1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Basic authentication token and access key management
3 *
4 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/poison.h>
11 #include <linux/sched.h>
12 #include <linux/slab.h>
13 #include <linux/security.h>
14 #include <linux/workqueue.h>
15 #include <linux/random.h>
16 #include <linux/ima.h>
17 #include <linux/err.h>
18 #include "internal.h"
19
20 struct kmem_cache *key_jar;
21 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
22 DEFINE_SPINLOCK(key_serial_lock);
23
24 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
25 DEFINE_SPINLOCK(key_user_lock);
26
27 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */
28 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
29 unsigned int key_quota_maxkeys = 200; /* general key count quota */
30 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
31
32 static LIST_HEAD(key_types_list);
33 static DECLARE_RWSEM(key_types_sem);
34
35 /* We serialise key instantiation and link */
36 DEFINE_MUTEX(key_construction_mutex);
37
38 #ifdef KEY_DEBUGGING
__key_check(const struct key * key)39 void __key_check(const struct key *key)
40 {
41 printk("__key_check: key %p {%08x} should be {%08x}\n",
42 key, key->magic, KEY_DEBUG_MAGIC);
43 BUG();
44 }
45 #endif
46
47 /*
48 * Get the key quota record for a user, allocating a new record if one doesn't
49 * already exist.
50 */
key_user_lookup(kuid_t uid)51 struct key_user *key_user_lookup(kuid_t uid)
52 {
53 struct key_user *candidate = NULL, *user;
54 struct rb_node *parent, **p;
55
56 try_again:
57 parent = NULL;
58 p = &key_user_tree.rb_node;
59 spin_lock(&key_user_lock);
60
61 /* search the tree for a user record with a matching UID */
62 while (*p) {
63 parent = *p;
64 user = rb_entry(parent, struct key_user, node);
65
66 if (uid_lt(uid, user->uid))
67 p = &(*p)->rb_left;
68 else if (uid_gt(uid, user->uid))
69 p = &(*p)->rb_right;
70 else
71 goto found;
72 }
73
74 /* if we get here, we failed to find a match in the tree */
75 if (!candidate) {
76 /* allocate a candidate user record if we don't already have
77 * one */
78 spin_unlock(&key_user_lock);
79
80 user = NULL;
81 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
82 if (unlikely(!candidate))
83 goto out;
84
85 /* the allocation may have scheduled, so we need to repeat the
86 * search lest someone else added the record whilst we were
87 * asleep */
88 goto try_again;
89 }
90
91 /* if we get here, then the user record still hadn't appeared on the
92 * second pass - so we use the candidate record */
93 refcount_set(&candidate->usage, 1);
94 atomic_set(&candidate->nkeys, 0);
95 atomic_set(&candidate->nikeys, 0);
96 candidate->uid = uid;
97 candidate->qnkeys = 0;
98 candidate->qnbytes = 0;
99 spin_lock_init(&candidate->lock);
100 mutex_init(&candidate->cons_lock);
101
102 rb_link_node(&candidate->node, parent, p);
103 rb_insert_color(&candidate->node, &key_user_tree);
104 spin_unlock(&key_user_lock);
105 user = candidate;
106 goto out;
107
108 /* okay - we found a user record for this UID */
109 found:
110 refcount_inc(&user->usage);
111 spin_unlock(&key_user_lock);
112 kfree(candidate);
113 out:
114 return user;
115 }
116
117 /*
118 * Dispose of a user structure
119 */
key_user_put(struct key_user * user)120 void key_user_put(struct key_user *user)
121 {
122 if (refcount_dec_and_lock(&user->usage, &key_user_lock)) {
123 rb_erase(&user->node, &key_user_tree);
124 spin_unlock(&key_user_lock);
125
126 kfree(user);
127 }
128 }
129
130 /*
131 * Allocate a serial number for a key. These are assigned randomly to avoid
132 * security issues through covert channel problems.
133 */
key_alloc_serial(struct key * key)134 static inline void key_alloc_serial(struct key *key)
135 {
136 struct rb_node *parent, **p;
137 struct key *xkey;
138
139 /* propose a random serial number and look for a hole for it in the
140 * serial number tree */
141 do {
142 get_random_bytes(&key->serial, sizeof(key->serial));
143
144 key->serial >>= 1; /* negative numbers are not permitted */
145 } while (key->serial < 3);
146
147 spin_lock(&key_serial_lock);
148
149 attempt_insertion:
150 parent = NULL;
151 p = &key_serial_tree.rb_node;
152
153 while (*p) {
154 parent = *p;
155 xkey = rb_entry(parent, struct key, serial_node);
156
157 if (key->serial < xkey->serial)
158 p = &(*p)->rb_left;
159 else if (key->serial > xkey->serial)
160 p = &(*p)->rb_right;
161 else
162 goto serial_exists;
163 }
164
165 /* we've found a suitable hole - arrange for this key to occupy it */
166 rb_link_node(&key->serial_node, parent, p);
167 rb_insert_color(&key->serial_node, &key_serial_tree);
168
169 spin_unlock(&key_serial_lock);
170 return;
171
172 /* we found a key with the proposed serial number - walk the tree from
173 * that point looking for the next unused serial number */
174 serial_exists:
175 for (;;) {
176 key->serial++;
177 if (key->serial < 3) {
178 key->serial = 3;
179 goto attempt_insertion;
180 }
181
182 parent = rb_next(parent);
183 if (!parent)
184 goto attempt_insertion;
185
186 xkey = rb_entry(parent, struct key, serial_node);
187 if (key->serial < xkey->serial)
188 goto attempt_insertion;
189 }
190 }
191
192 /**
193 * key_alloc - Allocate a key of the specified type.
194 * @type: The type of key to allocate.
195 * @desc: The key description to allow the key to be searched out.
196 * @uid: The owner of the new key.
197 * @gid: The group ID for the new key's group permissions.
198 * @cred: The credentials specifying UID namespace.
199 * @perm: The permissions mask of the new key.
200 * @flags: Flags specifying quota properties.
201 * @restrict_link: Optional link restriction for new keyrings.
202 *
203 * Allocate a key of the specified type with the attributes given. The key is
204 * returned in an uninstantiated state and the caller needs to instantiate the
205 * key before returning.
206 *
207 * The restrict_link structure (if not NULL) will be freed when the
208 * keyring is destroyed, so it must be dynamically allocated.
209 *
210 * The user's key count quota is updated to reflect the creation of the key and
211 * the user's key data quota has the default for the key type reserved. The
212 * instantiation function should amend this as necessary. If insufficient
213 * quota is available, -EDQUOT will be returned.
214 *
215 * The LSM security modules can prevent a key being created, in which case
216 * -EACCES will be returned.
217 *
218 * Returns a pointer to the new key if successful and an error code otherwise.
219 *
220 * Note that the caller needs to ensure the key type isn't uninstantiated.
221 * Internally this can be done by locking key_types_sem. Externally, this can
222 * be done by either never unregistering the key type, or making sure
223 * key_alloc() calls don't race with module unloading.
224 */
key_alloc(struct key_type * type,const char * desc,kuid_t uid,kgid_t gid,const struct cred * cred,key_perm_t perm,unsigned long flags,struct key_restriction * restrict_link)225 struct key *key_alloc(struct key_type *type, const char *desc,
226 kuid_t uid, kgid_t gid, const struct cred *cred,
227 key_perm_t perm, unsigned long flags,
228 struct key_restriction *restrict_link)
229 {
230 struct key_user *user = NULL;
231 struct key *key;
232 size_t desclen, quotalen;
233 int ret;
234
235 key = ERR_PTR(-EINVAL);
236 if (!desc || !*desc)
237 goto error;
238
239 if (type->vet_description) {
240 ret = type->vet_description(desc);
241 if (ret < 0) {
242 key = ERR_PTR(ret);
243 goto error;
244 }
245 }
246
247 desclen = strlen(desc);
248 quotalen = desclen + 1 + type->def_datalen;
249
250 /* get hold of the key tracking for this user */
251 user = key_user_lookup(uid);
252 if (!user)
253 goto no_memory_1;
254
255 /* check that the user's quota permits allocation of another key and
256 * its description */
257 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
258 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 key_quota_root_maxkeys : key_quota_maxkeys;
260 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
261 key_quota_root_maxbytes : key_quota_maxbytes;
262
263 spin_lock(&user->lock);
264 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
265 if (user->qnkeys + 1 > maxkeys ||
266 user->qnbytes + quotalen > maxbytes ||
267 user->qnbytes + quotalen < user->qnbytes)
268 goto no_quota;
269 }
270
271 user->qnkeys++;
272 user->qnbytes += quotalen;
273 spin_unlock(&user->lock);
274 }
275
276 /* allocate and initialise the key and its description */
277 key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
278 if (!key)
279 goto no_memory_2;
280
281 key->index_key.desc_len = desclen;
282 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
283 if (!key->index_key.description)
284 goto no_memory_3;
285 key->index_key.type = type;
286 key_set_index_key(&key->index_key);
287
288 refcount_set(&key->usage, 1);
289 init_rwsem(&key->sem);
290 lockdep_set_class(&key->sem, &type->lock_class);
291 key->user = user;
292 key->quotalen = quotalen;
293 key->datalen = type->def_datalen;
294 key->uid = uid;
295 key->gid = gid;
296 key->perm = perm;
297 key->expiry = TIME64_MAX;
298 key->restrict_link = restrict_link;
299 key->last_used_at = ktime_get_real_seconds();
300
301 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
302 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
303 if (flags & KEY_ALLOC_BUILT_IN)
304 key->flags |= 1 << KEY_FLAG_BUILTIN;
305 if (flags & KEY_ALLOC_UID_KEYRING)
306 key->flags |= 1 << KEY_FLAG_UID_KEYRING;
307 if (flags & KEY_ALLOC_SET_KEEP)
308 key->flags |= 1 << KEY_FLAG_KEEP;
309
310 #ifdef KEY_DEBUGGING
311 key->magic = KEY_DEBUG_MAGIC;
312 #endif
313
314 /* let the security module know about the key */
315 ret = security_key_alloc(key, cred, flags);
316 if (ret < 0)
317 goto security_error;
318
319 /* publish the key by giving it a serial number */
320 refcount_inc(&key->domain_tag->usage);
321 atomic_inc(&user->nkeys);
322 key_alloc_serial(key);
323
324 error:
325 return key;
326
327 security_error:
328 kfree(key->description);
329 kmem_cache_free(key_jar, key);
330 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
331 spin_lock(&user->lock);
332 user->qnkeys--;
333 user->qnbytes -= quotalen;
334 spin_unlock(&user->lock);
335 }
336 key_user_put(user);
337 key = ERR_PTR(ret);
338 goto error;
339
340 no_memory_3:
341 kmem_cache_free(key_jar, key);
342 no_memory_2:
343 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
344 spin_lock(&user->lock);
345 user->qnkeys--;
346 user->qnbytes -= quotalen;
347 spin_unlock(&user->lock);
348 }
349 key_user_put(user);
350 no_memory_1:
351 key = ERR_PTR(-ENOMEM);
352 goto error;
353
354 no_quota:
355 spin_unlock(&user->lock);
356 key_user_put(user);
357 key = ERR_PTR(-EDQUOT);
358 goto error;
359 }
360 EXPORT_SYMBOL(key_alloc);
361
362 /**
363 * key_payload_reserve - Adjust data quota reservation for the key's payload
364 * @key: The key to make the reservation for.
365 * @datalen: The amount of data payload the caller now wants.
366 *
367 * Adjust the amount of the owning user's key data quota that a key reserves.
368 * If the amount is increased, then -EDQUOT may be returned if there isn't
369 * enough free quota available.
370 *
371 * If successful, 0 is returned.
372 */
key_payload_reserve(struct key * key,size_t datalen)373 int key_payload_reserve(struct key *key, size_t datalen)
374 {
375 int delta = (int)datalen - key->datalen;
376 int ret = 0;
377
378 key_check(key);
379
380 /* contemplate the quota adjustment */
381 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
382 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
383 key_quota_root_maxbytes : key_quota_maxbytes;
384
385 spin_lock(&key->user->lock);
386
387 if (delta > 0 &&
388 (key->user->qnbytes + delta > maxbytes ||
389 key->user->qnbytes + delta < key->user->qnbytes)) {
390 ret = -EDQUOT;
391 }
392 else {
393 key->user->qnbytes += delta;
394 key->quotalen += delta;
395 }
396 spin_unlock(&key->user->lock);
397 }
398
399 /* change the recorded data length if that didn't generate an error */
400 if (ret == 0)
401 key->datalen = datalen;
402
403 return ret;
404 }
405 EXPORT_SYMBOL(key_payload_reserve);
406
407 /*
408 * Change the key state to being instantiated.
409 */
mark_key_instantiated(struct key * key,int reject_error)410 static void mark_key_instantiated(struct key *key, int reject_error)
411 {
412 /* Commit the payload before setting the state; barrier versus
413 * key_read_state().
414 */
415 smp_store_release(&key->state,
416 (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
417 }
418
419 /*
420 * Instantiate a key and link it into the target keyring atomically. Must be
421 * called with the target keyring's semaphore writelocked. The target key's
422 * semaphore need not be locked as instantiation is serialised by
423 * key_construction_mutex.
424 */
__key_instantiate_and_link(struct key * key,struct key_preparsed_payload * prep,struct key * keyring,struct key * authkey,struct assoc_array_edit ** _edit)425 static int __key_instantiate_and_link(struct key *key,
426 struct key_preparsed_payload *prep,
427 struct key *keyring,
428 struct key *authkey,
429 struct assoc_array_edit **_edit)
430 {
431 int ret, awaken;
432
433 key_check(key);
434 key_check(keyring);
435
436 awaken = 0;
437 ret = -EBUSY;
438
439 mutex_lock(&key_construction_mutex);
440
441 /* can't instantiate twice */
442 if (key->state == KEY_IS_UNINSTANTIATED) {
443 /* instantiate the key */
444 ret = key->type->instantiate(key, prep);
445
446 if (ret == 0) {
447 /* mark the key as being instantiated */
448 atomic_inc(&key->user->nikeys);
449 mark_key_instantiated(key, 0);
450 notify_key(key, NOTIFY_KEY_INSTANTIATED, 0);
451
452 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
453 awaken = 1;
454
455 /* and link it into the destination keyring */
456 if (keyring) {
457 if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
458 set_bit(KEY_FLAG_KEEP, &key->flags);
459
460 __key_link(keyring, key, _edit);
461 }
462
463 /* disable the authorisation key */
464 if (authkey)
465 key_invalidate(authkey);
466
467 key_set_expiry(key, prep->expiry);
468 }
469 }
470
471 mutex_unlock(&key_construction_mutex);
472
473 /* wake up anyone waiting for a key to be constructed */
474 if (awaken)
475 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
476
477 return ret;
478 }
479
480 /**
481 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
482 * @key: The key to instantiate.
483 * @data: The data to use to instantiate the keyring.
484 * @datalen: The length of @data.
485 * @keyring: Keyring to create a link in on success (or NULL).
486 * @authkey: The authorisation token permitting instantiation.
487 *
488 * Instantiate a key that's in the uninstantiated state using the provided data
489 * and, if successful, link it in to the destination keyring if one is
490 * supplied.
491 *
492 * If successful, 0 is returned, the authorisation token is revoked and anyone
493 * waiting for the key is woken up. If the key was already instantiated,
494 * -EBUSY will be returned.
495 */
key_instantiate_and_link(struct key * key,const void * data,size_t datalen,struct key * keyring,struct key * authkey)496 int key_instantiate_and_link(struct key *key,
497 const void *data,
498 size_t datalen,
499 struct key *keyring,
500 struct key *authkey)
501 {
502 struct key_preparsed_payload prep;
503 struct assoc_array_edit *edit = NULL;
504 int ret;
505
506 memset(&prep, 0, sizeof(prep));
507 prep.data = data;
508 prep.datalen = datalen;
509 prep.quotalen = key->type->def_datalen;
510 prep.expiry = TIME64_MAX;
511 if (key->type->preparse) {
512 ret = key->type->preparse(&prep);
513 if (ret < 0)
514 goto error;
515 }
516
517 if (keyring) {
518 ret = __key_link_lock(keyring, &key->index_key);
519 if (ret < 0)
520 goto error;
521
522 ret = __key_link_begin(keyring, &key->index_key, &edit);
523 if (ret < 0)
524 goto error_link_end;
525
526 if (keyring->restrict_link && keyring->restrict_link->check) {
527 struct key_restriction *keyres = keyring->restrict_link;
528
529 ret = keyres->check(keyring, key->type, &prep.payload,
530 keyres->key);
531 if (ret < 0)
532 goto error_link_end;
533 }
534 }
535
536 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
537
538 error_link_end:
539 if (keyring)
540 __key_link_end(keyring, &key->index_key, edit);
541
542 error:
543 if (key->type->preparse)
544 key->type->free_preparse(&prep);
545 return ret;
546 }
547
548 EXPORT_SYMBOL(key_instantiate_and_link);
549
550 /**
551 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
552 * @key: The key to instantiate.
553 * @timeout: The timeout on the negative key.
554 * @error: The error to return when the key is hit.
555 * @keyring: Keyring to create a link in on success (or NULL).
556 * @authkey: The authorisation token permitting instantiation.
557 *
558 * Negatively instantiate a key that's in the uninstantiated state and, if
559 * successful, set its timeout and stored error and link it in to the
560 * destination keyring if one is supplied. The key and any links to the key
561 * will be automatically garbage collected after the timeout expires.
562 *
563 * Negative keys are used to rate limit repeated request_key() calls by causing
564 * them to return the stored error code (typically ENOKEY) until the negative
565 * key expires.
566 *
567 * If successful, 0 is returned, the authorisation token is revoked and anyone
568 * waiting for the key is woken up. If the key was already instantiated,
569 * -EBUSY will be returned.
570 */
key_reject_and_link(struct key * key,unsigned timeout,unsigned error,struct key * keyring,struct key * authkey)571 int key_reject_and_link(struct key *key,
572 unsigned timeout,
573 unsigned error,
574 struct key *keyring,
575 struct key *authkey)
576 {
577 struct assoc_array_edit *edit = NULL;
578 int ret, awaken, link_ret = 0;
579
580 key_check(key);
581 key_check(keyring);
582
583 awaken = 0;
584 ret = -EBUSY;
585
586 if (keyring) {
587 if (keyring->restrict_link)
588 return -EPERM;
589
590 link_ret = __key_link_lock(keyring, &key->index_key);
591 if (link_ret == 0) {
592 link_ret = __key_link_begin(keyring, &key->index_key, &edit);
593 if (link_ret < 0)
594 __key_link_end(keyring, &key->index_key, edit);
595 }
596 }
597
598 mutex_lock(&key_construction_mutex);
599
600 /* can't instantiate twice */
601 if (key->state == KEY_IS_UNINSTANTIATED) {
602 /* mark the key as being negatively instantiated */
603 atomic_inc(&key->user->nikeys);
604 mark_key_instantiated(key, -error);
605 notify_key(key, NOTIFY_KEY_INSTANTIATED, -error);
606 key_set_expiry(key, ktime_get_real_seconds() + timeout);
607
608 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
609 awaken = 1;
610
611 ret = 0;
612
613 /* and link it into the destination keyring */
614 if (keyring && link_ret == 0)
615 __key_link(keyring, key, &edit);
616
617 /* disable the authorisation key */
618 if (authkey)
619 key_invalidate(authkey);
620 }
621
622 mutex_unlock(&key_construction_mutex);
623
624 if (keyring && link_ret == 0)
625 __key_link_end(keyring, &key->index_key, edit);
626
627 /* wake up anyone waiting for a key to be constructed */
628 if (awaken)
629 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
630
631 return ret == 0 ? link_ret : ret;
632 }
633 EXPORT_SYMBOL(key_reject_and_link);
634
635 /**
636 * key_put - Discard a reference to a key.
637 * @key: The key to discard a reference from.
638 *
639 * Discard a reference to a key, and when all the references are gone, we
640 * schedule the cleanup task to come and pull it out of the tree in process
641 * context at some later time.
642 */
key_put(struct key * key)643 void key_put(struct key *key)
644 {
645 if (key) {
646 key_check(key);
647
648 if (refcount_dec_and_test(&key->usage))
649 schedule_work(&key_gc_work);
650 }
651 }
652 EXPORT_SYMBOL(key_put);
653
654 /*
655 * Find a key by its serial number.
656 */
key_lookup(key_serial_t id)657 struct key *key_lookup(key_serial_t id)
658 {
659 struct rb_node *n;
660 struct key *key;
661
662 spin_lock(&key_serial_lock);
663
664 /* search the tree for the specified key */
665 n = key_serial_tree.rb_node;
666 while (n) {
667 key = rb_entry(n, struct key, serial_node);
668
669 if (id < key->serial)
670 n = n->rb_left;
671 else if (id > key->serial)
672 n = n->rb_right;
673 else
674 goto found;
675 }
676
677 not_found:
678 key = ERR_PTR(-ENOKEY);
679 goto error;
680
681 found:
682 /* A key is allowed to be looked up only if someone still owns a
683 * reference to it - otherwise it's awaiting the gc.
684 */
685 if (!refcount_inc_not_zero(&key->usage))
686 goto not_found;
687
688 error:
689 spin_unlock(&key_serial_lock);
690 return key;
691 }
692
693 /*
694 * Find and lock the specified key type against removal.
695 *
696 * We return with the sem read-locked if successful. If the type wasn't
697 * available -ENOKEY is returned instead.
698 */
key_type_lookup(const char * type)699 struct key_type *key_type_lookup(const char *type)
700 {
701 struct key_type *ktype;
702
703 down_read(&key_types_sem);
704
705 /* look up the key type to see if it's one of the registered kernel
706 * types */
707 list_for_each_entry(ktype, &key_types_list, link) {
708 if (strcmp(ktype->name, type) == 0)
709 goto found_kernel_type;
710 }
711
712 up_read(&key_types_sem);
713 ktype = ERR_PTR(-ENOKEY);
714
715 found_kernel_type:
716 return ktype;
717 }
718
key_set_timeout(struct key * key,unsigned timeout)719 void key_set_timeout(struct key *key, unsigned timeout)
720 {
721 time64_t expiry = TIME64_MAX;
722
723 /* make the changes with the locks held to prevent races */
724 down_write(&key->sem);
725
726 if (timeout > 0)
727 expiry = ktime_get_real_seconds() + timeout;
728 key_set_expiry(key, expiry);
729
730 up_write(&key->sem);
731 }
732 EXPORT_SYMBOL_GPL(key_set_timeout);
733
734 /*
735 * Unlock a key type locked by key_type_lookup().
736 */
key_type_put(struct key_type * ktype)737 void key_type_put(struct key_type *ktype)
738 {
739 up_read(&key_types_sem);
740 }
741
742 /*
743 * Attempt to update an existing key.
744 *
745 * The key is given to us with an incremented refcount that we need to discard
746 * if we get an error.
747 */
__key_update(key_ref_t key_ref,struct key_preparsed_payload * prep)748 static inline key_ref_t __key_update(key_ref_t key_ref,
749 struct key_preparsed_payload *prep)
750 {
751 struct key *key = key_ref_to_ptr(key_ref);
752 int ret;
753
754 /* need write permission on the key to update it */
755 ret = key_permission(key_ref, KEY_NEED_WRITE);
756 if (ret < 0)
757 goto error;
758
759 ret = -EEXIST;
760 if (!key->type->update)
761 goto error;
762
763 down_write(&key->sem);
764
765 ret = key->type->update(key, prep);
766 if (ret == 0) {
767 /* Updating a negative key positively instantiates it */
768 mark_key_instantiated(key, 0);
769 notify_key(key, NOTIFY_KEY_UPDATED, 0);
770 }
771
772 up_write(&key->sem);
773
774 if (ret < 0)
775 goto error;
776 out:
777 return key_ref;
778
779 error:
780 key_put(key);
781 key_ref = ERR_PTR(ret);
782 goto out;
783 }
784
785 /**
786 * key_create_or_update - Update or create and instantiate a key.
787 * @keyring_ref: A pointer to the destination keyring with possession flag.
788 * @type: The type of key.
789 * @description: The searchable description for the key.
790 * @payload: The data to use to instantiate or update the key.
791 * @plen: The length of @payload.
792 * @perm: The permissions mask for a new key.
793 * @flags: The quota flags for a new key.
794 *
795 * Search the destination keyring for a key of the same description and if one
796 * is found, update it, otherwise create and instantiate a new one and create a
797 * link to it from that keyring.
798 *
799 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
800 * concocted.
801 *
802 * Returns a pointer to the new key if successful, -ENODEV if the key type
803 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
804 * caller isn't permitted to modify the keyring or the LSM did not permit
805 * creation of the key.
806 *
807 * On success, the possession flag from the keyring ref will be tacked on to
808 * the key ref before it is returned.
809 */
key_create_or_update(key_ref_t keyring_ref,const char * type,const char * description,const void * payload,size_t plen,key_perm_t perm,unsigned long flags)810 key_ref_t key_create_or_update(key_ref_t keyring_ref,
811 const char *type,
812 const char *description,
813 const void *payload,
814 size_t plen,
815 key_perm_t perm,
816 unsigned long flags)
817 {
818 struct keyring_index_key index_key = {
819 .description = description,
820 };
821 struct key_preparsed_payload prep;
822 struct assoc_array_edit *edit = NULL;
823 const struct cred *cred = current_cred();
824 struct key *keyring, *key = NULL;
825 key_ref_t key_ref;
826 int ret;
827 struct key_restriction *restrict_link = NULL;
828
829 /* look up the key type to see if it's one of the registered kernel
830 * types */
831 index_key.type = key_type_lookup(type);
832 if (IS_ERR(index_key.type)) {
833 key_ref = ERR_PTR(-ENODEV);
834 goto error;
835 }
836
837 key_ref = ERR_PTR(-EINVAL);
838 if (!index_key.type->instantiate ||
839 (!index_key.description && !index_key.type->preparse))
840 goto error_put_type;
841
842 keyring = key_ref_to_ptr(keyring_ref);
843
844 key_check(keyring);
845
846 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
847 restrict_link = keyring->restrict_link;
848
849 key_ref = ERR_PTR(-ENOTDIR);
850 if (keyring->type != &key_type_keyring)
851 goto error_put_type;
852
853 memset(&prep, 0, sizeof(prep));
854 prep.data = payload;
855 prep.datalen = plen;
856 prep.quotalen = index_key.type->def_datalen;
857 prep.expiry = TIME64_MAX;
858 if (index_key.type->preparse) {
859 ret = index_key.type->preparse(&prep);
860 if (ret < 0) {
861 key_ref = ERR_PTR(ret);
862 goto error_free_prep;
863 }
864 if (!index_key.description)
865 index_key.description = prep.description;
866 key_ref = ERR_PTR(-EINVAL);
867 if (!index_key.description)
868 goto error_free_prep;
869 }
870 index_key.desc_len = strlen(index_key.description);
871 key_set_index_key(&index_key);
872
873 ret = __key_link_lock(keyring, &index_key);
874 if (ret < 0) {
875 key_ref = ERR_PTR(ret);
876 goto error_free_prep;
877 }
878
879 ret = __key_link_begin(keyring, &index_key, &edit);
880 if (ret < 0) {
881 key_ref = ERR_PTR(ret);
882 goto error_link_end;
883 }
884
885 if (restrict_link && restrict_link->check) {
886 ret = restrict_link->check(keyring, index_key.type,
887 &prep.payload, restrict_link->key);
888 if (ret < 0) {
889 key_ref = ERR_PTR(ret);
890 goto error_link_end;
891 }
892 }
893
894 /* if we're going to allocate a new key, we're going to have
895 * to modify the keyring */
896 ret = key_permission(keyring_ref, KEY_NEED_WRITE);
897 if (ret < 0) {
898 key_ref = ERR_PTR(ret);
899 goto error_link_end;
900 }
901
902 /* if it's possible to update this type of key, search for an existing
903 * key of the same type and description in the destination keyring and
904 * update that instead if possible
905 */
906 if (index_key.type->update) {
907 key_ref = find_key_to_update(keyring_ref, &index_key);
908 if (key_ref)
909 goto found_matching_key;
910 }
911
912 /* if the client doesn't provide, decide on the permissions we want */
913 if (perm == KEY_PERM_UNDEF) {
914 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
915 perm |= KEY_USR_VIEW;
916
917 if (index_key.type->read)
918 perm |= KEY_POS_READ;
919
920 if (index_key.type == &key_type_keyring ||
921 index_key.type->update)
922 perm |= KEY_POS_WRITE;
923 }
924
925 /* allocate a new key */
926 key = key_alloc(index_key.type, index_key.description,
927 cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
928 if (IS_ERR(key)) {
929 key_ref = ERR_CAST(key);
930 goto error_link_end;
931 }
932
933 /* instantiate it and link it into the target keyring */
934 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
935 if (ret < 0) {
936 key_put(key);
937 key_ref = ERR_PTR(ret);
938 goto error_link_end;
939 }
940
941 ima_post_key_create_or_update(keyring, key, payload, plen,
942 flags, true);
943
944 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
945
946 error_link_end:
947 __key_link_end(keyring, &index_key, edit);
948 error_free_prep:
949 if (index_key.type->preparse)
950 index_key.type->free_preparse(&prep);
951 error_put_type:
952 key_type_put(index_key.type);
953 error:
954 return key_ref;
955
956 found_matching_key:
957 /* we found a matching key, so we're going to try to update it
958 * - we can drop the locks first as we have the key pinned
959 */
960 __key_link_end(keyring, &index_key, edit);
961
962 key = key_ref_to_ptr(key_ref);
963 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
964 ret = wait_for_key_construction(key, true);
965 if (ret < 0) {
966 key_ref_put(key_ref);
967 key_ref = ERR_PTR(ret);
968 goto error_free_prep;
969 }
970 }
971
972 key_ref = __key_update(key_ref, &prep);
973
974 if (!IS_ERR(key_ref))
975 ima_post_key_create_or_update(keyring, key,
976 payload, plen,
977 flags, false);
978
979 goto error_free_prep;
980 }
981 EXPORT_SYMBOL(key_create_or_update);
982
983 /**
984 * key_update - Update a key's contents.
985 * @key_ref: The pointer (plus possession flag) to the key.
986 * @payload: The data to be used to update the key.
987 * @plen: The length of @payload.
988 *
989 * Attempt to update the contents of a key with the given payload data. The
990 * caller must be granted Write permission on the key. Negative keys can be
991 * instantiated by this method.
992 *
993 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
994 * type does not support updating. The key type may return other errors.
995 */
key_update(key_ref_t key_ref,const void * payload,size_t plen)996 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
997 {
998 struct key_preparsed_payload prep;
999 struct key *key = key_ref_to_ptr(key_ref);
1000 int ret;
1001
1002 key_check(key);
1003
1004 /* the key must be writable */
1005 ret = key_permission(key_ref, KEY_NEED_WRITE);
1006 if (ret < 0)
1007 return ret;
1008
1009 /* attempt to update it if supported */
1010 if (!key->type->update)
1011 return -EOPNOTSUPP;
1012
1013 memset(&prep, 0, sizeof(prep));
1014 prep.data = payload;
1015 prep.datalen = plen;
1016 prep.quotalen = key->type->def_datalen;
1017 prep.expiry = TIME64_MAX;
1018 if (key->type->preparse) {
1019 ret = key->type->preparse(&prep);
1020 if (ret < 0)
1021 goto error;
1022 }
1023
1024 down_write(&key->sem);
1025
1026 ret = key->type->update(key, &prep);
1027 if (ret == 0) {
1028 /* Updating a negative key positively instantiates it */
1029 mark_key_instantiated(key, 0);
1030 notify_key(key, NOTIFY_KEY_UPDATED, 0);
1031 }
1032
1033 up_write(&key->sem);
1034
1035 error:
1036 if (key->type->preparse)
1037 key->type->free_preparse(&prep);
1038 return ret;
1039 }
1040 EXPORT_SYMBOL(key_update);
1041
1042 /**
1043 * key_revoke - Revoke a key.
1044 * @key: The key to be revoked.
1045 *
1046 * Mark a key as being revoked and ask the type to free up its resources. The
1047 * revocation timeout is set and the key and all its links will be
1048 * automatically garbage collected after key_gc_delay amount of time if they
1049 * are not manually dealt with first.
1050 */
key_revoke(struct key * key)1051 void key_revoke(struct key *key)
1052 {
1053 time64_t time;
1054
1055 key_check(key);
1056
1057 /* make sure no one's trying to change or use the key when we mark it
1058 * - we tell lockdep that we might nest because we might be revoking an
1059 * authorisation key whilst holding the sem on a key we've just
1060 * instantiated
1061 */
1062 down_write_nested(&key->sem, 1);
1063 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags)) {
1064 notify_key(key, NOTIFY_KEY_REVOKED, 0);
1065 if (key->type->revoke)
1066 key->type->revoke(key);
1067
1068 /* set the death time to no more than the expiry time */
1069 time = ktime_get_real_seconds();
1070 if (key->revoked_at == 0 || key->revoked_at > time) {
1071 key->revoked_at = time;
1072 key_schedule_gc(key->revoked_at + key_gc_delay);
1073 }
1074 }
1075
1076 up_write(&key->sem);
1077 }
1078 EXPORT_SYMBOL(key_revoke);
1079
1080 /**
1081 * key_invalidate - Invalidate a key.
1082 * @key: The key to be invalidated.
1083 *
1084 * Mark a key as being invalidated and have it cleaned up immediately. The key
1085 * is ignored by all searches and other operations from this point.
1086 */
key_invalidate(struct key * key)1087 void key_invalidate(struct key *key)
1088 {
1089 kenter("%d", key_serial(key));
1090
1091 key_check(key);
1092
1093 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1094 down_write_nested(&key->sem, 1);
1095 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1096 notify_key(key, NOTIFY_KEY_INVALIDATED, 0);
1097 key_schedule_gc_links();
1098 }
1099 up_write(&key->sem);
1100 }
1101 }
1102 EXPORT_SYMBOL(key_invalidate);
1103
1104 /**
1105 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1106 * @key: The key to be instantiated
1107 * @prep: The preparsed data to load.
1108 *
1109 * Instantiate a key from preparsed data. We assume we can just copy the data
1110 * in directly and clear the old pointers.
1111 *
1112 * This can be pointed to directly by the key type instantiate op pointer.
1113 */
generic_key_instantiate(struct key * key,struct key_preparsed_payload * prep)1114 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1115 {
1116 int ret;
1117
1118 pr_devel("==>%s()\n", __func__);
1119
1120 ret = key_payload_reserve(key, prep->quotalen);
1121 if (ret == 0) {
1122 rcu_assign_keypointer(key, prep->payload.data[0]);
1123 key->payload.data[1] = prep->payload.data[1];
1124 key->payload.data[2] = prep->payload.data[2];
1125 key->payload.data[3] = prep->payload.data[3];
1126 prep->payload.data[0] = NULL;
1127 prep->payload.data[1] = NULL;
1128 prep->payload.data[2] = NULL;
1129 prep->payload.data[3] = NULL;
1130 }
1131 pr_devel("<==%s() = %d\n", __func__, ret);
1132 return ret;
1133 }
1134 EXPORT_SYMBOL(generic_key_instantiate);
1135
1136 /**
1137 * register_key_type - Register a type of key.
1138 * @ktype: The new key type.
1139 *
1140 * Register a new key type.
1141 *
1142 * Returns 0 on success or -EEXIST if a type of this name already exists.
1143 */
register_key_type(struct key_type * ktype)1144 int register_key_type(struct key_type *ktype)
1145 {
1146 struct key_type *p;
1147 int ret;
1148
1149 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1150
1151 ret = -EEXIST;
1152 down_write(&key_types_sem);
1153
1154 /* disallow key types with the same name */
1155 list_for_each_entry(p, &key_types_list, link) {
1156 if (strcmp(p->name, ktype->name) == 0)
1157 goto out;
1158 }
1159
1160 /* store the type */
1161 list_add(&ktype->link, &key_types_list);
1162
1163 pr_notice("Key type %s registered\n", ktype->name);
1164 ret = 0;
1165
1166 out:
1167 up_write(&key_types_sem);
1168 return ret;
1169 }
1170 EXPORT_SYMBOL(register_key_type);
1171
1172 /**
1173 * unregister_key_type - Unregister a type of key.
1174 * @ktype: The key type.
1175 *
1176 * Unregister a key type and mark all the extant keys of this type as dead.
1177 * Those keys of this type are then destroyed to get rid of their payloads and
1178 * they and their links will be garbage collected as soon as possible.
1179 */
unregister_key_type(struct key_type * ktype)1180 void unregister_key_type(struct key_type *ktype)
1181 {
1182 down_write(&key_types_sem);
1183 list_del_init(&ktype->link);
1184 downgrade_write(&key_types_sem);
1185 key_gc_keytype(ktype);
1186 pr_notice("Key type %s unregistered\n", ktype->name);
1187 up_read(&key_types_sem);
1188 }
1189 EXPORT_SYMBOL(unregister_key_type);
1190
1191 /*
1192 * Initialise the key management state.
1193 */
key_init(void)1194 void __init key_init(void)
1195 {
1196 /* allocate a slab in which we can store keys */
1197 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1198 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1199
1200 /* add the special key types */
1201 list_add_tail(&key_type_keyring.link, &key_types_list);
1202 list_add_tail(&key_type_dead.link, &key_types_list);
1203 list_add_tail(&key_type_user.link, &key_types_list);
1204 list_add_tail(&key_type_logon.link, &key_types_list);
1205
1206 /* record the root user tracking */
1207 rb_link_node(&root_key_user.node,
1208 NULL,
1209 &key_user_tree.rb_node);
1210
1211 rb_insert_color(&root_key_user.node,
1212 &key_user_tree);
1213 }
1214