 		return err;
1035 	}
1036 
1037 	/* If the proposed size fits within our min/max, accept it. Otherwise
1038 	 * propose our own size.
1039 	 */
1040 	if (pkt->u.size >= vpending->buffer_min_size &&
1041 	    pkt->u.size <= vpending->buffer_max_size) {
1042 		qp_size = pkt->u.size;
1043 	} else {
1044 		qp_size = vpending->buffer_size;
1045 	}
1046 
1047 	/* Figure out if we are using old or new requests based on the
1048 	 * overrides pkt types sent by our peer.
1049 	 */
1050 	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1051 		old_request = old_pkt_proto;
1052 	} else {
1053 		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST)
1054 			old_request = true;
1055 		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_REQUEST2)
1056 			old_request = false;
1057 
1058 	}
1059 
1060 	if (old_request) {
1061 		/* Handle a REQUEST (or override) */
1062 		u16 version = VSOCK_PROTO_INVALID;
1063 		if (vmci_transport_proto_to_notify_struct(
1064 			pending, &version, true))
1065 			err = vmci_transport_send_negotiate(pending, qp_size);
1066 		else
1067 			err = -EINVAL;
1068 
1069 	} else {
1070 		/* Handle a REQUEST2 (or override) */
1071 		int proto_int = pkt->proto;
1072 		int pos;
1073 		u16 active_proto_version = 0;
1074 
1075 		/* The list of possible protocols is the intersection of all
1076 		 * protocols the client supports ... plus all the protocols we
1077 		 * support.
1078 		 */
1079 		proto_int &= vmci_transport_new_proto_supported_versions();
1080 
1081 		/* We choose the highest possible protocol version and use that
1082 		 * one.
1083 		 */
1084 		pos = fls(proto_int);
1085 		if (pos) {
1086 			active_proto_version = (1 << (pos - 1));
1087 			if (vmci_transport_proto_to_notify_struct(
1088 				pending, &active_proto_version, false))
1089 				err = vmci_transport_send_negotiate2(pending,
1090 							qp_size,
1091 							active_proto_version);
1092 			else
1093 				err = -EINVAL;
1094 
1095 		} else {
1096 			err = -EINVAL;
1097 		}
1098 	}
1099 
1100 	if (err < 0) {
1101 		vmci_transport_send_reset(sk, pkt);
1102 		sock_put(pending);
1103 		err = vmci_transport_error_to_vsock_error(err);
1104 		goto out;
1105 	}
1106 
1107 	vsock_add_pending(sk, pending);
1108 	sk_acceptq_added(sk);
1109 
1110 	pending->sk_state = TCP_SYN_SENT;
1111 	vmci_trans(vpending)->produce_size =
1112 		vmci_trans(vpending)->consume_size = qp_size;
1113 	vpending->buffer_size = qp_size;
1114 
1115 	vmci_trans(vpending)->notify_ops->process_request(pending);
1116 
1117 	/* We might never receive another message for this socket and it's not
1118 	 * connected to any process, so we have to ensure it gets cleaned up
1119 	 * ourself.  Our delayed work function will take care of that.  Note
1120 	 * that we do not ever cancel this function since we have few
1121 	 * guarantees about its state when calling cancel_delayed_work().
1122 	 * Instead we hold a reference on the socket for that function and make
1123 	 * it capable of handling cases where it needs to do nothing but
1124 	 * release that reference.
1125 	 */
1126 	vpending->listener = sk;
1127 	sock_hold(sk);
1128 	sock_hold(pending);
1129 	schedule_delayed_work(&vpending->pending_work, HZ);
1130 
1131 out:
1132 	return err;
1133 }
1134 
1135 static int
vmci_transport_recv_connecting_server(struct sock * listener,struct sock * pending,struct vmci_transport_packet * pkt)1136 vmci_transport_recv_connecting_server(struct sock *listener,
1137 				      struct sock *pending,
1138 				      struct vmci_transport_packet *pkt)
1139 {
1140 	struct vsock_sock *vpending;
1141 	struct vmci_handle handle;
1142 	struct vmci_qp *qpair;
1143 	bool is_local;
1144 	u32 flags;
1145 	u32 detach_sub_id;
1146 	int err;
1147 	int skerr;
1148 
1149 	vpending = vsock_sk(pending);
1150 	detach_sub_id = VMCI_INVALID_ID;
1151 
1152 	switch (pkt->type) {
1153 	case VMCI_TRANSPORT_PACKET_TYPE_OFFER:
1154 		if (vmci_handle_is_invalid(pkt->u.handle)) {
1155 			vmci_transport_send_reset(pending, pkt);
1156 			skerr = EPROTO;
1157 			err = -EINVAL;
1158 			goto destroy;
1159 		}
1160 		break;
1161 	default:
1162 		/* Close and cleanup the connection. */
1163 		vmci_transport_send_reset(pending, pkt);
1164 		skerr = EPROTO;
1165 		err = pkt->type == VMCI_TRANSPORT_PACKET_TYPE_RST ? 0 : -EINVAL;
1166 		goto destroy;
1167 	}
1168 
1169 	/* In order to complete the connection we need to attach to the offered
1170 	 * queue pair and send an attach notification.  We also subscribe to the
1171 	 * detach event so we know when our peer goes away, and we do that
1172 	 * before attaching so we don't miss an event.  If all this succeeds,
1173 	 * we update our state and wakeup anything waiting in accept() for a
1174 	 * connection.
1175 	 */
1176 
1177 	/* We don't care about attach since we ensure the other side has
1178 	 * attached by specifying the ATTACH_ONLY flag below.
1179 	 */
1180 	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1181 				   vmci_transport_peer_detach_cb,
1182 				   vmci_trans(vpending), &detach_sub_id);
1183 	if (err < VMCI_SUCCESS) {
1184 		vmci_transport_send_reset(pending, pkt);
1185 		err = vmci_transport_error_to_vsock_error(err);
1186 		skerr = -err;
1187 		goto destroy;
1188 	}
1189 
1190 	vmci_trans(vpending)->detach_sub_id = detach_sub_id;
1191 
1192 	/* Now attach to the queue pair the client created. */
1193 	handle = pkt->u.handle;
1194 
1195 	/* vpending->local_addr always has a context id so we do not need to
1196 	 * worry about VMADDR_CID_ANY in this case.
1197 	 */
1198 	is_local =
1199 	    vpending->remote_addr.svm_cid == vpending->local_addr.svm_cid;
1200 	flags = VMCI_QPFLAG_ATTACH_ONLY;
1201 	flags |= is_local ? VMCI_QPFLAG_LOCAL : 0;
1202 
1203 	err = vmci_transport_queue_pair_alloc(
1204 					&qpair,
1205 					&handle,
1206 					vmci_trans(vpending)->produce_size,
1207 					vmci_trans(vpending)->consume_size,
1208 					pkt->dg.src.context,
1209 					flags,
1210 					vmci_transport_is_trusted(
1211 						vpending,
1212 						vpending->remote_addr.svm_cid));
1213 	if (err < 0) {
1214 		vmci_transport_send_reset(pending, pkt);
1215 		skerr = -err;
1216 		goto destroy;
1217 	}
1218 
1219 	vmci_trans(vpending)->qp_handle = handle;
1220 	vmci_trans(vpending)->qpair = qpair;
1221 
1222 	/* When we send the attach message, we must be ready to handle incoming
1223 	 * control messages on the newly connected socket. So we move the
1224 	 * pending socket to the connected state before sending the attach
1225 	 * message. Otherwise, an incoming packet triggered by the attach being
1226 	 * received by the peer may be processed concurrently with what happens
1227 	 * below after sending the attach message, and that incoming packet
1228 	 * will find the listening socket instead of the (currently) pending
1229 	 * socket. Note that enqueueing the socket increments the reference
1230 	 * count, so even if a reset comes before the connection is accepted,
1231 	 * the socket will be valid until it is removed from the queue.
1232 	 *
1233 	 * If we fail sending the attach below, we remove the socket from the
1234 	 * connected list and move the socket to TCP_CLOSE before
1235 	 * releasing the lock, so a pending slow path processing of an incoming
1236 	 * packet will not see the socket in the connected state in that case.
1237 	 */
1238 	pending->sk_state = TCP_ESTABLISHED;
1239 
1240 	vsock_insert_connected(vpending);
1241 
1242 	/* Notify our peer of our attach. */
1243 	err = vmci_transport_send_attach(pending, handle);
1244 	if (err < 0) {
1245 		vsock_remove_connected(vpending);
1246 		pr_err("Could not send attach\n");
1247 		vmci_transport_send_reset(pending, pkt);
1248 		err = vmci_transport_error_to_vsock_error(err);
1249 		skerr = -err;
1250 		goto destroy;
1251 	}
1252 
1253 	/* We have a connection. Move the now connected socket from the
1254 	 * listener's pending list to the accept queue so callers of accept()
1255 	 * can find it.
1256 	 */
1257 	vsock_remove_pending(listener, pending);
1258 	vsock_enqueue_accept(listener, pending);
1259 
1260 	/* Callers of accept() will be be waiting on the listening socket, not
1261 	 * the pending socket.
1262 	 */
1263 	listener->sk_data_ready(listener);
1264 
1265 	return 0;
1266 
1267 destroy:
1268 	pending->sk_err = skerr;
1269 	pending->sk_state = TCP_CLOSE;
1270 	/* As long as we drop our reference, all necessary cleanup will handle
1271 	 * when the cleanup function drops its reference and our destruct
1272 	 * implementation is called.  Note that since the listen handler will
1273 	 * remove pending from the pending list upon our failure, the cleanup
1274 	 * function won't drop the additional reference, which is why we do it
1275 	 * here.
1276 	 */
1277 	sock_put(pending);
1278 
1279 	return err;
1280 }
1281 
1282 static int
vmci_transport_recv_connecting_client(struct sock * sk,struct vmci_transport_packet * pkt)1283 vmci_transport_recv_connecting_client(struct sock *sk,
1284 				      struct vmci_transport_packet *pkt)
1285 {
1286 	struct vsock_sock *vsk;
1287 	int err;
1288 	int skerr;
1289 
1290 	vsk = vsock_sk(sk);
1291 
1292 	switch (pkt->type) {
1293 	case VMCI_TRANSPORT_PACKET_TYPE_ATTACH:
1294 		if (vmci_handle_is_invalid(pkt->u.handle) ||
1295 		    !vmci_handle_is_equal(pkt->u.handle,
1296 					  vmci_trans(vsk)->qp_handle)) {
1297 			skerr = EPROTO;
1298 			err = -EINVAL;
1299 			goto destroy;
1300 		}
1301 
1302 		/* Signify the socket is connected and wakeup the waiter in
1303 		 * connect(). Also place the socket in the connected table for
1304 		 * accounting (it can already be found since it's in the bound
1305 		 * table).
1306 		 */
1307 		sk->sk_state = TCP_ESTABLISHED;
1308 		sk->sk_socket->state = SS_CONNECTED;
1309 		vsock_insert_connected(vsk);
1310 		sk->sk_state_change(sk);
1311 
1312 		break;
1313 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE:
1314 	case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2:
1315 		if (pkt->u.size == 0
1316 		    || pkt->dg.src.context != vsk->remote_addr.svm_cid
1317 		    || pkt->src_port != vsk->remote_addr.svm_port
1318 		    || !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle)
1319 		    || vmci_trans(vsk)->qpair
1320 		    || vmci_trans(vsk)->produce_size != 0
1321 		    || vmci_trans(vsk)->consume_size != 0
1322 		    || vmci_trans(vsk)->detach_sub_id != VMCI_INVALID_ID) {
1323 			skerr = EPROTO;
1324 			err = -EINVAL;
1325 
1326 			goto destroy;
1327 		}
1328 
1329 		err = vmci_transport_recv_connecting_client_negotiate(sk, pkt);
1330 		if (err) {
1331 			skerr = -err;
1332 			goto destroy;
1333 		}
1334 
1335 		break;
1336 	case VMCI_TRANSPORT_PACKET_TYPE_INVALID:
1337 		err = vmci_transport_recv_connecting_client_invalid(sk, pkt);
1338 		if (err) {
1339 			skerr = -err;
1340 			goto destroy;
1341 		}
1342 
1343 		break;
1344 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1345 		/* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1346 		 * continue processing here after they sent an INVALID packet.
1347 		 * This meant that we got a RST after the INVALID. We ignore a
1348 		 * RST after an INVALID. The common code doesn't send the RST
1349 		 * ... so we can hang if an old version of the common code
1350 		 * fails between getting a REQUEST and sending an OFFER back.
1351 		 * Not much we can do about it... except hope that it doesn't
1352 		 * happen.
1353 		 */
1354 		if (vsk->ignore_connecting_rst) {
1355 			vsk->ignore_connecting_rst = false;
1356 		} else {
1357 			skerr = ECONNRESET;
1358 			err = 0;
1359 			goto destroy;
1360 		}
1361 
1362 		break;
1363 	default:
1364 		/* Close and cleanup the connection. */
1365 		skerr = EPROTO;
1366 		err = -EINVAL;
1367 		goto destroy;
1368 	}
1369 
1370 	return 0;
1371 
1372 destroy:
1373 	vmci_transport_send_reset(sk, pkt);
1374 
1375 	sk->sk_state = TCP_CLOSE;
1376 	sk->sk_err = skerr;
1377 	sk->sk_error_report(sk);
1378 	return err;
1379 }
1380 
vmci_transport_recv_connecting_client_negotiate(struct sock * sk,struct vmci_transport_packet * pkt)1381 static int vmci_transport_recv_connecting_client_negotiate(
1382 					struct sock *sk,
1383 					struct vmci_transport_packet *pkt)
1384 {
1385 	int err;
1386 	struct vsock_sock *vsk;
1387 	struct vmci_handle handle;
1388 	struct vmci_qp *qpair;
1389 	u32 detach_sub_id;
1390 	bool is_local;
1391 	u32 flags;
1392 	bool old_proto = true;
1393 	bool old_pkt_proto;
1394 	u16 version;
1395 
1396 	vsk = vsock_sk(sk);
1397 	handle = VMCI_INVALID_HANDLE;
1398 	detach_sub_id = VMCI_INVALID_ID;
1399 
1400 	/* If we have gotten here then we should be past the point where old
1401 	 * linux vsock could have sent the bogus rst.
1402 	 */
1403 	vsk->sent_request = false;
1404 	vsk->ignore_connecting_rst = false;
1405 
1406 	/* Verify that we're OK with the proposed queue pair size */
1407 	if (pkt->u.size < vsk->buffer_min_size ||
1408 	    pkt->u.size > vsk->buffer_max_size) {
1409 		err = -EINVAL;
1410 		goto destroy;
1411 	}
1412 
1413 	/* At this point we know the CID the peer is using to talk to us. */
1414 
1415 	if (vsk->local_addr.svm_cid == VMADDR_CID_ANY)
1416 		vsk->local_addr.svm_cid = pkt->dg.dst.context;
1417 
1418 	/* Setup the notify ops to be the highest supported version that both
1419 	 * the server and the client support.
1420 	 */
1421 
1422 	if (vmci_transport_old_proto_override(&old_pkt_proto)) {
1423 		old_proto = old_pkt_proto;
1424 	} else {
1425 		if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE)
1426 			old_proto = true;
1427 		else if (pkt->type == VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2)
1428 			old_proto = false;
1429 
1430 	}
1431 
1432 	if (old_proto)
1433 		version = VSOCK_PROTO_INVALID;
1434 	else
1435 		version = pkt->proto;
1436 
1437 	if (!vmci_transport_proto_to_notify_struct(sk, &version, old_proto)) {
1438 		err = -EINVAL;
1439 		goto destroy;
1440 	}
1441 
1442 	/* Subscribe to detach events first.
1443 	 *
1444 	 * XXX We attach once for each queue pair created for now so it is easy
1445 	 * to find the socket (it's provided), but later we should only
1446 	 * subscribe once and add a way to lookup sockets by queue pair handle.
1447 	 */
1448 	err = vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH,
1449 				   vmci_transport_peer_detach_cb,
1450 				   vmci_trans(vsk), &detach_sub_id);
1451 	if (err < VMCI_SUCCESS) {
1452 		err = vmci_transport_error_to_vsock_error(err);
1453 		goto destroy;
1454 	}
1455 
1456 	/* Make VMCI select the handle for us. */
1457 	handle = VMCI_INVALID_HANDLE;
1458 	is_local = vsk->remote_addr.svm_cid == vsk->local_addr.svm_cid;
1459 	flags = is_local ? VMCI_QPFLAG_LOCAL : 0;
1460 
1461 	err = vmci_transport_queue_pair_alloc(&qpair,
1462 					      &handle,
1463 					      pkt->u.size,
1464 					      pkt->u.size,
1465 					      vsk->remote_addr.svm_cid,
1466 					      flags,
1467 					      vmci_transport_is_trusted(
1468 						  vsk,
1469 						  vsk->
1470 						  remote_addr.svm_cid));
1471 	if (err < 0)
1472 		goto destroy;
1473 
1474 	err = vmci_transport_send_qp_offer(sk, handle);
1475 	if (err < 0) {
1476 		err = vmci_transport_error_to_vsock_error(err);
1477 		goto destroy;
1478 	}
1479 
1480 	vmci_trans(vsk)->qp_handle = handle;
1481 	vmci_trans(vsk)->qpair = qpair;
1482 
1483 	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size =
1484 		pkt->u.size;
1485 
1486 	vmci_trans(vsk)->detach_sub_id = detach_sub_id;
1487 
1488 	vmci_trans(vsk)->notify_ops->process_negotiate(sk);
1489 
1490 	return 0;
1491 
1492 destroy:
1493 	if (detach_sub_id != VMCI_INVALID_ID)
1494 		vmci_event_unsubscribe(detach_sub_id);
1495 
1496 	if (!vmci_handle_is_invalid(handle))
1497 		vmci_qpair_detach(&qpair);
1498 
1499 	return err;
1500 }
1501 
1502 static int
vmci_transport_recv_connecting_client_invalid(struct sock * sk,struct vmci_transport_packet * pkt)1503 vmci_transport_recv_connecting_client_invalid(struct sock *sk,
1504 					      struct vmci_transport_packet *pkt)
1505 {
1506 	int err = 0;
1507 	struct vsock_sock *vsk = vsock_sk(sk);
1508 
1509 	if (vsk->sent_request) {
1510 		vsk->sent_request = false;
1511 		vsk->ignore_connecting_rst = true;
1512 
1513 		err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1514 		if (err < 0)
1515 			err = vmci_transport_error_to_vsock_error(err);
1516 		else
1517 			err = 0;
1518 
1519 	}
1520 
1521 	return err;
1522 }
1523 
vmci_transport_recv_connected(struct sock * sk,struct vmci_transport_packet * pkt)1524 static int vmci_transport_recv_connected(struct sock *sk,
1525 					 struct vmci_transport_packet *pkt)
1526 {
1527 	struct vsock_sock *vsk;
1528 	bool pkt_processed = false;
1529 
1530 	/* In cases where we are closing the connection, it's sufficient to
1531 	 * mark the state change (and maybe error) and wake up any waiting
1532 	 * threads. Since this is a connected socket, it's owned by a user
1533 	 * process and will be cleaned up when the failure is passed back on
1534 	 * the current or next system call.  Our system call implementations
1535 	 * must therefore check for error and state changes on entry and when
1536 	 * being awoken.
1537 	 */
1538 	switch (pkt->type) {
1539 	case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN:
1540 		if (pkt->u.mode) {
1541 			vsk = vsock_sk(sk);
1542 
1543 			vsk->peer_shutdown |= pkt->u.mode;
1544 			sk->sk_state_change(sk);
1545 		}
1546 		break;
1547 
1548 	case VMCI_TRANSPORT_PACKET_TYPE_RST:
1549 		vsk = vsock_sk(sk);
1550 		/* It is possible that we sent our peer a message (e.g a
1551 		 * WAITING_READ) right before we got notified that the peer had
1552 		 * detached. If that happens then we can get a RST pkt back
1553 		 * from our peer even though there is data available for us to
1554 		 * read. In that case, don't shutdown the socket completely but
1555 		 * instead allow the local client to finish reading data off
1556 		 * the queuepair. Always treat a RST pkt in connected mode like
1557 		 * a clean shutdown.
1558 		 */
1559 		sock_set_flag(sk, SOCK_DONE);
1560 		vsk->peer_shutdown = SHUTDOWN_MASK;
1561 		if (vsock_stream_has_data(vsk) <= 0)
1562 			sk->sk_state = TCP_CLOSING;
1563 
1564 		sk->sk_state_change(sk);
1565 		break;
1566 
1567 	default:
1568 		vsk = vsock_sk(sk);
1569 		vmci_trans(vsk)->notify_ops->handle_notify_pkt(
1570 				sk, pkt, false, NULL, NULL,
1571 				&pkt_processed);
1572 		if (!pkt_processed)
1573 			return -EINVAL;
1574 
1575 		break;
1576 	}
1577 
1578 	return 0;
1579 }
1580 
vmci_transport_socket_init(struct vsock_sock * vsk,struct vsock_sock * psk)1581 static int vmci_transport_socket_init(struct vsock_sock *vsk,
1582 				      struct vsock_sock *psk)
1583 {
1584 	vsk->trans = kmalloc(sizeof(struct vmci_transport), GFP_KERNEL);
1585 	if (!vsk->trans)
1586 		return -ENOMEM;
1587 
1588 	vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1589 	vmci_trans(vsk)->qp_handle = VMCI_INVALID_HANDLE;
1590 	vmci_trans(vsk)->qpair = NULL;
1591 	vmci_trans(vsk)->produce_size = vmci_trans(vsk)->consume_size = 0;
1592 	vmci_trans(vsk)->detach_sub_id = VMCI_INVALID_ID;
1593 	vmci_trans(vsk)->notify_ops = NULL;
1594 	INIT_LIST_HEAD(&vmci_trans(vsk)->elem);
1595 	vmci_trans(vsk)->sk = &vsk->sk;
1596 	spin_lock_init(&vmci_trans(vsk)->lock);
1597 
1598 	return 0;
1599 }
1600 
vmci_transport_free_resources(struct list_head * transport_list)1601 static void vmci_transport_free_resources(struct list_head *transport_list)
1602 {
1603 	while (!list_empty(transport_list)) {
1604 		struct vmci_transport *transport =
1605 		    list_first_entry(transport_list, struct vmci_transport,
1606 				     elem);
1607 		list_del(&transport->elem);
1608 
1609 		if (transport->detach_sub_id != VMCI_INVALID_ID) {
1610 			vmci_event_unsubscribe(transport->detach_sub_id);
1611 			transport->detach_sub_id = VMCI_INVALID_ID;
1612 		}
1613 
1614 		if (!vmci_handle_is_invalid(transport->qp_handle)) {
1615 			vmci_qpair_detach(&transport->qpair);
1616 			transport->qp_handle = VMCI_INVALID_HANDLE;
1617 			transport->produce_size = 0;
1618 			transport->consume_size = 0;
1619 		}
1620 
1621 		kfree(transport);
1622 	}
1623 }
1624 
vmci_transport_cleanup(struct work_struct * work)1625 static void vmci_transport_cleanup(struct work_struct *work)
1626 {
1627 	LIST_HEAD(pending);
1628 
1629 	spin_lock_bh(&vmci_transport_cleanup_lock);
1630 	list_replace_init(&vmci_transport_cleanup_list, &pending);
1631 	spin_unlock_bh(&vmci_transport_cleanup_lock);
1632 	vmci_transport_free_resources(&pending);
1633 }
1634 
vmci_transport_destruct(struct vsock_sock * vsk)1635 static void vmci_transport_destruct(struct vsock_sock *vsk)
1636 {
1637 	/* transport can be NULL if we hit a failure at init() time */
1638 	if (!vmci_trans(vsk))
1639 		return;
1640 
1641 	/* Ensure that the detach callback doesn't use the sk/vsk
1642 	 * we are about to destruct.
1643 	 */
1644 	spin_lock_bh(&vmci_trans(vsk)->lock);
1645 	vmci_trans(vsk)->sk = NULL;
1646 	spin_unlock_bh(&vmci_trans(vsk)->lock);
1647 
1648 	if (vmci_trans(vsk)->notify_ops)
1649 		vmci_trans(vsk)->notify_ops->socket_destruct(vsk);
1650 
1651 	spin_lock_bh(&vmci_transport_cleanup_lock);
1652 	list_add(&vmci_trans(vsk)->elem, &vmci_transport_cleanup_list);
1653 	spin_unlock_bh(&vmci_transport_cleanup_lock);
1654 	schedule_work(&vmci_transport_cleanup_work);
1655 
1656 	vsk->trans = NULL;
1657 }
1658 
vmci_transport_release(struct vsock_sock * vsk)1659 static void vmci_transport_release(struct vsock_sock *vsk)
1660 {
1661 	vsock_remove_sock(vsk);
1662 
1663 	if (!vmci_handle_is_invalid(vmci_trans(vsk)->dg_handle)) {
1664 		vmci_datagram_destroy_handle(vmci_trans(vsk)->dg_handle);
1665 		vmci_trans(vsk)->dg_handle = VMCI_INVALID_HANDLE;
1666 	}
1667 }
1668 
vmci_transport_dgram_bind(struct vsock_sock * vsk,struct sockaddr_vm * addr)1669 static int vmci_transport_dgram_bind(struct vsock_sock *vsk,
1670 				     struct sockaddr_vm *addr)
1671 {
1672 	u32 port;
1673 	u32 flags;
1674 	int err;
1675 
1676 	/* VMCI will select a resource ID for us if we provide
1677 	 * VMCI_INVALID_ID.
1678 	 */
1679 	port = addr->svm_port == VMADDR_PORT_ANY ?
1680 			VMCI_INVALID_ID : addr->svm_port;
1681 
1682 	if (port <= LAST_RESERVED_PORT && !capable(CAP_NET_BIND_SERVICE))
1683 		return -EACCES;
1684 
1685 	flags = addr->svm_cid == VMADDR_CID_ANY ?
1686 				VMCI_FLAG_ANYCID_DG_HND : 0;
1687 
1688 	err = vmci_transport_datagram_create_hnd(port, flags,
1689 						 vmci_transport_recv_dgram_cb,
1690 						 &vsk->sk,
1691 						 &vmci_trans(vsk)->dg_handle);
1692 	if (err < VMCI_SUCCESS)
1693 		return vmci_transport_error_to_vsock_error(err);
1694 	vsock_addr_init(&vsk->local_addr, addr->svm_cid,
1695 			vmci_trans(vsk)->dg_handle.resource);
1696 
1697 	return 0;
1698 }
1699 
vmci_transport_dgram_enqueue(struct vsock_sock * vsk,struct sockaddr_vm * remote_addr,struct msghdr * msg,size_t len)1700 static int vmci_transport_dgram_enqueue(
1701 	struct vsock_sock *vsk,
1702 	struct sockaddr_vm *remote_addr,
1703 	struct msghdr *msg,
1704 	size_t len)
1705 {
1706 	int err;
1707 	struct vmci_datagram *dg;
1708 
1709 	if (len > VMCI_MAX_DG_PAYLOAD_SIZE)
1710 		return -EMSGSIZE;
1711 
1712 	if (!vmci_transport_allow_dgram(vsk, remote_addr->svm_cid))
1713 		return -EPERM;
1714 
1715 	/* Allocate a buffer for the user's message and our packet header. */
1716 	dg = kmalloc(len + sizeof(*dg), GFP_KERNEL);
1717 	if (!dg)
1718 		return -ENOMEM;
1719 
1720 	err = memcpy_from_msg(VMCI_DG_PAYLOAD(dg), msg, len);
1721 	if (err) {
1722 		kfree(dg);
1723 		return err;
1724 	}
1725 
1726 	dg->dst = vmci_make_handle(remote_addr->svm_cid,
1727 				   remote_addr->svm_port);
1728 	dg->src = vmci_make_handle(vsk->local_addr.svm_cid,
1729 				   vsk->local_addr.svm_port);
1730 	dg->payload_size = len;
1731 
1732 	err = vmci_datagram_send(dg);
1733 	kfree(dg);
1734 	if (err < 0)
1735 		return vmci_transport_error_to_vsock_error(err);
1736 
1737 	return err - sizeof(*dg);
1738 }
1739 
vmci_transport_dgram_dequeue(struct vsock_sock * vsk,struct msghdr * msg,size_t len,int flags)1740 static int vmci_transport_dgram_dequeue(struct vsock_sock *vsk,
1741 					struct msghdr *msg, size_t len,
1742 					int flags)
1743 {
1744 	int err;
1745 	int noblock;
1746 	struct vmci_datagram *dg;
1747 	size_t payload_len;
1748 	struct sk_buff *skb;
1749 
1750 	noblock = flags & MSG_DONTWAIT;
1751 
1752 	if (flags & MSG_OOB || flags & MSG_ERRQUEUE)
1753 		return -EOPNOTSUPP;
1754 
1755 	/* Retrieve the head sk_buff from the socket's receive queue. */
1756 	err = 0;
1757 	skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);
1758 	if (!skb)
1759 		return err;
1760 
1761 	dg = (struct vmci_datagram *)skb->data;
1762 	if (!dg)
1763 		/* err is 0, meaning we read zero bytes. */
1764 		goto out;
1765 
1766 	payload_len = dg->payload_size;
1767 	/* Ensure the sk_buff matches the payload size claimed in the packet. */
1768 	if (payload_len != skb->len - sizeof(*dg)) {
1769 		err = -EINVAL;
1770 		goto out;
1771 	}
1772 
1773 	if (payload_len > len) {
1774 		payload_len = len;
1775 		msg->msg_flags |= MSG_TRUNC;
1776 	}
1777 
1778 	/* Place the datagram payload in the user's iovec. */
1779 	err = skb_copy_datagram_msg(skb, sizeof(*dg), msg, payload_len);
1780 	if (err)
1781 		goto out;
1782 
1783 	if (msg->msg_name) {
1784 		/* Provide the address of the sender. */
1785 		DECLARE_SOCKADDR(struct sockaddr_vm *, vm_addr, msg->msg_name);
1786 		vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);
1787 		msg->msg_namelen = sizeof(*vm_addr);
1788 	}
1789 	err = payload_len;
1790 
1791 out:
1792 	skb_free_datagram(&vsk->sk, skb);
1793 	return err;
1794 }
1795 
vmci_transport_dgram_allow(u32 cid,u32 port)1796 static bool vmci_transport_dgram_allow(u32 cid, u32 port)
1797 {
1798 	if (cid == VMADDR_CID_HYPERVISOR) {
1799 		/* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1800 		 * state and are allowed.
1801 		 */
1802 		return port == VMCI_UNITY_PBRPC_REGISTER;
1803 	}
1804 
1805 	return true;
1806 }
1807 
vmci_transport_connect(struct vsock_sock * vsk)1808 static int vmci_transport_connect(struct vsock_sock *vsk)
1809 {
1810 	int err;
1811 	bool old_pkt_proto = false;
1812 	struct sock *sk = &vsk->sk;
1813 
1814 	if (vmci_transport_old_proto_override(&old_pkt_proto) &&
1815 		old_pkt_proto) {
1816 		err = vmci_transport_send_conn_request(sk, vsk->buffer_size);
1817 		if (err < 0) {
1818 			sk->sk_state = TCP_CLOSE;
1819 			return err;
1820 		}
1821 	} else {
1822 		int supported_proto_versions =
1823 			vmci_transport_new_proto_supported_versions();
1824 		err = vmci_transport_send_conn_request2(sk, vsk->buffer_size,
1825 				supported_proto_versions);
1826 		if (err < 0) {
1827 			sk->sk_state = TCP_CLOSE;
1828 			return err;
1829 		}
1830 
1831 		vsk->sent_request = true;
1832 	}
1833 
1834 	return err;
1835 }
1836 
vmci_transport_stream_dequeue(struct vsock_sock * vsk,struct msghdr * msg,size_t len,int flags)1837 static ssize_t vmci_transport_stream_dequeue(
1838 	struct vsock_sock *vsk,
1839 	struct msghdr *msg,
1840 	size_t len,
1841 	int flags)
1842 {
1843 	if (flags & MSG_PEEK)
1844 		return vmci_qpair_peekv(vmci_trans(vsk)->qpair, msg, len, 0);
1845 	else
1846 		return vmci_qpair_dequev(vmci_trans(vsk)->qpair, msg, len, 0);
1847 }
1848 
vmci_transport_stream_enqueue(struct vsock_sock * vsk,struct msghdr * msg,size_t len)1849 static ssize_t vmci_transport_stream_enqueue(
1850 	struct vsock_sock *vsk,
1851 	struct msghdr *msg,
1852 	size_t len)
1853 {
1854 	return vmci_qpair_enquev(vmci_trans(vsk)->qpair, msg, len, 0);
1855 }
1856 
vmci_transport_stream_has_data(struct vsock_sock * vsk)1857 static s64 vmci_transport_stream_has_data(struct vsock_sock *vsk)
1858 {
1859 	return vmci_qpair_consume_buf_ready(vmci_trans(vsk)->qpair);
1860 }
1861 
vmci_transport_stream_has_space(struct vsock_sock * vsk)1862 static s64 vmci_transport_stream_has_space(struct vsock_sock *vsk)
1863 {
1864 	return vmci_qpair_produce_free_space(vmci_trans(vsk)->qpair);
1865 }
1866 
vmci_transport_stream_rcvhiwat(struct vsock_sock * vsk)1867 static u64 vmci_transport_stream_rcvhiwat(struct vsock_sock *vsk)
1868 {
1869 	return vmci_trans(vsk)->consume_size;
1870 }
1871 
vmci_transport_stream_is_active(struct vsock_sock * vsk)1872 static bool vmci_transport_stream_is_active(struct vsock_sock *vsk)
1873 {
1874 	return !vmci_handle_is_invalid(vmci_trans(vsk)->qp_handle);
1875 }
1876 
vmci_transport_notify_poll_in(struct vsock_sock * vsk,size_t target,bool * data_ready_now)1877 static int vmci_transport_notify_poll_in(
1878 	struct vsock_sock *vsk,
1879 	size_t target,
1880 	bool *data_ready_now)
1881 {
1882 	return vmci_trans(vsk)->notify_ops->poll_in(
1883 			&vsk->sk, target, data_ready_now);
1884 }
1885 
vmci_transport_notify_poll_out(struct vsock_sock * vsk,size_t target,bool * space_available_now)1886 static int vmci_transport_notify_poll_out(
1887 	struct vsock_sock *vsk,
1888 	size_t target,
1889 	bool *space_available_now)
1890 {
1891 	return vmci_trans(vsk)->notify_ops->poll_out(
1892 			&vsk->sk, target, space_available_now);
1893 }
1894 
vmci_transport_notify_recv_init(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1895 static int vmci_transport_notify_recv_init(
1896 	struct vsock_sock *vsk,
1897 	size_t target,
1898 	struct vsock_transport_recv_notify_data *data)
1899 {
1900 	return vmci_trans(vsk)->notify_ops->recv_init(
1901 			&vsk->sk, target,
1902 			(struct vmci_transport_recv_notify_data *)data);
1903 }
1904 
vmci_transport_notify_recv_pre_block(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1905 static int vmci_transport_notify_recv_pre_block(
1906 	struct vsock_sock *vsk,
1907 	size_t target,
1908 	struct vsock_transport_recv_notify_data *data)
1909 {
1910 	return vmci_trans(vsk)->notify_ops->recv_pre_block(
1911 			&vsk->sk, target,
1912 			(struct vmci_transport_recv_notify_data *)data);
1913 }
1914 
vmci_transport_notify_recv_pre_dequeue(struct vsock_sock * vsk,size_t target,struct vsock_transport_recv_notify_data * data)1915 static int vmci_transport_notify_recv_pre_dequeue(
1916 	struct vsock_sock *vsk,
1917 	size_t target,
1918 	struct vsock_transport_recv_notify_data *data)
1919 {
1920 	return vmci_trans(vsk)->notify_ops->recv_pre_dequeue(
1921 			&vsk->sk, target,
1922 			(struct vmci_transport_recv_notify_data *)data);
1923 }
1924 
vmci_transport_notify_recv_post_dequeue(struct vsock_sock * vsk,size_t target,ssize_t copied,bool data_read,struct vsock_transport_recv_notify_data * data)1925 static int vmci_transport_notify_recv_post_dequeue(
1926 	struct vsock_sock *vsk,
1927 	size_t target,
1928 	ssize_t copied,
1929 	bool data_read,
1930 	struct vsock_transport_recv_notify_data *data)
1931 {
1932 	return vmci_trans(vsk)->notify_ops->recv_post_dequeue(
1933 			&vsk->sk, target, copied, data_read,
1934 			(struct vmci_transport_recv_notify_data *)data);
1935 }
1936 
vmci_transport_notify_send_init(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)1937 static int vmci_transport_notify_send_init(
1938 	struct vsock_sock *vsk,
1939 	struct vsock_transport_send_notify_data *data)
1940 {
1941 	return vmci_trans(vsk)->notify_ops->send_init(
1942 			&vsk->sk,
1943 			(struct vmci_transport_send_notify_data *)data);
1944 }
1945 
vmci_transport_notify_send_pre_block(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)1946 static int vmci_transport_notify_send_pre_block(
1947 	struct vsock_sock *vsk,
1948 	struct vsock_transport_send_notify_data *data)
1949 {
1950 	return vmci_trans(vsk)->notify_ops->send_pre_block(
1951 			&vsk->sk,
1952 			(struct vmci_transport_send_notify_data *)data);
1953 }
1954 
vmci_transport_notify_send_pre_enqueue(struct vsock_sock * vsk,struct vsock_transport_send_notify_data * data)1955 static int vmci_transport_notify_send_pre_enqueue(
1956 	struct vsock_sock *vsk,
1957 	struct vsock_transport_send_notify_data *data)
1958 {
1959 	return vmci_trans(vsk)->notify_ops->send_pre_enqueue(
1960 			&vsk->sk,
1961 			(struct vmci_transport_send_notify_data *)data);
1962 }
1963 
vmci_transport_notify_send_post_enqueue(struct vsock_sock * vsk,ssize_t written,struct vsock_transport_send_notify_data * data)1964 static int vmci_transport_notify_send_post_enqueue(
1965 	struct vsock_sock *vsk,
1966 	ssize_t written,
1967 	struct vsock_transport_send_notify_data *data)
1968 {
1969 	return vmci_trans(vsk)->notify_ops->send_post_enqueue(
1970 			&vsk->sk, written,
1971 			(struct vmci_transport_send_notify_data *)data);
1972 }
1973 
vmci_transport_old_proto_override(bool * old_pkt_proto)1974 static bool vmci_transport_old_proto_override(bool *old_pkt_proto)
1975 {
1976 	if (PROTOCOL_OVERRIDE != -1) {
1977 		if (PROTOCOL_OVERRIDE == 0)
1978 			*old_pkt_proto = true;
1979 		else
1980 			*old_pkt_proto = false;
1981 
1982 		pr_info("Proto override in use\n");
1983 		return true;
1984 	}
1985 
1986 	return false;
1987 }
1988 
vmci_transport_proto_to_notify_struct(struct sock * sk,u16 * proto,bool old_pkt_proto)1989 static bool vmci_transport_proto_to_notify_struct(struct sock *sk,
1990 						  u16 *proto,
1991 						  bool old_pkt_proto)
1992 {
1993 	struct vsock_sock *vsk = vsock_sk(sk);
1994 
1995 	if (old_pkt_proto) {
1996 		if (*proto != VSOCK_PROTO_INVALID) {
1997 			pr_err("Can't set both an old and new protocol\n");
1998 			return false;
1999 		}
2000 		vmci_trans(vsk)->notify_ops = &vmci_transport_notify_pkt_ops;
2001 		goto exit;
2002 	}
2003 
2004 	switch (*proto) {
2005 	case VSOCK_PROTO_PKT_ON_NOTIFY:
2006 		vmci_trans(vsk)->notify_ops =
2007 			&vmci_transport_notify_pkt_q_state_ops;
2008 		break;
2009 	default:
2010 		pr_err("Unknown notify protocol version\n");
2011 		return false;
2012 	}
2013 
2014 exit:
2015 	vmci_trans(vsk)->notify_ops->socket_init(sk);
2016 	return true;
2017 }
2018 
vmci_transport_new_proto_supported_versions(void)2019 static u16 vmci_transport_new_proto_supported_versions(void)
2020 {
2021 	if (PROTOCOL_OVERRIDE != -1)
2022 		return PROTOCOL_OVERRIDE;
2023 
2024 	return VSOCK_PROTO_ALL_SUPPORTED;
2025 }
2026 
vmci_transport_get_local_cid(void)2027 static u32 vmci_transport_get_local_cid(void)
2028 {
2029 	return vmci_get_context_id();
2030 }
2031 
2032 static struct vsock_transport vmci_transport = {
2033 	.module = THIS_MODULE,
2034 	.init = vmci_transport_socket_init,
2035 	.destruct = vmci_transport_destruct,
2036 	.release = vmci_transport_release,
2037 	.connect = vmci_transport_connect,
2038 	.dgram_bind = vmci_transport_dgram_bind,
2039 	.dgram_dequeue = vmci_transport_dgram_dequeue,
2040 	.dgram_enqueue = vmci_transport_dgram_enqueue,
2041 	.dgram_allow = vmci_transport_dgram_allow,
2042 	.stream_dequeue = vmci_transport_stream_dequeue,
2043 	.stream_enqueue = vmci_transport_stream_enqueue,
2044 	.stream_has_data = vmci_transport_stream_has_data,
2045 	.stream_has_space = vmci_transport_stream_has_space,
2046 	.stream_rcvhiwat = vmci_transport_stream_rcvhiwat,
2047 	.stream_is_active = vmci_transport_stream_is_active,
2048 	.stream_allow = vmci_transport_stream_allow,
2049 	.notify_poll_in = vmci_transport_notify_poll_in,
2050 	.notify_poll_out = vmci_transport_notify_poll_out,
2051 	.notify_recv_init = vmci_transport_notify_recv_init,
2052 	.notify_recv_pre_block = vmci_transport_notify_recv_pre_block,
2053 	.notify_recv_pre_dequeue = vmci_transport_notify_recv_pre_dequeue,
2054 	.notify_recv_post_dequeue = vmci_transport_notify_recv_post_dequeue,
2055 	.notify_send_init = vmci_transport_notify_send_init,
2056 	.notify_send_pre_block = vmci_transport_notify_send_pre_block,
2057 	.notify_send_pre_enqueue = vmci_transport_notify_send_pre_enqueue,
2058 	.notify_send_post_enqueue = vmci_transport_notify_send_post_enqueue,
2059 	.shutdown = vmci_transport_shutdown,
2060 	.get_local_cid = vmci_transport_get_local_cid,
2061 };
2062 
vmci_check_transport(struct vsock_sock * vsk)2063 static bool vmci_check_transport(struct vsock_sock *vsk)
2064 {
2065 	return vsk->transport == &vmci_transport;
2066 }
2067 
vmci_vsock_transport_cb(bool is_host)2068 static void vmci_vsock_transport_cb(bool is_host)
2069 {
2070 	int features;
2071 
2072 	if (is_host)
2073 		features = VSOCK_TRANSPORT_F_H2G;
2074 	else
2075 		features = VSOCK_TRANSPORT_F_G2H;
2076 
2077 	vsock_core_register(&vmci_transport, features);
2078 }
2079 
vmci_transport_init(void)2080 static int __init vmci_transport_init(void)
2081 {
2082 	int err;
2083 
2084 	/* Create the datagram handle that we will use to send and receive all
2085 	 * VSocket control messages for this context.
2086 	 */
2087 	err = vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID,
2088 						 VMCI_FLAG_ANYCID_DG_HND,
2089 						 vmci_transport_recv_stream_cb,
2090 						 NULL,
2091 						 &vmci_transport_stream_handle);
2092 	if (err < VMCI_SUCCESS) {
2093 		pr_err("Unable to create datagram handle. (%d)\n", err);
2094 		return vmci_transport_error_to_vsock_error(err);
2095 	}
2096 	err = vmci_event_subscribe(VMCI_EVENT_QP_RESUMED,
2097 				   vmci_transport_qp_resumed_cb,
2098 				   NULL, &vmci_transport_qp_resumed_sub_id);
2099 	if (err < VMCI_SUCCESS) {
2100 		pr_err("Unable to subscribe to resumed event. (%d)\n", err);
2101 		err = vmci_transport_error_to_vsock_error(err);
2102 		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2103 		goto err_destroy_stream_handle;
2104 	}
2105 
2106 	/* Register only with dgram feature, other features (H2G, G2H) will be
2107 	 * registered when the first host or guest becomes active.
2108 	 */
2109 	err = vsock_core_register(&vmci_transport, VSOCK_TRANSPORT_F_DGRAM);
2110 	if (err < 0)
2111 		goto err_unsubscribe;
2112 
2113 	err = vmci_register_vsock_callback(vmci_vsock_transport_cb);
2114 	if (err < 0)
2115 		goto err_unregister;
2116 
2117 	return 0;
2118 
2119 err_unregister:
2120 	vsock_core_unregister(&vmci_transport);
2121 err_unsubscribe:
2122 	vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2123 err_destroy_stream_handle:
2124 	vmci_datagram_destroy_handle(vmci_transport_stream_handle);
2125 	return err;
2126 }
2127 module_init(vmci_transport_init);
2128 
vmci_transport_exit(void)2129 static void __exit vmci_transport_exit(void)
2130 {
2131 	cancel_work_sync(&vmci_transport_cleanup_work);
2132 	vmci_transport_free_resources(&vmci_transport_cleanup_list);
2133 
2134 	if (!vmci_handle_is_invalid(vmci_transport_stream_handle)) {
2135 		if (vmci_datagram_destroy_handle(
2136 			vmci_transport_stream_handle) != VMCI_SUCCESS)
2137 			pr_err("Couldn't destroy datagram handle\n");
2138 		vmci_transport_stream_handle = VMCI_INVALID_HANDLE;
2139 	}
2140 
2141 	if (vmci_transport_qp_resumed_sub_id != VMCI_INVALID_ID) {
2142 		vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id);
2143 		vmci_transport_qp_resumed_sub_id = VMCI_INVALID_ID;
2144 	}
2145 
2146 	vmci_register_vsock_callback(NULL);
2147 	vsock_core_unregister(&vmci_transport);
2148 }
2149 module_exit(vmci_transport_exit);
2150 
2151 MODULE_AUTHOR("VMware, Inc.");
2152 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2153 MODULE_VERSION("1.0.5.0-k");
2154 MODULE_LICENSE("GPL v2");
2155 MODULE_ALIAS("vmware_vsock");
2156 MODULE_ALIAS_NETPROTO(PF_VSOCK);
2157