• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SLUB: A slab allocator that limits cache line use instead of queuing
4  * objects in per cpu and per node lists.
5  *
6  * The allocator synchronizes using per slab locks or atomic operations
7  * and only uses a centralized lock to manage a pool of partial slabs.
8  *
9  * (C) 2007 SGI, Christoph Lameter
10  * (C) 2011 Linux Foundation, Christoph Lameter
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/kfence.h>
32 #include <linux/memory.h>
33 #include <linux/math64.h>
34 #include <linux/fault-inject.h>
35 #include <linux/stacktrace.h>
36 #include <linux/prefetch.h>
37 #include <linux/memcontrol.h>
38 #include <linux/random.h>
39 #include <kunit/test.h>
40 
41 #include <linux/debugfs.h>
42 #include <trace/events/kmem.h>
43 #include <trace/hooks/mm.h>
44 
45 #include "internal.h"
46 
47 /*
48  * Lock order:
49  *   1. slab_mutex (Global Mutex)
50  *   2. node->list_lock (Spinlock)
51  *   3. kmem_cache->cpu_slab->lock (Local lock)
52  *   4. slab_lock(page) (Only on some arches or for debugging)
53  *   5. object_map_lock (Only for debugging)
54  *
55  *   slab_mutex
56  *
57  *   The role of the slab_mutex is to protect the list of all the slabs
58  *   and to synchronize major metadata changes to slab cache structures.
59  *   Also synchronizes memory hotplug callbacks.
60  *
61  *   slab_lock
62  *
63  *   The slab_lock is a wrapper around the page lock, thus it is a bit
64  *   spinlock.
65  *
66  *   The slab_lock is only used for debugging and on arches that do not
67  *   have the ability to do a cmpxchg_double. It only protects:
68  *	A. page->freelist	-> List of object free in a page
69  *	B. page->inuse		-> Number of objects in use
70  *	C. page->objects	-> Number of objects in page
71  *	D. page->frozen		-> frozen state
72  *
73  *   Frozen slabs
74  *
75  *   If a slab is frozen then it is exempt from list management. It is not
76  *   on any list except per cpu partial list. The processor that froze the
77  *   slab is the one who can perform list operations on the page. Other
78  *   processors may put objects onto the freelist but the processor that
79  *   froze the slab is the only one that can retrieve the objects from the
80  *   page's freelist.
81  *
82  *   list_lock
83  *
84  *   The list_lock protects the partial and full list on each node and
85  *   the partial slab counter. If taken then no new slabs may be added or
86  *   removed from the lists nor make the number of partial slabs be modified.
87  *   (Note that the total number of slabs is an atomic value that may be
88  *   modified without taking the list lock).
89  *
90  *   The list_lock is a centralized lock and thus we avoid taking it as
91  *   much as possible. As long as SLUB does not have to handle partial
92  *   slabs, operations can continue without any centralized lock. F.e.
93  *   allocating a long series of objects that fill up slabs does not require
94  *   the list lock.
95  *
96  *   cpu_slab->lock local lock
97  *
98  *   This locks protect slowpath manipulation of all kmem_cache_cpu fields
99  *   except the stat counters. This is a percpu structure manipulated only by
100  *   the local cpu, so the lock protects against being preempted or interrupted
101  *   by an irq. Fast path operations rely on lockless operations instead.
102  *   On PREEMPT_RT, the local lock does not actually disable irqs (and thus
103  *   prevent the lockless operations), so fastpath operations also need to take
104  *   the lock and are no longer lockless.
105  *
106  *   lockless fastpaths
107  *
108  *   The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
109  *   are fully lockless when satisfied from the percpu slab (and when
110  *   cmpxchg_double is possible to use, otherwise slab_lock is taken).
111  *   They also don't disable preemption or migration or irqs. They rely on
112  *   the transaction id (tid) field to detect being preempted or moved to
113  *   another cpu.
114  *
115  *   irq, preemption, migration considerations
116  *
117  *   Interrupts are disabled as part of list_lock or local_lock operations, or
118  *   around the slab_lock operation, in order to make the slab allocator safe
119  *   to use in the context of an irq.
120  *
121  *   In addition, preemption (or migration on PREEMPT_RT) is disabled in the
122  *   allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
123  *   local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
124  *   doesn't have to be revalidated in each section protected by the local lock.
125  *
126  * SLUB assigns one slab for allocation to each processor.
127  * Allocations only occur from these slabs called cpu slabs.
128  *
129  * Slabs with free elements are kept on a partial list and during regular
130  * operations no list for full slabs is used. If an object in a full slab is
131  * freed then the slab will show up again on the partial lists.
132  * We track full slabs for debugging purposes though because otherwise we
133  * cannot scan all objects.
134  *
135  * Slabs are freed when they become empty. Teardown and setup is
136  * minimal so we rely on the page allocators per cpu caches for
137  * fast frees and allocs.
138  *
139  * page->frozen		The slab is frozen and exempt from list processing.
140  * 			This means that the slab is dedicated to a purpose
141  * 			such as satisfying allocations for a specific
142  * 			processor. Objects may be freed in the slab while
143  * 			it is frozen but slab_free will then skip the usual
144  * 			list operations. It is up to the processor holding
145  * 			the slab to integrate the slab into the slab lists
146  * 			when the slab is no longer needed.
147  *
148  * 			One use of this flag is to mark slabs that are
149  * 			used for allocations. Then such a slab becomes a cpu
150  * 			slab. The cpu slab may be equipped with an additional
151  * 			freelist that allows lockless access to
152  * 			free objects in addition to the regular freelist
153  * 			that requires the slab lock.
154  *
155  * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
156  * 			options set. This moves	slab handling out of
157  * 			the fast path and disables lockless freelists.
158  */
159 
160 /*
161  * We could simply use migrate_disable()/enable() but as long as it's a
162  * function call even on !PREEMPT_RT, use inline preempt_disable() there.
163  */
164 #ifndef CONFIG_PREEMPT_RT
165 #define slub_get_cpu_ptr(var)	get_cpu_ptr(var)
166 #define slub_put_cpu_ptr(var)	put_cpu_ptr(var)
167 #else
168 #define slub_get_cpu_ptr(var)		\
169 ({					\
170 	migrate_disable();		\
171 	this_cpu_ptr(var);		\
172 })
173 #define slub_put_cpu_ptr(var)		\
174 do {					\
175 	(void)(var);			\
176 	migrate_enable();		\
177 } while (0)
178 #endif
179 
180 #ifdef CONFIG_SLUB_DEBUG
181 #ifdef CONFIG_SLUB_DEBUG_ON
182 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
183 #else
184 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
185 #endif
186 #endif		/* CONFIG_SLUB_DEBUG */
187 
kmem_cache_debug(struct kmem_cache * s)188 static inline bool kmem_cache_debug(struct kmem_cache *s)
189 {
190 	return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
191 }
192 
fixup_red_left(struct kmem_cache * s,void * p)193 void *fixup_red_left(struct kmem_cache *s, void *p)
194 {
195 	if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
196 		p += s->red_left_pad;
197 
198 	return p;
199 }
200 
kmem_cache_has_cpu_partial(struct kmem_cache * s)201 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
202 {
203 #ifdef CONFIG_SLUB_CPU_PARTIAL
204 	return !kmem_cache_debug(s);
205 #else
206 	return false;
207 #endif
208 }
209 
210 /*
211  * Issues still to be resolved:
212  *
213  * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
214  *
215  * - Variable sizing of the per node arrays
216  */
217 
218 /* Enable to log cmpxchg failures */
219 #undef SLUB_DEBUG_CMPXCHG
220 
221 /*
222  * Minimum number of partial slabs. These will be left on the partial
223  * lists even if they are empty. kmem_cache_shrink may reclaim them.
224  */
225 #define MIN_PARTIAL 5
226 
227 /*
228  * Maximum number of desirable partial slabs.
229  * The existence of more partial slabs makes kmem_cache_shrink
230  * sort the partial list by the number of objects in use.
231  */
232 #define MAX_PARTIAL 10
233 
234 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
235 				SLAB_POISON | SLAB_STORE_USER)
236 
237 /*
238  * These debug flags cannot use CMPXCHG because there might be consistency
239  * issues when checking or reading debug information
240  */
241 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
242 				SLAB_TRACE)
243 
244 
245 /*
246  * Debugging flags that require metadata to be stored in the slab.  These get
247  * disabled when slub_debug=O is used and a cache's min order increases with
248  * metadata.
249  */
250 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
251 
252 #define OO_SHIFT	16
253 #define OO_MASK		((1 << OO_SHIFT) - 1)
254 #define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
255 
256 /* Internal SLUB flags */
257 /* Poison object */
258 #define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
259 /* Use cmpxchg_double */
260 #define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
261 
262 #ifdef CONFIG_SYSFS
263 static int sysfs_slab_add(struct kmem_cache *);
264 static int sysfs_slab_alias(struct kmem_cache *, const char *);
265 #else
sysfs_slab_add(struct kmem_cache * s)266 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)267 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
268 							{ return 0; }
269 #endif
270 
271 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
272 static void debugfs_slab_add(struct kmem_cache *);
273 #else
debugfs_slab_add(struct kmem_cache * s)274 static inline void debugfs_slab_add(struct kmem_cache *s) { }
275 #endif
276 
stat(const struct kmem_cache * s,enum stat_item si)277 static inline void stat(const struct kmem_cache *s, enum stat_item si)
278 {
279 #ifdef CONFIG_SLUB_STATS
280 	/*
281 	 * The rmw is racy on a preemptible kernel but this is acceptable, so
282 	 * avoid this_cpu_add()'s irq-disable overhead.
283 	 */
284 	raw_cpu_inc(s->cpu_slab->stat[si]);
285 #endif
286 }
287 
288 /*
289  * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
290  * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
291  * differ during memory hotplug/hotremove operations.
292  * Protected by slab_mutex.
293  */
294 static nodemask_t slab_nodes;
295 
296 /*
297  * Workqueue used for flush_cpu_slab().
298  */
299 static struct workqueue_struct *flushwq;
300 
301 /********************************************************************
302  * 			Core slab cache functions
303  *******************************************************************/
304 
305 /*
306  * Returns freelist pointer (ptr). With hardening, this is obfuscated
307  * with an XOR of the address where the pointer is held and a per-cache
308  * random number.
309  */
freelist_ptr(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)310 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
311 				 unsigned long ptr_addr)
312 {
313 #ifdef CONFIG_SLAB_FREELIST_HARDENED
314 	/*
315 	 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
316 	 * Normally, this doesn't cause any issues, as both set_freepointer()
317 	 * and get_freepointer() are called with a pointer with the same tag.
318 	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
319 	 * example, when __free_slub() iterates over objects in a cache, it
320 	 * passes untagged pointers to check_object(). check_object() in turns
321 	 * calls get_freepointer() with an untagged pointer, which causes the
322 	 * freepointer to be restored incorrectly.
323 	 */
324 	return (void *)((unsigned long)ptr ^ s->random ^
325 			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
326 #else
327 	return ptr;
328 #endif
329 }
330 
331 /* Returns the freelist pointer recorded at location ptr_addr. */
freelist_dereference(const struct kmem_cache * s,void * ptr_addr)332 static inline void *freelist_dereference(const struct kmem_cache *s,
333 					 void *ptr_addr)
334 {
335 	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
336 			    (unsigned long)ptr_addr);
337 }
338 
get_freepointer(struct kmem_cache * s,void * object)339 static inline void *get_freepointer(struct kmem_cache *s, void *object)
340 {
341 	object = kasan_reset_tag(object);
342 	return freelist_dereference(s, object + s->offset);
343 }
344 
prefetch_freepointer(const struct kmem_cache * s,void * object)345 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
346 {
347 	prefetch(object + s->offset);
348 }
349 
get_freepointer_safe(struct kmem_cache * s,void * object)350 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
351 {
352 	unsigned long freepointer_addr;
353 	void *p;
354 
355 	if (!debug_pagealloc_enabled_static())
356 		return get_freepointer(s, object);
357 
358 	object = kasan_reset_tag(object);
359 	freepointer_addr = (unsigned long)object + s->offset;
360 	copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
361 	return freelist_ptr(s, p, freepointer_addr);
362 }
363 
set_freepointer(struct kmem_cache * s,void * object,void * fp)364 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
365 {
366 	unsigned long freeptr_addr = (unsigned long)object + s->offset;
367 
368 #ifdef CONFIG_SLAB_FREELIST_HARDENED
369 	BUG_ON(object == fp); /* naive detection of double free or corruption */
370 #endif
371 
372 	freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
373 	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
374 }
375 
376 /* Loop over all objects in a slab */
377 #define for_each_object(__p, __s, __addr, __objects) \
378 	for (__p = fixup_red_left(__s, __addr); \
379 		__p < (__addr) + (__objects) * (__s)->size; \
380 		__p += (__s)->size)
381 
order_objects(unsigned int order,unsigned int size)382 static inline unsigned int order_objects(unsigned int order, unsigned int size)
383 {
384 	return ((unsigned int)PAGE_SIZE << order) / size;
385 }
386 
oo_make(unsigned int order,unsigned int size)387 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
388 		unsigned int size)
389 {
390 	struct kmem_cache_order_objects x = {
391 		(order << OO_SHIFT) + order_objects(order, size)
392 	};
393 
394 	return x;
395 }
396 
oo_order(struct kmem_cache_order_objects x)397 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
398 {
399 	return x.x >> OO_SHIFT;
400 }
401 
oo_objects(struct kmem_cache_order_objects x)402 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
403 {
404 	return x.x & OO_MASK;
405 }
406 
407 /*
408  * Per slab locking using the pagelock
409  */
__slab_lock(struct page * page)410 static __always_inline void __slab_lock(struct page *page)
411 {
412 	VM_BUG_ON_PAGE(PageTail(page), page);
413 	bit_spin_lock(PG_locked, &page->flags);
414 }
415 
__slab_unlock(struct page * page)416 static __always_inline void __slab_unlock(struct page *page)
417 {
418 	VM_BUG_ON_PAGE(PageTail(page), page);
419 	__bit_spin_unlock(PG_locked, &page->flags);
420 }
421 
slab_lock(struct page * page,unsigned long * flags)422 static __always_inline void slab_lock(struct page *page, unsigned long *flags)
423 {
424 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
425 		local_irq_save(*flags);
426 	__slab_lock(page);
427 }
428 
slab_unlock(struct page * page,unsigned long * flags)429 static __always_inline void slab_unlock(struct page *page, unsigned long *flags)
430 {
431 	__slab_unlock(page);
432 	if (IS_ENABLED(CONFIG_PREEMPT_RT))
433 		local_irq_restore(*flags);
434 }
435 
436 /*
437  * Interrupts must be disabled (for the fallback code to work right), typically
438  * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
439  * so we disable interrupts as part of slab_[un]lock().
440  */
__cmpxchg_double_slab(struct kmem_cache * s,struct page * page,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)441 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
442 		void *freelist_old, unsigned long counters_old,
443 		void *freelist_new, unsigned long counters_new,
444 		const char *n)
445 {
446 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
447 		lockdep_assert_irqs_disabled();
448 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
449     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
450 	if (s->flags & __CMPXCHG_DOUBLE) {
451 		if (cmpxchg_double(&page->freelist, &page->counters,
452 				   freelist_old, counters_old,
453 				   freelist_new, counters_new))
454 			return true;
455 	} else
456 #endif
457 	{
458 		/* init to 0 to prevent spurious warnings */
459 		unsigned long flags = 0;
460 
461 		slab_lock(page, &flags);
462 		if (page->freelist == freelist_old &&
463 					page->counters == counters_old) {
464 			page->freelist = freelist_new;
465 			page->counters = counters_new;
466 			slab_unlock(page, &flags);
467 			return true;
468 		}
469 		slab_unlock(page, &flags);
470 	}
471 
472 	cpu_relax();
473 	stat(s, CMPXCHG_DOUBLE_FAIL);
474 
475 #ifdef SLUB_DEBUG_CMPXCHG
476 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
477 #endif
478 
479 	return false;
480 }
481 
cmpxchg_double_slab(struct kmem_cache * s,struct page * page,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)482 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
483 		void *freelist_old, unsigned long counters_old,
484 		void *freelist_new, unsigned long counters_new,
485 		const char *n)
486 {
487 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
488     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
489 	if (s->flags & __CMPXCHG_DOUBLE) {
490 		if (cmpxchg_double(&page->freelist, &page->counters,
491 				   freelist_old, counters_old,
492 				   freelist_new, counters_new))
493 			return true;
494 	} else
495 #endif
496 	{
497 		unsigned long flags;
498 
499 		local_irq_save(flags);
500 		__slab_lock(page);
501 		if (page->freelist == freelist_old &&
502 					page->counters == counters_old) {
503 			page->freelist = freelist_new;
504 			page->counters = counters_new;
505 			__slab_unlock(page);
506 			local_irq_restore(flags);
507 			return true;
508 		}
509 		__slab_unlock(page);
510 		local_irq_restore(flags);
511 	}
512 
513 	cpu_relax();
514 	stat(s, CMPXCHG_DOUBLE_FAIL);
515 
516 #ifdef SLUB_DEBUG_CMPXCHG
517 	pr_info("%s %s: cmpxchg double redo ", n, s->name);
518 #endif
519 
520 	return false;
521 }
522 
523 #ifdef CONFIG_SLUB_DEBUG
524 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
525 static DEFINE_RAW_SPINLOCK(object_map_lock);
526 
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct page * page)527 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
528 		       struct page *page)
529 {
530 	void *addr = page_address(page);
531 	void *p;
532 
533 	bitmap_zero(obj_map, page->objects);
534 
535 	for (p = page->freelist; p; p = get_freepointer(s, p))
536 		set_bit(__obj_to_index(s, addr, p), obj_map);
537 }
538 
slab_add_kunit_errors(void)539 static bool slab_add_kunit_errors(void)
540 {
541 	struct kunit_resource *resource;
542 
543 	if (likely(!current->kunit_test))
544 		return false;
545 
546 	resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
547 	if (!resource)
548 		return false;
549 
550 	(*(int *)resource->data)++;
551 	kunit_put_resource(resource);
552 	return true;
553 }
554 
555 /*
556  * Determine a map of object in use on a page.
557  *
558  * Node listlock must be held to guarantee that the page does
559  * not vanish from under us.
560  */
get_map(struct kmem_cache * s,struct page * page)561 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
562 	__acquires(&object_map_lock)
563 {
564 	VM_BUG_ON(!irqs_disabled());
565 
566 	raw_spin_lock(&object_map_lock);
567 
568 	__fill_map(object_map, s, page);
569 
570 	return object_map;
571 }
572 
put_map(unsigned long * map)573 static void put_map(unsigned long *map) __releases(&object_map_lock)
574 {
575 	VM_BUG_ON(map != object_map);
576 	raw_spin_unlock(&object_map_lock);
577 }
578 
size_from_object(struct kmem_cache * s)579 static inline unsigned int size_from_object(struct kmem_cache *s)
580 {
581 	if (s->flags & SLAB_RED_ZONE)
582 		return s->size - s->red_left_pad;
583 
584 	return s->size;
585 }
586 
restore_red_left(struct kmem_cache * s,void * p)587 static inline void *restore_red_left(struct kmem_cache *s, void *p)
588 {
589 	if (s->flags & SLAB_RED_ZONE)
590 		p -= s->red_left_pad;
591 
592 	return p;
593 }
594 
595 /*
596  * Debug settings:
597  */
598 #if defined(CONFIG_SLUB_DEBUG_ON)
599 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
600 #else
601 static slab_flags_t slub_debug;
602 #endif
603 
604 static char *slub_debug_string;
605 static int disable_higher_order_debug;
606 
607 /*
608  * slub is about to manipulate internal object metadata.  This memory lies
609  * outside the range of the allocated object, so accessing it would normally
610  * be reported by kasan as a bounds error.  metadata_access_enable() is used
611  * to tell kasan that these accesses are OK.
612  */
metadata_access_enable(void)613 static inline void metadata_access_enable(void)
614 {
615 	kasan_disable_current();
616 }
617 
metadata_access_disable(void)618 static inline void metadata_access_disable(void)
619 {
620 	kasan_enable_current();
621 }
622 
623 /*
624  * Object debugging
625  */
626 
627 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct page * page,void * object)628 static inline int check_valid_pointer(struct kmem_cache *s,
629 				struct page *page, void *object)
630 {
631 	void *base;
632 
633 	if (!object)
634 		return 1;
635 
636 	base = page_address(page);
637 	object = kasan_reset_tag(object);
638 	object = restore_red_left(s, object);
639 	if (object < base || object >= base + page->objects * s->size ||
640 		(object - base) % s->size) {
641 		return 0;
642 	}
643 
644 	return 1;
645 }
646 
print_section(char * level,char * text,u8 * addr,unsigned int length)647 static void print_section(char *level, char *text, u8 *addr,
648 			  unsigned int length)
649 {
650 	metadata_access_enable();
651 	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
652 			16, 1, kasan_reset_tag((void *)addr), length, 1);
653 	metadata_access_disable();
654 }
655 
656 /*
657  * See comment in calculate_sizes().
658  */
freeptr_outside_object(struct kmem_cache * s)659 static inline bool freeptr_outside_object(struct kmem_cache *s)
660 {
661 	return s->offset >= s->inuse;
662 }
663 
664 /*
665  * Return offset of the end of info block which is inuse + free pointer if
666  * not overlapping with object.
667  */
get_info_end(struct kmem_cache * s)668 static inline unsigned int get_info_end(struct kmem_cache *s)
669 {
670 	if (freeptr_outside_object(s))
671 		return s->inuse + sizeof(void *);
672 	else
673 		return s->inuse;
674 }
675 
get_track(struct kmem_cache * s,void * object,enum track_item alloc)676 static struct track *get_track(struct kmem_cache *s, void *object,
677 	enum track_item alloc)
678 {
679 	struct track *p;
680 
681 	p = object + get_info_end(s);
682 
683 	return kasan_reset_tag(p + alloc);
684 }
685 
686 /*
687  * This function will be used to loop through all the slab objects in
688  * a page to give track structure for each object, the function fn will
689  * be using this track structure and extract required info into its private
690  * data, the return value will be the number of track structures that are
691  * processed.
692  */
get_each_object_track(struct kmem_cache * s,struct page * page,enum track_item alloc,int (* fn)(const struct kmem_cache *,const void *,const struct track *,void *),void * private)693 unsigned long get_each_object_track(struct kmem_cache *s,
694 		struct page *page, enum track_item alloc,
695 		int (*fn)(const struct kmem_cache *, const void *,
696 		const struct track *, void *), void *private)
697 {
698 	void *p;
699 	struct track *t;
700 	int ret;
701 	unsigned long num_track = 0;
702 	unsigned long flags = 0;
703 
704 	if (!slub_debug || !(s->flags & SLAB_STORE_USER))
705 		return 0;
706 
707 	slab_lock(page, &flags);
708 	for_each_object(p, s, page_address(page), page->objects) {
709 		t = get_track(s, p, alloc);
710 		metadata_access_enable();
711 		ret = fn(s, p, t, private);
712 		metadata_access_disable();
713 		if (ret < 0)
714 			break;
715 		num_track += 1;
716 	}
717 	slab_unlock(page, &flags);
718 	return num_track;
719 }
720 EXPORT_SYMBOL_NS_GPL(get_each_object_track, MINIDUMP);
721 
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)722 static void set_track(struct kmem_cache *s, void *object,
723 			enum track_item alloc, unsigned long addr)
724 {
725 	struct track *p = get_track(s, object, alloc);
726 
727 	if (addr) {
728 #ifdef CONFIG_STACKTRACE
729 		unsigned int nr_entries;
730 
731 		metadata_access_enable();
732 		nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
733 					      TRACK_ADDRS_COUNT, 3);
734 		metadata_access_disable();
735 
736 		if (nr_entries < TRACK_ADDRS_COUNT)
737 			p->addrs[nr_entries] = 0;
738 #endif
739 		p->addr = addr;
740 		p->cpu = smp_processor_id();
741 		p->pid = current->pid;
742 		p->when = jiffies;
743 		trace_android_vh_save_track_hash(alloc == TRACK_ALLOC, p);
744 	} else {
745 		memset(p, 0, sizeof(struct track));
746 	}
747 }
748 
init_tracking(struct kmem_cache * s,void * object)749 static void init_tracking(struct kmem_cache *s, void *object)
750 {
751 	if (!(s->flags & SLAB_STORE_USER))
752 		return;
753 
754 	set_track(s, object, TRACK_FREE, 0UL);
755 	set_track(s, object, TRACK_ALLOC, 0UL);
756 }
757 
print_track(const char * s,struct track * t,unsigned long pr_time)758 static void print_track(const char *s, struct track *t, unsigned long pr_time)
759 {
760 	if (!t->addr)
761 		return;
762 
763 	pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
764 	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
765 #ifdef CONFIG_STACKTRACE
766 	{
767 		int i;
768 		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
769 			if (t->addrs[i])
770 				pr_err("\t%pS\n", (void *)t->addrs[i]);
771 			else
772 				break;
773 	}
774 #endif
775 }
776 
print_tracking(struct kmem_cache * s,void * object)777 void print_tracking(struct kmem_cache *s, void *object)
778 {
779 	unsigned long pr_time = jiffies;
780 	if (!(s->flags & SLAB_STORE_USER))
781 		return;
782 
783 	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
784 	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
785 }
786 
print_page_info(struct page * page)787 static void print_page_info(struct page *page)
788 {
789 	pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
790 	       page, page->objects, page->inuse, page->freelist,
791 	       page->flags, &page->flags);
792 
793 }
794 
slab_bug(struct kmem_cache * s,char * fmt,...)795 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
796 {
797 	struct va_format vaf;
798 	va_list args;
799 
800 	va_start(args, fmt);
801 	vaf.fmt = fmt;
802 	vaf.va = &args;
803 	pr_err("=============================================================================\n");
804 	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
805 	pr_err("-----------------------------------------------------------------------------\n\n");
806 	va_end(args);
807 }
808 
809 __printf(2, 3)
slab_fix(struct kmem_cache * s,char * fmt,...)810 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
811 {
812 	struct va_format vaf;
813 	va_list args;
814 
815 	if (slab_add_kunit_errors())
816 		return;
817 
818 	va_start(args, fmt);
819 	vaf.fmt = fmt;
820 	vaf.va = &args;
821 	pr_err("FIX %s: %pV\n", s->name, &vaf);
822 	va_end(args);
823 }
824 
freelist_corrupted(struct kmem_cache * s,struct page * page,void ** freelist,void * nextfree)825 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
826 			       void **freelist, void *nextfree)
827 {
828 	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
829 	    !check_valid_pointer(s, page, nextfree) && freelist) {
830 		object_err(s, page, *freelist, "Freechain corrupt");
831 		*freelist = NULL;
832 		slab_fix(s, "Isolate corrupted freechain");
833 		return true;
834 	}
835 
836 	return false;
837 }
838 
print_trailer(struct kmem_cache * s,struct page * page,u8 * p)839 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
840 {
841 	unsigned int off;	/* Offset of last byte */
842 	u8 *addr = page_address(page);
843 
844 	print_tracking(s, p);
845 
846 	print_page_info(page);
847 
848 	pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
849 	       p, p - addr, get_freepointer(s, p));
850 
851 	if (s->flags & SLAB_RED_ZONE)
852 		print_section(KERN_ERR, "Redzone  ", p - s->red_left_pad,
853 			      s->red_left_pad);
854 	else if (p > addr + 16)
855 		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
856 
857 	print_section(KERN_ERR,         "Object   ", p,
858 		      min_t(unsigned int, s->object_size, PAGE_SIZE));
859 	if (s->flags & SLAB_RED_ZONE)
860 		print_section(KERN_ERR, "Redzone  ", p + s->object_size,
861 			s->inuse - s->object_size);
862 
863 	off = get_info_end(s);
864 
865 	if (s->flags & SLAB_STORE_USER)
866 		off += 2 * sizeof(struct track);
867 
868 	off += kasan_metadata_size(s);
869 
870 	if (off != size_from_object(s))
871 		/* Beginning of the filler is the free pointer */
872 		print_section(KERN_ERR, "Padding  ", p + off,
873 			      size_from_object(s) - off);
874 
875 	dump_stack();
876 }
877 
object_err(struct kmem_cache * s,struct page * page,u8 * object,char * reason)878 void object_err(struct kmem_cache *s, struct page *page,
879 			u8 *object, char *reason)
880 {
881 	if (slab_add_kunit_errors())
882 		return;
883 
884 	slab_bug(s, "%s", reason);
885 	print_trailer(s, page, object);
886 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
887 }
888 
slab_err(struct kmem_cache * s,struct page * page,const char * fmt,...)889 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
890 			const char *fmt, ...)
891 {
892 	va_list args;
893 	char buf[100];
894 
895 	if (slab_add_kunit_errors())
896 		return;
897 
898 	va_start(args, fmt);
899 	vsnprintf(buf, sizeof(buf), fmt, args);
900 	va_end(args);
901 	slab_bug(s, "%s", buf);
902 	print_page_info(page);
903 	dump_stack();
904 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
905 }
906 
init_object(struct kmem_cache * s,void * object,u8 val)907 static void init_object(struct kmem_cache *s, void *object, u8 val)
908 {
909 	u8 *p = kasan_reset_tag(object);
910 
911 	if (s->flags & SLAB_RED_ZONE)
912 		memset(p - s->red_left_pad, val, s->red_left_pad);
913 
914 	if (s->flags & __OBJECT_POISON) {
915 		memset(p, POISON_FREE, s->object_size - 1);
916 		p[s->object_size - 1] = POISON_END;
917 	}
918 
919 	if (s->flags & SLAB_RED_ZONE)
920 		memset(p + s->object_size, val, s->inuse - s->object_size);
921 }
922 
restore_bytes(struct kmem_cache * s,char * message,u8 data,void * from,void * to)923 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
924 						void *from, void *to)
925 {
926 	slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
927 	memset(from, data, to - from);
928 }
929 
check_bytes_and_report(struct kmem_cache * s,struct page * page,u8 * object,char * what,u8 * start,unsigned int value,unsigned int bytes)930 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
931 			u8 *object, char *what,
932 			u8 *start, unsigned int value, unsigned int bytes)
933 {
934 	u8 *fault;
935 	u8 *end;
936 	u8 *addr = page_address(page);
937 
938 	metadata_access_enable();
939 	fault = memchr_inv(kasan_reset_tag(start), value, bytes);
940 	metadata_access_disable();
941 	if (!fault)
942 		return 1;
943 
944 	end = start + bytes;
945 	while (end > fault && end[-1] == value)
946 		end--;
947 
948 	if (slab_add_kunit_errors())
949 		goto skip_bug_print;
950 
951 	slab_bug(s, "%s overwritten", what);
952 	pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
953 					fault, end - 1, fault - addr,
954 					fault[0], value);
955 	print_trailer(s, page, object);
956 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
957 
958 skip_bug_print:
959 	restore_bytes(s, what, value, fault, end);
960 	return 0;
961 }
962 
963 /*
964  * Object layout:
965  *
966  * object address
967  * 	Bytes of the object to be managed.
968  * 	If the freepointer may overlay the object then the free
969  *	pointer is at the middle of the object.
970  *
971  * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
972  * 	0xa5 (POISON_END)
973  *
974  * object + s->object_size
975  * 	Padding to reach word boundary. This is also used for Redzoning.
976  * 	Padding is extended by another word if Redzoning is enabled and
977  * 	object_size == inuse.
978  *
979  * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
980  * 	0xcc (RED_ACTIVE) for objects in use.
981  *
982  * object + s->inuse
983  * 	Meta data starts here.
984  *
985  * 	A. Free pointer (if we cannot overwrite object on free)
986  * 	B. Tracking data for SLAB_STORE_USER
987  *	C. Padding to reach required alignment boundary or at minimum
988  * 		one word if debugging is on to be able to detect writes
989  * 		before the word boundary.
990  *
991  *	Padding is done using 0x5a (POISON_INUSE)
992  *
993  * object + s->size
994  * 	Nothing is used beyond s->size.
995  *
996  * If slabcaches are merged then the object_size and inuse boundaries are mostly
997  * ignored. And therefore no slab options that rely on these boundaries
998  * may be used with merged slabcaches.
999  */
1000 
check_pad_bytes(struct kmem_cache * s,struct page * page,u8 * p)1001 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
1002 {
1003 	unsigned long off = get_info_end(s);	/* The end of info */
1004 
1005 	if (s->flags & SLAB_STORE_USER)
1006 		/* We also have user information there */
1007 		off += 2 * sizeof(struct track);
1008 
1009 	off += kasan_metadata_size(s);
1010 
1011 	if (size_from_object(s) == off)
1012 		return 1;
1013 
1014 	return check_bytes_and_report(s, page, p, "Object padding",
1015 			p + off, POISON_INUSE, size_from_object(s) - off);
1016 }
1017 
1018 /* Check the pad bytes at the end of a slab page */
slab_pad_check(struct kmem_cache * s,struct page * page)1019 static int slab_pad_check(struct kmem_cache *s, struct page *page)
1020 {
1021 	u8 *start;
1022 	u8 *fault;
1023 	u8 *end;
1024 	u8 *pad;
1025 	int length;
1026 	int remainder;
1027 
1028 	if (!(s->flags & SLAB_POISON))
1029 		return 1;
1030 
1031 	start = page_address(page);
1032 	length = page_size(page);
1033 	end = start + length;
1034 	remainder = length % s->size;
1035 	if (!remainder)
1036 		return 1;
1037 
1038 	pad = end - remainder;
1039 	metadata_access_enable();
1040 	fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1041 	metadata_access_disable();
1042 	if (!fault)
1043 		return 1;
1044 	while (end > fault && end[-1] == POISON_INUSE)
1045 		end--;
1046 
1047 	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1048 			fault, end - 1, fault - start);
1049 	print_section(KERN_ERR, "Padding ", pad, remainder);
1050 
1051 	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1052 	return 0;
1053 }
1054 
check_object(struct kmem_cache * s,struct page * page,void * object,u8 val)1055 static int check_object(struct kmem_cache *s, struct page *page,
1056 					void *object, u8 val)
1057 {
1058 	u8 *p = object;
1059 	u8 *endobject = object + s->object_size;
1060 
1061 	if (s->flags & SLAB_RED_ZONE) {
1062 		if (!check_bytes_and_report(s, page, object, "Left Redzone",
1063 			object - s->red_left_pad, val, s->red_left_pad))
1064 			return 0;
1065 
1066 		if (!check_bytes_and_report(s, page, object, "Right Redzone",
1067 			endobject, val, s->inuse - s->object_size))
1068 			return 0;
1069 	} else {
1070 		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1071 			check_bytes_and_report(s, page, p, "Alignment padding",
1072 				endobject, POISON_INUSE,
1073 				s->inuse - s->object_size);
1074 		}
1075 	}
1076 
1077 	if (s->flags & SLAB_POISON) {
1078 		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1079 			(!check_bytes_and_report(s, page, p, "Poison", p,
1080 					POISON_FREE, s->object_size - 1) ||
1081 			 !check_bytes_and_report(s, page, p, "End Poison",
1082 				p + s->object_size - 1, POISON_END, 1)))
1083 			return 0;
1084 		/*
1085 		 * check_pad_bytes cleans up on its own.
1086 		 */
1087 		check_pad_bytes(s, page, p);
1088 	}
1089 
1090 	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1091 		/*
1092 		 * Object and freepointer overlap. Cannot check
1093 		 * freepointer while object is allocated.
1094 		 */
1095 		return 1;
1096 
1097 	/* Check free pointer validity */
1098 	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
1099 		object_err(s, page, p, "Freepointer corrupt");
1100 		/*
1101 		 * No choice but to zap it and thus lose the remainder
1102 		 * of the free objects in this slab. May cause
1103 		 * another error because the object count is now wrong.
1104 		 */
1105 		set_freepointer(s, p, NULL);
1106 		return 0;
1107 	}
1108 	return 1;
1109 }
1110 
check_slab(struct kmem_cache * s,struct page * page)1111 static int check_slab(struct kmem_cache *s, struct page *page)
1112 {
1113 	int maxobj;
1114 
1115 	if (!PageSlab(page)) {
1116 		slab_err(s, page, "Not a valid slab page");
1117 		return 0;
1118 	}
1119 
1120 	maxobj = order_objects(compound_order(page), s->size);
1121 	if (page->objects > maxobj) {
1122 		slab_err(s, page, "objects %u > max %u",
1123 			page->objects, maxobj);
1124 		return 0;
1125 	}
1126 	if (page->inuse > page->objects) {
1127 		slab_err(s, page, "inuse %u > max %u",
1128 			page->inuse, page->objects);
1129 		return 0;
1130 	}
1131 	/* Slab_pad_check fixes things up after itself */
1132 	slab_pad_check(s, page);
1133 	return 1;
1134 }
1135 
1136 /*
1137  * Determine if a certain object on a page is on the freelist. Must hold the
1138  * slab lock to guarantee that the chains are in a consistent state.
1139  */
on_freelist(struct kmem_cache * s,struct page * page,void * search)1140 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1141 {
1142 	int nr = 0;
1143 	void *fp;
1144 	void *object = NULL;
1145 	int max_objects;
1146 
1147 	fp = page->freelist;
1148 	while (fp && nr <= page->objects) {
1149 		if (fp == search)
1150 			return 1;
1151 		if (!check_valid_pointer(s, page, fp)) {
1152 			if (object) {
1153 				object_err(s, page, object,
1154 					"Freechain corrupt");
1155 				set_freepointer(s, object, NULL);
1156 			} else {
1157 				slab_err(s, page, "Freepointer corrupt");
1158 				page->freelist = NULL;
1159 				page->inuse = page->objects;
1160 				slab_fix(s, "Freelist cleared");
1161 				return 0;
1162 			}
1163 			break;
1164 		}
1165 		object = fp;
1166 		fp = get_freepointer(s, object);
1167 		nr++;
1168 	}
1169 
1170 	max_objects = order_objects(compound_order(page), s->size);
1171 	if (max_objects > MAX_OBJS_PER_PAGE)
1172 		max_objects = MAX_OBJS_PER_PAGE;
1173 
1174 	if (page->objects != max_objects) {
1175 		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1176 			 page->objects, max_objects);
1177 		page->objects = max_objects;
1178 		slab_fix(s, "Number of objects adjusted");
1179 	}
1180 	if (page->inuse != page->objects - nr) {
1181 		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1182 			 page->inuse, page->objects - nr);
1183 		page->inuse = page->objects - nr;
1184 		slab_fix(s, "Object count adjusted");
1185 	}
1186 	return search == NULL;
1187 }
1188 
trace(struct kmem_cache * s,struct page * page,void * object,int alloc)1189 static void trace(struct kmem_cache *s, struct page *page, void *object,
1190 								int alloc)
1191 {
1192 	if (s->flags & SLAB_TRACE) {
1193 		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1194 			s->name,
1195 			alloc ? "alloc" : "free",
1196 			object, page->inuse,
1197 			page->freelist);
1198 
1199 		if (!alloc)
1200 			print_section(KERN_INFO, "Object ", (void *)object,
1201 					s->object_size);
1202 
1203 		dump_stack();
1204 	}
1205 }
1206 
1207 /*
1208  * Tracking of fully allocated slabs for debugging purposes.
1209  */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1210 static void add_full(struct kmem_cache *s,
1211 	struct kmem_cache_node *n, struct page *page)
1212 {
1213 	if (!(s->flags & SLAB_STORE_USER))
1214 		return;
1215 
1216 	lockdep_assert_held(&n->list_lock);
1217 	list_add(&page->slab_list, &n->full);
1218 }
1219 
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1220 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1221 {
1222 	if (!(s->flags & SLAB_STORE_USER))
1223 		return;
1224 
1225 	lockdep_assert_held(&n->list_lock);
1226 	list_del(&page->slab_list);
1227 }
1228 
1229 /* Tracking of the number of slabs for debugging purposes */
slabs_node(struct kmem_cache * s,int node)1230 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1231 {
1232 	struct kmem_cache_node *n = get_node(s, node);
1233 
1234 	return atomic_long_read(&n->nr_slabs);
1235 }
1236 
node_nr_slabs(struct kmem_cache_node * n)1237 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1238 {
1239 	return atomic_long_read(&n->nr_slabs);
1240 }
1241 
inc_slabs_node(struct kmem_cache * s,int node,int objects)1242 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1243 {
1244 	struct kmem_cache_node *n = get_node(s, node);
1245 
1246 	/*
1247 	 * May be called early in order to allocate a slab for the
1248 	 * kmem_cache_node structure. Solve the chicken-egg
1249 	 * dilemma by deferring the increment of the count during
1250 	 * bootstrap (see early_kmem_cache_node_alloc).
1251 	 */
1252 	if (likely(n)) {
1253 		atomic_long_inc(&n->nr_slabs);
1254 		atomic_long_add(objects, &n->total_objects);
1255 	}
1256 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1257 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1258 {
1259 	struct kmem_cache_node *n = get_node(s, node);
1260 
1261 	atomic_long_dec(&n->nr_slabs);
1262 	atomic_long_sub(objects, &n->total_objects);
1263 }
1264 
1265 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,struct page * page,void * object)1266 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1267 								void *object)
1268 {
1269 	if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1270 		return;
1271 
1272 	init_object(s, object, SLUB_RED_INACTIVE);
1273 	init_tracking(s, object);
1274 }
1275 
1276 static
setup_page_debug(struct kmem_cache * s,struct page * page,void * addr)1277 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1278 {
1279 	if (!kmem_cache_debug_flags(s, SLAB_POISON))
1280 		return;
1281 
1282 	metadata_access_enable();
1283 	memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1284 	metadata_access_disable();
1285 }
1286 
alloc_consistency_checks(struct kmem_cache * s,struct page * page,void * object)1287 static inline int alloc_consistency_checks(struct kmem_cache *s,
1288 					struct page *page, void *object)
1289 {
1290 	if (!check_slab(s, page))
1291 		return 0;
1292 
1293 	if (!check_valid_pointer(s, page, object)) {
1294 		object_err(s, page, object, "Freelist Pointer check fails");
1295 		return 0;
1296 	}
1297 
1298 	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1299 		return 0;
1300 
1301 	return 1;
1302 }
1303 
alloc_debug_processing(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1304 static noinline int alloc_debug_processing(struct kmem_cache *s,
1305 					struct page *page,
1306 					void *object, unsigned long addr)
1307 {
1308 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1309 		if (!alloc_consistency_checks(s, page, object))
1310 			goto bad;
1311 	}
1312 
1313 	/* Success perform special debug activities for allocs */
1314 	if (s->flags & SLAB_STORE_USER)
1315 		set_track(s, object, TRACK_ALLOC, addr);
1316 	trace(s, page, object, 1);
1317 	init_object(s, object, SLUB_RED_ACTIVE);
1318 	return 1;
1319 
1320 bad:
1321 	if (PageSlab(page)) {
1322 		/*
1323 		 * If this is a slab page then lets do the best we can
1324 		 * to avoid issues in the future. Marking all objects
1325 		 * as used avoids touching the remaining objects.
1326 		 */
1327 		slab_fix(s, "Marking all objects used");
1328 		page->inuse = page->objects;
1329 		page->freelist = NULL;
1330 	}
1331 	return 0;
1332 }
1333 
free_consistency_checks(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1334 static inline int free_consistency_checks(struct kmem_cache *s,
1335 		struct page *page, void *object, unsigned long addr)
1336 {
1337 	if (!check_valid_pointer(s, page, object)) {
1338 		slab_err(s, page, "Invalid object pointer 0x%p", object);
1339 		return 0;
1340 	}
1341 
1342 	if (on_freelist(s, page, object)) {
1343 		object_err(s, page, object, "Object already free");
1344 		return 0;
1345 	}
1346 
1347 	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1348 		return 0;
1349 
1350 	if (unlikely(s != page->slab_cache)) {
1351 		if (!PageSlab(page)) {
1352 			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1353 				 object);
1354 		} else if (!page->slab_cache) {
1355 			pr_err("SLUB <none>: no slab for object 0x%p.\n",
1356 			       object);
1357 			dump_stack();
1358 		} else
1359 			object_err(s, page, object,
1360 					"page slab pointer corrupt.");
1361 		return 0;
1362 	}
1363 	return 1;
1364 }
1365 
1366 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct page * page,void * head,void * tail,int bulk_cnt,unsigned long addr)1367 static noinline int free_debug_processing(
1368 	struct kmem_cache *s, struct page *page,
1369 	void *head, void *tail, int bulk_cnt,
1370 	unsigned long addr)
1371 {
1372 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1373 	void *object = head;
1374 	int cnt = 0;
1375 	unsigned long flags, flags2;
1376 	int ret = 0;
1377 
1378 	spin_lock_irqsave(&n->list_lock, flags);
1379 	slab_lock(page, &flags2);
1380 
1381 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1382 		if (!check_slab(s, page))
1383 			goto out;
1384 	}
1385 
1386 next_object:
1387 	cnt++;
1388 
1389 	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1390 		if (!free_consistency_checks(s, page, object, addr))
1391 			goto out;
1392 	}
1393 
1394 	if (s->flags & SLAB_STORE_USER)
1395 		set_track(s, object, TRACK_FREE, addr);
1396 	trace(s, page, object, 0);
1397 	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1398 	init_object(s, object, SLUB_RED_INACTIVE);
1399 
1400 	/* Reached end of constructed freelist yet? */
1401 	if (object != tail) {
1402 		object = get_freepointer(s, object);
1403 		goto next_object;
1404 	}
1405 	ret = 1;
1406 
1407 out:
1408 	if (cnt != bulk_cnt)
1409 		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1410 			 bulk_cnt, cnt);
1411 
1412 	slab_unlock(page, &flags2);
1413 	spin_unlock_irqrestore(&n->list_lock, flags);
1414 	if (!ret)
1415 		slab_fix(s, "Object at 0x%p not freed", object);
1416 	return ret;
1417 }
1418 
1419 /*
1420  * Parse a block of slub_debug options. Blocks are delimited by ';'
1421  *
1422  * @str:    start of block
1423  * @flags:  returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1424  * @slabs:  return start of list of slabs, or NULL when there's no list
1425  * @init:   assume this is initial parsing and not per-kmem-create parsing
1426  *
1427  * returns the start of next block if there's any, or NULL
1428  */
1429 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1430 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1431 {
1432 	bool higher_order_disable = false;
1433 
1434 	/* Skip any completely empty blocks */
1435 	while (*str && *str == ';')
1436 		str++;
1437 
1438 	if (*str == ',') {
1439 		/*
1440 		 * No options but restriction on slabs. This means full
1441 		 * debugging for slabs matching a pattern.
1442 		 */
1443 		*flags = DEBUG_DEFAULT_FLAGS;
1444 		goto check_slabs;
1445 	}
1446 	*flags = 0;
1447 
1448 	/* Determine which debug features should be switched on */
1449 	for (; *str && *str != ',' && *str != ';'; str++) {
1450 		switch (tolower(*str)) {
1451 		case '-':
1452 			*flags = 0;
1453 			break;
1454 		case 'f':
1455 			*flags |= SLAB_CONSISTENCY_CHECKS;
1456 			break;
1457 		case 'z':
1458 			*flags |= SLAB_RED_ZONE;
1459 			break;
1460 		case 'p':
1461 			*flags |= SLAB_POISON;
1462 			break;
1463 		case 'u':
1464 			*flags |= SLAB_STORE_USER;
1465 			break;
1466 		case 't':
1467 			*flags |= SLAB_TRACE;
1468 			break;
1469 		case 'a':
1470 			*flags |= SLAB_FAILSLAB;
1471 			break;
1472 		case 'o':
1473 			/*
1474 			 * Avoid enabling debugging on caches if its minimum
1475 			 * order would increase as a result.
1476 			 */
1477 			higher_order_disable = true;
1478 			break;
1479 		default:
1480 			if (init)
1481 				pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1482 		}
1483 	}
1484 check_slabs:
1485 	if (*str == ',')
1486 		*slabs = ++str;
1487 	else
1488 		*slabs = NULL;
1489 
1490 	/* Skip over the slab list */
1491 	while (*str && *str != ';')
1492 		str++;
1493 
1494 	/* Skip any completely empty blocks */
1495 	while (*str && *str == ';')
1496 		str++;
1497 
1498 	if (init && higher_order_disable)
1499 		disable_higher_order_debug = 1;
1500 
1501 	if (*str)
1502 		return str;
1503 	else
1504 		return NULL;
1505 }
1506 
setup_slub_debug(char * str)1507 static int __init setup_slub_debug(char *str)
1508 {
1509 	slab_flags_t flags;
1510 	slab_flags_t global_flags;
1511 	char *saved_str;
1512 	char *slab_list;
1513 	bool global_slub_debug_changed = false;
1514 	bool slab_list_specified = false;
1515 
1516 	global_flags = DEBUG_DEFAULT_FLAGS;
1517 	if (*str++ != '=' || !*str)
1518 		/*
1519 		 * No options specified. Switch on full debugging.
1520 		 */
1521 		goto out;
1522 
1523 	saved_str = str;
1524 	while (str) {
1525 		str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1526 
1527 		if (!slab_list) {
1528 			global_flags = flags;
1529 			global_slub_debug_changed = true;
1530 		} else {
1531 			slab_list_specified = true;
1532 		}
1533 	}
1534 
1535 	/*
1536 	 * For backwards compatibility, a single list of flags with list of
1537 	 * slabs means debugging is only changed for those slabs, so the global
1538 	 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1539 	 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1540 	 * long as there is no option specifying flags without a slab list.
1541 	 */
1542 	if (slab_list_specified) {
1543 		if (!global_slub_debug_changed)
1544 			global_flags = slub_debug;
1545 		slub_debug_string = saved_str;
1546 	}
1547 out:
1548 	slub_debug = global_flags;
1549 	if (slub_debug != 0 || slub_debug_string)
1550 		static_branch_enable(&slub_debug_enabled);
1551 	else
1552 		static_branch_disable(&slub_debug_enabled);
1553 	if ((static_branch_unlikely(&init_on_alloc) ||
1554 	     static_branch_unlikely(&init_on_free)) &&
1555 	    (slub_debug & SLAB_POISON))
1556 		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1557 	return 1;
1558 }
1559 
1560 __setup("slub_debug", setup_slub_debug);
1561 
1562 /*
1563  * kmem_cache_flags - apply debugging options to the cache
1564  * @object_size:	the size of an object without meta data
1565  * @flags:		flags to set
1566  * @name:		name of the cache
1567  *
1568  * Debug option(s) are applied to @flags. In addition to the debug
1569  * option(s), if a slab name (or multiple) is specified i.e.
1570  * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1571  * then only the select slabs will receive the debug option(s).
1572  */
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)1573 slab_flags_t kmem_cache_flags(unsigned int object_size,
1574 	slab_flags_t flags, const char *name)
1575 {
1576 	char *iter;
1577 	size_t len;
1578 	char *next_block;
1579 	slab_flags_t block_flags;
1580 	slab_flags_t slub_debug_local = slub_debug;
1581 
1582 	/*
1583 	 * If the slab cache is for debugging (e.g. kmemleak) then
1584 	 * don't store user (stack trace) information by default,
1585 	 * but let the user enable it via the command line below.
1586 	 */
1587 	if (flags & SLAB_NOLEAKTRACE)
1588 		slub_debug_local &= ~SLAB_STORE_USER;
1589 
1590 	len = strlen(name);
1591 	next_block = slub_debug_string;
1592 	/* Go through all blocks of debug options, see if any matches our slab's name */
1593 	while (next_block) {
1594 		next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1595 		if (!iter)
1596 			continue;
1597 		/* Found a block that has a slab list, search it */
1598 		while (*iter) {
1599 			char *end, *glob;
1600 			size_t cmplen;
1601 
1602 			end = strchrnul(iter, ',');
1603 			if (next_block && next_block < end)
1604 				end = next_block - 1;
1605 
1606 			glob = strnchr(iter, end - iter, '*');
1607 			if (glob)
1608 				cmplen = glob - iter;
1609 			else
1610 				cmplen = max_t(size_t, len, (end - iter));
1611 
1612 			if (!strncmp(name, iter, cmplen)) {
1613 				flags |= block_flags;
1614 				return flags;
1615 			}
1616 
1617 			if (!*end || *end == ';')
1618 				break;
1619 			iter = end + 1;
1620 		}
1621 	}
1622 
1623 	return flags | slub_debug_local;
1624 }
1625 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,struct page * page,void * object)1626 static inline void setup_object_debug(struct kmem_cache *s,
1627 			struct page *page, void *object) {}
1628 static inline
setup_page_debug(struct kmem_cache * s,struct page * page,void * addr)1629 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1630 
alloc_debug_processing(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1631 static inline int alloc_debug_processing(struct kmem_cache *s,
1632 	struct page *page, void *object, unsigned long addr) { return 0; }
1633 
free_debug_processing(struct kmem_cache * s,struct page * page,void * head,void * tail,int bulk_cnt,unsigned long addr)1634 static inline int free_debug_processing(
1635 	struct kmem_cache *s, struct page *page,
1636 	void *head, void *tail, int bulk_cnt,
1637 	unsigned long addr) { return 0; }
1638 
slab_pad_check(struct kmem_cache * s,struct page * page)1639 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1640 			{ return 1; }
check_object(struct kmem_cache * s,struct page * page,void * object,u8 val)1641 static inline int check_object(struct kmem_cache *s, struct page *page,
1642 			void *object, u8 val) { return 1; }
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1643 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1644 					struct page *page) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1645 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1646 					struct page *page) {}
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)1647 slab_flags_t kmem_cache_flags(unsigned int object_size,
1648 	slab_flags_t flags, const char *name)
1649 {
1650 	return flags;
1651 }
1652 #define slub_debug 0
1653 
1654 #define disable_higher_order_debug 0
1655 
slabs_node(struct kmem_cache * s,int node)1656 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1657 							{ return 0; }
node_nr_slabs(struct kmem_cache_node * n)1658 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1659 							{ return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1660 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1661 							int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1662 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1663 							int objects) {}
1664 
freelist_corrupted(struct kmem_cache * s,struct page * page,void ** freelist,void * nextfree)1665 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1666 			       void **freelist, void *nextfree)
1667 {
1668 	return false;
1669 }
1670 #endif /* CONFIG_SLUB_DEBUG */
1671 
1672 /*
1673  * Hooks for other subsystems that check memory allocations. In a typical
1674  * production configuration these hooks all should produce no code at all.
1675  */
kmalloc_large_node_hook(void * ptr,size_t size,gfp_t flags)1676 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1677 {
1678 	ptr = kasan_kmalloc_large(ptr, size, flags);
1679 	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1680 	kmemleak_alloc(ptr, size, 1, flags);
1681 	return ptr;
1682 }
1683 
kfree_hook(void * x)1684 static __always_inline void kfree_hook(void *x)
1685 {
1686 	kmemleak_free(x);
1687 	kasan_kfree_large(x);
1688 }
1689 
slab_free_hook(struct kmem_cache * s,void * x,bool init)1690 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1691 						void *x, bool init)
1692 {
1693 	kmemleak_free_recursive(x, s->flags);
1694 
1695 	debug_check_no_locks_freed(x, s->object_size);
1696 
1697 	if (!(s->flags & SLAB_DEBUG_OBJECTS))
1698 		debug_check_no_obj_freed(x, s->object_size);
1699 
1700 	/* Use KCSAN to help debug racy use-after-free. */
1701 	if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1702 		__kcsan_check_access(x, s->object_size,
1703 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1704 
1705 	/*
1706 	 * As memory initialization might be integrated into KASAN,
1707 	 * kasan_slab_free and initialization memset's must be
1708 	 * kept together to avoid discrepancies in behavior.
1709 	 *
1710 	 * The initialization memset's clear the object and the metadata,
1711 	 * but don't touch the SLAB redzone.
1712 	 */
1713 	if (init) {
1714 		int rsize;
1715 
1716 		if (!kasan_has_integrated_init())
1717 			memset(kasan_reset_tag(x), 0, s->object_size);
1718 		rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1719 		memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1720 		       s->size - s->inuse - rsize);
1721 	}
1722 	/* KASAN might put x into memory quarantine, delaying its reuse. */
1723 	return kasan_slab_free(s, x, init);
1724 }
1725 
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)1726 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1727 					   void **head, void **tail,
1728 					   int *cnt)
1729 {
1730 
1731 	void *object;
1732 	void *next = *head;
1733 	void *old_tail = *tail ? *tail : *head;
1734 
1735 	if (is_kfence_address(next)) {
1736 		slab_free_hook(s, next, false);
1737 		return true;
1738 	}
1739 
1740 	/* Head and tail of the reconstructed freelist */
1741 	*head = NULL;
1742 	*tail = NULL;
1743 
1744 	do {
1745 		object = next;
1746 		next = get_freepointer(s, object);
1747 
1748 		/* If object's reuse doesn't have to be delayed */
1749 		if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1750 			/* Move object to the new freelist */
1751 			set_freepointer(s, object, *head);
1752 			*head = object;
1753 			if (!*tail)
1754 				*tail = object;
1755 		} else {
1756 			/*
1757 			 * Adjust the reconstructed freelist depth
1758 			 * accordingly if object's reuse is delayed.
1759 			 */
1760 			--(*cnt);
1761 		}
1762 	} while (object != old_tail);
1763 
1764 	if (*head == *tail)
1765 		*tail = NULL;
1766 
1767 	return *head != NULL;
1768 }
1769 
setup_object(struct kmem_cache * s,struct page * page,void * object)1770 static void *setup_object(struct kmem_cache *s, struct page *page,
1771 				void *object)
1772 {
1773 	setup_object_debug(s, page, object);
1774 	object = kasan_init_slab_obj(s, object);
1775 	if (unlikely(s->ctor)) {
1776 		kasan_unpoison_object_data(s, object);
1777 		s->ctor(object);
1778 		kasan_poison_object_data(s, object);
1779 	}
1780 	return object;
1781 }
1782 
1783 /*
1784  * Slab allocation and freeing
1785  */
alloc_slab_page(struct kmem_cache * s,gfp_t flags,int node,struct kmem_cache_order_objects oo)1786 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1787 		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1788 {
1789 	struct page *page;
1790 	unsigned int order = oo_order(oo);
1791 
1792 	if (node == NUMA_NO_NODE)
1793 		page = alloc_pages(flags, order);
1794 	else
1795 		page = __alloc_pages_node(node, flags, order);
1796 
1797 	trace_android_vh_slab_page_alloced(page, s->size, flags);
1798 
1799 	return page;
1800 }
1801 
1802 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1803 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)1804 static int init_cache_random_seq(struct kmem_cache *s)
1805 {
1806 	unsigned int count = oo_objects(s->oo);
1807 	int err;
1808 
1809 	/* Bailout if already initialised */
1810 	if (s->random_seq)
1811 		return 0;
1812 
1813 	err = cache_random_seq_create(s, count, GFP_KERNEL);
1814 	if (err) {
1815 		pr_err("SLUB: Unable to initialize free list for %s\n",
1816 			s->name);
1817 		return err;
1818 	}
1819 
1820 	/* Transform to an offset on the set of pages */
1821 	if (s->random_seq) {
1822 		unsigned int i;
1823 
1824 		for (i = 0; i < count; i++)
1825 			s->random_seq[i] *= s->size;
1826 	}
1827 	return 0;
1828 }
1829 
1830 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)1831 static void __init init_freelist_randomization(void)
1832 {
1833 	struct kmem_cache *s;
1834 
1835 	mutex_lock(&slab_mutex);
1836 
1837 	list_for_each_entry(s, &slab_caches, list)
1838 		init_cache_random_seq(s);
1839 
1840 	mutex_unlock(&slab_mutex);
1841 }
1842 
1843 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,struct page * page,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)1844 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1845 				unsigned long *pos, void *start,
1846 				unsigned long page_limit,
1847 				unsigned long freelist_count)
1848 {
1849 	unsigned int idx;
1850 
1851 	/*
1852 	 * If the target page allocation failed, the number of objects on the
1853 	 * page might be smaller than the usual size defined by the cache.
1854 	 */
1855 	do {
1856 		idx = s->random_seq[*pos];
1857 		*pos += 1;
1858 		if (*pos >= freelist_count)
1859 			*pos = 0;
1860 	} while (unlikely(idx >= page_limit));
1861 
1862 	return (char *)start + idx;
1863 }
1864 
1865 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct page * page)1866 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1867 {
1868 	void *start;
1869 	void *cur;
1870 	void *next;
1871 	unsigned long idx, pos, page_limit, freelist_count;
1872 
1873 	if (page->objects < 2 || !s->random_seq)
1874 		return false;
1875 
1876 	freelist_count = oo_objects(s->oo);
1877 	pos = get_random_int() % freelist_count;
1878 
1879 	page_limit = page->objects * s->size;
1880 	start = fixup_red_left(s, page_address(page));
1881 
1882 	/* First entry is used as the base of the freelist */
1883 	cur = next_freelist_entry(s, page, &pos, start, page_limit,
1884 				freelist_count);
1885 	cur = setup_object(s, page, cur);
1886 	page->freelist = cur;
1887 
1888 	for (idx = 1; idx < page->objects; idx++) {
1889 		next = next_freelist_entry(s, page, &pos, start, page_limit,
1890 			freelist_count);
1891 		next = setup_object(s, page, next);
1892 		set_freepointer(s, cur, next);
1893 		cur = next;
1894 	}
1895 	set_freepointer(s, cur, NULL);
1896 
1897 	return true;
1898 }
1899 #else
init_cache_random_seq(struct kmem_cache * s)1900 static inline int init_cache_random_seq(struct kmem_cache *s)
1901 {
1902 	return 0;
1903 }
init_freelist_randomization(void)1904 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct page * page)1905 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1906 {
1907 	return false;
1908 }
1909 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1910 
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)1911 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1912 {
1913 	struct page *page;
1914 	struct kmem_cache_order_objects oo = s->oo;
1915 	gfp_t alloc_gfp;
1916 	void *start, *p, *next;
1917 	int idx;
1918 	bool shuffle;
1919 
1920 	flags &= gfp_allowed_mask;
1921 
1922 	flags |= s->allocflags;
1923 
1924 	/*
1925 	 * Let the initial higher-order allocation fail under memory pressure
1926 	 * so we fall-back to the minimum order allocation.
1927 	 */
1928 	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1929 	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1930 		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1931 
1932 	page = alloc_slab_page(s, alloc_gfp, node, oo);
1933 	if (unlikely(!page)) {
1934 		oo = s->min;
1935 		alloc_gfp = flags;
1936 		/*
1937 		 * Allocation may have failed due to fragmentation.
1938 		 * Try a lower order alloc if possible
1939 		 */
1940 		page = alloc_slab_page(s, alloc_gfp, node, oo);
1941 		if (unlikely(!page))
1942 			goto out;
1943 		stat(s, ORDER_FALLBACK);
1944 	}
1945 
1946 	page->objects = oo_objects(oo);
1947 
1948 	account_slab_page(page, oo_order(oo), s, flags);
1949 
1950 	page->slab_cache = s;
1951 	__SetPageSlab(page);
1952 	if (page_is_pfmemalloc(page))
1953 		SetPageSlabPfmemalloc(page);
1954 
1955 	kasan_poison_slab(page);
1956 
1957 	start = page_address(page);
1958 
1959 	setup_page_debug(s, page, start);
1960 
1961 	shuffle = shuffle_freelist(s, page);
1962 
1963 	if (!shuffle) {
1964 		start = fixup_red_left(s, start);
1965 		start = setup_object(s, page, start);
1966 		page->freelist = start;
1967 		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1968 			next = p + s->size;
1969 			next = setup_object(s, page, next);
1970 			set_freepointer(s, p, next);
1971 			p = next;
1972 		}
1973 		set_freepointer(s, p, NULL);
1974 	}
1975 
1976 	page->inuse = page->objects;
1977 	page->frozen = 1;
1978 
1979 out:
1980 	if (!page)
1981 		return NULL;
1982 
1983 	inc_slabs_node(s, page_to_nid(page), page->objects);
1984 
1985 	return page;
1986 }
1987 
new_slab(struct kmem_cache * s,gfp_t flags,int node)1988 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1989 {
1990 	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1991 		flags = kmalloc_fix_flags(flags);
1992 
1993 	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
1994 
1995 	return allocate_slab(s,
1996 		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1997 }
1998 
__free_slab(struct kmem_cache * s,struct page * page)1999 static void __free_slab(struct kmem_cache *s, struct page *page)
2000 {
2001 	int order = compound_order(page);
2002 	int pages = 1 << order;
2003 
2004 	if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2005 		void *p;
2006 
2007 		slab_pad_check(s, page);
2008 		for_each_object(p, s, page_address(page),
2009 						page->objects)
2010 			check_object(s, page, p, SLUB_RED_INACTIVE);
2011 	}
2012 
2013 	__ClearPageSlabPfmemalloc(page);
2014 	__ClearPageSlab(page);
2015 	/* In union with page->mapping where page allocator expects NULL */
2016 	page->slab_cache = NULL;
2017 	if (current->reclaim_state)
2018 		current->reclaim_state->reclaimed_slab += pages;
2019 	unaccount_slab_page(page, order, s);
2020 	__free_pages(page, order);
2021 }
2022 
rcu_free_slab(struct rcu_head * h)2023 static void rcu_free_slab(struct rcu_head *h)
2024 {
2025 	struct page *page = container_of(h, struct page, rcu_head);
2026 
2027 	__free_slab(page->slab_cache, page);
2028 }
2029 
free_slab(struct kmem_cache * s,struct page * page)2030 static void free_slab(struct kmem_cache *s, struct page *page)
2031 {
2032 	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
2033 		call_rcu(&page->rcu_head, rcu_free_slab);
2034 	} else
2035 		__free_slab(s, page);
2036 }
2037 
discard_slab(struct kmem_cache * s,struct page * page)2038 static void discard_slab(struct kmem_cache *s, struct page *page)
2039 {
2040 	dec_slabs_node(s, page_to_nid(page), page->objects);
2041 	free_slab(s, page);
2042 }
2043 
2044 /*
2045  * Management of partially allocated slabs.
2046  */
2047 static inline void
__add_partial(struct kmem_cache_node * n,struct page * page,int tail)2048 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
2049 {
2050 	n->nr_partial++;
2051 	if (tail == DEACTIVATE_TO_TAIL)
2052 		list_add_tail(&page->slab_list, &n->partial);
2053 	else
2054 		list_add(&page->slab_list, &n->partial);
2055 }
2056 
add_partial(struct kmem_cache_node * n,struct page * page,int tail)2057 static inline void add_partial(struct kmem_cache_node *n,
2058 				struct page *page, int tail)
2059 {
2060 	lockdep_assert_held(&n->list_lock);
2061 	__add_partial(n, page, tail);
2062 }
2063 
remove_partial(struct kmem_cache_node * n,struct page * page)2064 static inline void remove_partial(struct kmem_cache_node *n,
2065 					struct page *page)
2066 {
2067 	lockdep_assert_held(&n->list_lock);
2068 	list_del(&page->slab_list);
2069 	n->nr_partial--;
2070 }
2071 
2072 /*
2073  * Remove slab from the partial list, freeze it and
2074  * return the pointer to the freelist.
2075  *
2076  * Returns a list of objects or NULL if it fails.
2077  */
acquire_slab(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page,int mode,int * objects)2078 static inline void *acquire_slab(struct kmem_cache *s,
2079 		struct kmem_cache_node *n, struct page *page,
2080 		int mode, int *objects)
2081 {
2082 	void *freelist;
2083 	unsigned long counters;
2084 	struct page new;
2085 
2086 	lockdep_assert_held(&n->list_lock);
2087 
2088 	/*
2089 	 * Zap the freelist and set the frozen bit.
2090 	 * The old freelist is the list of objects for the
2091 	 * per cpu allocation list.
2092 	 */
2093 	freelist = page->freelist;
2094 	counters = page->counters;
2095 	new.counters = counters;
2096 	*objects = new.objects - new.inuse;
2097 	if (mode) {
2098 		new.inuse = page->objects;
2099 		new.freelist = NULL;
2100 	} else {
2101 		new.freelist = freelist;
2102 	}
2103 
2104 	VM_BUG_ON(new.frozen);
2105 	new.frozen = 1;
2106 
2107 	if (!__cmpxchg_double_slab(s, page,
2108 			freelist, counters,
2109 			new.freelist, new.counters,
2110 			"acquire_slab"))
2111 		return NULL;
2112 
2113 	remove_partial(n, page);
2114 	WARN_ON(!freelist);
2115 	return freelist;
2116 }
2117 
2118 #ifdef CONFIG_SLUB_CPU_PARTIAL
2119 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
2120 #else
put_cpu_partial(struct kmem_cache * s,struct page * page,int drain)2121 static inline void put_cpu_partial(struct kmem_cache *s, struct page *page,
2122 				   int drain) { }
2123 #endif
2124 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
2125 
2126 /*
2127  * Try to allocate a partial slab from a specific node.
2128  */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct page ** ret_page,gfp_t gfpflags)2129 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2130 			      struct page **ret_page, gfp_t gfpflags)
2131 {
2132 	struct page *page, *page2;
2133 	void *object = NULL;
2134 	unsigned int available = 0;
2135 	unsigned long flags;
2136 	int objects;
2137 
2138 	/*
2139 	 * Racy check. If we mistakenly see no partial slabs then we
2140 	 * just allocate an empty slab. If we mistakenly try to get a
2141 	 * partial slab and there is none available then get_partial()
2142 	 * will return NULL.
2143 	 */
2144 	if (!n || !n->nr_partial)
2145 		return NULL;
2146 
2147 	spin_lock_irqsave(&n->list_lock, flags);
2148 	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
2149 		void *t;
2150 
2151 		if (!pfmemalloc_match(page, gfpflags))
2152 			continue;
2153 
2154 		t = acquire_slab(s, n, page, object == NULL, &objects);
2155 		if (!t)
2156 			break;
2157 
2158 		available += objects;
2159 		if (!object) {
2160 			*ret_page = page;
2161 			stat(s, ALLOC_FROM_PARTIAL);
2162 			object = t;
2163 		} else {
2164 			put_cpu_partial(s, page, 0);
2165 			stat(s, CPU_PARTIAL_NODE);
2166 		}
2167 		if (!kmem_cache_has_cpu_partial(s)
2168 			|| available > slub_cpu_partial(s) / 2)
2169 			break;
2170 
2171 	}
2172 	spin_unlock_irqrestore(&n->list_lock, flags);
2173 	return object;
2174 }
2175 
2176 /*
2177  * Get a page from somewhere. Search in increasing NUMA distances.
2178  */
get_any_partial(struct kmem_cache * s,gfp_t flags,struct page ** ret_page)2179 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2180 			     struct page **ret_page)
2181 {
2182 #ifdef CONFIG_NUMA
2183 	struct zonelist *zonelist;
2184 	struct zoneref *z;
2185 	struct zone *zone;
2186 	enum zone_type highest_zoneidx = gfp_zone(flags);
2187 	void *object;
2188 	unsigned int cpuset_mems_cookie;
2189 
2190 	/*
2191 	 * The defrag ratio allows a configuration of the tradeoffs between
2192 	 * inter node defragmentation and node local allocations. A lower
2193 	 * defrag_ratio increases the tendency to do local allocations
2194 	 * instead of attempting to obtain partial slabs from other nodes.
2195 	 *
2196 	 * If the defrag_ratio is set to 0 then kmalloc() always
2197 	 * returns node local objects. If the ratio is higher then kmalloc()
2198 	 * may return off node objects because partial slabs are obtained
2199 	 * from other nodes and filled up.
2200 	 *
2201 	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2202 	 * (which makes defrag_ratio = 1000) then every (well almost)
2203 	 * allocation will first attempt to defrag slab caches on other nodes.
2204 	 * This means scanning over all nodes to look for partial slabs which
2205 	 * may be expensive if we do it every time we are trying to find a slab
2206 	 * with available objects.
2207 	 */
2208 	if (!s->remote_node_defrag_ratio ||
2209 			get_cycles() % 1024 > s->remote_node_defrag_ratio)
2210 		return NULL;
2211 
2212 	do {
2213 		cpuset_mems_cookie = read_mems_allowed_begin();
2214 		zonelist = node_zonelist(mempolicy_slab_node(), flags);
2215 		for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2216 			struct kmem_cache_node *n;
2217 
2218 			n = get_node(s, zone_to_nid(zone));
2219 
2220 			if (n && cpuset_zone_allowed(zone, flags) &&
2221 					n->nr_partial > s->min_partial) {
2222 				object = get_partial_node(s, n, ret_page, flags);
2223 				if (object) {
2224 					/*
2225 					 * Don't check read_mems_allowed_retry()
2226 					 * here - if mems_allowed was updated in
2227 					 * parallel, that was a harmless race
2228 					 * between allocation and the cpuset
2229 					 * update
2230 					 */
2231 					return object;
2232 				}
2233 			}
2234 		}
2235 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
2236 #endif	/* CONFIG_NUMA */
2237 	return NULL;
2238 }
2239 
2240 /*
2241  * Get a partial page, lock it and return it.
2242  */
get_partial(struct kmem_cache * s,gfp_t flags,int node,struct page ** ret_page)2243 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2244 			 struct page **ret_page)
2245 {
2246 	void *object;
2247 	int searchnode = node;
2248 
2249 	if (node == NUMA_NO_NODE)
2250 		searchnode = numa_mem_id();
2251 
2252 	object = get_partial_node(s, get_node(s, searchnode), ret_page, flags);
2253 	if (object || node != NUMA_NO_NODE)
2254 		return object;
2255 
2256 	return get_any_partial(s, flags, ret_page);
2257 }
2258 
2259 #ifdef CONFIG_PREEMPTION
2260 /*
2261  * Calculate the next globally unique transaction for disambiguation
2262  * during cmpxchg. The transactions start with the cpu number and are then
2263  * incremented by CONFIG_NR_CPUS.
2264  */
2265 #define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
2266 #else
2267 /*
2268  * No preemption supported therefore also no need to check for
2269  * different cpus.
2270  */
2271 #define TID_STEP 1
2272 #endif
2273 
next_tid(unsigned long tid)2274 static inline unsigned long next_tid(unsigned long tid)
2275 {
2276 	return tid + TID_STEP;
2277 }
2278 
2279 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)2280 static inline unsigned int tid_to_cpu(unsigned long tid)
2281 {
2282 	return tid % TID_STEP;
2283 }
2284 
tid_to_event(unsigned long tid)2285 static inline unsigned long tid_to_event(unsigned long tid)
2286 {
2287 	return tid / TID_STEP;
2288 }
2289 #endif
2290 
init_tid(int cpu)2291 static inline unsigned int init_tid(int cpu)
2292 {
2293 	return cpu;
2294 }
2295 
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)2296 static inline void note_cmpxchg_failure(const char *n,
2297 		const struct kmem_cache *s, unsigned long tid)
2298 {
2299 #ifdef SLUB_DEBUG_CMPXCHG
2300 	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2301 
2302 	pr_info("%s %s: cmpxchg redo ", n, s->name);
2303 
2304 #ifdef CONFIG_PREEMPTION
2305 	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2306 		pr_warn("due to cpu change %d -> %d\n",
2307 			tid_to_cpu(tid), tid_to_cpu(actual_tid));
2308 	else
2309 #endif
2310 	if (tid_to_event(tid) != tid_to_event(actual_tid))
2311 		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2312 			tid_to_event(tid), tid_to_event(actual_tid));
2313 	else
2314 		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2315 			actual_tid, tid, next_tid(tid));
2316 #endif
2317 	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2318 }
2319 
init_kmem_cache_cpus(struct kmem_cache * s)2320 static void init_kmem_cache_cpus(struct kmem_cache *s)
2321 {
2322 	int cpu;
2323 	struct kmem_cache_cpu *c;
2324 
2325 	for_each_possible_cpu(cpu) {
2326 		c = per_cpu_ptr(s->cpu_slab, cpu);
2327 		local_lock_init(&c->lock);
2328 		c->tid = init_tid(cpu);
2329 	}
2330 }
2331 
2332 /*
2333  * Finishes removing the cpu slab. Merges cpu's freelist with page's freelist,
2334  * unfreezes the slabs and puts it on the proper list.
2335  * Assumes the slab has been already safely taken away from kmem_cache_cpu
2336  * by the caller.
2337  */
deactivate_slab(struct kmem_cache * s,struct page * page,void * freelist)2338 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2339 			    void *freelist)
2340 {
2341 	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2342 	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2343 	int lock = 0, free_delta = 0;
2344 	enum slab_modes l = M_NONE, m = M_NONE;
2345 	void *nextfree, *freelist_iter, *freelist_tail;
2346 	int tail = DEACTIVATE_TO_HEAD;
2347 	unsigned long flags = 0;
2348 	struct page new;
2349 	struct page old;
2350 
2351 	if (page->freelist) {
2352 		stat(s, DEACTIVATE_REMOTE_FREES);
2353 		tail = DEACTIVATE_TO_TAIL;
2354 	}
2355 
2356 	/*
2357 	 * Stage one: Count the objects on cpu's freelist as free_delta and
2358 	 * remember the last object in freelist_tail for later splicing.
2359 	 */
2360 	freelist_tail = NULL;
2361 	freelist_iter = freelist;
2362 	while (freelist_iter) {
2363 		nextfree = get_freepointer(s, freelist_iter);
2364 
2365 		/*
2366 		 * If 'nextfree' is invalid, it is possible that the object at
2367 		 * 'freelist_iter' is already corrupted.  So isolate all objects
2368 		 * starting at 'freelist_iter' by skipping them.
2369 		 */
2370 		if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2371 			break;
2372 
2373 		freelist_tail = freelist_iter;
2374 		free_delta++;
2375 
2376 		freelist_iter = nextfree;
2377 	}
2378 
2379 	/*
2380 	 * Stage two: Unfreeze the page while splicing the per-cpu
2381 	 * freelist to the head of page's freelist.
2382 	 *
2383 	 * Ensure that the page is unfrozen while the list presence
2384 	 * reflects the actual number of objects during unfreeze.
2385 	 *
2386 	 * We setup the list membership and then perform a cmpxchg
2387 	 * with the count. If there is a mismatch then the page
2388 	 * is not unfrozen but the page is on the wrong list.
2389 	 *
2390 	 * Then we restart the process which may have to remove
2391 	 * the page from the list that we just put it on again
2392 	 * because the number of objects in the slab may have
2393 	 * changed.
2394 	 */
2395 redo:
2396 
2397 	old.freelist = READ_ONCE(page->freelist);
2398 	old.counters = READ_ONCE(page->counters);
2399 	VM_BUG_ON(!old.frozen);
2400 
2401 	/* Determine target state of the slab */
2402 	new.counters = old.counters;
2403 	if (freelist_tail) {
2404 		new.inuse -= free_delta;
2405 		set_freepointer(s, freelist_tail, old.freelist);
2406 		new.freelist = freelist;
2407 	} else
2408 		new.freelist = old.freelist;
2409 
2410 	new.frozen = 0;
2411 
2412 	if (!new.inuse && n->nr_partial >= s->min_partial)
2413 		m = M_FREE;
2414 	else if (new.freelist) {
2415 		m = M_PARTIAL;
2416 		if (!lock) {
2417 			lock = 1;
2418 			/*
2419 			 * Taking the spinlock removes the possibility
2420 			 * that acquire_slab() will see a slab page that
2421 			 * is frozen
2422 			 */
2423 			spin_lock_irqsave(&n->list_lock, flags);
2424 		}
2425 	} else {
2426 		m = M_FULL;
2427 		if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2428 			lock = 1;
2429 			/*
2430 			 * This also ensures that the scanning of full
2431 			 * slabs from diagnostic functions will not see
2432 			 * any frozen slabs.
2433 			 */
2434 			spin_lock_irqsave(&n->list_lock, flags);
2435 		}
2436 	}
2437 
2438 	if (l != m) {
2439 		if (l == M_PARTIAL)
2440 			remove_partial(n, page);
2441 		else if (l == M_FULL)
2442 			remove_full(s, n, page);
2443 
2444 		if (m == M_PARTIAL)
2445 			add_partial(n, page, tail);
2446 		else if (m == M_FULL)
2447 			add_full(s, n, page);
2448 	}
2449 
2450 	l = m;
2451 	if (!cmpxchg_double_slab(s, page,
2452 				old.freelist, old.counters,
2453 				new.freelist, new.counters,
2454 				"unfreezing slab"))
2455 		goto redo;
2456 
2457 	if (lock)
2458 		spin_unlock_irqrestore(&n->list_lock, flags);
2459 
2460 	if (m == M_PARTIAL)
2461 		stat(s, tail);
2462 	else if (m == M_FULL)
2463 		stat(s, DEACTIVATE_FULL);
2464 	else if (m == M_FREE) {
2465 		stat(s, DEACTIVATE_EMPTY);
2466 		discard_slab(s, page);
2467 		stat(s, FREE_SLAB);
2468 	}
2469 }
2470 
2471 #ifdef CONFIG_SLUB_CPU_PARTIAL
__unfreeze_partials(struct kmem_cache * s,struct page * partial_page)2472 static void __unfreeze_partials(struct kmem_cache *s, struct page *partial_page)
2473 {
2474 	struct kmem_cache_node *n = NULL, *n2 = NULL;
2475 	struct page *page, *discard_page = NULL;
2476 	unsigned long flags = 0;
2477 
2478 	while (partial_page) {
2479 		struct page new;
2480 		struct page old;
2481 
2482 		page = partial_page;
2483 		partial_page = page->next;
2484 
2485 		n2 = get_node(s, page_to_nid(page));
2486 		if (n != n2) {
2487 			if (n)
2488 				spin_unlock_irqrestore(&n->list_lock, flags);
2489 
2490 			n = n2;
2491 			spin_lock_irqsave(&n->list_lock, flags);
2492 		}
2493 
2494 		do {
2495 
2496 			old.freelist = page->freelist;
2497 			old.counters = page->counters;
2498 			VM_BUG_ON(!old.frozen);
2499 
2500 			new.counters = old.counters;
2501 			new.freelist = old.freelist;
2502 
2503 			new.frozen = 0;
2504 
2505 		} while (!__cmpxchg_double_slab(s, page,
2506 				old.freelist, old.counters,
2507 				new.freelist, new.counters,
2508 				"unfreezing slab"));
2509 
2510 		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2511 			page->next = discard_page;
2512 			discard_page = page;
2513 		} else {
2514 			add_partial(n, page, DEACTIVATE_TO_TAIL);
2515 			stat(s, FREE_ADD_PARTIAL);
2516 		}
2517 	}
2518 
2519 	if (n)
2520 		spin_unlock_irqrestore(&n->list_lock, flags);
2521 
2522 	while (discard_page) {
2523 		page = discard_page;
2524 		discard_page = discard_page->next;
2525 
2526 		stat(s, DEACTIVATE_EMPTY);
2527 		discard_slab(s, page);
2528 		stat(s, FREE_SLAB);
2529 	}
2530 }
2531 
2532 /*
2533  * Unfreeze all the cpu partial slabs.
2534  */
unfreeze_partials(struct kmem_cache * s)2535 static void unfreeze_partials(struct kmem_cache *s)
2536 {
2537 	struct page *partial_page;
2538 	unsigned long flags;
2539 
2540 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2541 	partial_page = this_cpu_read(s->cpu_slab->partial);
2542 	this_cpu_write(s->cpu_slab->partial, NULL);
2543 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2544 
2545 	if (partial_page)
2546 		__unfreeze_partials(s, partial_page);
2547 }
2548 
unfreeze_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)2549 static void unfreeze_partials_cpu(struct kmem_cache *s,
2550 				  struct kmem_cache_cpu *c)
2551 {
2552 	struct page *partial_page;
2553 
2554 	partial_page = slub_percpu_partial(c);
2555 	c->partial = NULL;
2556 
2557 	if (partial_page)
2558 		__unfreeze_partials(s, partial_page);
2559 }
2560 
2561 /*
2562  * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2563  * partial page slot if available.
2564  *
2565  * If we did not find a slot then simply move all the partials to the
2566  * per node partial list.
2567  */
put_cpu_partial(struct kmem_cache * s,struct page * page,int drain)2568 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2569 {
2570 	struct page *oldpage;
2571 	struct page *page_to_unfreeze = NULL;
2572 	unsigned long flags;
2573 	int pages = 0;
2574 	int pobjects = 0;
2575 
2576 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2577 
2578 	oldpage = this_cpu_read(s->cpu_slab->partial);
2579 
2580 	if (oldpage) {
2581 		if (drain && oldpage->pobjects > slub_cpu_partial(s)) {
2582 			/*
2583 			 * Partial array is full. Move the existing set to the
2584 			 * per node partial list. Postpone the actual unfreezing
2585 			 * outside of the critical section.
2586 			 */
2587 			page_to_unfreeze = oldpage;
2588 			oldpage = NULL;
2589 		} else {
2590 			pobjects = oldpage->pobjects;
2591 			pages = oldpage->pages;
2592 		}
2593 	}
2594 
2595 	pages++;
2596 	pobjects += page->objects - page->inuse;
2597 
2598 	page->pages = pages;
2599 	page->pobjects = pobjects;
2600 	page->next = oldpage;
2601 
2602 	this_cpu_write(s->cpu_slab->partial, page);
2603 
2604 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2605 
2606 	if (page_to_unfreeze) {
2607 		__unfreeze_partials(s, page_to_unfreeze);
2608 		stat(s, CPU_PARTIAL_DRAIN);
2609 	}
2610 }
2611 
2612 #else	/* CONFIG_SLUB_CPU_PARTIAL */
2613 
unfreeze_partials(struct kmem_cache * s)2614 static inline void unfreeze_partials(struct kmem_cache *s) { }
unfreeze_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)2615 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2616 				  struct kmem_cache_cpu *c) { }
2617 
2618 #endif	/* CONFIG_SLUB_CPU_PARTIAL */
2619 
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)2620 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2621 {
2622 	unsigned long flags;
2623 	struct page *page;
2624 	void *freelist;
2625 
2626 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2627 
2628 	page = c->page;
2629 	freelist = c->freelist;
2630 
2631 	c->page = NULL;
2632 	c->freelist = NULL;
2633 	c->tid = next_tid(c->tid);
2634 
2635 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2636 
2637 	if (page) {
2638 		deactivate_slab(s, page, freelist);
2639 		stat(s, CPUSLAB_FLUSH);
2640 	}
2641 }
2642 
__flush_cpu_slab(struct kmem_cache * s,int cpu)2643 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2644 {
2645 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2646 	void *freelist = c->freelist;
2647 	struct page *page = c->page;
2648 
2649 	c->page = NULL;
2650 	c->freelist = NULL;
2651 	c->tid = next_tid(c->tid);
2652 
2653 	if (page) {
2654 		deactivate_slab(s, page, freelist);
2655 		stat(s, CPUSLAB_FLUSH);
2656 	}
2657 
2658 	unfreeze_partials_cpu(s, c);
2659 }
2660 
2661 struct slub_flush_work {
2662 	struct work_struct work;
2663 	struct kmem_cache *s;
2664 	bool skip;
2665 };
2666 
2667 /*
2668  * Flush cpu slab.
2669  *
2670  * Called from CPU work handler with migration disabled.
2671  */
flush_cpu_slab(struct work_struct * w)2672 static void flush_cpu_slab(struct work_struct *w)
2673 {
2674 	struct kmem_cache *s;
2675 	struct kmem_cache_cpu *c;
2676 	struct slub_flush_work *sfw;
2677 
2678 	sfw = container_of(w, struct slub_flush_work, work);
2679 
2680 	s = sfw->s;
2681 	c = this_cpu_ptr(s->cpu_slab);
2682 
2683 	if (c->page)
2684 		flush_slab(s, c);
2685 
2686 	unfreeze_partials(s);
2687 }
2688 
has_cpu_slab(int cpu,struct kmem_cache * s)2689 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2690 {
2691 	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2692 
2693 	return c->page || slub_percpu_partial(c);
2694 }
2695 
2696 static DEFINE_MUTEX(flush_lock);
2697 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2698 
flush_all_cpus_locked(struct kmem_cache * s)2699 static void flush_all_cpus_locked(struct kmem_cache *s)
2700 {
2701 	struct slub_flush_work *sfw;
2702 	unsigned int cpu;
2703 
2704 	lockdep_assert_cpus_held();
2705 	mutex_lock(&flush_lock);
2706 
2707 	for_each_online_cpu(cpu) {
2708 		sfw = &per_cpu(slub_flush, cpu);
2709 		if (!has_cpu_slab(cpu, s)) {
2710 			sfw->skip = true;
2711 			continue;
2712 		}
2713 		INIT_WORK(&sfw->work, flush_cpu_slab);
2714 		sfw->skip = false;
2715 		sfw->s = s;
2716 		queue_work_on(cpu, flushwq, &sfw->work);
2717 	}
2718 
2719 	for_each_online_cpu(cpu) {
2720 		sfw = &per_cpu(slub_flush, cpu);
2721 		if (sfw->skip)
2722 			continue;
2723 		flush_work(&sfw->work);
2724 	}
2725 
2726 	mutex_unlock(&flush_lock);
2727 }
2728 
flush_all(struct kmem_cache * s)2729 static void flush_all(struct kmem_cache *s)
2730 {
2731 	cpus_read_lock();
2732 	flush_all_cpus_locked(s);
2733 	cpus_read_unlock();
2734 }
2735 
2736 /*
2737  * Use the cpu notifier to insure that the cpu slabs are flushed when
2738  * necessary.
2739  */
slub_cpu_dead(unsigned int cpu)2740 static int slub_cpu_dead(unsigned int cpu)
2741 {
2742 	struct kmem_cache *s;
2743 
2744 	mutex_lock(&slab_mutex);
2745 	list_for_each_entry(s, &slab_caches, list)
2746 		__flush_cpu_slab(s, cpu);
2747 	mutex_unlock(&slab_mutex);
2748 	return 0;
2749 }
2750 
2751 /*
2752  * Check if the objects in a per cpu structure fit numa
2753  * locality expectations.
2754  */
node_match(struct page * page,int node)2755 static inline int node_match(struct page *page, int node)
2756 {
2757 #ifdef CONFIG_NUMA
2758 	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2759 		return 0;
2760 #endif
2761 	return 1;
2762 }
2763 
2764 #ifdef CONFIG_SLUB_DEBUG
count_free(struct page * page)2765 static int count_free(struct page *page)
2766 {
2767 	return page->objects - page->inuse;
2768 }
2769 
node_nr_objs(struct kmem_cache_node * n)2770 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2771 {
2772 	return atomic_long_read(&n->total_objects);
2773 }
2774 #endif /* CONFIG_SLUB_DEBUG */
2775 
2776 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct page *))2777 static unsigned long count_partial(struct kmem_cache_node *n,
2778 					int (*get_count)(struct page *))
2779 {
2780 	unsigned long flags;
2781 	unsigned long x = 0;
2782 	struct page *page;
2783 
2784 	spin_lock_irqsave(&n->list_lock, flags);
2785 	list_for_each_entry(page, &n->partial, slab_list)
2786 		x += get_count(page);
2787 	spin_unlock_irqrestore(&n->list_lock, flags);
2788 	return x;
2789 }
2790 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2791 
2792 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)2793 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2794 {
2795 #ifdef CONFIG_SLUB_DEBUG
2796 	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2797 				      DEFAULT_RATELIMIT_BURST);
2798 	int node;
2799 	struct kmem_cache_node *n;
2800 
2801 	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2802 		return;
2803 
2804 	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2805 		nid, gfpflags, &gfpflags);
2806 	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2807 		s->name, s->object_size, s->size, oo_order(s->oo),
2808 		oo_order(s->min));
2809 
2810 	if (oo_order(s->min) > get_order(s->object_size))
2811 		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
2812 			s->name);
2813 
2814 	for_each_kmem_cache_node(s, node, n) {
2815 		unsigned long nr_slabs;
2816 		unsigned long nr_objs;
2817 		unsigned long nr_free;
2818 
2819 		nr_free  = count_partial(n, count_free);
2820 		nr_slabs = node_nr_slabs(n);
2821 		nr_objs  = node_nr_objs(n);
2822 
2823 		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
2824 			node, nr_slabs, nr_objs, nr_free);
2825 	}
2826 #endif
2827 }
2828 
pfmemalloc_match(struct page * page,gfp_t gfpflags)2829 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2830 {
2831 	if (unlikely(PageSlabPfmemalloc(page)))
2832 		return gfp_pfmemalloc_allowed(gfpflags);
2833 
2834 	return true;
2835 }
2836 
2837 /*
2838  * A variant of pfmemalloc_match() that tests page flags without asserting
2839  * PageSlab. Intended for opportunistic checks before taking a lock and
2840  * rechecking that nobody else freed the page under us.
2841  */
pfmemalloc_match_unsafe(struct page * page,gfp_t gfpflags)2842 static inline bool pfmemalloc_match_unsafe(struct page *page, gfp_t gfpflags)
2843 {
2844 	if (unlikely(__PageSlabPfmemalloc(page)))
2845 		return gfp_pfmemalloc_allowed(gfpflags);
2846 
2847 	return true;
2848 }
2849 
2850 /*
2851  * Check the page->freelist of a page and either transfer the freelist to the
2852  * per cpu freelist or deactivate the page.
2853  *
2854  * The page is still frozen if the return value is not NULL.
2855  *
2856  * If this function returns NULL then the page has been unfrozen.
2857  */
get_freelist(struct kmem_cache * s,struct page * page)2858 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2859 {
2860 	struct page new;
2861 	unsigned long counters;
2862 	void *freelist;
2863 
2864 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2865 
2866 	do {
2867 		freelist = page->freelist;
2868 		counters = page->counters;
2869 
2870 		new.counters = counters;
2871 		VM_BUG_ON(!new.frozen);
2872 
2873 		new.inuse = page->objects;
2874 		new.frozen = freelist != NULL;
2875 
2876 	} while (!__cmpxchg_double_slab(s, page,
2877 		freelist, counters,
2878 		NULL, new.counters,
2879 		"get_freelist"));
2880 
2881 	return freelist;
2882 }
2883 
2884 /*
2885  * Slow path. The lockless freelist is empty or we need to perform
2886  * debugging duties.
2887  *
2888  * Processing is still very fast if new objects have been freed to the
2889  * regular freelist. In that case we simply take over the regular freelist
2890  * as the lockless freelist and zap the regular freelist.
2891  *
2892  * If that is not working then we fall back to the partial lists. We take the
2893  * first element of the freelist as the object to allocate now and move the
2894  * rest of the freelist to the lockless freelist.
2895  *
2896  * And if we were unable to get a new slab from the partial slab lists then
2897  * we need to allocate a new slab. This is the slowest path since it involves
2898  * a call to the page allocator and the setup of a new slab.
2899  *
2900  * Version of __slab_alloc to use when we know that preemption is
2901  * already disabled (which is the case for bulk allocation).
2902  */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c)2903 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2904 			  unsigned long addr, struct kmem_cache_cpu *c)
2905 {
2906 	void *freelist;
2907 	struct page *page;
2908 	unsigned long flags;
2909 
2910 	stat(s, ALLOC_SLOWPATH);
2911 
2912 reread_page:
2913 
2914 	page = READ_ONCE(c->page);
2915 	if (!page) {
2916 		/*
2917 		 * if the node is not online or has no normal memory, just
2918 		 * ignore the node constraint
2919 		 */
2920 		if (unlikely(node != NUMA_NO_NODE &&
2921 			     !node_isset(node, slab_nodes)))
2922 			node = NUMA_NO_NODE;
2923 		goto new_slab;
2924 	}
2925 redo:
2926 
2927 	if (unlikely(!node_match(page, node))) {
2928 		/*
2929 		 * same as above but node_match() being false already
2930 		 * implies node != NUMA_NO_NODE
2931 		 */
2932 		if (!node_isset(node, slab_nodes)) {
2933 			node = NUMA_NO_NODE;
2934 			goto redo;
2935 		} else {
2936 			stat(s, ALLOC_NODE_MISMATCH);
2937 			goto deactivate_slab;
2938 		}
2939 	}
2940 
2941 	/*
2942 	 * By rights, we should be searching for a slab page that was
2943 	 * PFMEMALLOC but right now, we are losing the pfmemalloc
2944 	 * information when the page leaves the per-cpu allocator
2945 	 */
2946 	if (unlikely(!pfmemalloc_match_unsafe(page, gfpflags)))
2947 		goto deactivate_slab;
2948 
2949 	/* must check again c->page in case we got preempted and it changed */
2950 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2951 	if (unlikely(page != c->page)) {
2952 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2953 		goto reread_page;
2954 	}
2955 	freelist = c->freelist;
2956 	if (freelist)
2957 		goto load_freelist;
2958 
2959 	freelist = get_freelist(s, page);
2960 
2961 	if (!freelist) {
2962 		c->page = NULL;
2963 		c->tid = next_tid(c->tid);
2964 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2965 		stat(s, DEACTIVATE_BYPASS);
2966 		goto new_slab;
2967 	}
2968 
2969 	stat(s, ALLOC_REFILL);
2970 
2971 load_freelist:
2972 
2973 	lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2974 
2975 	/*
2976 	 * freelist is pointing to the list of objects to be used.
2977 	 * page is pointing to the page from which the objects are obtained.
2978 	 * That page must be frozen for per cpu allocations to work.
2979 	 */
2980 	VM_BUG_ON(!c->page->frozen);
2981 	c->freelist = get_freepointer(s, freelist);
2982 	c->tid = next_tid(c->tid);
2983 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2984 	return freelist;
2985 
2986 deactivate_slab:
2987 
2988 	local_lock_irqsave(&s->cpu_slab->lock, flags);
2989 	if (page != c->page) {
2990 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2991 		goto reread_page;
2992 	}
2993 	freelist = c->freelist;
2994 	c->page = NULL;
2995 	c->freelist = NULL;
2996 	c->tid = next_tid(c->tid);
2997 	local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2998 	deactivate_slab(s, page, freelist);
2999 
3000 new_slab:
3001 
3002 	if (slub_percpu_partial(c)) {
3003 		local_lock_irqsave(&s->cpu_slab->lock, flags);
3004 		if (unlikely(c->page)) {
3005 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3006 			goto reread_page;
3007 		}
3008 		if (unlikely(!slub_percpu_partial(c))) {
3009 			local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3010 			/* we were preempted and partial list got empty */
3011 			goto new_objects;
3012 		}
3013 
3014 		page = c->page = slub_percpu_partial(c);
3015 		slub_set_percpu_partial(c, page);
3016 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3017 		stat(s, CPU_PARTIAL_ALLOC);
3018 		goto redo;
3019 	}
3020 
3021 new_objects:
3022 
3023 	freelist = get_partial(s, gfpflags, node, &page);
3024 	if (freelist)
3025 		goto check_new_page;
3026 
3027 	slub_put_cpu_ptr(s->cpu_slab);
3028 	page = new_slab(s, gfpflags, node);
3029 	c = slub_get_cpu_ptr(s->cpu_slab);
3030 
3031 	if (unlikely(!page)) {
3032 		slab_out_of_memory(s, gfpflags, node);
3033 		return NULL;
3034 	}
3035 
3036 	/*
3037 	 * No other reference to the page yet so we can
3038 	 * muck around with it freely without cmpxchg
3039 	 */
3040 	freelist = page->freelist;
3041 	page->freelist = NULL;
3042 
3043 	stat(s, ALLOC_SLAB);
3044 
3045 check_new_page:
3046 
3047 	if (kmem_cache_debug(s)) {
3048 		if (!alloc_debug_processing(s, page, freelist, addr)) {
3049 			/* Slab failed checks. Next slab needed */
3050 			goto new_slab;
3051 		} else {
3052 			/*
3053 			 * For debug case, we don't load freelist so that all
3054 			 * allocations go through alloc_debug_processing()
3055 			 */
3056 			goto return_single;
3057 		}
3058 	}
3059 
3060 	if (unlikely(!pfmemalloc_match(page, gfpflags)))
3061 		/*
3062 		 * For !pfmemalloc_match() case we don't load freelist so that
3063 		 * we don't make further mismatched allocations easier.
3064 		 */
3065 		goto return_single;
3066 
3067 retry_load_page:
3068 
3069 	local_lock_irqsave(&s->cpu_slab->lock, flags);
3070 	if (unlikely(c->page)) {
3071 		void *flush_freelist = c->freelist;
3072 		struct page *flush_page = c->page;
3073 
3074 		c->page = NULL;
3075 		c->freelist = NULL;
3076 		c->tid = next_tid(c->tid);
3077 
3078 		local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3079 
3080 		deactivate_slab(s, flush_page, flush_freelist);
3081 
3082 		stat(s, CPUSLAB_FLUSH);
3083 
3084 		goto retry_load_page;
3085 	}
3086 	c->page = page;
3087 
3088 	goto load_freelist;
3089 
3090 return_single:
3091 
3092 	deactivate_slab(s, page, get_freepointer(s, freelist));
3093 	return freelist;
3094 }
3095 
3096 /*
3097  * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3098  * disabled. Compensates for possible cpu changes by refetching the per cpu area
3099  * pointer.
3100  */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c)3101 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3102 			  unsigned long addr, struct kmem_cache_cpu *c)
3103 {
3104 	void *p;
3105 
3106 #ifdef CONFIG_PREEMPT_COUNT
3107 	/*
3108 	 * We may have been preempted and rescheduled on a different
3109 	 * cpu before disabling preemption. Need to reload cpu area
3110 	 * pointer.
3111 	 */
3112 	c = slub_get_cpu_ptr(s->cpu_slab);
3113 #endif
3114 
3115 	p = ___slab_alloc(s, gfpflags, node, addr, c);
3116 #ifdef CONFIG_PREEMPT_COUNT
3117 	slub_put_cpu_ptr(s->cpu_slab);
3118 #endif
3119 	return p;
3120 }
3121 
3122 /*
3123  * If the object has been wiped upon free, make sure it's fully initialized by
3124  * zeroing out freelist pointer.
3125  */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)3126 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3127 						   void *obj)
3128 {
3129 	if (unlikely(slab_want_init_on_free(s)) && obj)
3130 		memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3131 			0, sizeof(void *));
3132 }
3133 
3134 /*
3135  * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3136  * have the fastpath folded into their functions. So no function call
3137  * overhead for requests that can be satisfied on the fastpath.
3138  *
3139  * The fastpath works by first checking if the lockless freelist can be used.
3140  * If not then __slab_alloc is called for slow processing.
3141  *
3142  * Otherwise we can simply pick the next object from the lockless free list.
3143  */
slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3144 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
3145 		gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3146 {
3147 	void *object;
3148 	struct kmem_cache_cpu *c;
3149 	struct page *page;
3150 	unsigned long tid;
3151 	struct obj_cgroup *objcg = NULL;
3152 	bool init = false;
3153 
3154 	s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
3155 	if (!s)
3156 		return NULL;
3157 
3158 	object = kfence_alloc(s, orig_size, gfpflags);
3159 	if (unlikely(object))
3160 		goto out;
3161 
3162 redo:
3163 	/*
3164 	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3165 	 * enabled. We may switch back and forth between cpus while
3166 	 * reading from one cpu area. That does not matter as long
3167 	 * as we end up on the original cpu again when doing the cmpxchg.
3168 	 *
3169 	 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3170 	 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3171 	 * the tid. If we are preempted and switched to another cpu between the
3172 	 * two reads, it's OK as the two are still associated with the same cpu
3173 	 * and cmpxchg later will validate the cpu.
3174 	 */
3175 	c = raw_cpu_ptr(s->cpu_slab);
3176 	tid = READ_ONCE(c->tid);
3177 
3178 	/*
3179 	 * Irqless object alloc/free algorithm used here depends on sequence
3180 	 * of fetching cpu_slab's data. tid should be fetched before anything
3181 	 * on c to guarantee that object and page associated with previous tid
3182 	 * won't be used with current tid. If we fetch tid first, object and
3183 	 * page could be one associated with next tid and our alloc/free
3184 	 * request will be failed. In this case, we will retry. So, no problem.
3185 	 */
3186 	barrier();
3187 
3188 	/*
3189 	 * The transaction ids are globally unique per cpu and per operation on
3190 	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3191 	 * occurs on the right processor and that there was no operation on the
3192 	 * linked list in between.
3193 	 */
3194 
3195 	object = c->freelist;
3196 	page = c->page;
3197 	/*
3198 	 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3199 	 * slowpath has taken the local_lock_irqsave(), it is not protected
3200 	 * against a fast path operation in an irq handler. So we need to take
3201 	 * the slow path which uses local_lock. It is still relatively fast if
3202 	 * there is a suitable cpu freelist.
3203 	 */
3204 	if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
3205 	    unlikely(!object || !page || !node_match(page, node))) {
3206 		object = __slab_alloc(s, gfpflags, node, addr, c);
3207 	} else {
3208 		void *next_object = get_freepointer_safe(s, object);
3209 
3210 		/*
3211 		 * The cmpxchg will only match if there was no additional
3212 		 * operation and if we are on the right processor.
3213 		 *
3214 		 * The cmpxchg does the following atomically (without lock
3215 		 * semantics!)
3216 		 * 1. Relocate first pointer to the current per cpu area.
3217 		 * 2. Verify that tid and freelist have not been changed
3218 		 * 3. If they were not changed replace tid and freelist
3219 		 *
3220 		 * Since this is without lock semantics the protection is only
3221 		 * against code executing on this cpu *not* from access by
3222 		 * other cpus.
3223 		 */
3224 		if (unlikely(!this_cpu_cmpxchg_double(
3225 				s->cpu_slab->freelist, s->cpu_slab->tid,
3226 				object, tid,
3227 				next_object, next_tid(tid)))) {
3228 
3229 			note_cmpxchg_failure("slab_alloc", s, tid);
3230 			goto redo;
3231 		}
3232 		prefetch_freepointer(s, next_object);
3233 		stat(s, ALLOC_FASTPATH);
3234 	}
3235 
3236 	maybe_wipe_obj_freeptr(s, object);
3237 	init = slab_want_init_on_alloc(gfpflags, s);
3238 
3239 out:
3240 	slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
3241 
3242 	return object;
3243 }
3244 
slab_alloc(struct kmem_cache * s,gfp_t gfpflags,unsigned long addr,size_t orig_size)3245 static __always_inline void *slab_alloc(struct kmem_cache *s,
3246 		gfp_t gfpflags, unsigned long addr, size_t orig_size)
3247 {
3248 	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
3249 }
3250 
kmem_cache_alloc(struct kmem_cache * s,gfp_t gfpflags)3251 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3252 {
3253 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
3254 
3255 	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
3256 				s->size, gfpflags);
3257 
3258 	return ret;
3259 }
3260 EXPORT_SYMBOL(kmem_cache_alloc);
3261 
3262 #ifdef CONFIG_TRACING
kmem_cache_alloc_trace(struct kmem_cache * s,gfp_t gfpflags,size_t size)3263 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3264 {
3265 	void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
3266 	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
3267 	ret = kasan_kmalloc(s, ret, size, gfpflags);
3268 	return ret;
3269 }
3270 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3271 #endif
3272 
3273 #ifdef CONFIG_NUMA
kmem_cache_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node)3274 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3275 {
3276 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
3277 
3278 	trace_kmem_cache_alloc_node(_RET_IP_, ret,
3279 				    s->object_size, s->size, gfpflags, node);
3280 
3281 	return ret;
3282 }
3283 EXPORT_SYMBOL(kmem_cache_alloc_node);
3284 
3285 #ifdef CONFIG_TRACING
kmem_cache_alloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)3286 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3287 				    gfp_t gfpflags,
3288 				    int node, size_t size)
3289 {
3290 	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
3291 
3292 	trace_kmalloc_node(_RET_IP_, ret,
3293 			   size, s->size, gfpflags, node);
3294 
3295 	ret = kasan_kmalloc(s, ret, size, gfpflags);
3296 	return ret;
3297 }
3298 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3299 #endif
3300 #endif	/* CONFIG_NUMA */
3301 
3302 /*
3303  * Slow path handling. This may still be called frequently since objects
3304  * have a longer lifetime than the cpu slabs in most processing loads.
3305  *
3306  * So we still attempt to reduce cache line usage. Just take the slab
3307  * lock and free the item. If there is no additional partial page
3308  * handling required then we can return immediately.
3309  */
__slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)3310 static void __slab_free(struct kmem_cache *s, struct page *page,
3311 			void *head, void *tail, int cnt,
3312 			unsigned long addr)
3313 
3314 {
3315 	void *prior;
3316 	int was_frozen;
3317 	struct page new;
3318 	unsigned long counters;
3319 	struct kmem_cache_node *n = NULL;
3320 	unsigned long flags;
3321 
3322 	stat(s, FREE_SLOWPATH);
3323 
3324 	if (kfence_free(head))
3325 		return;
3326 
3327 	if (kmem_cache_debug(s) &&
3328 	    !free_debug_processing(s, page, head, tail, cnt, addr))
3329 		return;
3330 
3331 	do {
3332 		if (unlikely(n)) {
3333 			spin_unlock_irqrestore(&n->list_lock, flags);
3334 			n = NULL;
3335 		}
3336 		prior = page->freelist;
3337 		counters = page->counters;
3338 		set_freepointer(s, tail, prior);
3339 		new.counters = counters;
3340 		was_frozen = new.frozen;
3341 		new.inuse -= cnt;
3342 		if ((!new.inuse || !prior) && !was_frozen) {
3343 
3344 			if (kmem_cache_has_cpu_partial(s) && !prior) {
3345 
3346 				/*
3347 				 * Slab was on no list before and will be
3348 				 * partially empty
3349 				 * We can defer the list move and instead
3350 				 * freeze it.
3351 				 */
3352 				new.frozen = 1;
3353 
3354 			} else { /* Needs to be taken off a list */
3355 
3356 				n = get_node(s, page_to_nid(page));
3357 				/*
3358 				 * Speculatively acquire the list_lock.
3359 				 * If the cmpxchg does not succeed then we may
3360 				 * drop the list_lock without any processing.
3361 				 *
3362 				 * Otherwise the list_lock will synchronize with
3363 				 * other processors updating the list of slabs.
3364 				 */
3365 				spin_lock_irqsave(&n->list_lock, flags);
3366 
3367 			}
3368 		}
3369 
3370 	} while (!cmpxchg_double_slab(s, page,
3371 		prior, counters,
3372 		head, new.counters,
3373 		"__slab_free"));
3374 
3375 	if (likely(!n)) {
3376 
3377 		if (likely(was_frozen)) {
3378 			/*
3379 			 * The list lock was not taken therefore no list
3380 			 * activity can be necessary.
3381 			 */
3382 			stat(s, FREE_FROZEN);
3383 		} else if (new.frozen) {
3384 			/*
3385 			 * If we just froze the page then put it onto the
3386 			 * per cpu partial list.
3387 			 */
3388 			put_cpu_partial(s, page, 1);
3389 			stat(s, CPU_PARTIAL_FREE);
3390 		}
3391 
3392 		return;
3393 	}
3394 
3395 	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3396 		goto slab_empty;
3397 
3398 	/*
3399 	 * Objects left in the slab. If it was not on the partial list before
3400 	 * then add it.
3401 	 */
3402 	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3403 		remove_full(s, n, page);
3404 		add_partial(n, page, DEACTIVATE_TO_TAIL);
3405 		stat(s, FREE_ADD_PARTIAL);
3406 	}
3407 	spin_unlock_irqrestore(&n->list_lock, flags);
3408 	return;
3409 
3410 slab_empty:
3411 	if (prior) {
3412 		/*
3413 		 * Slab on the partial list.
3414 		 */
3415 		remove_partial(n, page);
3416 		stat(s, FREE_REMOVE_PARTIAL);
3417 	} else {
3418 		/* Slab must be on the full list */
3419 		remove_full(s, n, page);
3420 	}
3421 
3422 	spin_unlock_irqrestore(&n->list_lock, flags);
3423 	stat(s, FREE_SLAB);
3424 	discard_slab(s, page);
3425 }
3426 
3427 /*
3428  * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3429  * can perform fastpath freeing without additional function calls.
3430  *
3431  * The fastpath is only possible if we are freeing to the current cpu slab
3432  * of this processor. This typically the case if we have just allocated
3433  * the item before.
3434  *
3435  * If fastpath is not possible then fall back to __slab_free where we deal
3436  * with all sorts of special processing.
3437  *
3438  * Bulk free of a freelist with several objects (all pointing to the
3439  * same page) possible by specifying head and tail ptr, plus objects
3440  * count (cnt). Bulk free indicated by tail pointer being set.
3441  */
do_slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)3442 static __always_inline void do_slab_free(struct kmem_cache *s,
3443 				struct page *page, void *head, void *tail,
3444 				int cnt, unsigned long addr)
3445 {
3446 	void *tail_obj = tail ? : head;
3447 	struct kmem_cache_cpu *c;
3448 	unsigned long tid;
3449 
3450 	/* memcg_slab_free_hook() is already called for bulk free. */
3451 	if (!tail)
3452 		memcg_slab_free_hook(s, &head, 1);
3453 redo:
3454 	/*
3455 	 * Determine the currently cpus per cpu slab.
3456 	 * The cpu may change afterward. However that does not matter since
3457 	 * data is retrieved via this pointer. If we are on the same cpu
3458 	 * during the cmpxchg then the free will succeed.
3459 	 */
3460 	c = raw_cpu_ptr(s->cpu_slab);
3461 	tid = READ_ONCE(c->tid);
3462 
3463 	/* Same with comment on barrier() in slab_alloc_node() */
3464 	barrier();
3465 
3466 	if (likely(page == c->page)) {
3467 #ifndef CONFIG_PREEMPT_RT
3468 		void **freelist = READ_ONCE(c->freelist);
3469 
3470 		set_freepointer(s, tail_obj, freelist);
3471 
3472 		if (unlikely(!this_cpu_cmpxchg_double(
3473 				s->cpu_slab->freelist, s->cpu_slab->tid,
3474 				freelist, tid,
3475 				head, next_tid(tid)))) {
3476 
3477 			note_cmpxchg_failure("slab_free", s, tid);
3478 			goto redo;
3479 		}
3480 #else /* CONFIG_PREEMPT_RT */
3481 		/*
3482 		 * We cannot use the lockless fastpath on PREEMPT_RT because if
3483 		 * a slowpath has taken the local_lock_irqsave(), it is not
3484 		 * protected against a fast path operation in an irq handler. So
3485 		 * we need to take the local_lock. We shouldn't simply defer to
3486 		 * __slab_free() as that wouldn't use the cpu freelist at all.
3487 		 */
3488 		void **freelist;
3489 
3490 		local_lock(&s->cpu_slab->lock);
3491 		c = this_cpu_ptr(s->cpu_slab);
3492 		if (unlikely(page != c->page)) {
3493 			local_unlock(&s->cpu_slab->lock);
3494 			goto redo;
3495 		}
3496 		tid = c->tid;
3497 		freelist = c->freelist;
3498 
3499 		set_freepointer(s, tail_obj, freelist);
3500 		c->freelist = head;
3501 		c->tid = next_tid(tid);
3502 
3503 		local_unlock(&s->cpu_slab->lock);
3504 #endif
3505 		stat(s, FREE_FASTPATH);
3506 	} else
3507 		__slab_free(s, page, head, tail_obj, cnt, addr);
3508 
3509 }
3510 
slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)3511 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3512 				      void *head, void *tail, int cnt,
3513 				      unsigned long addr)
3514 {
3515 	/*
3516 	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3517 	 * to remove objects, whose reuse must be delayed.
3518 	 */
3519 	if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3520 		do_slab_free(s, page, head, tail, cnt, addr);
3521 }
3522 
3523 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)3524 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3525 {
3526 	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3527 }
3528 #endif
3529 
kmem_cache_free(struct kmem_cache * s,void * x)3530 void kmem_cache_free(struct kmem_cache *s, void *x)
3531 {
3532 	s = cache_from_obj(s, x);
3533 	if (!s)
3534 		return;
3535 	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3536 	trace_kmem_cache_free(_RET_IP_, x, s->name);
3537 }
3538 EXPORT_SYMBOL(kmem_cache_free);
3539 
3540 struct detached_freelist {
3541 	struct page *page;
3542 	void *tail;
3543 	void *freelist;
3544 	int cnt;
3545 	struct kmem_cache *s;
3546 };
3547 
free_nonslab_page(struct page * page,void * object)3548 static inline void free_nonslab_page(struct page *page, void *object)
3549 {
3550 	unsigned int order = compound_order(page);
3551 
3552 	VM_BUG_ON_PAGE(!PageCompound(page), page);
3553 	kfree_hook(object);
3554 	mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order));
3555 	__free_pages(page, order);
3556 }
3557 
3558 /*
3559  * This function progressively scans the array with free objects (with
3560  * a limited look ahead) and extract objects belonging to the same
3561  * page.  It builds a detached freelist directly within the given
3562  * page/objects.  This can happen without any need for
3563  * synchronization, because the objects are owned by running process.
3564  * The freelist is build up as a single linked list in the objects.
3565  * The idea is, that this detached freelist can then be bulk
3566  * transferred to the real freelist(s), but only requiring a single
3567  * synchronization primitive.  Look ahead in the array is limited due
3568  * to performance reasons.
3569  */
3570 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)3571 int build_detached_freelist(struct kmem_cache *s, size_t size,
3572 			    void **p, struct detached_freelist *df)
3573 {
3574 	size_t first_skipped_index = 0;
3575 	int lookahead = 3;
3576 	void *object;
3577 	struct page *page;
3578 
3579 	/* Always re-init detached_freelist */
3580 	df->page = NULL;
3581 
3582 	do {
3583 		object = p[--size];
3584 		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3585 	} while (!object && size);
3586 
3587 	if (!object)
3588 		return 0;
3589 
3590 	page = virt_to_head_page(object);
3591 	if (!s) {
3592 		/* Handle kalloc'ed objects */
3593 		if (unlikely(!PageSlab(page))) {
3594 			free_nonslab_page(page, object);
3595 			p[size] = NULL; /* mark object processed */
3596 			return size;
3597 		}
3598 		/* Derive kmem_cache from object */
3599 		df->s = page->slab_cache;
3600 	} else {
3601 		df->s = cache_from_obj(s, object); /* Support for memcg */
3602 	}
3603 
3604 	if (is_kfence_address(object)) {
3605 		slab_free_hook(df->s, object, false);
3606 		__kfence_free(object);
3607 		p[size] = NULL; /* mark object processed */
3608 		return size;
3609 	}
3610 
3611 	/* Start new detached freelist */
3612 	df->page = page;
3613 	set_freepointer(df->s, object, NULL);
3614 	df->tail = object;
3615 	df->freelist = object;
3616 	p[size] = NULL; /* mark object processed */
3617 	df->cnt = 1;
3618 
3619 	while (size) {
3620 		object = p[--size];
3621 		if (!object)
3622 			continue; /* Skip processed objects */
3623 
3624 		/* df->page is always set at this point */
3625 		if (df->page == virt_to_head_page(object)) {
3626 			/* Opportunity build freelist */
3627 			set_freepointer(df->s, object, df->freelist);
3628 			df->freelist = object;
3629 			df->cnt++;
3630 			p[size] = NULL; /* mark object processed */
3631 
3632 			continue;
3633 		}
3634 
3635 		/* Limit look ahead search */
3636 		if (!--lookahead)
3637 			break;
3638 
3639 		if (!first_skipped_index)
3640 			first_skipped_index = size + 1;
3641 	}
3642 
3643 	return first_skipped_index;
3644 }
3645 
3646 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)3647 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3648 {
3649 	if (WARN_ON(!size))
3650 		return;
3651 
3652 	memcg_slab_free_hook(s, p, size);
3653 	do {
3654 		struct detached_freelist df;
3655 
3656 		size = build_detached_freelist(s, size, p, &df);
3657 		if (!df.page)
3658 			continue;
3659 
3660 		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3661 	} while (likely(size));
3662 }
3663 EXPORT_SYMBOL(kmem_cache_free_bulk);
3664 
3665 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)3666 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3667 			  void **p)
3668 {
3669 	struct kmem_cache_cpu *c;
3670 	int i;
3671 	struct obj_cgroup *objcg = NULL;
3672 
3673 	/* memcg and kmem_cache debug support */
3674 	s = slab_pre_alloc_hook(s, &objcg, size, flags);
3675 	if (unlikely(!s))
3676 		return false;
3677 	/*
3678 	 * Drain objects in the per cpu slab, while disabling local
3679 	 * IRQs, which protects against PREEMPT and interrupts
3680 	 * handlers invoking normal fastpath.
3681 	 */
3682 	c = slub_get_cpu_ptr(s->cpu_slab);
3683 	local_lock_irq(&s->cpu_slab->lock);
3684 
3685 	for (i = 0; i < size; i++) {
3686 		void *object = kfence_alloc(s, s->object_size, flags);
3687 
3688 		if (unlikely(object)) {
3689 			p[i] = object;
3690 			continue;
3691 		}
3692 
3693 		object = c->freelist;
3694 		if (unlikely(!object)) {
3695 			/*
3696 			 * We may have removed an object from c->freelist using
3697 			 * the fastpath in the previous iteration; in that case,
3698 			 * c->tid has not been bumped yet.
3699 			 * Since ___slab_alloc() may reenable interrupts while
3700 			 * allocating memory, we should bump c->tid now.
3701 			 */
3702 			c->tid = next_tid(c->tid);
3703 
3704 			local_unlock_irq(&s->cpu_slab->lock);
3705 
3706 			/*
3707 			 * Invoking slow path likely have side-effect
3708 			 * of re-populating per CPU c->freelist
3709 			 */
3710 			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3711 					    _RET_IP_, c);
3712 			if (unlikely(!p[i]))
3713 				goto error;
3714 
3715 			c = this_cpu_ptr(s->cpu_slab);
3716 			maybe_wipe_obj_freeptr(s, p[i]);
3717 
3718 			local_lock_irq(&s->cpu_slab->lock);
3719 
3720 			continue; /* goto for-loop */
3721 		}
3722 		c->freelist = get_freepointer(s, object);
3723 		p[i] = object;
3724 		maybe_wipe_obj_freeptr(s, p[i]);
3725 	}
3726 	c->tid = next_tid(c->tid);
3727 	local_unlock_irq(&s->cpu_slab->lock);
3728 	slub_put_cpu_ptr(s->cpu_slab);
3729 
3730 	/*
3731 	 * memcg and kmem_cache debug support and memory initialization.
3732 	 * Done outside of the IRQ disabled fastpath loop.
3733 	 */
3734 	slab_post_alloc_hook(s, objcg, flags, size, p,
3735 				slab_want_init_on_alloc(flags, s));
3736 	return i;
3737 error:
3738 	slub_put_cpu_ptr(s->cpu_slab);
3739 	slab_post_alloc_hook(s, objcg, flags, i, p, false);
3740 	__kmem_cache_free_bulk(s, i, p);
3741 	return 0;
3742 }
3743 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3744 
3745 
3746 /*
3747  * Object placement in a slab is made very easy because we always start at
3748  * offset 0. If we tune the size of the object to the alignment then we can
3749  * get the required alignment by putting one properly sized object after
3750  * another.
3751  *
3752  * Notice that the allocation order determines the sizes of the per cpu
3753  * caches. Each processor has always one slab available for allocations.
3754  * Increasing the allocation order reduces the number of times that slabs
3755  * must be moved on and off the partial lists and is therefore a factor in
3756  * locking overhead.
3757  */
3758 
3759 /*
3760  * Minimum / Maximum order of slab pages. This influences locking overhead
3761  * and slab fragmentation. A higher order reduces the number of partial slabs
3762  * and increases the number of allocations possible without having to
3763  * take the list_lock.
3764  */
3765 static unsigned int slub_min_order;
3766 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3767 static unsigned int slub_min_objects;
3768 
3769 /*
3770  * Calculate the order of allocation given an slab object size.
3771  *
3772  * The order of allocation has significant impact on performance and other
3773  * system components. Generally order 0 allocations should be preferred since
3774  * order 0 does not cause fragmentation in the page allocator. Larger objects
3775  * be problematic to put into order 0 slabs because there may be too much
3776  * unused space left. We go to a higher order if more than 1/16th of the slab
3777  * would be wasted.
3778  *
3779  * In order to reach satisfactory performance we must ensure that a minimum
3780  * number of objects is in one slab. Otherwise we may generate too much
3781  * activity on the partial lists which requires taking the list_lock. This is
3782  * less a concern for large slabs though which are rarely used.
3783  *
3784  * slub_max_order specifies the order where we begin to stop considering the
3785  * number of objects in a slab as critical. If we reach slub_max_order then
3786  * we try to keep the page order as low as possible. So we accept more waste
3787  * of space in favor of a small page order.
3788  *
3789  * Higher order allocations also allow the placement of more objects in a
3790  * slab and thereby reduce object handling overhead. If the user has
3791  * requested a higher minimum order then we start with that one instead of
3792  * the smallest order which will fit the object.
3793  */
slab_order(unsigned int size,unsigned int min_objects,unsigned int max_order,unsigned int fract_leftover)3794 static inline unsigned int slab_order(unsigned int size,
3795 		unsigned int min_objects, unsigned int max_order,
3796 		unsigned int fract_leftover)
3797 {
3798 	unsigned int min_order = slub_min_order;
3799 	unsigned int order;
3800 
3801 	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3802 		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3803 
3804 	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3805 			order <= max_order; order++) {
3806 
3807 		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3808 		unsigned int rem;
3809 
3810 		rem = slab_size % size;
3811 
3812 		if (rem <= slab_size / fract_leftover)
3813 			break;
3814 	}
3815 
3816 	return order;
3817 }
3818 
calculate_order(unsigned int size)3819 static inline int calculate_order(unsigned int size)
3820 {
3821 	unsigned int order;
3822 	unsigned int min_objects;
3823 	unsigned int max_objects;
3824 	unsigned int nr_cpus;
3825 
3826 	/*
3827 	 * Attempt to find best configuration for a slab. This
3828 	 * works by first attempting to generate a layout with
3829 	 * the best configuration and backing off gradually.
3830 	 *
3831 	 * First we increase the acceptable waste in a slab. Then
3832 	 * we reduce the minimum objects required in a slab.
3833 	 */
3834 	min_objects = slub_min_objects;
3835 	if (!min_objects) {
3836 		/*
3837 		 * Some architectures will only update present cpus when
3838 		 * onlining them, so don't trust the number if it's just 1. But
3839 		 * we also don't want to use nr_cpu_ids always, as on some other
3840 		 * architectures, there can be many possible cpus, but never
3841 		 * onlined. Here we compromise between trying to avoid too high
3842 		 * order on systems that appear larger than they are, and too
3843 		 * low order on systems that appear smaller than they are.
3844 		 */
3845 		nr_cpus = num_present_cpus();
3846 		if (nr_cpus <= 1)
3847 			nr_cpus = nr_cpu_ids;
3848 		min_objects = 4 * (fls(nr_cpus) + 1);
3849 	}
3850 	max_objects = order_objects(slub_max_order, size);
3851 	min_objects = min(min_objects, max_objects);
3852 
3853 	while (min_objects > 1) {
3854 		unsigned int fraction;
3855 
3856 		fraction = 16;
3857 		while (fraction >= 4) {
3858 			order = slab_order(size, min_objects,
3859 					slub_max_order, fraction);
3860 			if (order <= slub_max_order)
3861 				return order;
3862 			fraction /= 2;
3863 		}
3864 		min_objects--;
3865 	}
3866 
3867 	/*
3868 	 * We were unable to place multiple objects in a slab. Now
3869 	 * lets see if we can place a single object there.
3870 	 */
3871 	order = slab_order(size, 1, slub_max_order, 1);
3872 	if (order <= slub_max_order)
3873 		return order;
3874 
3875 	/*
3876 	 * Doh this slab cannot be placed using slub_max_order.
3877 	 */
3878 	order = slab_order(size, 1, MAX_ORDER, 1);
3879 	if (order < MAX_ORDER)
3880 		return order;
3881 	return -ENOSYS;
3882 }
3883 
3884 static void
init_kmem_cache_node(struct kmem_cache_node * n)3885 init_kmem_cache_node(struct kmem_cache_node *n)
3886 {
3887 	n->nr_partial = 0;
3888 	spin_lock_init(&n->list_lock);
3889 	INIT_LIST_HEAD(&n->partial);
3890 #ifdef CONFIG_SLUB_DEBUG
3891 	atomic_long_set(&n->nr_slabs, 0);
3892 	atomic_long_set(&n->total_objects, 0);
3893 	INIT_LIST_HEAD(&n->full);
3894 #endif
3895 }
3896 
alloc_kmem_cache_cpus(struct kmem_cache * s)3897 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3898 {
3899 	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3900 			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3901 
3902 	/*
3903 	 * Must align to double word boundary for the double cmpxchg
3904 	 * instructions to work; see __pcpu_double_call_return_bool().
3905 	 */
3906 	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3907 				     2 * sizeof(void *));
3908 
3909 	if (!s->cpu_slab)
3910 		return 0;
3911 
3912 	init_kmem_cache_cpus(s);
3913 
3914 	return 1;
3915 }
3916 
3917 static struct kmem_cache *kmem_cache_node;
3918 
3919 /*
3920  * No kmalloc_node yet so do it by hand. We know that this is the first
3921  * slab on the node for this slabcache. There are no concurrent accesses
3922  * possible.
3923  *
3924  * Note that this function only works on the kmem_cache_node
3925  * when allocating for the kmem_cache_node. This is used for bootstrapping
3926  * memory on a fresh node that has no slab structures yet.
3927  */
early_kmem_cache_node_alloc(int node)3928 static void early_kmem_cache_node_alloc(int node)
3929 {
3930 	struct page *page;
3931 	struct kmem_cache_node *n;
3932 
3933 	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3934 
3935 	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3936 
3937 	BUG_ON(!page);
3938 	if (page_to_nid(page) != node) {
3939 		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3940 		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3941 	}
3942 
3943 	n = page->freelist;
3944 	BUG_ON(!n);
3945 #ifdef CONFIG_SLUB_DEBUG
3946 	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3947 	init_tracking(kmem_cache_node, n);
3948 #endif
3949 	n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3950 	page->freelist = get_freepointer(kmem_cache_node, n);
3951 	page->inuse = 1;
3952 	page->frozen = 0;
3953 	kmem_cache_node->node[node] = n;
3954 	init_kmem_cache_node(n);
3955 	inc_slabs_node(kmem_cache_node, node, page->objects);
3956 
3957 	/*
3958 	 * No locks need to be taken here as it has just been
3959 	 * initialized and there is no concurrent access.
3960 	 */
3961 	__add_partial(n, page, DEACTIVATE_TO_HEAD);
3962 }
3963 
free_kmem_cache_nodes(struct kmem_cache * s)3964 static void free_kmem_cache_nodes(struct kmem_cache *s)
3965 {
3966 	int node;
3967 	struct kmem_cache_node *n;
3968 
3969 	for_each_kmem_cache_node(s, node, n) {
3970 		s->node[node] = NULL;
3971 		kmem_cache_free(kmem_cache_node, n);
3972 	}
3973 }
3974 
__kmem_cache_release(struct kmem_cache * s)3975 void __kmem_cache_release(struct kmem_cache *s)
3976 {
3977 	cache_random_seq_destroy(s);
3978 	free_percpu(s->cpu_slab);
3979 	free_kmem_cache_nodes(s);
3980 }
3981 
init_kmem_cache_nodes(struct kmem_cache * s)3982 static int init_kmem_cache_nodes(struct kmem_cache *s)
3983 {
3984 	int node;
3985 
3986 	for_each_node_mask(node, slab_nodes) {
3987 		struct kmem_cache_node *n;
3988 
3989 		if (slab_state == DOWN) {
3990 			early_kmem_cache_node_alloc(node);
3991 			continue;
3992 		}
3993 		n = kmem_cache_alloc_node(kmem_cache_node,
3994 						GFP_KERNEL, node);
3995 
3996 		if (!n) {
3997 			free_kmem_cache_nodes(s);
3998 			return 0;
3999 		}
4000 
4001 		init_kmem_cache_node(n);
4002 		s->node[node] = n;
4003 	}
4004 	return 1;
4005 }
4006 
set_min_partial(struct kmem_cache * s,unsigned long min)4007 static void set_min_partial(struct kmem_cache *s, unsigned long min)
4008 {
4009 	if (min < MIN_PARTIAL)
4010 		min = MIN_PARTIAL;
4011 	else if (min > MAX_PARTIAL)
4012 		min = MAX_PARTIAL;
4013 	s->min_partial = min;
4014 }
4015 
set_cpu_partial(struct kmem_cache * s)4016 static void set_cpu_partial(struct kmem_cache *s)
4017 {
4018 #ifdef CONFIG_SLUB_CPU_PARTIAL
4019 	/*
4020 	 * cpu_partial determined the maximum number of objects kept in the
4021 	 * per cpu partial lists of a processor.
4022 	 *
4023 	 * Per cpu partial lists mainly contain slabs that just have one
4024 	 * object freed. If they are used for allocation then they can be
4025 	 * filled up again with minimal effort. The slab will never hit the
4026 	 * per node partial lists and therefore no locking will be required.
4027 	 *
4028 	 * This setting also determines
4029 	 *
4030 	 * A) The number of objects from per cpu partial slabs dumped to the
4031 	 *    per node list when we reach the limit.
4032 	 * B) The number of objects in cpu partial slabs to extract from the
4033 	 *    per node list when we run out of per cpu objects. We only fetch
4034 	 *    50% to keep some capacity around for frees.
4035 	 */
4036 	if (!kmem_cache_has_cpu_partial(s))
4037 		slub_set_cpu_partial(s, 0);
4038 	else if (s->size >= PAGE_SIZE)
4039 		slub_set_cpu_partial(s, 2);
4040 	else if (s->size >= 1024)
4041 		slub_set_cpu_partial(s, 6);
4042 	else if (s->size >= 256)
4043 		slub_set_cpu_partial(s, 13);
4044 	else
4045 		slub_set_cpu_partial(s, 30);
4046 #endif
4047 }
4048 
4049 /*
4050  * calculate_sizes() determines the order and the distribution of data within
4051  * a slab object.
4052  */
calculate_sizes(struct kmem_cache * s,int forced_order)4053 static int calculate_sizes(struct kmem_cache *s, int forced_order)
4054 {
4055 	slab_flags_t flags = s->flags;
4056 	unsigned int size = s->object_size;
4057 	unsigned int order;
4058 
4059 	/*
4060 	 * Round up object size to the next word boundary. We can only
4061 	 * place the free pointer at word boundaries and this determines
4062 	 * the possible location of the free pointer.
4063 	 */
4064 	size = ALIGN(size, sizeof(void *));
4065 
4066 #ifdef CONFIG_SLUB_DEBUG
4067 	/*
4068 	 * Determine if we can poison the object itself. If the user of
4069 	 * the slab may touch the object after free or before allocation
4070 	 * then we should never poison the object itself.
4071 	 */
4072 	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4073 			!s->ctor)
4074 		s->flags |= __OBJECT_POISON;
4075 	else
4076 		s->flags &= ~__OBJECT_POISON;
4077 
4078 
4079 	/*
4080 	 * If we are Redzoning then check if there is some space between the
4081 	 * end of the object and the free pointer. If not then add an
4082 	 * additional word to have some bytes to store Redzone information.
4083 	 */
4084 	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4085 		size += sizeof(void *);
4086 #endif
4087 
4088 	/*
4089 	 * With that we have determined the number of bytes in actual use
4090 	 * by the object and redzoning.
4091 	 */
4092 	s->inuse = size;
4093 
4094 	if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4095 	    ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4096 	    s->ctor) {
4097 		/*
4098 		 * Relocate free pointer after the object if it is not
4099 		 * permitted to overwrite the first word of the object on
4100 		 * kmem_cache_free.
4101 		 *
4102 		 * This is the case if we do RCU, have a constructor or
4103 		 * destructor, are poisoning the objects, or are
4104 		 * redzoning an object smaller than sizeof(void *).
4105 		 *
4106 		 * The assumption that s->offset >= s->inuse means free
4107 		 * pointer is outside of the object is used in the
4108 		 * freeptr_outside_object() function. If that is no
4109 		 * longer true, the function needs to be modified.
4110 		 */
4111 		s->offset = size;
4112 		size += sizeof(void *);
4113 	} else {
4114 		/*
4115 		 * Store freelist pointer near middle of object to keep
4116 		 * it away from the edges of the object to avoid small
4117 		 * sized over/underflows from neighboring allocations.
4118 		 */
4119 		s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4120 	}
4121 
4122 #ifdef CONFIG_SLUB_DEBUG
4123 	if (flags & SLAB_STORE_USER)
4124 		/*
4125 		 * Need to store information about allocs and frees after
4126 		 * the object.
4127 		 */
4128 		size += 2 * sizeof(struct track);
4129 #endif
4130 
4131 	kasan_cache_create(s, &size, &s->flags);
4132 #ifdef CONFIG_SLUB_DEBUG
4133 	if (flags & SLAB_RED_ZONE) {
4134 		/*
4135 		 * Add some empty padding so that we can catch
4136 		 * overwrites from earlier objects rather than let
4137 		 * tracking information or the free pointer be
4138 		 * corrupted if a user writes before the start
4139 		 * of the object.
4140 		 */
4141 		size += sizeof(void *);
4142 
4143 		s->red_left_pad = sizeof(void *);
4144 		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4145 		size += s->red_left_pad;
4146 	}
4147 #endif
4148 
4149 	/*
4150 	 * SLUB stores one object immediately after another beginning from
4151 	 * offset 0. In order to align the objects we have to simply size
4152 	 * each object to conform to the alignment.
4153 	 */
4154 	size = ALIGN(size, s->align);
4155 	s->size = size;
4156 	s->reciprocal_size = reciprocal_value(size);
4157 	if (forced_order >= 0)
4158 		order = forced_order;
4159 	else
4160 		order = calculate_order(size);
4161 
4162 	if ((int)order < 0)
4163 		return 0;
4164 
4165 	s->allocflags = 0;
4166 	if (order)
4167 		s->allocflags |= __GFP_COMP;
4168 
4169 	if (s->flags & SLAB_CACHE_DMA)
4170 		s->allocflags |= GFP_DMA;
4171 
4172 	if (s->flags & SLAB_CACHE_DMA32)
4173 		s->allocflags |= GFP_DMA32;
4174 
4175 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
4176 		s->allocflags |= __GFP_RECLAIMABLE;
4177 
4178 	/*
4179 	 * Determine the number of objects per slab
4180 	 */
4181 	s->oo = oo_make(order, size);
4182 	s->min = oo_make(get_order(size), size);
4183 	if (oo_objects(s->oo) > oo_objects(s->max))
4184 		s->max = s->oo;
4185 
4186 	return !!oo_objects(s->oo);
4187 }
4188 
kmem_cache_open(struct kmem_cache * s,slab_flags_t flags)4189 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4190 {
4191 	s->flags = kmem_cache_flags(s->size, flags, s->name);
4192 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4193 	s->random = get_random_long();
4194 #endif
4195 
4196 	if (!calculate_sizes(s, -1))
4197 		goto error;
4198 	if (disable_higher_order_debug) {
4199 		/*
4200 		 * Disable debugging flags that store metadata if the min slab
4201 		 * order increased.
4202 		 */
4203 		if (get_order(s->size) > get_order(s->object_size)) {
4204 			s->flags &= ~DEBUG_METADATA_FLAGS;
4205 			s->offset = 0;
4206 			if (!calculate_sizes(s, -1))
4207 				goto error;
4208 		}
4209 	}
4210 
4211 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4212     defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4213 	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4214 		/* Enable fast mode */
4215 		s->flags |= __CMPXCHG_DOUBLE;
4216 #endif
4217 
4218 	/*
4219 	 * The larger the object size is, the more pages we want on the partial
4220 	 * list to avoid pounding the page allocator excessively.
4221 	 */
4222 	set_min_partial(s, ilog2(s->size) / 2);
4223 
4224 	set_cpu_partial(s);
4225 
4226 #ifdef CONFIG_NUMA
4227 	s->remote_node_defrag_ratio = 1000;
4228 #endif
4229 
4230 	/* Initialize the pre-computed randomized freelist if slab is up */
4231 	if (slab_state >= UP) {
4232 		if (init_cache_random_seq(s))
4233 			goto error;
4234 	}
4235 
4236 	if (!init_kmem_cache_nodes(s))
4237 		goto error;
4238 
4239 	if (alloc_kmem_cache_cpus(s))
4240 		return 0;
4241 
4242 error:
4243 	__kmem_cache_release(s);
4244 	return -EINVAL;
4245 }
4246 
list_slab_objects(struct kmem_cache * s,struct page * page,const char * text)4247 static void list_slab_objects(struct kmem_cache *s, struct page *page,
4248 			      const char *text)
4249 {
4250 #ifdef CONFIG_SLUB_DEBUG
4251 	void *addr = page_address(page);
4252 	unsigned long flags;
4253 	unsigned long *map;
4254 	void *p;
4255 
4256 	slab_err(s, page, text, s->name);
4257 	slab_lock(page, &flags);
4258 
4259 	map = get_map(s, page);
4260 	for_each_object(p, s, addr, page->objects) {
4261 
4262 		if (!test_bit(__obj_to_index(s, addr, p), map)) {
4263 			pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4264 			print_tracking(s, p);
4265 		}
4266 	}
4267 	put_map(map);
4268 	slab_unlock(page, &flags);
4269 #endif
4270 }
4271 
4272 /*
4273  * Attempt to free all partial slabs on a node.
4274  * This is called from __kmem_cache_shutdown(). We must take list_lock
4275  * because sysfs file might still access partial list after the shutdowning.
4276  */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)4277 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4278 {
4279 	LIST_HEAD(discard);
4280 	struct page *page, *h;
4281 
4282 	BUG_ON(irqs_disabled());
4283 	spin_lock_irq(&n->list_lock);
4284 	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
4285 		if (!page->inuse) {
4286 			remove_partial(n, page);
4287 			list_add(&page->slab_list, &discard);
4288 		} else {
4289 			list_slab_objects(s, page,
4290 			  "Objects remaining in %s on __kmem_cache_shutdown()");
4291 		}
4292 	}
4293 	spin_unlock_irq(&n->list_lock);
4294 
4295 	list_for_each_entry_safe(page, h, &discard, slab_list)
4296 		discard_slab(s, page);
4297 }
4298 
__kmem_cache_empty(struct kmem_cache * s)4299 bool __kmem_cache_empty(struct kmem_cache *s)
4300 {
4301 	int node;
4302 	struct kmem_cache_node *n;
4303 
4304 	for_each_kmem_cache_node(s, node, n)
4305 		if (n->nr_partial || slabs_node(s, node))
4306 			return false;
4307 	return true;
4308 }
4309 
4310 /*
4311  * Release all resources used by a slab cache.
4312  */
__kmem_cache_shutdown(struct kmem_cache * s)4313 int __kmem_cache_shutdown(struct kmem_cache *s)
4314 {
4315 	int node;
4316 	struct kmem_cache_node *n;
4317 
4318 	flush_all_cpus_locked(s);
4319 	/* Attempt to free all objects */
4320 	for_each_kmem_cache_node(s, node, n) {
4321 		free_partial(s, n);
4322 		if (n->nr_partial || slabs_node(s, node))
4323 			return 1;
4324 	}
4325 	return 0;
4326 }
4327 
4328 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct page * page)4329 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4330 {
4331 	void *base;
4332 	int __maybe_unused i;
4333 	unsigned int objnr;
4334 	void *objp;
4335 	void *objp0;
4336 	struct kmem_cache *s = page->slab_cache;
4337 	struct track __maybe_unused *trackp;
4338 
4339 	kpp->kp_ptr = object;
4340 	kpp->kp_page = page;
4341 	kpp->kp_slab_cache = s;
4342 	base = page_address(page);
4343 	objp0 = kasan_reset_tag(object);
4344 #ifdef CONFIG_SLUB_DEBUG
4345 	objp = restore_red_left(s, objp0);
4346 #else
4347 	objp = objp0;
4348 #endif
4349 	objnr = obj_to_index(s, page, objp);
4350 	kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4351 	objp = base + s->size * objnr;
4352 	kpp->kp_objp = objp;
4353 	if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4354 	    !(s->flags & SLAB_STORE_USER))
4355 		return;
4356 #ifdef CONFIG_SLUB_DEBUG
4357 	objp = fixup_red_left(s, objp);
4358 	trackp = get_track(s, objp, TRACK_ALLOC);
4359 	kpp->kp_ret = (void *)trackp->addr;
4360 #ifdef CONFIG_STACKTRACE
4361 	for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4362 		kpp->kp_stack[i] = (void *)trackp->addrs[i];
4363 		if (!kpp->kp_stack[i])
4364 			break;
4365 	}
4366 
4367 	trackp = get_track(s, objp, TRACK_FREE);
4368 	for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4369 		kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4370 		if (!kpp->kp_free_stack[i])
4371 			break;
4372 	}
4373 #endif
4374 #endif
4375 }
4376 #endif
4377 
4378 /********************************************************************
4379  *		Kmalloc subsystem
4380  *******************************************************************/
4381 
setup_slub_min_order(char * str)4382 static int __init setup_slub_min_order(char *str)
4383 {
4384 	get_option(&str, (int *)&slub_min_order);
4385 
4386 	return 1;
4387 }
4388 
4389 __setup("slub_min_order=", setup_slub_min_order);
4390 
setup_slub_max_order(char * str)4391 static int __init setup_slub_max_order(char *str)
4392 {
4393 	get_option(&str, (int *)&slub_max_order);
4394 	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4395 
4396 	return 1;
4397 }
4398 
4399 __setup("slub_max_order=", setup_slub_max_order);
4400 
setup_slub_min_objects(char * str)4401 static int __init setup_slub_min_objects(char *str)
4402 {
4403 	get_option(&str, (int *)&slub_min_objects);
4404 
4405 	return 1;
4406 }
4407 
4408 __setup("slub_min_objects=", setup_slub_min_objects);
4409 
__kmalloc(size_t size,gfp_t flags)4410 void *__kmalloc(size_t size, gfp_t flags)
4411 {
4412 	struct kmem_cache *s;
4413 	void *ret;
4414 
4415 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4416 		return kmalloc_large(size, flags);
4417 
4418 	s = kmalloc_slab(size, flags);
4419 
4420 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4421 		return s;
4422 
4423 	ret = slab_alloc(s, flags, _RET_IP_, size);
4424 
4425 	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4426 
4427 	ret = kasan_kmalloc(s, ret, size, flags);
4428 
4429 	return ret;
4430 }
4431 EXPORT_SYMBOL(__kmalloc);
4432 
4433 #ifdef CONFIG_NUMA
kmalloc_large_node(size_t size,gfp_t flags,int node)4434 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4435 {
4436 	struct page *page;
4437 	void *ptr = NULL;
4438 	unsigned int order = get_order(size);
4439 
4440 	flags |= __GFP_COMP;
4441 	page = alloc_pages_node(node, flags, order);
4442 	if (page) {
4443 		ptr = page_address(page);
4444 		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4445 				      PAGE_SIZE << order);
4446 	}
4447 
4448 	return kmalloc_large_node_hook(ptr, size, flags);
4449 }
4450 
__kmalloc_node(size_t size,gfp_t flags,int node)4451 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4452 {
4453 	struct kmem_cache *s;
4454 	void *ret;
4455 
4456 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4457 		ret = kmalloc_large_node(size, flags, node);
4458 
4459 		trace_kmalloc_node(_RET_IP_, ret,
4460 				   size, PAGE_SIZE << get_order(size),
4461 				   flags, node);
4462 
4463 		return ret;
4464 	}
4465 
4466 	s = kmalloc_slab(size, flags);
4467 
4468 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4469 		return s;
4470 
4471 	ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4472 
4473 	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4474 
4475 	ret = kasan_kmalloc(s, ret, size, flags);
4476 
4477 	return ret;
4478 }
4479 EXPORT_SYMBOL(__kmalloc_node);
4480 #endif	/* CONFIG_NUMA */
4481 
4482 #ifdef CONFIG_HARDENED_USERCOPY
4483 /*
4484  * Rejects incorrectly sized objects and objects that are to be copied
4485  * to/from userspace but do not fall entirely within the containing slab
4486  * cache's usercopy region.
4487  *
4488  * Returns NULL if check passes, otherwise const char * to name of cache
4489  * to indicate an error.
4490  */
__check_heap_object(const void * ptr,unsigned long n,struct page * page,bool to_user)4491 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4492 			 bool to_user)
4493 {
4494 	struct kmem_cache *s;
4495 	unsigned int offset;
4496 	size_t object_size;
4497 	bool is_kfence = is_kfence_address(ptr);
4498 
4499 	ptr = kasan_reset_tag(ptr);
4500 
4501 	/* Find object and usable object size. */
4502 	s = page->slab_cache;
4503 
4504 	/* Reject impossible pointers. */
4505 	if (ptr < page_address(page))
4506 		usercopy_abort("SLUB object not in SLUB page?!", NULL,
4507 			       to_user, 0, n);
4508 
4509 	/* Find offset within object. */
4510 	if (is_kfence)
4511 		offset = ptr - kfence_object_start(ptr);
4512 	else
4513 		offset = (ptr - page_address(page)) % s->size;
4514 
4515 	/* Adjust for redzone and reject if within the redzone. */
4516 	if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4517 		if (offset < s->red_left_pad)
4518 			usercopy_abort("SLUB object in left red zone",
4519 				       s->name, to_user, offset, n);
4520 		offset -= s->red_left_pad;
4521 	}
4522 
4523 	/* Allow address range falling entirely within usercopy region. */
4524 	if (offset >= s->useroffset &&
4525 	    offset - s->useroffset <= s->usersize &&
4526 	    n <= s->useroffset - offset + s->usersize)
4527 		return;
4528 
4529 	/*
4530 	 * If the copy is still within the allocated object, produce
4531 	 * a warning instead of rejecting the copy. This is intended
4532 	 * to be a temporary method to find any missing usercopy
4533 	 * whitelists.
4534 	 */
4535 	object_size = slab_ksize(s);
4536 	if (usercopy_fallback &&
4537 	    offset <= object_size && n <= object_size - offset) {
4538 		usercopy_warn("SLUB object", s->name, to_user, offset, n);
4539 		return;
4540 	}
4541 
4542 	usercopy_abort("SLUB object", s->name, to_user, offset, n);
4543 }
4544 #endif /* CONFIG_HARDENED_USERCOPY */
4545 
__ksize(const void * object)4546 size_t __ksize(const void *object)
4547 {
4548 	struct page *page;
4549 
4550 	if (unlikely(object == ZERO_SIZE_PTR))
4551 		return 0;
4552 
4553 	page = virt_to_head_page(object);
4554 
4555 	if (unlikely(!PageSlab(page))) {
4556 		WARN_ON(!PageCompound(page));
4557 		return page_size(page);
4558 	}
4559 
4560 	return slab_ksize(page->slab_cache);
4561 }
4562 EXPORT_SYMBOL(__ksize);
4563 
kfree(const void * x)4564 void kfree(const void *x)
4565 {
4566 	struct page *page;
4567 	void *object = (void *)x;
4568 
4569 	trace_kfree(_RET_IP_, x);
4570 
4571 	if (unlikely(ZERO_OR_NULL_PTR(x)))
4572 		return;
4573 
4574 	page = virt_to_head_page(x);
4575 	if (unlikely(!PageSlab(page))) {
4576 		free_nonslab_page(page, object);
4577 		return;
4578 	}
4579 	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4580 }
4581 EXPORT_SYMBOL(kfree);
4582 
4583 #define SHRINK_PROMOTE_MAX 32
4584 
4585 /*
4586  * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4587  * up most to the head of the partial lists. New allocations will then
4588  * fill those up and thus they can be removed from the partial lists.
4589  *
4590  * The slabs with the least items are placed last. This results in them
4591  * being allocated from last increasing the chance that the last objects
4592  * are freed in them.
4593  */
__kmem_cache_do_shrink(struct kmem_cache * s)4594 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4595 {
4596 	int node;
4597 	int i;
4598 	struct kmem_cache_node *n;
4599 	struct page *page;
4600 	struct page *t;
4601 	struct list_head discard;
4602 	struct list_head promote[SHRINK_PROMOTE_MAX];
4603 	unsigned long flags;
4604 	int ret = 0;
4605 
4606 	for_each_kmem_cache_node(s, node, n) {
4607 		INIT_LIST_HEAD(&discard);
4608 		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4609 			INIT_LIST_HEAD(promote + i);
4610 
4611 		spin_lock_irqsave(&n->list_lock, flags);
4612 
4613 		/*
4614 		 * Build lists of slabs to discard or promote.
4615 		 *
4616 		 * Note that concurrent frees may occur while we hold the
4617 		 * list_lock. page->inuse here is the upper limit.
4618 		 */
4619 		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4620 			int free = page->objects - page->inuse;
4621 
4622 			/* Do not reread page->inuse */
4623 			barrier();
4624 
4625 			/* We do not keep full slabs on the list */
4626 			BUG_ON(free <= 0);
4627 
4628 			if (free == page->objects) {
4629 				list_move(&page->slab_list, &discard);
4630 				n->nr_partial--;
4631 			} else if (free <= SHRINK_PROMOTE_MAX)
4632 				list_move(&page->slab_list, promote + free - 1);
4633 		}
4634 
4635 		/*
4636 		 * Promote the slabs filled up most to the head of the
4637 		 * partial list.
4638 		 */
4639 		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4640 			list_splice(promote + i, &n->partial);
4641 
4642 		spin_unlock_irqrestore(&n->list_lock, flags);
4643 
4644 		/* Release empty slabs */
4645 		list_for_each_entry_safe(page, t, &discard, slab_list)
4646 			discard_slab(s, page);
4647 
4648 		if (slabs_node(s, node))
4649 			ret = 1;
4650 	}
4651 
4652 	return ret;
4653 }
4654 
__kmem_cache_shrink(struct kmem_cache * s)4655 int __kmem_cache_shrink(struct kmem_cache *s)
4656 {
4657 	flush_all(s);
4658 	return __kmem_cache_do_shrink(s);
4659 }
4660 
slab_mem_going_offline_callback(void * arg)4661 static int slab_mem_going_offline_callback(void *arg)
4662 {
4663 	struct kmem_cache *s;
4664 
4665 	mutex_lock(&slab_mutex);
4666 	list_for_each_entry(s, &slab_caches, list) {
4667 		flush_all_cpus_locked(s);
4668 		__kmem_cache_do_shrink(s);
4669 	}
4670 	mutex_unlock(&slab_mutex);
4671 
4672 	return 0;
4673 }
4674 
slab_mem_offline_callback(void * arg)4675 static void slab_mem_offline_callback(void *arg)
4676 {
4677 	struct memory_notify *marg = arg;
4678 	int offline_node;
4679 
4680 	offline_node = marg->status_change_nid_normal;
4681 
4682 	/*
4683 	 * If the node still has available memory. we need kmem_cache_node
4684 	 * for it yet.
4685 	 */
4686 	if (offline_node < 0)
4687 		return;
4688 
4689 	mutex_lock(&slab_mutex);
4690 	node_clear(offline_node, slab_nodes);
4691 	/*
4692 	 * We no longer free kmem_cache_node structures here, as it would be
4693 	 * racy with all get_node() users, and infeasible to protect them with
4694 	 * slab_mutex.
4695 	 */
4696 	mutex_unlock(&slab_mutex);
4697 }
4698 
slab_mem_going_online_callback(void * arg)4699 static int slab_mem_going_online_callback(void *arg)
4700 {
4701 	struct kmem_cache_node *n;
4702 	struct kmem_cache *s;
4703 	struct memory_notify *marg = arg;
4704 	int nid = marg->status_change_nid_normal;
4705 	int ret = 0;
4706 
4707 	/*
4708 	 * If the node's memory is already available, then kmem_cache_node is
4709 	 * already created. Nothing to do.
4710 	 */
4711 	if (nid < 0)
4712 		return 0;
4713 
4714 	/*
4715 	 * We are bringing a node online. No memory is available yet. We must
4716 	 * allocate a kmem_cache_node structure in order to bring the node
4717 	 * online.
4718 	 */
4719 	mutex_lock(&slab_mutex);
4720 	list_for_each_entry(s, &slab_caches, list) {
4721 		/*
4722 		 * The structure may already exist if the node was previously
4723 		 * onlined and offlined.
4724 		 */
4725 		if (get_node(s, nid))
4726 			continue;
4727 		/*
4728 		 * XXX: kmem_cache_alloc_node will fallback to other nodes
4729 		 *      since memory is not yet available from the node that
4730 		 *      is brought up.
4731 		 */
4732 		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4733 		if (!n) {
4734 			ret = -ENOMEM;
4735 			goto out;
4736 		}
4737 		init_kmem_cache_node(n);
4738 		s->node[nid] = n;
4739 	}
4740 	/*
4741 	 * Any cache created after this point will also have kmem_cache_node
4742 	 * initialized for the new node.
4743 	 */
4744 	node_set(nid, slab_nodes);
4745 out:
4746 	mutex_unlock(&slab_mutex);
4747 	return ret;
4748 }
4749 
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)4750 static int slab_memory_callback(struct notifier_block *self,
4751 				unsigned long action, void *arg)
4752 {
4753 	int ret = 0;
4754 
4755 	switch (action) {
4756 	case MEM_GOING_ONLINE:
4757 		ret = slab_mem_going_online_callback(arg);
4758 		break;
4759 	case MEM_GOING_OFFLINE:
4760 		ret = slab_mem_going_offline_callback(arg);
4761 		break;
4762 	case MEM_OFFLINE:
4763 	case MEM_CANCEL_ONLINE:
4764 		slab_mem_offline_callback(arg);
4765 		break;
4766 	case MEM_ONLINE:
4767 	case MEM_CANCEL_OFFLINE:
4768 		break;
4769 	}
4770 	if (ret)
4771 		ret = notifier_from_errno(ret);
4772 	else
4773 		ret = NOTIFY_OK;
4774 	return ret;
4775 }
4776 
4777 static struct notifier_block slab_memory_callback_nb = {
4778 	.notifier_call = slab_memory_callback,
4779 	.priority = SLAB_CALLBACK_PRI,
4780 };
4781 
4782 /********************************************************************
4783  *			Basic setup of slabs
4784  *******************************************************************/
4785 
4786 /*
4787  * Used for early kmem_cache structures that were allocated using
4788  * the page allocator. Allocate them properly then fix up the pointers
4789  * that may be pointing to the wrong kmem_cache structure.
4790  */
4791 
bootstrap(struct kmem_cache * static_cache)4792 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4793 {
4794 	int node;
4795 	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4796 	struct kmem_cache_node *n;
4797 
4798 	memcpy(s, static_cache, kmem_cache->object_size);
4799 
4800 	/*
4801 	 * This runs very early, and only the boot processor is supposed to be
4802 	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
4803 	 * IPIs around.
4804 	 */
4805 	__flush_cpu_slab(s, smp_processor_id());
4806 	for_each_kmem_cache_node(s, node, n) {
4807 		struct page *p;
4808 
4809 		list_for_each_entry(p, &n->partial, slab_list)
4810 			p->slab_cache = s;
4811 
4812 #ifdef CONFIG_SLUB_DEBUG
4813 		list_for_each_entry(p, &n->full, slab_list)
4814 			p->slab_cache = s;
4815 #endif
4816 	}
4817 	list_add(&s->list, &slab_caches);
4818 	return s;
4819 }
4820 
kmem_cache_init(void)4821 void __init kmem_cache_init(void)
4822 {
4823 	static __initdata struct kmem_cache boot_kmem_cache,
4824 		boot_kmem_cache_node;
4825 	int node;
4826 
4827 	if (debug_guardpage_minorder())
4828 		slub_max_order = 0;
4829 
4830 	/* Print slub debugging pointers without hashing */
4831 	if (__slub_debug_enabled())
4832 		no_hash_pointers_enable(NULL);
4833 
4834 	kmem_cache_node = &boot_kmem_cache_node;
4835 	kmem_cache = &boot_kmem_cache;
4836 
4837 	/*
4838 	 * Initialize the nodemask for which we will allocate per node
4839 	 * structures. Here we don't need taking slab_mutex yet.
4840 	 */
4841 	for_each_node_state(node, N_NORMAL_MEMORY)
4842 		node_set(node, slab_nodes);
4843 
4844 	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4845 		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4846 
4847 	register_hotmemory_notifier(&slab_memory_callback_nb);
4848 
4849 	/* Able to allocate the per node structures */
4850 	slab_state = PARTIAL;
4851 
4852 	create_boot_cache(kmem_cache, "kmem_cache",
4853 			offsetof(struct kmem_cache, node) +
4854 				nr_node_ids * sizeof(struct kmem_cache_node *),
4855 		       SLAB_HWCACHE_ALIGN, 0, 0);
4856 
4857 	kmem_cache = bootstrap(&boot_kmem_cache);
4858 	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4859 
4860 	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4861 	setup_kmalloc_cache_index_table();
4862 	create_kmalloc_caches(0);
4863 
4864 	/* Setup random freelists for each cache */
4865 	init_freelist_randomization();
4866 
4867 	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4868 				  slub_cpu_dead);
4869 
4870 	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4871 		cache_line_size(),
4872 		slub_min_order, slub_max_order, slub_min_objects,
4873 		nr_cpu_ids, nr_node_ids);
4874 }
4875 
kmem_cache_init_late(void)4876 void __init kmem_cache_init_late(void)
4877 {
4878 	flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
4879 	WARN_ON(!flushwq);
4880 }
4881 
4882 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))4883 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4884 		   slab_flags_t flags, void (*ctor)(void *))
4885 {
4886 	struct kmem_cache *s;
4887 
4888 	s = find_mergeable(size, align, flags, name, ctor);
4889 	if (s) {
4890 		s->refcount++;
4891 
4892 		/*
4893 		 * Adjust the object sizes so that we clear
4894 		 * the complete object on kzalloc.
4895 		 */
4896 		s->object_size = max(s->object_size, size);
4897 		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4898 
4899 		if (sysfs_slab_alias(s, name)) {
4900 			s->refcount--;
4901 			s = NULL;
4902 		}
4903 	}
4904 
4905 	return s;
4906 }
4907 
__kmem_cache_create(struct kmem_cache * s,slab_flags_t flags)4908 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4909 {
4910 	int err;
4911 
4912 	err = kmem_cache_open(s, flags);
4913 	if (err)
4914 		return err;
4915 
4916 	/* Mutex is not taken during early boot */
4917 	if (slab_state <= UP)
4918 		return 0;
4919 
4920 	err = sysfs_slab_add(s);
4921 	if (err) {
4922 		__kmem_cache_release(s);
4923 		return err;
4924 	}
4925 
4926 	if (s->flags & SLAB_STORE_USER)
4927 		debugfs_slab_add(s);
4928 
4929 	return 0;
4930 }
4931 
__kmalloc_track_caller(size_t size,gfp_t gfpflags,unsigned long caller)4932 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4933 {
4934 	struct kmem_cache *s;
4935 	void *ret;
4936 
4937 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4938 		return kmalloc_large(size, gfpflags);
4939 
4940 	s = kmalloc_slab(size, gfpflags);
4941 
4942 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4943 		return s;
4944 
4945 	ret = slab_alloc(s, gfpflags, caller, size);
4946 
4947 	/* Honor the call site pointer we received. */
4948 	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4949 
4950 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4951 
4952 	return ret;
4953 }
4954 EXPORT_SYMBOL(__kmalloc_track_caller);
4955 
4956 #ifdef CONFIG_NUMA
__kmalloc_node_track_caller(size_t size,gfp_t gfpflags,int node,unsigned long caller)4957 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4958 					int node, unsigned long caller)
4959 {
4960 	struct kmem_cache *s;
4961 	void *ret;
4962 
4963 	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4964 		ret = kmalloc_large_node(size, gfpflags, node);
4965 
4966 		trace_kmalloc_node(caller, ret,
4967 				   size, PAGE_SIZE << get_order(size),
4968 				   gfpflags, node);
4969 
4970 		return ret;
4971 	}
4972 
4973 	s = kmalloc_slab(size, gfpflags);
4974 
4975 	if (unlikely(ZERO_OR_NULL_PTR(s)))
4976 		return s;
4977 
4978 	ret = slab_alloc_node(s, gfpflags, node, caller, size);
4979 
4980 	/* Honor the call site pointer we received. */
4981 	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4982 
4983 	ret = kasan_kmalloc(s, ret, size, gfpflags);
4984 
4985 	return ret;
4986 }
4987 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4988 #endif
4989 
4990 #ifdef CONFIG_SYSFS
count_inuse(struct page * page)4991 static int count_inuse(struct page *page)
4992 {
4993 	return page->inuse;
4994 }
4995 
count_total(struct page * page)4996 static int count_total(struct page *page)
4997 {
4998 	return page->objects;
4999 }
5000 #endif
5001 
5002 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct page * page,unsigned long * obj_map)5003 static void validate_slab(struct kmem_cache *s, struct page *page,
5004 			  unsigned long *obj_map)
5005 {
5006 	void *p;
5007 	void *addr = page_address(page);
5008 	unsigned long flags;
5009 
5010 	slab_lock(page, &flags);
5011 
5012 	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
5013 		goto unlock;
5014 
5015 	/* Now we know that a valid freelist exists */
5016 	__fill_map(obj_map, s, page);
5017 	for_each_object(p, s, addr, page->objects) {
5018 		u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5019 			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5020 
5021 		if (!check_object(s, page, p, val))
5022 			break;
5023 	}
5024 unlock:
5025 	slab_unlock(page, &flags);
5026 }
5027 
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * obj_map)5028 static int validate_slab_node(struct kmem_cache *s,
5029 		struct kmem_cache_node *n, unsigned long *obj_map)
5030 {
5031 	unsigned long count = 0;
5032 	struct page *page;
5033 	unsigned long flags;
5034 
5035 	spin_lock_irqsave(&n->list_lock, flags);
5036 
5037 	list_for_each_entry(page, &n->partial, slab_list) {
5038 		validate_slab(s, page, obj_map);
5039 		count++;
5040 	}
5041 	if (count != n->nr_partial) {
5042 		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5043 		       s->name, count, n->nr_partial);
5044 		slab_add_kunit_errors();
5045 	}
5046 
5047 	if (!(s->flags & SLAB_STORE_USER))
5048 		goto out;
5049 
5050 	list_for_each_entry(page, &n->full, slab_list) {
5051 		validate_slab(s, page, obj_map);
5052 		count++;
5053 	}
5054 	if (count != atomic_long_read(&n->nr_slabs)) {
5055 		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5056 		       s->name, count, atomic_long_read(&n->nr_slabs));
5057 		slab_add_kunit_errors();
5058 	}
5059 
5060 out:
5061 	spin_unlock_irqrestore(&n->list_lock, flags);
5062 	return count;
5063 }
5064 
validate_slab_cache(struct kmem_cache * s)5065 long validate_slab_cache(struct kmem_cache *s)
5066 {
5067 	int node;
5068 	unsigned long count = 0;
5069 	struct kmem_cache_node *n;
5070 	unsigned long *obj_map;
5071 
5072 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5073 	if (!obj_map)
5074 		return -ENOMEM;
5075 
5076 	flush_all(s);
5077 	for_each_kmem_cache_node(s, node, n)
5078 		count += validate_slab_node(s, n, obj_map);
5079 
5080 	bitmap_free(obj_map);
5081 
5082 	return count;
5083 }
5084 EXPORT_SYMBOL(validate_slab_cache);
5085 
5086 #ifdef CONFIG_DEBUG_FS
5087 /*
5088  * Generate lists of code addresses where slabcache objects are allocated
5089  * and freed.
5090  */
5091 
5092 struct location {
5093 	unsigned long count;
5094 	unsigned long addr;
5095 	long long sum_time;
5096 	long min_time;
5097 	long max_time;
5098 	long min_pid;
5099 	long max_pid;
5100 	DECLARE_BITMAP(cpus, NR_CPUS);
5101 	nodemask_t nodes;
5102 };
5103 
5104 struct loc_track {
5105 	unsigned long max;
5106 	unsigned long count;
5107 	struct location *loc;
5108 	loff_t idx;
5109 };
5110 
5111 static struct dentry *slab_debugfs_root;
5112 
free_loc_track(struct loc_track * t)5113 static void free_loc_track(struct loc_track *t)
5114 {
5115 	if (t->max)
5116 		free_pages((unsigned long)t->loc,
5117 			get_order(sizeof(struct location) * t->max));
5118 }
5119 
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)5120 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5121 {
5122 	struct location *l;
5123 	int order;
5124 
5125 	order = get_order(sizeof(struct location) * max);
5126 
5127 	l = (void *)__get_free_pages(flags, order);
5128 	if (!l)
5129 		return 0;
5130 
5131 	if (t->count) {
5132 		memcpy(l, t->loc, sizeof(struct location) * t->count);
5133 		free_loc_track(t);
5134 	}
5135 	t->max = max;
5136 	t->loc = l;
5137 	return 1;
5138 }
5139 
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track)5140 static int add_location(struct loc_track *t, struct kmem_cache *s,
5141 				const struct track *track)
5142 {
5143 	long start, end, pos;
5144 	struct location *l;
5145 	unsigned long caddr;
5146 	unsigned long age = jiffies - track->when;
5147 
5148 	start = -1;
5149 	end = t->count;
5150 
5151 	for ( ; ; ) {
5152 		pos = start + (end - start + 1) / 2;
5153 
5154 		/*
5155 		 * There is nothing at "end". If we end up there
5156 		 * we need to add something to before end.
5157 		 */
5158 		if (pos == end)
5159 			break;
5160 
5161 		caddr = t->loc[pos].addr;
5162 		if (track->addr == caddr) {
5163 
5164 			l = &t->loc[pos];
5165 			l->count++;
5166 			if (track->when) {
5167 				l->sum_time += age;
5168 				if (age < l->min_time)
5169 					l->min_time = age;
5170 				if (age > l->max_time)
5171 					l->max_time = age;
5172 
5173 				if (track->pid < l->min_pid)
5174 					l->min_pid = track->pid;
5175 				if (track->pid > l->max_pid)
5176 					l->max_pid = track->pid;
5177 
5178 				cpumask_set_cpu(track->cpu,
5179 						to_cpumask(l->cpus));
5180 			}
5181 			node_set(page_to_nid(virt_to_page(track)), l->nodes);
5182 			return 1;
5183 		}
5184 
5185 		if (track->addr < caddr)
5186 			end = pos;
5187 		else
5188 			start = pos;
5189 	}
5190 
5191 	/*
5192 	 * Not found. Insert new tracking element.
5193 	 */
5194 	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5195 		return 0;
5196 
5197 	l = t->loc + pos;
5198 	if (pos < t->count)
5199 		memmove(l + 1, l,
5200 			(t->count - pos) * sizeof(struct location));
5201 	t->count++;
5202 	l->count = 1;
5203 	l->addr = track->addr;
5204 	l->sum_time = age;
5205 	l->min_time = age;
5206 	l->max_time = age;
5207 	l->min_pid = track->pid;
5208 	l->max_pid = track->pid;
5209 	cpumask_clear(to_cpumask(l->cpus));
5210 	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5211 	nodes_clear(l->nodes);
5212 	node_set(page_to_nid(virt_to_page(track)), l->nodes);
5213 	return 1;
5214 }
5215 
process_slab(struct loc_track * t,struct kmem_cache * s,struct page * page,enum track_item alloc,unsigned long * obj_map)5216 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5217 		struct page *page, enum track_item alloc,
5218 		unsigned long *obj_map)
5219 {
5220 	void *addr = page_address(page);
5221 	void *p;
5222 
5223 	__fill_map(obj_map, s, page);
5224 
5225 	for_each_object(p, s, addr, page->objects)
5226 		if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5227 			add_location(t, s, get_track(s, p, alloc));
5228 }
5229 #endif  /* CONFIG_DEBUG_FS   */
5230 #endif	/* CONFIG_SLUB_DEBUG */
5231 
5232 #ifdef CONFIG_SYSFS
5233 enum slab_stat_type {
5234 	SL_ALL,			/* All slabs */
5235 	SL_PARTIAL,		/* Only partially allocated slabs */
5236 	SL_CPU,			/* Only slabs used for cpu caches */
5237 	SL_OBJECTS,		/* Determine allocated objects not slabs */
5238 	SL_TOTAL		/* Determine object capacity not slabs */
5239 };
5240 
5241 #define SO_ALL		(1 << SL_ALL)
5242 #define SO_PARTIAL	(1 << SL_PARTIAL)
5243 #define SO_CPU		(1 << SL_CPU)
5244 #define SO_OBJECTS	(1 << SL_OBJECTS)
5245 #define SO_TOTAL	(1 << SL_TOTAL)
5246 
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)5247 static ssize_t show_slab_objects(struct kmem_cache *s,
5248 				 char *buf, unsigned long flags)
5249 {
5250 	unsigned long total = 0;
5251 	int node;
5252 	int x;
5253 	unsigned long *nodes;
5254 	int len = 0;
5255 
5256 	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5257 	if (!nodes)
5258 		return -ENOMEM;
5259 
5260 	if (flags & SO_CPU) {
5261 		int cpu;
5262 
5263 		for_each_possible_cpu(cpu) {
5264 			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5265 							       cpu);
5266 			int node;
5267 			struct page *page;
5268 
5269 			page = READ_ONCE(c->page);
5270 			if (!page)
5271 				continue;
5272 
5273 			node = page_to_nid(page);
5274 			if (flags & SO_TOTAL)
5275 				x = page->objects;
5276 			else if (flags & SO_OBJECTS)
5277 				x = page->inuse;
5278 			else
5279 				x = 1;
5280 
5281 			total += x;
5282 			nodes[node] += x;
5283 
5284 			page = slub_percpu_partial_read_once(c);
5285 			if (page) {
5286 				node = page_to_nid(page);
5287 				if (flags & SO_TOTAL)
5288 					WARN_ON_ONCE(1);
5289 				else if (flags & SO_OBJECTS)
5290 					WARN_ON_ONCE(1);
5291 				else
5292 					x = page->pages;
5293 				total += x;
5294 				nodes[node] += x;
5295 			}
5296 		}
5297 	}
5298 
5299 	/*
5300 	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5301 	 * already held which will conflict with an existing lock order:
5302 	 *
5303 	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5304 	 *
5305 	 * We don't really need mem_hotplug_lock (to hold off
5306 	 * slab_mem_going_offline_callback) here because slab's memory hot
5307 	 * unplug code doesn't destroy the kmem_cache->node[] data.
5308 	 */
5309 
5310 #ifdef CONFIG_SLUB_DEBUG
5311 	if (flags & SO_ALL) {
5312 		struct kmem_cache_node *n;
5313 
5314 		for_each_kmem_cache_node(s, node, n) {
5315 
5316 			if (flags & SO_TOTAL)
5317 				x = atomic_long_read(&n->total_objects);
5318 			else if (flags & SO_OBJECTS)
5319 				x = atomic_long_read(&n->total_objects) -
5320 					count_partial(n, count_free);
5321 			else
5322 				x = atomic_long_read(&n->nr_slabs);
5323 			total += x;
5324 			nodes[node] += x;
5325 		}
5326 
5327 	} else
5328 #endif
5329 	if (flags & SO_PARTIAL) {
5330 		struct kmem_cache_node *n;
5331 
5332 		for_each_kmem_cache_node(s, node, n) {
5333 			if (flags & SO_TOTAL)
5334 				x = count_partial(n, count_total);
5335 			else if (flags & SO_OBJECTS)
5336 				x = count_partial(n, count_inuse);
5337 			else
5338 				x = n->nr_partial;
5339 			total += x;
5340 			nodes[node] += x;
5341 		}
5342 	}
5343 
5344 	len += sysfs_emit_at(buf, len, "%lu", total);
5345 #ifdef CONFIG_NUMA
5346 	for (node = 0; node < nr_node_ids; node++) {
5347 		if (nodes[node])
5348 			len += sysfs_emit_at(buf, len, " N%d=%lu",
5349 					     node, nodes[node]);
5350 	}
5351 #endif
5352 	len += sysfs_emit_at(buf, len, "\n");
5353 	kfree(nodes);
5354 
5355 	return len;
5356 }
5357 
5358 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5359 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5360 
5361 struct slab_attribute {
5362 	struct attribute attr;
5363 	ssize_t (*show)(struct kmem_cache *s, char *buf);
5364 	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5365 };
5366 
5367 #define SLAB_ATTR_RO(_name) \
5368 	static struct slab_attribute _name##_attr = \
5369 	__ATTR(_name, 0400, _name##_show, NULL)
5370 
5371 #define SLAB_ATTR(_name) \
5372 	static struct slab_attribute _name##_attr =  \
5373 	__ATTR(_name, 0600, _name##_show, _name##_store)
5374 
slab_size_show(struct kmem_cache * s,char * buf)5375 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5376 {
5377 	return sysfs_emit(buf, "%u\n", s->size);
5378 }
5379 SLAB_ATTR_RO(slab_size);
5380 
align_show(struct kmem_cache * s,char * buf)5381 static ssize_t align_show(struct kmem_cache *s, char *buf)
5382 {
5383 	return sysfs_emit(buf, "%u\n", s->align);
5384 }
5385 SLAB_ATTR_RO(align);
5386 
object_size_show(struct kmem_cache * s,char * buf)5387 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5388 {
5389 	return sysfs_emit(buf, "%u\n", s->object_size);
5390 }
5391 SLAB_ATTR_RO(object_size);
5392 
objs_per_slab_show(struct kmem_cache * s,char * buf)5393 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5394 {
5395 	return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5396 }
5397 SLAB_ATTR_RO(objs_per_slab);
5398 
order_show(struct kmem_cache * s,char * buf)5399 static ssize_t order_show(struct kmem_cache *s, char *buf)
5400 {
5401 	return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5402 }
5403 SLAB_ATTR_RO(order);
5404 
min_partial_show(struct kmem_cache * s,char * buf)5405 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5406 {
5407 	return sysfs_emit(buf, "%lu\n", s->min_partial);
5408 }
5409 
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)5410 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5411 				 size_t length)
5412 {
5413 	unsigned long min;
5414 	int err;
5415 
5416 	err = kstrtoul(buf, 10, &min);
5417 	if (err)
5418 		return err;
5419 
5420 	set_min_partial(s, min);
5421 	return length;
5422 }
5423 SLAB_ATTR(min_partial);
5424 
cpu_partial_show(struct kmem_cache * s,char * buf)5425 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5426 {
5427 	return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5428 }
5429 
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)5430 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5431 				 size_t length)
5432 {
5433 	unsigned int objects;
5434 	int err;
5435 
5436 	err = kstrtouint(buf, 10, &objects);
5437 	if (err)
5438 		return err;
5439 	if (objects && !kmem_cache_has_cpu_partial(s))
5440 		return -EINVAL;
5441 
5442 	slub_set_cpu_partial(s, objects);
5443 	flush_all(s);
5444 	return length;
5445 }
5446 SLAB_ATTR(cpu_partial);
5447 
ctor_show(struct kmem_cache * s,char * buf)5448 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5449 {
5450 	if (!s->ctor)
5451 		return 0;
5452 	return sysfs_emit(buf, "%pS\n", s->ctor);
5453 }
5454 SLAB_ATTR_RO(ctor);
5455 
aliases_show(struct kmem_cache * s,char * buf)5456 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5457 {
5458 	return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5459 }
5460 SLAB_ATTR_RO(aliases);
5461 
partial_show(struct kmem_cache * s,char * buf)5462 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5463 {
5464 	return show_slab_objects(s, buf, SO_PARTIAL);
5465 }
5466 SLAB_ATTR_RO(partial);
5467 
cpu_slabs_show(struct kmem_cache * s,char * buf)5468 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5469 {
5470 	return show_slab_objects(s, buf, SO_CPU);
5471 }
5472 SLAB_ATTR_RO(cpu_slabs);
5473 
objects_show(struct kmem_cache * s,char * buf)5474 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5475 {
5476 	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5477 }
5478 SLAB_ATTR_RO(objects);
5479 
objects_partial_show(struct kmem_cache * s,char * buf)5480 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5481 {
5482 	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5483 }
5484 SLAB_ATTR_RO(objects_partial);
5485 
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)5486 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5487 {
5488 	int objects = 0;
5489 	int pages = 0;
5490 	int cpu;
5491 	int len = 0;
5492 
5493 	for_each_online_cpu(cpu) {
5494 		struct page *page;
5495 
5496 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5497 
5498 		if (page) {
5499 			pages += page->pages;
5500 			objects += page->pobjects;
5501 		}
5502 	}
5503 
5504 	len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5505 
5506 #ifdef CONFIG_SMP
5507 	for_each_online_cpu(cpu) {
5508 		struct page *page;
5509 
5510 		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5511 		if (page)
5512 			len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5513 					     cpu, page->pobjects, page->pages);
5514 	}
5515 #endif
5516 	len += sysfs_emit_at(buf, len, "\n");
5517 
5518 	return len;
5519 }
5520 SLAB_ATTR_RO(slabs_cpu_partial);
5521 
reclaim_account_show(struct kmem_cache * s,char * buf)5522 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5523 {
5524 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5525 }
5526 SLAB_ATTR_RO(reclaim_account);
5527 
hwcache_align_show(struct kmem_cache * s,char * buf)5528 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5529 {
5530 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5531 }
5532 SLAB_ATTR_RO(hwcache_align);
5533 
5534 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)5535 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5536 {
5537 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5538 }
5539 SLAB_ATTR_RO(cache_dma);
5540 #endif
5541 
usersize_show(struct kmem_cache * s,char * buf)5542 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5543 {
5544 	return sysfs_emit(buf, "%u\n", s->usersize);
5545 }
5546 SLAB_ATTR_RO(usersize);
5547 
destroy_by_rcu_show(struct kmem_cache * s,char * buf)5548 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5549 {
5550 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5551 }
5552 SLAB_ATTR_RO(destroy_by_rcu);
5553 
5554 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)5555 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5556 {
5557 	return show_slab_objects(s, buf, SO_ALL);
5558 }
5559 SLAB_ATTR_RO(slabs);
5560 
total_objects_show(struct kmem_cache * s,char * buf)5561 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5562 {
5563 	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5564 }
5565 SLAB_ATTR_RO(total_objects);
5566 
sanity_checks_show(struct kmem_cache * s,char * buf)5567 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5568 {
5569 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5570 }
5571 SLAB_ATTR_RO(sanity_checks);
5572 
trace_show(struct kmem_cache * s,char * buf)5573 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5574 {
5575 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5576 }
5577 SLAB_ATTR_RO(trace);
5578 
red_zone_show(struct kmem_cache * s,char * buf)5579 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5580 {
5581 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5582 }
5583 
5584 SLAB_ATTR_RO(red_zone);
5585 
poison_show(struct kmem_cache * s,char * buf)5586 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5587 {
5588 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5589 }
5590 
5591 SLAB_ATTR_RO(poison);
5592 
store_user_show(struct kmem_cache * s,char * buf)5593 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5594 {
5595 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5596 }
5597 
5598 SLAB_ATTR_RO(store_user);
5599 
validate_show(struct kmem_cache * s,char * buf)5600 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5601 {
5602 	return 0;
5603 }
5604 
validate_store(struct kmem_cache * s,const char * buf,size_t length)5605 static ssize_t validate_store(struct kmem_cache *s,
5606 			const char *buf, size_t length)
5607 {
5608 	int ret = -EINVAL;
5609 
5610 	if (buf[0] == '1') {
5611 		ret = validate_slab_cache(s);
5612 		if (ret >= 0)
5613 			ret = length;
5614 	}
5615 	return ret;
5616 }
5617 SLAB_ATTR(validate);
5618 
5619 #endif /* CONFIG_SLUB_DEBUG */
5620 
5621 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)5622 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5623 {
5624 	return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5625 }
5626 SLAB_ATTR_RO(failslab);
5627 #endif
5628 
shrink_show(struct kmem_cache * s,char * buf)5629 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5630 {
5631 	return 0;
5632 }
5633 
shrink_store(struct kmem_cache * s,const char * buf,size_t length)5634 static ssize_t shrink_store(struct kmem_cache *s,
5635 			const char *buf, size_t length)
5636 {
5637 	if (buf[0] == '1')
5638 		kmem_cache_shrink(s);
5639 	else
5640 		return -EINVAL;
5641 	return length;
5642 }
5643 SLAB_ATTR(shrink);
5644 
5645 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)5646 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5647 {
5648 	return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5649 }
5650 
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)5651 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5652 				const char *buf, size_t length)
5653 {
5654 	unsigned int ratio;
5655 	int err;
5656 
5657 	err = kstrtouint(buf, 10, &ratio);
5658 	if (err)
5659 		return err;
5660 	if (ratio > 100)
5661 		return -ERANGE;
5662 
5663 	s->remote_node_defrag_ratio = ratio * 10;
5664 
5665 	return length;
5666 }
5667 SLAB_ATTR(remote_node_defrag_ratio);
5668 #endif
5669 
5670 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)5671 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5672 {
5673 	unsigned long sum  = 0;
5674 	int cpu;
5675 	int len = 0;
5676 	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5677 
5678 	if (!data)
5679 		return -ENOMEM;
5680 
5681 	for_each_online_cpu(cpu) {
5682 		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5683 
5684 		data[cpu] = x;
5685 		sum += x;
5686 	}
5687 
5688 	len += sysfs_emit_at(buf, len, "%lu", sum);
5689 
5690 #ifdef CONFIG_SMP
5691 	for_each_online_cpu(cpu) {
5692 		if (data[cpu])
5693 			len += sysfs_emit_at(buf, len, " C%d=%u",
5694 					     cpu, data[cpu]);
5695 	}
5696 #endif
5697 	kfree(data);
5698 	len += sysfs_emit_at(buf, len, "\n");
5699 
5700 	return len;
5701 }
5702 
clear_stat(struct kmem_cache * s,enum stat_item si)5703 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5704 {
5705 	int cpu;
5706 
5707 	for_each_online_cpu(cpu)
5708 		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5709 }
5710 
5711 #define STAT_ATTR(si, text) 					\
5712 static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
5713 {								\
5714 	return show_stat(s, buf, si);				\
5715 }								\
5716 static ssize_t text##_store(struct kmem_cache *s,		\
5717 				const char *buf, size_t length)	\
5718 {								\
5719 	if (buf[0] != '0')					\
5720 		return -EINVAL;					\
5721 	clear_stat(s, si);					\
5722 	return length;						\
5723 }								\
5724 SLAB_ATTR(text);						\
5725 
5726 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5727 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5728 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5729 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5730 STAT_ATTR(FREE_FROZEN, free_frozen);
5731 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5732 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5733 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5734 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5735 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5736 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5737 STAT_ATTR(FREE_SLAB, free_slab);
5738 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5739 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5740 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5741 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5742 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5743 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5744 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5745 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5746 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5747 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5748 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5749 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5750 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5751 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5752 #endif	/* CONFIG_SLUB_STATS */
5753 
5754 static struct attribute *slab_attrs[] = {
5755 	&slab_size_attr.attr,
5756 	&object_size_attr.attr,
5757 	&objs_per_slab_attr.attr,
5758 	&order_attr.attr,
5759 	&min_partial_attr.attr,
5760 	&cpu_partial_attr.attr,
5761 	&objects_attr.attr,
5762 	&objects_partial_attr.attr,
5763 	&partial_attr.attr,
5764 	&cpu_slabs_attr.attr,
5765 	&ctor_attr.attr,
5766 	&aliases_attr.attr,
5767 	&align_attr.attr,
5768 	&hwcache_align_attr.attr,
5769 	&reclaim_account_attr.attr,
5770 	&destroy_by_rcu_attr.attr,
5771 	&shrink_attr.attr,
5772 	&slabs_cpu_partial_attr.attr,
5773 #ifdef CONFIG_SLUB_DEBUG
5774 	&total_objects_attr.attr,
5775 	&slabs_attr.attr,
5776 	&sanity_checks_attr.attr,
5777 	&trace_attr.attr,
5778 	&red_zone_attr.attr,
5779 	&poison_attr.attr,
5780 	&store_user_attr.attr,
5781 	&validate_attr.attr,
5782 #endif
5783 #ifdef CONFIG_ZONE_DMA
5784 	&cache_dma_attr.attr,
5785 #endif
5786 #ifdef CONFIG_NUMA
5787 	&remote_node_defrag_ratio_attr.attr,
5788 #endif
5789 #ifdef CONFIG_SLUB_STATS
5790 	&alloc_fastpath_attr.attr,
5791 	&alloc_slowpath_attr.attr,
5792 	&free_fastpath_attr.attr,
5793 	&free_slowpath_attr.attr,
5794 	&free_frozen_attr.attr,
5795 	&free_add_partial_attr.attr,
5796 	&free_remove_partial_attr.attr,
5797 	&alloc_from_partial_attr.attr,
5798 	&alloc_slab_attr.attr,
5799 	&alloc_refill_attr.attr,
5800 	&alloc_node_mismatch_attr.attr,
5801 	&free_slab_attr.attr,
5802 	&cpuslab_flush_attr.attr,
5803 	&deactivate_full_attr.attr,
5804 	&deactivate_empty_attr.attr,
5805 	&deactivate_to_head_attr.attr,
5806 	&deactivate_to_tail_attr.attr,
5807 	&deactivate_remote_frees_attr.attr,
5808 	&deactivate_bypass_attr.attr,
5809 	&order_fallback_attr.attr,
5810 	&cmpxchg_double_fail_attr.attr,
5811 	&cmpxchg_double_cpu_fail_attr.attr,
5812 	&cpu_partial_alloc_attr.attr,
5813 	&cpu_partial_free_attr.attr,
5814 	&cpu_partial_node_attr.attr,
5815 	&cpu_partial_drain_attr.attr,
5816 #endif
5817 #ifdef CONFIG_FAILSLAB
5818 	&failslab_attr.attr,
5819 #endif
5820 	&usersize_attr.attr,
5821 
5822 	NULL
5823 };
5824 
5825 static const struct attribute_group slab_attr_group = {
5826 	.attrs = slab_attrs,
5827 };
5828 
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)5829 static ssize_t slab_attr_show(struct kobject *kobj,
5830 				struct attribute *attr,
5831 				char *buf)
5832 {
5833 	struct slab_attribute *attribute;
5834 	struct kmem_cache *s;
5835 	int err;
5836 
5837 	attribute = to_slab_attr(attr);
5838 	s = to_slab(kobj);
5839 
5840 	if (!attribute->show)
5841 		return -EIO;
5842 
5843 	err = attribute->show(s, buf);
5844 
5845 	return err;
5846 }
5847 
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)5848 static ssize_t slab_attr_store(struct kobject *kobj,
5849 				struct attribute *attr,
5850 				const char *buf, size_t len)
5851 {
5852 	struct slab_attribute *attribute;
5853 	struct kmem_cache *s;
5854 	int err;
5855 
5856 	attribute = to_slab_attr(attr);
5857 	s = to_slab(kobj);
5858 
5859 	if (!attribute->store)
5860 		return -EIO;
5861 
5862 	err = attribute->store(s, buf, len);
5863 	return err;
5864 }
5865 
kmem_cache_release(struct kobject * k)5866 static void kmem_cache_release(struct kobject *k)
5867 {
5868 	slab_kmem_cache_release(to_slab(k));
5869 }
5870 
5871 static const struct sysfs_ops slab_sysfs_ops = {
5872 	.show = slab_attr_show,
5873 	.store = slab_attr_store,
5874 };
5875 
5876 static struct kobj_type slab_ktype = {
5877 	.sysfs_ops = &slab_sysfs_ops,
5878 	.release = kmem_cache_release,
5879 };
5880 
5881 static struct kset *slab_kset;
5882 
cache_kset(struct kmem_cache * s)5883 static inline struct kset *cache_kset(struct kmem_cache *s)
5884 {
5885 	return slab_kset;
5886 }
5887 
5888 #define ID_STR_LENGTH 64
5889 
5890 /* Create a unique string id for a slab cache:
5891  *
5892  * Format	:[flags-]size
5893  */
create_unique_id(struct kmem_cache * s)5894 static char *create_unique_id(struct kmem_cache *s)
5895 {
5896 	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5897 	char *p = name;
5898 
5899 	if (!name)
5900 		return ERR_PTR(-ENOMEM);
5901 
5902 	*p++ = ':';
5903 	/*
5904 	 * First flags affecting slabcache operations. We will only
5905 	 * get here for aliasable slabs so we do not need to support
5906 	 * too many flags. The flags here must cover all flags that
5907 	 * are matched during merging to guarantee that the id is
5908 	 * unique.
5909 	 */
5910 	if (s->flags & SLAB_CACHE_DMA)
5911 		*p++ = 'd';
5912 	if (s->flags & SLAB_CACHE_DMA32)
5913 		*p++ = 'D';
5914 	if (s->flags & SLAB_RECLAIM_ACCOUNT)
5915 		*p++ = 'a';
5916 	if (s->flags & SLAB_CONSISTENCY_CHECKS)
5917 		*p++ = 'F';
5918 	if (s->flags & SLAB_ACCOUNT)
5919 		*p++ = 'A';
5920 	if (p != name + 1)
5921 		*p++ = '-';
5922 	p += sprintf(p, "%07u", s->size);
5923 
5924 	BUG_ON(p > name + ID_STR_LENGTH - 1);
5925 	return name;
5926 }
5927 
sysfs_slab_add(struct kmem_cache * s)5928 static int sysfs_slab_add(struct kmem_cache *s)
5929 {
5930 	int err;
5931 	const char *name;
5932 	struct kset *kset = cache_kset(s);
5933 	int unmergeable = slab_unmergeable(s);
5934 
5935 	if (!kset) {
5936 		kobject_init(&s->kobj, &slab_ktype);
5937 		return 0;
5938 	}
5939 
5940 	if (!unmergeable && disable_higher_order_debug &&
5941 			(slub_debug & DEBUG_METADATA_FLAGS))
5942 		unmergeable = 1;
5943 
5944 	if (unmergeable) {
5945 		/*
5946 		 * Slabcache can never be merged so we can use the name proper.
5947 		 * This is typically the case for debug situations. In that
5948 		 * case we can catch duplicate names easily.
5949 		 */
5950 		sysfs_remove_link(&slab_kset->kobj, s->name);
5951 		name = s->name;
5952 	} else {
5953 		/*
5954 		 * Create a unique name for the slab as a target
5955 		 * for the symlinks.
5956 		 */
5957 		name = create_unique_id(s);
5958 		if (IS_ERR(name))
5959 			return PTR_ERR(name);
5960 	}
5961 
5962 	s->kobj.kset = kset;
5963 	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5964 	if (err)
5965 		goto out;
5966 
5967 	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5968 	if (err)
5969 		goto out_del_kobj;
5970 
5971 	if (!unmergeable) {
5972 		/* Setup first alias */
5973 		sysfs_slab_alias(s, s->name);
5974 	}
5975 out:
5976 	if (!unmergeable)
5977 		kfree(name);
5978 	return err;
5979 out_del_kobj:
5980 	kobject_del(&s->kobj);
5981 	goto out;
5982 }
5983 
sysfs_slab_unlink(struct kmem_cache * s)5984 void sysfs_slab_unlink(struct kmem_cache *s)
5985 {
5986 	if (slab_state >= FULL)
5987 		kobject_del(&s->kobj);
5988 }
5989 
sysfs_slab_release(struct kmem_cache * s)5990 void sysfs_slab_release(struct kmem_cache *s)
5991 {
5992 	if (slab_state >= FULL)
5993 		kobject_put(&s->kobj);
5994 }
5995 
5996 /*
5997  * Need to buffer aliases during bootup until sysfs becomes
5998  * available lest we lose that information.
5999  */
6000 struct saved_alias {
6001 	struct kmem_cache *s;
6002 	const char *name;
6003 	struct saved_alias *next;
6004 };
6005 
6006 static struct saved_alias *alias_list;
6007 
sysfs_slab_alias(struct kmem_cache * s,const char * name)6008 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6009 {
6010 	struct saved_alias *al;
6011 
6012 	if (slab_state == FULL) {
6013 		/*
6014 		 * If we have a leftover link then remove it.
6015 		 */
6016 		sysfs_remove_link(&slab_kset->kobj, name);
6017 		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6018 	}
6019 
6020 	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6021 	if (!al)
6022 		return -ENOMEM;
6023 
6024 	al->s = s;
6025 	al->name = name;
6026 	al->next = alias_list;
6027 	alias_list = al;
6028 	return 0;
6029 }
6030 
slab_sysfs_init(void)6031 static int __init slab_sysfs_init(void)
6032 {
6033 	struct kmem_cache *s;
6034 	int err;
6035 
6036 	mutex_lock(&slab_mutex);
6037 
6038 	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6039 	if (!slab_kset) {
6040 		mutex_unlock(&slab_mutex);
6041 		pr_err("Cannot register slab subsystem.\n");
6042 		return -ENOSYS;
6043 	}
6044 
6045 	slab_state = FULL;
6046 
6047 	list_for_each_entry(s, &slab_caches, list) {
6048 		err = sysfs_slab_add(s);
6049 		if (err)
6050 			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6051 			       s->name);
6052 	}
6053 
6054 	while (alias_list) {
6055 		struct saved_alias *al = alias_list;
6056 
6057 		alias_list = alias_list->next;
6058 		err = sysfs_slab_alias(al->s, al->name);
6059 		if (err)
6060 			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6061 			       al->name);
6062 		kfree(al);
6063 	}
6064 
6065 	mutex_unlock(&slab_mutex);
6066 	return 0;
6067 }
6068 
6069 __initcall(slab_sysfs_init);
6070 #endif /* CONFIG_SYSFS */
6071 
6072 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)6073 static int slab_debugfs_show(struct seq_file *seq, void *v)
6074 {
6075 	struct loc_track *t = seq->private;
6076 	struct location *l;
6077 	unsigned long idx;
6078 
6079 	idx = (unsigned long) t->idx;
6080 	if (idx < t->count) {
6081 		l = &t->loc[idx];
6082 
6083 		seq_printf(seq, "%7ld ", l->count);
6084 
6085 		if (l->addr)
6086 			seq_printf(seq, "%pS", (void *)l->addr);
6087 		else
6088 			seq_puts(seq, "<not-available>");
6089 
6090 		if (l->sum_time != l->min_time) {
6091 			seq_printf(seq, " age=%ld/%llu/%ld",
6092 				l->min_time, div_u64(l->sum_time, l->count),
6093 				l->max_time);
6094 		} else
6095 			seq_printf(seq, " age=%ld", l->min_time);
6096 
6097 		if (l->min_pid != l->max_pid)
6098 			seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6099 		else
6100 			seq_printf(seq, " pid=%ld",
6101 				l->min_pid);
6102 
6103 		if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6104 			seq_printf(seq, " cpus=%*pbl",
6105 				 cpumask_pr_args(to_cpumask(l->cpus)));
6106 
6107 		if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6108 			seq_printf(seq, " nodes=%*pbl",
6109 				 nodemask_pr_args(&l->nodes));
6110 
6111 		seq_puts(seq, "\n");
6112 	}
6113 
6114 	if (!idx && !t->count)
6115 		seq_puts(seq, "No data\n");
6116 
6117 	return 0;
6118 }
6119 
slab_debugfs_stop(struct seq_file * seq,void * v)6120 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6121 {
6122 }
6123 
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)6124 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6125 {
6126 	struct loc_track *t = seq->private;
6127 
6128 	t->idx = ++(*ppos);
6129 	if (*ppos <= t->count)
6130 		return ppos;
6131 
6132 	return NULL;
6133 }
6134 
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)6135 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6136 {
6137 	struct loc_track *t = seq->private;
6138 
6139 	t->idx = *ppos;
6140 	return ppos;
6141 }
6142 
6143 static const struct seq_operations slab_debugfs_sops = {
6144 	.start  = slab_debugfs_start,
6145 	.next   = slab_debugfs_next,
6146 	.stop   = slab_debugfs_stop,
6147 	.show   = slab_debugfs_show,
6148 };
6149 
slab_debug_trace_open(struct inode * inode,struct file * filep)6150 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6151 {
6152 
6153 	struct kmem_cache_node *n;
6154 	enum track_item alloc;
6155 	int node;
6156 	struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6157 						sizeof(struct loc_track));
6158 	struct kmem_cache *s = file_inode(filep)->i_private;
6159 	unsigned long *obj_map;
6160 
6161 	if (!t)
6162 		return -ENOMEM;
6163 
6164 	obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6165 	if (!obj_map) {
6166 		seq_release_private(inode, filep);
6167 		return -ENOMEM;
6168 	}
6169 
6170 	if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6171 		alloc = TRACK_ALLOC;
6172 	else
6173 		alloc = TRACK_FREE;
6174 
6175 	if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6176 		bitmap_free(obj_map);
6177 		seq_release_private(inode, filep);
6178 		return -ENOMEM;
6179 	}
6180 
6181 	for_each_kmem_cache_node(s, node, n) {
6182 		unsigned long flags;
6183 		struct page *page;
6184 
6185 		if (!atomic_long_read(&n->nr_slabs))
6186 			continue;
6187 
6188 		spin_lock_irqsave(&n->list_lock, flags);
6189 		list_for_each_entry(page, &n->partial, slab_list)
6190 			process_slab(t, s, page, alloc, obj_map);
6191 		list_for_each_entry(page, &n->full, slab_list)
6192 			process_slab(t, s, page, alloc, obj_map);
6193 		spin_unlock_irqrestore(&n->list_lock, flags);
6194 	}
6195 
6196 	bitmap_free(obj_map);
6197 	return 0;
6198 }
6199 
slab_debug_trace_release(struct inode * inode,struct file * file)6200 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6201 {
6202 	struct seq_file *seq = file->private_data;
6203 	struct loc_track *t = seq->private;
6204 
6205 	free_loc_track(t);
6206 	return seq_release_private(inode, file);
6207 }
6208 
6209 static const struct file_operations slab_debugfs_fops = {
6210 	.open    = slab_debug_trace_open,
6211 	.read    = seq_read,
6212 	.llseek  = seq_lseek,
6213 	.release = slab_debug_trace_release,
6214 };
6215 
debugfs_slab_add(struct kmem_cache * s)6216 static void debugfs_slab_add(struct kmem_cache *s)
6217 {
6218 	struct dentry *slab_cache_dir;
6219 
6220 	if (unlikely(!slab_debugfs_root))
6221 		return;
6222 
6223 	slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6224 
6225 	debugfs_create_file("alloc_traces", 0400,
6226 		slab_cache_dir, s, &slab_debugfs_fops);
6227 
6228 	debugfs_create_file("free_traces", 0400,
6229 		slab_cache_dir, s, &slab_debugfs_fops);
6230 }
6231 
debugfs_slab_release(struct kmem_cache * s)6232 void debugfs_slab_release(struct kmem_cache *s)
6233 {
6234 	debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6235 }
6236 
slab_debugfs_init(void)6237 static int __init slab_debugfs_init(void)
6238 {
6239 	struct kmem_cache *s;
6240 
6241 	slab_debugfs_root = debugfs_create_dir("slab", NULL);
6242 
6243 	list_for_each_entry(s, &slab_caches, list)
6244 		if (s->flags & SLAB_STORE_USER)
6245 			debugfs_slab_add(s);
6246 
6247 	return 0;
6248 
6249 }
6250 __initcall(slab_debugfs_init);
6251 #endif
6252 /*
6253  * The /proc/slabinfo ABI
6254  */
6255 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)6256 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6257 {
6258 	unsigned long nr_slabs = 0;
6259 	unsigned long nr_objs = 0;
6260 	unsigned long nr_free = 0;
6261 	int node;
6262 	struct kmem_cache_node *n;
6263 
6264 	for_each_kmem_cache_node(s, node, n) {
6265 		nr_slabs += node_nr_slabs(n);
6266 		nr_objs += node_nr_objs(n);
6267 		nr_free += count_partial(n, count_free);
6268 	}
6269 
6270 	sinfo->active_objs = nr_objs - nr_free;
6271 	sinfo->num_objs = nr_objs;
6272 	sinfo->active_slabs = nr_slabs;
6273 	sinfo->num_slabs = nr_slabs;
6274 	sinfo->objects_per_slab = oo_objects(s->oo);
6275 	sinfo->cache_order = oo_order(s->oo);
6276 }
6277 EXPORT_SYMBOL_NS_GPL(get_slabinfo, MINIDUMP);
6278 
slabinfo_show_stats(struct seq_file * m,struct kmem_cache * s)6279 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6280 {
6281 }
6282 
slabinfo_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)6283 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6284 		       size_t count, loff_t *ppos)
6285 {
6286 	return -EIO;
6287 }
6288 #endif /* CONFIG_SLUB_DEBUG */
6289