1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
5 *
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
8 *
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
11 */
12
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/kfence.h>
32 #include <linux/memory.h>
33 #include <linux/math64.h>
34 #include <linux/fault-inject.h>
35 #include <linux/stacktrace.h>
36 #include <linux/prefetch.h>
37 #include <linux/memcontrol.h>
38 #include <linux/random.h>
39 #include <kunit/test.h>
40
41 #include <linux/debugfs.h>
42 #include <trace/events/kmem.h>
43 #include <trace/hooks/mm.h>
44
45 #include "internal.h"
46
47 /*
48 * Lock order:
49 * 1. slab_mutex (Global Mutex)
50 * 2. node->list_lock (Spinlock)
51 * 3. kmem_cache->cpu_slab->lock (Local lock)
52 * 4. slab_lock(page) (Only on some arches or for debugging)
53 * 5. object_map_lock (Only for debugging)
54 *
55 * slab_mutex
56 *
57 * The role of the slab_mutex is to protect the list of all the slabs
58 * and to synchronize major metadata changes to slab cache structures.
59 * Also synchronizes memory hotplug callbacks.
60 *
61 * slab_lock
62 *
63 * The slab_lock is a wrapper around the page lock, thus it is a bit
64 * spinlock.
65 *
66 * The slab_lock is only used for debugging and on arches that do not
67 * have the ability to do a cmpxchg_double. It only protects:
68 * A. page->freelist -> List of object free in a page
69 * B. page->inuse -> Number of objects in use
70 * C. page->objects -> Number of objects in page
71 * D. page->frozen -> frozen state
72 *
73 * Frozen slabs
74 *
75 * If a slab is frozen then it is exempt from list management. It is not
76 * on any list except per cpu partial list. The processor that froze the
77 * slab is the one who can perform list operations on the page. Other
78 * processors may put objects onto the freelist but the processor that
79 * froze the slab is the only one that can retrieve the objects from the
80 * page's freelist.
81 *
82 * list_lock
83 *
84 * The list_lock protects the partial and full list on each node and
85 * the partial slab counter. If taken then no new slabs may be added or
86 * removed from the lists nor make the number of partial slabs be modified.
87 * (Note that the total number of slabs is an atomic value that may be
88 * modified without taking the list lock).
89 *
90 * The list_lock is a centralized lock and thus we avoid taking it as
91 * much as possible. As long as SLUB does not have to handle partial
92 * slabs, operations can continue without any centralized lock. F.e.
93 * allocating a long series of objects that fill up slabs does not require
94 * the list lock.
95 *
96 * cpu_slab->lock local lock
97 *
98 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
99 * except the stat counters. This is a percpu structure manipulated only by
100 * the local cpu, so the lock protects against being preempted or interrupted
101 * by an irq. Fast path operations rely on lockless operations instead.
102 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus
103 * prevent the lockless operations), so fastpath operations also need to take
104 * the lock and are no longer lockless.
105 *
106 * lockless fastpaths
107 *
108 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
109 * are fully lockless when satisfied from the percpu slab (and when
110 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
111 * They also don't disable preemption or migration or irqs. They rely on
112 * the transaction id (tid) field to detect being preempted or moved to
113 * another cpu.
114 *
115 * irq, preemption, migration considerations
116 *
117 * Interrupts are disabled as part of list_lock or local_lock operations, or
118 * around the slab_lock operation, in order to make the slab allocator safe
119 * to use in the context of an irq.
120 *
121 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
122 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
123 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
124 * doesn't have to be revalidated in each section protected by the local lock.
125 *
126 * SLUB assigns one slab for allocation to each processor.
127 * Allocations only occur from these slabs called cpu slabs.
128 *
129 * Slabs with free elements are kept on a partial list and during regular
130 * operations no list for full slabs is used. If an object in a full slab is
131 * freed then the slab will show up again on the partial lists.
132 * We track full slabs for debugging purposes though because otherwise we
133 * cannot scan all objects.
134 *
135 * Slabs are freed when they become empty. Teardown and setup is
136 * minimal so we rely on the page allocators per cpu caches for
137 * fast frees and allocs.
138 *
139 * page->frozen The slab is frozen and exempt from list processing.
140 * This means that the slab is dedicated to a purpose
141 * such as satisfying allocations for a specific
142 * processor. Objects may be freed in the slab while
143 * it is frozen but slab_free will then skip the usual
144 * list operations. It is up to the processor holding
145 * the slab to integrate the slab into the slab lists
146 * when the slab is no longer needed.
147 *
148 * One use of this flag is to mark slabs that are
149 * used for allocations. Then such a slab becomes a cpu
150 * slab. The cpu slab may be equipped with an additional
151 * freelist that allows lockless access to
152 * free objects in addition to the regular freelist
153 * that requires the slab lock.
154 *
155 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
156 * options set. This moves slab handling out of
157 * the fast path and disables lockless freelists.
158 */
159
160 /*
161 * We could simply use migrate_disable()/enable() but as long as it's a
162 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
163 */
164 #ifndef CONFIG_PREEMPT_RT
165 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
166 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
167 #else
168 #define slub_get_cpu_ptr(var) \
169 ({ \
170 migrate_disable(); \
171 this_cpu_ptr(var); \
172 })
173 #define slub_put_cpu_ptr(var) \
174 do { \
175 (void)(var); \
176 migrate_enable(); \
177 } while (0)
178 #endif
179
180 #ifdef CONFIG_SLUB_DEBUG
181 #ifdef CONFIG_SLUB_DEBUG_ON
182 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
183 #else
184 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
185 #endif
186 #endif /* CONFIG_SLUB_DEBUG */
187
kmem_cache_debug(struct kmem_cache * s)188 static inline bool kmem_cache_debug(struct kmem_cache *s)
189 {
190 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
191 }
192
fixup_red_left(struct kmem_cache * s,void * p)193 void *fixup_red_left(struct kmem_cache *s, void *p)
194 {
195 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
196 p += s->red_left_pad;
197
198 return p;
199 }
200
kmem_cache_has_cpu_partial(struct kmem_cache * s)201 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
202 {
203 #ifdef CONFIG_SLUB_CPU_PARTIAL
204 return !kmem_cache_debug(s);
205 #else
206 return false;
207 #endif
208 }
209
210 /*
211 * Issues still to be resolved:
212 *
213 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
214 *
215 * - Variable sizing of the per node arrays
216 */
217
218 /* Enable to log cmpxchg failures */
219 #undef SLUB_DEBUG_CMPXCHG
220
221 /*
222 * Minimum number of partial slabs. These will be left on the partial
223 * lists even if they are empty. kmem_cache_shrink may reclaim them.
224 */
225 #define MIN_PARTIAL 5
226
227 /*
228 * Maximum number of desirable partial slabs.
229 * The existence of more partial slabs makes kmem_cache_shrink
230 * sort the partial list by the number of objects in use.
231 */
232 #define MAX_PARTIAL 10
233
234 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
235 SLAB_POISON | SLAB_STORE_USER)
236
237 /*
238 * These debug flags cannot use CMPXCHG because there might be consistency
239 * issues when checking or reading debug information
240 */
241 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
242 SLAB_TRACE)
243
244
245 /*
246 * Debugging flags that require metadata to be stored in the slab. These get
247 * disabled when slub_debug=O is used and a cache's min order increases with
248 * metadata.
249 */
250 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
251
252 #define OO_SHIFT 16
253 #define OO_MASK ((1 << OO_SHIFT) - 1)
254 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
255
256 /* Internal SLUB flags */
257 /* Poison object */
258 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
259 /* Use cmpxchg_double */
260 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
261
262 #ifdef CONFIG_SYSFS
263 static int sysfs_slab_add(struct kmem_cache *);
264 static int sysfs_slab_alias(struct kmem_cache *, const char *);
265 #else
sysfs_slab_add(struct kmem_cache * s)266 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
sysfs_slab_alias(struct kmem_cache * s,const char * p)267 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
268 { return 0; }
269 #endif
270
271 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
272 static void debugfs_slab_add(struct kmem_cache *);
273 #else
debugfs_slab_add(struct kmem_cache * s)274 static inline void debugfs_slab_add(struct kmem_cache *s) { }
275 #endif
276
stat(const struct kmem_cache * s,enum stat_item si)277 static inline void stat(const struct kmem_cache *s, enum stat_item si)
278 {
279 #ifdef CONFIG_SLUB_STATS
280 /*
281 * The rmw is racy on a preemptible kernel but this is acceptable, so
282 * avoid this_cpu_add()'s irq-disable overhead.
283 */
284 raw_cpu_inc(s->cpu_slab->stat[si]);
285 #endif
286 }
287
288 /*
289 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
290 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
291 * differ during memory hotplug/hotremove operations.
292 * Protected by slab_mutex.
293 */
294 static nodemask_t slab_nodes;
295
296 /*
297 * Workqueue used for flush_cpu_slab().
298 */
299 static struct workqueue_struct *flushwq;
300
301 /********************************************************************
302 * Core slab cache functions
303 *******************************************************************/
304
305 /*
306 * Returns freelist pointer (ptr). With hardening, this is obfuscated
307 * with an XOR of the address where the pointer is held and a per-cache
308 * random number.
309 */
freelist_ptr(const struct kmem_cache * s,void * ptr,unsigned long ptr_addr)310 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
311 unsigned long ptr_addr)
312 {
313 #ifdef CONFIG_SLAB_FREELIST_HARDENED
314 /*
315 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
316 * Normally, this doesn't cause any issues, as both set_freepointer()
317 * and get_freepointer() are called with a pointer with the same tag.
318 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
319 * example, when __free_slub() iterates over objects in a cache, it
320 * passes untagged pointers to check_object(). check_object() in turns
321 * calls get_freepointer() with an untagged pointer, which causes the
322 * freepointer to be restored incorrectly.
323 */
324 return (void *)((unsigned long)ptr ^ s->random ^
325 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
326 #else
327 return ptr;
328 #endif
329 }
330
331 /* Returns the freelist pointer recorded at location ptr_addr. */
freelist_dereference(const struct kmem_cache * s,void * ptr_addr)332 static inline void *freelist_dereference(const struct kmem_cache *s,
333 void *ptr_addr)
334 {
335 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
336 (unsigned long)ptr_addr);
337 }
338
get_freepointer(struct kmem_cache * s,void * object)339 static inline void *get_freepointer(struct kmem_cache *s, void *object)
340 {
341 object = kasan_reset_tag(object);
342 return freelist_dereference(s, object + s->offset);
343 }
344
prefetch_freepointer(const struct kmem_cache * s,void * object)345 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
346 {
347 prefetch(object + s->offset);
348 }
349
get_freepointer_safe(struct kmem_cache * s,void * object)350 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
351 {
352 unsigned long freepointer_addr;
353 void *p;
354
355 if (!debug_pagealloc_enabled_static())
356 return get_freepointer(s, object);
357
358 object = kasan_reset_tag(object);
359 freepointer_addr = (unsigned long)object + s->offset;
360 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
361 return freelist_ptr(s, p, freepointer_addr);
362 }
363
set_freepointer(struct kmem_cache * s,void * object,void * fp)364 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
365 {
366 unsigned long freeptr_addr = (unsigned long)object + s->offset;
367
368 #ifdef CONFIG_SLAB_FREELIST_HARDENED
369 BUG_ON(object == fp); /* naive detection of double free or corruption */
370 #endif
371
372 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
373 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
374 }
375
376 /* Loop over all objects in a slab */
377 #define for_each_object(__p, __s, __addr, __objects) \
378 for (__p = fixup_red_left(__s, __addr); \
379 __p < (__addr) + (__objects) * (__s)->size; \
380 __p += (__s)->size)
381
order_objects(unsigned int order,unsigned int size)382 static inline unsigned int order_objects(unsigned int order, unsigned int size)
383 {
384 return ((unsigned int)PAGE_SIZE << order) / size;
385 }
386
oo_make(unsigned int order,unsigned int size)387 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
388 unsigned int size)
389 {
390 struct kmem_cache_order_objects x = {
391 (order << OO_SHIFT) + order_objects(order, size)
392 };
393
394 return x;
395 }
396
oo_order(struct kmem_cache_order_objects x)397 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
398 {
399 return x.x >> OO_SHIFT;
400 }
401
oo_objects(struct kmem_cache_order_objects x)402 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
403 {
404 return x.x & OO_MASK;
405 }
406
407 /*
408 * Per slab locking using the pagelock
409 */
__slab_lock(struct page * page)410 static __always_inline void __slab_lock(struct page *page)
411 {
412 VM_BUG_ON_PAGE(PageTail(page), page);
413 bit_spin_lock(PG_locked, &page->flags);
414 }
415
__slab_unlock(struct page * page)416 static __always_inline void __slab_unlock(struct page *page)
417 {
418 VM_BUG_ON_PAGE(PageTail(page), page);
419 __bit_spin_unlock(PG_locked, &page->flags);
420 }
421
slab_lock(struct page * page,unsigned long * flags)422 static __always_inline void slab_lock(struct page *page, unsigned long *flags)
423 {
424 if (IS_ENABLED(CONFIG_PREEMPT_RT))
425 local_irq_save(*flags);
426 __slab_lock(page);
427 }
428
slab_unlock(struct page * page,unsigned long * flags)429 static __always_inline void slab_unlock(struct page *page, unsigned long *flags)
430 {
431 __slab_unlock(page);
432 if (IS_ENABLED(CONFIG_PREEMPT_RT))
433 local_irq_restore(*flags);
434 }
435
436 /*
437 * Interrupts must be disabled (for the fallback code to work right), typically
438 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
439 * so we disable interrupts as part of slab_[un]lock().
440 */
__cmpxchg_double_slab(struct kmem_cache * s,struct page * page,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)441 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
442 void *freelist_old, unsigned long counters_old,
443 void *freelist_new, unsigned long counters_new,
444 const char *n)
445 {
446 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
447 lockdep_assert_irqs_disabled();
448 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
449 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
450 if (s->flags & __CMPXCHG_DOUBLE) {
451 if (cmpxchg_double(&page->freelist, &page->counters,
452 freelist_old, counters_old,
453 freelist_new, counters_new))
454 return true;
455 } else
456 #endif
457 {
458 /* init to 0 to prevent spurious warnings */
459 unsigned long flags = 0;
460
461 slab_lock(page, &flags);
462 if (page->freelist == freelist_old &&
463 page->counters == counters_old) {
464 page->freelist = freelist_new;
465 page->counters = counters_new;
466 slab_unlock(page, &flags);
467 return true;
468 }
469 slab_unlock(page, &flags);
470 }
471
472 cpu_relax();
473 stat(s, CMPXCHG_DOUBLE_FAIL);
474
475 #ifdef SLUB_DEBUG_CMPXCHG
476 pr_info("%s %s: cmpxchg double redo ", n, s->name);
477 #endif
478
479 return false;
480 }
481
cmpxchg_double_slab(struct kmem_cache * s,struct page * page,void * freelist_old,unsigned long counters_old,void * freelist_new,unsigned long counters_new,const char * n)482 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
483 void *freelist_old, unsigned long counters_old,
484 void *freelist_new, unsigned long counters_new,
485 const char *n)
486 {
487 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
488 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
489 if (s->flags & __CMPXCHG_DOUBLE) {
490 if (cmpxchg_double(&page->freelist, &page->counters,
491 freelist_old, counters_old,
492 freelist_new, counters_new))
493 return true;
494 } else
495 #endif
496 {
497 unsigned long flags;
498
499 local_irq_save(flags);
500 __slab_lock(page);
501 if (page->freelist == freelist_old &&
502 page->counters == counters_old) {
503 page->freelist = freelist_new;
504 page->counters = counters_new;
505 __slab_unlock(page);
506 local_irq_restore(flags);
507 return true;
508 }
509 __slab_unlock(page);
510 local_irq_restore(flags);
511 }
512
513 cpu_relax();
514 stat(s, CMPXCHG_DOUBLE_FAIL);
515
516 #ifdef SLUB_DEBUG_CMPXCHG
517 pr_info("%s %s: cmpxchg double redo ", n, s->name);
518 #endif
519
520 return false;
521 }
522
523 #ifdef CONFIG_SLUB_DEBUG
524 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
525 static DEFINE_RAW_SPINLOCK(object_map_lock);
526
__fill_map(unsigned long * obj_map,struct kmem_cache * s,struct page * page)527 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
528 struct page *page)
529 {
530 void *addr = page_address(page);
531 void *p;
532
533 bitmap_zero(obj_map, page->objects);
534
535 for (p = page->freelist; p; p = get_freepointer(s, p))
536 set_bit(__obj_to_index(s, addr, p), obj_map);
537 }
538
slab_add_kunit_errors(void)539 static bool slab_add_kunit_errors(void)
540 {
541 struct kunit_resource *resource;
542
543 if (likely(!current->kunit_test))
544 return false;
545
546 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
547 if (!resource)
548 return false;
549
550 (*(int *)resource->data)++;
551 kunit_put_resource(resource);
552 return true;
553 }
554
555 /*
556 * Determine a map of object in use on a page.
557 *
558 * Node listlock must be held to guarantee that the page does
559 * not vanish from under us.
560 */
get_map(struct kmem_cache * s,struct page * page)561 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
562 __acquires(&object_map_lock)
563 {
564 VM_BUG_ON(!irqs_disabled());
565
566 raw_spin_lock(&object_map_lock);
567
568 __fill_map(object_map, s, page);
569
570 return object_map;
571 }
572
put_map(unsigned long * map)573 static void put_map(unsigned long *map) __releases(&object_map_lock)
574 {
575 VM_BUG_ON(map != object_map);
576 raw_spin_unlock(&object_map_lock);
577 }
578
size_from_object(struct kmem_cache * s)579 static inline unsigned int size_from_object(struct kmem_cache *s)
580 {
581 if (s->flags & SLAB_RED_ZONE)
582 return s->size - s->red_left_pad;
583
584 return s->size;
585 }
586
restore_red_left(struct kmem_cache * s,void * p)587 static inline void *restore_red_left(struct kmem_cache *s, void *p)
588 {
589 if (s->flags & SLAB_RED_ZONE)
590 p -= s->red_left_pad;
591
592 return p;
593 }
594
595 /*
596 * Debug settings:
597 */
598 #if defined(CONFIG_SLUB_DEBUG_ON)
599 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
600 #else
601 static slab_flags_t slub_debug;
602 #endif
603
604 static char *slub_debug_string;
605 static int disable_higher_order_debug;
606
607 /*
608 * slub is about to manipulate internal object metadata. This memory lies
609 * outside the range of the allocated object, so accessing it would normally
610 * be reported by kasan as a bounds error. metadata_access_enable() is used
611 * to tell kasan that these accesses are OK.
612 */
metadata_access_enable(void)613 static inline void metadata_access_enable(void)
614 {
615 kasan_disable_current();
616 }
617
metadata_access_disable(void)618 static inline void metadata_access_disable(void)
619 {
620 kasan_enable_current();
621 }
622
623 /*
624 * Object debugging
625 */
626
627 /* Verify that a pointer has an address that is valid within a slab page */
check_valid_pointer(struct kmem_cache * s,struct page * page,void * object)628 static inline int check_valid_pointer(struct kmem_cache *s,
629 struct page *page, void *object)
630 {
631 void *base;
632
633 if (!object)
634 return 1;
635
636 base = page_address(page);
637 object = kasan_reset_tag(object);
638 object = restore_red_left(s, object);
639 if (object < base || object >= base + page->objects * s->size ||
640 (object - base) % s->size) {
641 return 0;
642 }
643
644 return 1;
645 }
646
print_section(char * level,char * text,u8 * addr,unsigned int length)647 static void print_section(char *level, char *text, u8 *addr,
648 unsigned int length)
649 {
650 metadata_access_enable();
651 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
652 16, 1, kasan_reset_tag((void *)addr), length, 1);
653 metadata_access_disable();
654 }
655
656 /*
657 * See comment in calculate_sizes().
658 */
freeptr_outside_object(struct kmem_cache * s)659 static inline bool freeptr_outside_object(struct kmem_cache *s)
660 {
661 return s->offset >= s->inuse;
662 }
663
664 /*
665 * Return offset of the end of info block which is inuse + free pointer if
666 * not overlapping with object.
667 */
get_info_end(struct kmem_cache * s)668 static inline unsigned int get_info_end(struct kmem_cache *s)
669 {
670 if (freeptr_outside_object(s))
671 return s->inuse + sizeof(void *);
672 else
673 return s->inuse;
674 }
675
get_track(struct kmem_cache * s,void * object,enum track_item alloc)676 static struct track *get_track(struct kmem_cache *s, void *object,
677 enum track_item alloc)
678 {
679 struct track *p;
680
681 p = object + get_info_end(s);
682
683 return kasan_reset_tag(p + alloc);
684 }
685
686 /*
687 * This function will be used to loop through all the slab objects in
688 * a page to give track structure for each object, the function fn will
689 * be using this track structure and extract required info into its private
690 * data, the return value will be the number of track structures that are
691 * processed.
692 */
get_each_object_track(struct kmem_cache * s,struct page * page,enum track_item alloc,int (* fn)(const struct kmem_cache *,const void *,const struct track *,void *),void * private)693 unsigned long get_each_object_track(struct kmem_cache *s,
694 struct page *page, enum track_item alloc,
695 int (*fn)(const struct kmem_cache *, const void *,
696 const struct track *, void *), void *private)
697 {
698 void *p;
699 struct track *t;
700 int ret;
701 unsigned long num_track = 0;
702 unsigned long flags = 0;
703
704 if (!slub_debug || !(s->flags & SLAB_STORE_USER))
705 return 0;
706
707 slab_lock(page, &flags);
708 for_each_object(p, s, page_address(page), page->objects) {
709 t = get_track(s, p, alloc);
710 metadata_access_enable();
711 ret = fn(s, p, t, private);
712 metadata_access_disable();
713 if (ret < 0)
714 break;
715 num_track += 1;
716 }
717 slab_unlock(page, &flags);
718 return num_track;
719 }
720 EXPORT_SYMBOL_NS_GPL(get_each_object_track, MINIDUMP);
721
set_track(struct kmem_cache * s,void * object,enum track_item alloc,unsigned long addr)722 static void set_track(struct kmem_cache *s, void *object,
723 enum track_item alloc, unsigned long addr)
724 {
725 struct track *p = get_track(s, object, alloc);
726
727 if (addr) {
728 #ifdef CONFIG_STACKTRACE
729 unsigned int nr_entries;
730
731 metadata_access_enable();
732 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
733 TRACK_ADDRS_COUNT, 3);
734 metadata_access_disable();
735
736 if (nr_entries < TRACK_ADDRS_COUNT)
737 p->addrs[nr_entries] = 0;
738 #endif
739 p->addr = addr;
740 p->cpu = smp_processor_id();
741 p->pid = current->pid;
742 p->when = jiffies;
743 trace_android_vh_save_track_hash(alloc == TRACK_ALLOC, p);
744 } else {
745 memset(p, 0, sizeof(struct track));
746 }
747 }
748
init_tracking(struct kmem_cache * s,void * object)749 static void init_tracking(struct kmem_cache *s, void *object)
750 {
751 if (!(s->flags & SLAB_STORE_USER))
752 return;
753
754 set_track(s, object, TRACK_FREE, 0UL);
755 set_track(s, object, TRACK_ALLOC, 0UL);
756 }
757
print_track(const char * s,struct track * t,unsigned long pr_time)758 static void print_track(const char *s, struct track *t, unsigned long pr_time)
759 {
760 if (!t->addr)
761 return;
762
763 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
764 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
765 #ifdef CONFIG_STACKTRACE
766 {
767 int i;
768 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
769 if (t->addrs[i])
770 pr_err("\t%pS\n", (void *)t->addrs[i]);
771 else
772 break;
773 }
774 #endif
775 }
776
print_tracking(struct kmem_cache * s,void * object)777 void print_tracking(struct kmem_cache *s, void *object)
778 {
779 unsigned long pr_time = jiffies;
780 if (!(s->flags & SLAB_STORE_USER))
781 return;
782
783 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
784 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
785 }
786
print_page_info(struct page * page)787 static void print_page_info(struct page *page)
788 {
789 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
790 page, page->objects, page->inuse, page->freelist,
791 page->flags, &page->flags);
792
793 }
794
slab_bug(struct kmem_cache * s,char * fmt,...)795 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
796 {
797 struct va_format vaf;
798 va_list args;
799
800 va_start(args, fmt);
801 vaf.fmt = fmt;
802 vaf.va = &args;
803 pr_err("=============================================================================\n");
804 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
805 pr_err("-----------------------------------------------------------------------------\n\n");
806 va_end(args);
807 }
808
809 __printf(2, 3)
slab_fix(struct kmem_cache * s,char * fmt,...)810 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
811 {
812 struct va_format vaf;
813 va_list args;
814
815 if (slab_add_kunit_errors())
816 return;
817
818 va_start(args, fmt);
819 vaf.fmt = fmt;
820 vaf.va = &args;
821 pr_err("FIX %s: %pV\n", s->name, &vaf);
822 va_end(args);
823 }
824
freelist_corrupted(struct kmem_cache * s,struct page * page,void ** freelist,void * nextfree)825 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
826 void **freelist, void *nextfree)
827 {
828 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
829 !check_valid_pointer(s, page, nextfree) && freelist) {
830 object_err(s, page, *freelist, "Freechain corrupt");
831 *freelist = NULL;
832 slab_fix(s, "Isolate corrupted freechain");
833 return true;
834 }
835
836 return false;
837 }
838
print_trailer(struct kmem_cache * s,struct page * page,u8 * p)839 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
840 {
841 unsigned int off; /* Offset of last byte */
842 u8 *addr = page_address(page);
843
844 print_tracking(s, p);
845
846 print_page_info(page);
847
848 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
849 p, p - addr, get_freepointer(s, p));
850
851 if (s->flags & SLAB_RED_ZONE)
852 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
853 s->red_left_pad);
854 else if (p > addr + 16)
855 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
856
857 print_section(KERN_ERR, "Object ", p,
858 min_t(unsigned int, s->object_size, PAGE_SIZE));
859 if (s->flags & SLAB_RED_ZONE)
860 print_section(KERN_ERR, "Redzone ", p + s->object_size,
861 s->inuse - s->object_size);
862
863 off = get_info_end(s);
864
865 if (s->flags & SLAB_STORE_USER)
866 off += 2 * sizeof(struct track);
867
868 off += kasan_metadata_size(s);
869
870 if (off != size_from_object(s))
871 /* Beginning of the filler is the free pointer */
872 print_section(KERN_ERR, "Padding ", p + off,
873 size_from_object(s) - off);
874
875 dump_stack();
876 }
877
object_err(struct kmem_cache * s,struct page * page,u8 * object,char * reason)878 void object_err(struct kmem_cache *s, struct page *page,
879 u8 *object, char *reason)
880 {
881 if (slab_add_kunit_errors())
882 return;
883
884 slab_bug(s, "%s", reason);
885 print_trailer(s, page, object);
886 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
887 }
888
slab_err(struct kmem_cache * s,struct page * page,const char * fmt,...)889 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
890 const char *fmt, ...)
891 {
892 va_list args;
893 char buf[100];
894
895 if (slab_add_kunit_errors())
896 return;
897
898 va_start(args, fmt);
899 vsnprintf(buf, sizeof(buf), fmt, args);
900 va_end(args);
901 slab_bug(s, "%s", buf);
902 print_page_info(page);
903 dump_stack();
904 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
905 }
906
init_object(struct kmem_cache * s,void * object,u8 val)907 static void init_object(struct kmem_cache *s, void *object, u8 val)
908 {
909 u8 *p = kasan_reset_tag(object);
910
911 if (s->flags & SLAB_RED_ZONE)
912 memset(p - s->red_left_pad, val, s->red_left_pad);
913
914 if (s->flags & __OBJECT_POISON) {
915 memset(p, POISON_FREE, s->object_size - 1);
916 p[s->object_size - 1] = POISON_END;
917 }
918
919 if (s->flags & SLAB_RED_ZONE)
920 memset(p + s->object_size, val, s->inuse - s->object_size);
921 }
922
restore_bytes(struct kmem_cache * s,char * message,u8 data,void * from,void * to)923 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
924 void *from, void *to)
925 {
926 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
927 memset(from, data, to - from);
928 }
929
check_bytes_and_report(struct kmem_cache * s,struct page * page,u8 * object,char * what,u8 * start,unsigned int value,unsigned int bytes)930 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
931 u8 *object, char *what,
932 u8 *start, unsigned int value, unsigned int bytes)
933 {
934 u8 *fault;
935 u8 *end;
936 u8 *addr = page_address(page);
937
938 metadata_access_enable();
939 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
940 metadata_access_disable();
941 if (!fault)
942 return 1;
943
944 end = start + bytes;
945 while (end > fault && end[-1] == value)
946 end--;
947
948 if (slab_add_kunit_errors())
949 goto skip_bug_print;
950
951 slab_bug(s, "%s overwritten", what);
952 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
953 fault, end - 1, fault - addr,
954 fault[0], value);
955 print_trailer(s, page, object);
956 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
957
958 skip_bug_print:
959 restore_bytes(s, what, value, fault, end);
960 return 0;
961 }
962
963 /*
964 * Object layout:
965 *
966 * object address
967 * Bytes of the object to be managed.
968 * If the freepointer may overlay the object then the free
969 * pointer is at the middle of the object.
970 *
971 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
972 * 0xa5 (POISON_END)
973 *
974 * object + s->object_size
975 * Padding to reach word boundary. This is also used for Redzoning.
976 * Padding is extended by another word if Redzoning is enabled and
977 * object_size == inuse.
978 *
979 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
980 * 0xcc (RED_ACTIVE) for objects in use.
981 *
982 * object + s->inuse
983 * Meta data starts here.
984 *
985 * A. Free pointer (if we cannot overwrite object on free)
986 * B. Tracking data for SLAB_STORE_USER
987 * C. Padding to reach required alignment boundary or at minimum
988 * one word if debugging is on to be able to detect writes
989 * before the word boundary.
990 *
991 * Padding is done using 0x5a (POISON_INUSE)
992 *
993 * object + s->size
994 * Nothing is used beyond s->size.
995 *
996 * If slabcaches are merged then the object_size and inuse boundaries are mostly
997 * ignored. And therefore no slab options that rely on these boundaries
998 * may be used with merged slabcaches.
999 */
1000
check_pad_bytes(struct kmem_cache * s,struct page * page,u8 * p)1001 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
1002 {
1003 unsigned long off = get_info_end(s); /* The end of info */
1004
1005 if (s->flags & SLAB_STORE_USER)
1006 /* We also have user information there */
1007 off += 2 * sizeof(struct track);
1008
1009 off += kasan_metadata_size(s);
1010
1011 if (size_from_object(s) == off)
1012 return 1;
1013
1014 return check_bytes_and_report(s, page, p, "Object padding",
1015 p + off, POISON_INUSE, size_from_object(s) - off);
1016 }
1017
1018 /* Check the pad bytes at the end of a slab page */
slab_pad_check(struct kmem_cache * s,struct page * page)1019 static int slab_pad_check(struct kmem_cache *s, struct page *page)
1020 {
1021 u8 *start;
1022 u8 *fault;
1023 u8 *end;
1024 u8 *pad;
1025 int length;
1026 int remainder;
1027
1028 if (!(s->flags & SLAB_POISON))
1029 return 1;
1030
1031 start = page_address(page);
1032 length = page_size(page);
1033 end = start + length;
1034 remainder = length % s->size;
1035 if (!remainder)
1036 return 1;
1037
1038 pad = end - remainder;
1039 metadata_access_enable();
1040 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1041 metadata_access_disable();
1042 if (!fault)
1043 return 1;
1044 while (end > fault && end[-1] == POISON_INUSE)
1045 end--;
1046
1047 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1048 fault, end - 1, fault - start);
1049 print_section(KERN_ERR, "Padding ", pad, remainder);
1050
1051 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1052 return 0;
1053 }
1054
check_object(struct kmem_cache * s,struct page * page,void * object,u8 val)1055 static int check_object(struct kmem_cache *s, struct page *page,
1056 void *object, u8 val)
1057 {
1058 u8 *p = object;
1059 u8 *endobject = object + s->object_size;
1060
1061 if (s->flags & SLAB_RED_ZONE) {
1062 if (!check_bytes_and_report(s, page, object, "Left Redzone",
1063 object - s->red_left_pad, val, s->red_left_pad))
1064 return 0;
1065
1066 if (!check_bytes_and_report(s, page, object, "Right Redzone",
1067 endobject, val, s->inuse - s->object_size))
1068 return 0;
1069 } else {
1070 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1071 check_bytes_and_report(s, page, p, "Alignment padding",
1072 endobject, POISON_INUSE,
1073 s->inuse - s->object_size);
1074 }
1075 }
1076
1077 if (s->flags & SLAB_POISON) {
1078 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1079 (!check_bytes_and_report(s, page, p, "Poison", p,
1080 POISON_FREE, s->object_size - 1) ||
1081 !check_bytes_and_report(s, page, p, "End Poison",
1082 p + s->object_size - 1, POISON_END, 1)))
1083 return 0;
1084 /*
1085 * check_pad_bytes cleans up on its own.
1086 */
1087 check_pad_bytes(s, page, p);
1088 }
1089
1090 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1091 /*
1092 * Object and freepointer overlap. Cannot check
1093 * freepointer while object is allocated.
1094 */
1095 return 1;
1096
1097 /* Check free pointer validity */
1098 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
1099 object_err(s, page, p, "Freepointer corrupt");
1100 /*
1101 * No choice but to zap it and thus lose the remainder
1102 * of the free objects in this slab. May cause
1103 * another error because the object count is now wrong.
1104 */
1105 set_freepointer(s, p, NULL);
1106 return 0;
1107 }
1108 return 1;
1109 }
1110
check_slab(struct kmem_cache * s,struct page * page)1111 static int check_slab(struct kmem_cache *s, struct page *page)
1112 {
1113 int maxobj;
1114
1115 if (!PageSlab(page)) {
1116 slab_err(s, page, "Not a valid slab page");
1117 return 0;
1118 }
1119
1120 maxobj = order_objects(compound_order(page), s->size);
1121 if (page->objects > maxobj) {
1122 slab_err(s, page, "objects %u > max %u",
1123 page->objects, maxobj);
1124 return 0;
1125 }
1126 if (page->inuse > page->objects) {
1127 slab_err(s, page, "inuse %u > max %u",
1128 page->inuse, page->objects);
1129 return 0;
1130 }
1131 /* Slab_pad_check fixes things up after itself */
1132 slab_pad_check(s, page);
1133 return 1;
1134 }
1135
1136 /*
1137 * Determine if a certain object on a page is on the freelist. Must hold the
1138 * slab lock to guarantee that the chains are in a consistent state.
1139 */
on_freelist(struct kmem_cache * s,struct page * page,void * search)1140 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1141 {
1142 int nr = 0;
1143 void *fp;
1144 void *object = NULL;
1145 int max_objects;
1146
1147 fp = page->freelist;
1148 while (fp && nr <= page->objects) {
1149 if (fp == search)
1150 return 1;
1151 if (!check_valid_pointer(s, page, fp)) {
1152 if (object) {
1153 object_err(s, page, object,
1154 "Freechain corrupt");
1155 set_freepointer(s, object, NULL);
1156 } else {
1157 slab_err(s, page, "Freepointer corrupt");
1158 page->freelist = NULL;
1159 page->inuse = page->objects;
1160 slab_fix(s, "Freelist cleared");
1161 return 0;
1162 }
1163 break;
1164 }
1165 object = fp;
1166 fp = get_freepointer(s, object);
1167 nr++;
1168 }
1169
1170 max_objects = order_objects(compound_order(page), s->size);
1171 if (max_objects > MAX_OBJS_PER_PAGE)
1172 max_objects = MAX_OBJS_PER_PAGE;
1173
1174 if (page->objects != max_objects) {
1175 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1176 page->objects, max_objects);
1177 page->objects = max_objects;
1178 slab_fix(s, "Number of objects adjusted");
1179 }
1180 if (page->inuse != page->objects - nr) {
1181 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1182 page->inuse, page->objects - nr);
1183 page->inuse = page->objects - nr;
1184 slab_fix(s, "Object count adjusted");
1185 }
1186 return search == NULL;
1187 }
1188
trace(struct kmem_cache * s,struct page * page,void * object,int alloc)1189 static void trace(struct kmem_cache *s, struct page *page, void *object,
1190 int alloc)
1191 {
1192 if (s->flags & SLAB_TRACE) {
1193 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1194 s->name,
1195 alloc ? "alloc" : "free",
1196 object, page->inuse,
1197 page->freelist);
1198
1199 if (!alloc)
1200 print_section(KERN_INFO, "Object ", (void *)object,
1201 s->object_size);
1202
1203 dump_stack();
1204 }
1205 }
1206
1207 /*
1208 * Tracking of fully allocated slabs for debugging purposes.
1209 */
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1210 static void add_full(struct kmem_cache *s,
1211 struct kmem_cache_node *n, struct page *page)
1212 {
1213 if (!(s->flags & SLAB_STORE_USER))
1214 return;
1215
1216 lockdep_assert_held(&n->list_lock);
1217 list_add(&page->slab_list, &n->full);
1218 }
1219
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1220 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1221 {
1222 if (!(s->flags & SLAB_STORE_USER))
1223 return;
1224
1225 lockdep_assert_held(&n->list_lock);
1226 list_del(&page->slab_list);
1227 }
1228
1229 /* Tracking of the number of slabs for debugging purposes */
slabs_node(struct kmem_cache * s,int node)1230 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1231 {
1232 struct kmem_cache_node *n = get_node(s, node);
1233
1234 return atomic_long_read(&n->nr_slabs);
1235 }
1236
node_nr_slabs(struct kmem_cache_node * n)1237 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1238 {
1239 return atomic_long_read(&n->nr_slabs);
1240 }
1241
inc_slabs_node(struct kmem_cache * s,int node,int objects)1242 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1243 {
1244 struct kmem_cache_node *n = get_node(s, node);
1245
1246 /*
1247 * May be called early in order to allocate a slab for the
1248 * kmem_cache_node structure. Solve the chicken-egg
1249 * dilemma by deferring the increment of the count during
1250 * bootstrap (see early_kmem_cache_node_alloc).
1251 */
1252 if (likely(n)) {
1253 atomic_long_inc(&n->nr_slabs);
1254 atomic_long_add(objects, &n->total_objects);
1255 }
1256 }
dec_slabs_node(struct kmem_cache * s,int node,int objects)1257 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1258 {
1259 struct kmem_cache_node *n = get_node(s, node);
1260
1261 atomic_long_dec(&n->nr_slabs);
1262 atomic_long_sub(objects, &n->total_objects);
1263 }
1264
1265 /* Object debug checks for alloc/free paths */
setup_object_debug(struct kmem_cache * s,struct page * page,void * object)1266 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1267 void *object)
1268 {
1269 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1270 return;
1271
1272 init_object(s, object, SLUB_RED_INACTIVE);
1273 init_tracking(s, object);
1274 }
1275
1276 static
setup_page_debug(struct kmem_cache * s,struct page * page,void * addr)1277 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1278 {
1279 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1280 return;
1281
1282 metadata_access_enable();
1283 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1284 metadata_access_disable();
1285 }
1286
alloc_consistency_checks(struct kmem_cache * s,struct page * page,void * object)1287 static inline int alloc_consistency_checks(struct kmem_cache *s,
1288 struct page *page, void *object)
1289 {
1290 if (!check_slab(s, page))
1291 return 0;
1292
1293 if (!check_valid_pointer(s, page, object)) {
1294 object_err(s, page, object, "Freelist Pointer check fails");
1295 return 0;
1296 }
1297
1298 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1299 return 0;
1300
1301 return 1;
1302 }
1303
alloc_debug_processing(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1304 static noinline int alloc_debug_processing(struct kmem_cache *s,
1305 struct page *page,
1306 void *object, unsigned long addr)
1307 {
1308 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1309 if (!alloc_consistency_checks(s, page, object))
1310 goto bad;
1311 }
1312
1313 /* Success perform special debug activities for allocs */
1314 if (s->flags & SLAB_STORE_USER)
1315 set_track(s, object, TRACK_ALLOC, addr);
1316 trace(s, page, object, 1);
1317 init_object(s, object, SLUB_RED_ACTIVE);
1318 return 1;
1319
1320 bad:
1321 if (PageSlab(page)) {
1322 /*
1323 * If this is a slab page then lets do the best we can
1324 * to avoid issues in the future. Marking all objects
1325 * as used avoids touching the remaining objects.
1326 */
1327 slab_fix(s, "Marking all objects used");
1328 page->inuse = page->objects;
1329 page->freelist = NULL;
1330 }
1331 return 0;
1332 }
1333
free_consistency_checks(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1334 static inline int free_consistency_checks(struct kmem_cache *s,
1335 struct page *page, void *object, unsigned long addr)
1336 {
1337 if (!check_valid_pointer(s, page, object)) {
1338 slab_err(s, page, "Invalid object pointer 0x%p", object);
1339 return 0;
1340 }
1341
1342 if (on_freelist(s, page, object)) {
1343 object_err(s, page, object, "Object already free");
1344 return 0;
1345 }
1346
1347 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1348 return 0;
1349
1350 if (unlikely(s != page->slab_cache)) {
1351 if (!PageSlab(page)) {
1352 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1353 object);
1354 } else if (!page->slab_cache) {
1355 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1356 object);
1357 dump_stack();
1358 } else
1359 object_err(s, page, object,
1360 "page slab pointer corrupt.");
1361 return 0;
1362 }
1363 return 1;
1364 }
1365
1366 /* Supports checking bulk free of a constructed freelist */
free_debug_processing(struct kmem_cache * s,struct page * page,void * head,void * tail,int bulk_cnt,unsigned long addr)1367 static noinline int free_debug_processing(
1368 struct kmem_cache *s, struct page *page,
1369 void *head, void *tail, int bulk_cnt,
1370 unsigned long addr)
1371 {
1372 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1373 void *object = head;
1374 int cnt = 0;
1375 unsigned long flags, flags2;
1376 int ret = 0;
1377
1378 spin_lock_irqsave(&n->list_lock, flags);
1379 slab_lock(page, &flags2);
1380
1381 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1382 if (!check_slab(s, page))
1383 goto out;
1384 }
1385
1386 next_object:
1387 cnt++;
1388
1389 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1390 if (!free_consistency_checks(s, page, object, addr))
1391 goto out;
1392 }
1393
1394 if (s->flags & SLAB_STORE_USER)
1395 set_track(s, object, TRACK_FREE, addr);
1396 trace(s, page, object, 0);
1397 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1398 init_object(s, object, SLUB_RED_INACTIVE);
1399
1400 /* Reached end of constructed freelist yet? */
1401 if (object != tail) {
1402 object = get_freepointer(s, object);
1403 goto next_object;
1404 }
1405 ret = 1;
1406
1407 out:
1408 if (cnt != bulk_cnt)
1409 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1410 bulk_cnt, cnt);
1411
1412 slab_unlock(page, &flags2);
1413 spin_unlock_irqrestore(&n->list_lock, flags);
1414 if (!ret)
1415 slab_fix(s, "Object at 0x%p not freed", object);
1416 return ret;
1417 }
1418
1419 /*
1420 * Parse a block of slub_debug options. Blocks are delimited by ';'
1421 *
1422 * @str: start of block
1423 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1424 * @slabs: return start of list of slabs, or NULL when there's no list
1425 * @init: assume this is initial parsing and not per-kmem-create parsing
1426 *
1427 * returns the start of next block if there's any, or NULL
1428 */
1429 static char *
parse_slub_debug_flags(char * str,slab_flags_t * flags,char ** slabs,bool init)1430 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1431 {
1432 bool higher_order_disable = false;
1433
1434 /* Skip any completely empty blocks */
1435 while (*str && *str == ';')
1436 str++;
1437
1438 if (*str == ',') {
1439 /*
1440 * No options but restriction on slabs. This means full
1441 * debugging for slabs matching a pattern.
1442 */
1443 *flags = DEBUG_DEFAULT_FLAGS;
1444 goto check_slabs;
1445 }
1446 *flags = 0;
1447
1448 /* Determine which debug features should be switched on */
1449 for (; *str && *str != ',' && *str != ';'; str++) {
1450 switch (tolower(*str)) {
1451 case '-':
1452 *flags = 0;
1453 break;
1454 case 'f':
1455 *flags |= SLAB_CONSISTENCY_CHECKS;
1456 break;
1457 case 'z':
1458 *flags |= SLAB_RED_ZONE;
1459 break;
1460 case 'p':
1461 *flags |= SLAB_POISON;
1462 break;
1463 case 'u':
1464 *flags |= SLAB_STORE_USER;
1465 break;
1466 case 't':
1467 *flags |= SLAB_TRACE;
1468 break;
1469 case 'a':
1470 *flags |= SLAB_FAILSLAB;
1471 break;
1472 case 'o':
1473 /*
1474 * Avoid enabling debugging on caches if its minimum
1475 * order would increase as a result.
1476 */
1477 higher_order_disable = true;
1478 break;
1479 default:
1480 if (init)
1481 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1482 }
1483 }
1484 check_slabs:
1485 if (*str == ',')
1486 *slabs = ++str;
1487 else
1488 *slabs = NULL;
1489
1490 /* Skip over the slab list */
1491 while (*str && *str != ';')
1492 str++;
1493
1494 /* Skip any completely empty blocks */
1495 while (*str && *str == ';')
1496 str++;
1497
1498 if (init && higher_order_disable)
1499 disable_higher_order_debug = 1;
1500
1501 if (*str)
1502 return str;
1503 else
1504 return NULL;
1505 }
1506
setup_slub_debug(char * str)1507 static int __init setup_slub_debug(char *str)
1508 {
1509 slab_flags_t flags;
1510 slab_flags_t global_flags;
1511 char *saved_str;
1512 char *slab_list;
1513 bool global_slub_debug_changed = false;
1514 bool slab_list_specified = false;
1515
1516 global_flags = DEBUG_DEFAULT_FLAGS;
1517 if (*str++ != '=' || !*str)
1518 /*
1519 * No options specified. Switch on full debugging.
1520 */
1521 goto out;
1522
1523 saved_str = str;
1524 while (str) {
1525 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1526
1527 if (!slab_list) {
1528 global_flags = flags;
1529 global_slub_debug_changed = true;
1530 } else {
1531 slab_list_specified = true;
1532 }
1533 }
1534
1535 /*
1536 * For backwards compatibility, a single list of flags with list of
1537 * slabs means debugging is only changed for those slabs, so the global
1538 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1539 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1540 * long as there is no option specifying flags without a slab list.
1541 */
1542 if (slab_list_specified) {
1543 if (!global_slub_debug_changed)
1544 global_flags = slub_debug;
1545 slub_debug_string = saved_str;
1546 }
1547 out:
1548 slub_debug = global_flags;
1549 if (slub_debug != 0 || slub_debug_string)
1550 static_branch_enable(&slub_debug_enabled);
1551 else
1552 static_branch_disable(&slub_debug_enabled);
1553 if ((static_branch_unlikely(&init_on_alloc) ||
1554 static_branch_unlikely(&init_on_free)) &&
1555 (slub_debug & SLAB_POISON))
1556 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1557 return 1;
1558 }
1559
1560 __setup("slub_debug", setup_slub_debug);
1561
1562 /*
1563 * kmem_cache_flags - apply debugging options to the cache
1564 * @object_size: the size of an object without meta data
1565 * @flags: flags to set
1566 * @name: name of the cache
1567 *
1568 * Debug option(s) are applied to @flags. In addition to the debug
1569 * option(s), if a slab name (or multiple) is specified i.e.
1570 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1571 * then only the select slabs will receive the debug option(s).
1572 */
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)1573 slab_flags_t kmem_cache_flags(unsigned int object_size,
1574 slab_flags_t flags, const char *name)
1575 {
1576 char *iter;
1577 size_t len;
1578 char *next_block;
1579 slab_flags_t block_flags;
1580 slab_flags_t slub_debug_local = slub_debug;
1581
1582 /*
1583 * If the slab cache is for debugging (e.g. kmemleak) then
1584 * don't store user (stack trace) information by default,
1585 * but let the user enable it via the command line below.
1586 */
1587 if (flags & SLAB_NOLEAKTRACE)
1588 slub_debug_local &= ~SLAB_STORE_USER;
1589
1590 len = strlen(name);
1591 next_block = slub_debug_string;
1592 /* Go through all blocks of debug options, see if any matches our slab's name */
1593 while (next_block) {
1594 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1595 if (!iter)
1596 continue;
1597 /* Found a block that has a slab list, search it */
1598 while (*iter) {
1599 char *end, *glob;
1600 size_t cmplen;
1601
1602 end = strchrnul(iter, ',');
1603 if (next_block && next_block < end)
1604 end = next_block - 1;
1605
1606 glob = strnchr(iter, end - iter, '*');
1607 if (glob)
1608 cmplen = glob - iter;
1609 else
1610 cmplen = max_t(size_t, len, (end - iter));
1611
1612 if (!strncmp(name, iter, cmplen)) {
1613 flags |= block_flags;
1614 return flags;
1615 }
1616
1617 if (!*end || *end == ';')
1618 break;
1619 iter = end + 1;
1620 }
1621 }
1622
1623 return flags | slub_debug_local;
1624 }
1625 #else /* !CONFIG_SLUB_DEBUG */
setup_object_debug(struct kmem_cache * s,struct page * page,void * object)1626 static inline void setup_object_debug(struct kmem_cache *s,
1627 struct page *page, void *object) {}
1628 static inline
setup_page_debug(struct kmem_cache * s,struct page * page,void * addr)1629 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1630
alloc_debug_processing(struct kmem_cache * s,struct page * page,void * object,unsigned long addr)1631 static inline int alloc_debug_processing(struct kmem_cache *s,
1632 struct page *page, void *object, unsigned long addr) { return 0; }
1633
free_debug_processing(struct kmem_cache * s,struct page * page,void * head,void * tail,int bulk_cnt,unsigned long addr)1634 static inline int free_debug_processing(
1635 struct kmem_cache *s, struct page *page,
1636 void *head, void *tail, int bulk_cnt,
1637 unsigned long addr) { return 0; }
1638
slab_pad_check(struct kmem_cache * s,struct page * page)1639 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1640 { return 1; }
check_object(struct kmem_cache * s,struct page * page,void * object,u8 val)1641 static inline int check_object(struct kmem_cache *s, struct page *page,
1642 void *object, u8 val) { return 1; }
add_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1643 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1644 struct page *page) {}
remove_full(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page)1645 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1646 struct page *page) {}
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name)1647 slab_flags_t kmem_cache_flags(unsigned int object_size,
1648 slab_flags_t flags, const char *name)
1649 {
1650 return flags;
1651 }
1652 #define slub_debug 0
1653
1654 #define disable_higher_order_debug 0
1655
slabs_node(struct kmem_cache * s,int node)1656 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1657 { return 0; }
node_nr_slabs(struct kmem_cache_node * n)1658 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1659 { return 0; }
inc_slabs_node(struct kmem_cache * s,int node,int objects)1660 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1661 int objects) {}
dec_slabs_node(struct kmem_cache * s,int node,int objects)1662 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1663 int objects) {}
1664
freelist_corrupted(struct kmem_cache * s,struct page * page,void ** freelist,void * nextfree)1665 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1666 void **freelist, void *nextfree)
1667 {
1668 return false;
1669 }
1670 #endif /* CONFIG_SLUB_DEBUG */
1671
1672 /*
1673 * Hooks for other subsystems that check memory allocations. In a typical
1674 * production configuration these hooks all should produce no code at all.
1675 */
kmalloc_large_node_hook(void * ptr,size_t size,gfp_t flags)1676 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1677 {
1678 ptr = kasan_kmalloc_large(ptr, size, flags);
1679 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1680 kmemleak_alloc(ptr, size, 1, flags);
1681 return ptr;
1682 }
1683
kfree_hook(void * x)1684 static __always_inline void kfree_hook(void *x)
1685 {
1686 kmemleak_free(x);
1687 kasan_kfree_large(x);
1688 }
1689
slab_free_hook(struct kmem_cache * s,void * x,bool init)1690 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1691 void *x, bool init)
1692 {
1693 kmemleak_free_recursive(x, s->flags);
1694
1695 debug_check_no_locks_freed(x, s->object_size);
1696
1697 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1698 debug_check_no_obj_freed(x, s->object_size);
1699
1700 /* Use KCSAN to help debug racy use-after-free. */
1701 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1702 __kcsan_check_access(x, s->object_size,
1703 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1704
1705 /*
1706 * As memory initialization might be integrated into KASAN,
1707 * kasan_slab_free and initialization memset's must be
1708 * kept together to avoid discrepancies in behavior.
1709 *
1710 * The initialization memset's clear the object and the metadata,
1711 * but don't touch the SLAB redzone.
1712 */
1713 if (init) {
1714 int rsize;
1715
1716 if (!kasan_has_integrated_init())
1717 memset(kasan_reset_tag(x), 0, s->object_size);
1718 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1719 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1720 s->size - s->inuse - rsize);
1721 }
1722 /* KASAN might put x into memory quarantine, delaying its reuse. */
1723 return kasan_slab_free(s, x, init);
1724 }
1725
slab_free_freelist_hook(struct kmem_cache * s,void ** head,void ** tail,int * cnt)1726 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1727 void **head, void **tail,
1728 int *cnt)
1729 {
1730
1731 void *object;
1732 void *next = *head;
1733 void *old_tail = *tail ? *tail : *head;
1734
1735 if (is_kfence_address(next)) {
1736 slab_free_hook(s, next, false);
1737 return true;
1738 }
1739
1740 /* Head and tail of the reconstructed freelist */
1741 *head = NULL;
1742 *tail = NULL;
1743
1744 do {
1745 object = next;
1746 next = get_freepointer(s, object);
1747
1748 /* If object's reuse doesn't have to be delayed */
1749 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1750 /* Move object to the new freelist */
1751 set_freepointer(s, object, *head);
1752 *head = object;
1753 if (!*tail)
1754 *tail = object;
1755 } else {
1756 /*
1757 * Adjust the reconstructed freelist depth
1758 * accordingly if object's reuse is delayed.
1759 */
1760 --(*cnt);
1761 }
1762 } while (object != old_tail);
1763
1764 if (*head == *tail)
1765 *tail = NULL;
1766
1767 return *head != NULL;
1768 }
1769
setup_object(struct kmem_cache * s,struct page * page,void * object)1770 static void *setup_object(struct kmem_cache *s, struct page *page,
1771 void *object)
1772 {
1773 setup_object_debug(s, page, object);
1774 object = kasan_init_slab_obj(s, object);
1775 if (unlikely(s->ctor)) {
1776 kasan_unpoison_object_data(s, object);
1777 s->ctor(object);
1778 kasan_poison_object_data(s, object);
1779 }
1780 return object;
1781 }
1782
1783 /*
1784 * Slab allocation and freeing
1785 */
alloc_slab_page(struct kmem_cache * s,gfp_t flags,int node,struct kmem_cache_order_objects oo)1786 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1787 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1788 {
1789 struct page *page;
1790 unsigned int order = oo_order(oo);
1791
1792 if (node == NUMA_NO_NODE)
1793 page = alloc_pages(flags, order);
1794 else
1795 page = __alloc_pages_node(node, flags, order);
1796
1797 trace_android_vh_slab_page_alloced(page, s->size, flags);
1798
1799 return page;
1800 }
1801
1802 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1803 /* Pre-initialize the random sequence cache */
init_cache_random_seq(struct kmem_cache * s)1804 static int init_cache_random_seq(struct kmem_cache *s)
1805 {
1806 unsigned int count = oo_objects(s->oo);
1807 int err;
1808
1809 /* Bailout if already initialised */
1810 if (s->random_seq)
1811 return 0;
1812
1813 err = cache_random_seq_create(s, count, GFP_KERNEL);
1814 if (err) {
1815 pr_err("SLUB: Unable to initialize free list for %s\n",
1816 s->name);
1817 return err;
1818 }
1819
1820 /* Transform to an offset on the set of pages */
1821 if (s->random_seq) {
1822 unsigned int i;
1823
1824 for (i = 0; i < count; i++)
1825 s->random_seq[i] *= s->size;
1826 }
1827 return 0;
1828 }
1829
1830 /* Initialize each random sequence freelist per cache */
init_freelist_randomization(void)1831 static void __init init_freelist_randomization(void)
1832 {
1833 struct kmem_cache *s;
1834
1835 mutex_lock(&slab_mutex);
1836
1837 list_for_each_entry(s, &slab_caches, list)
1838 init_cache_random_seq(s);
1839
1840 mutex_unlock(&slab_mutex);
1841 }
1842
1843 /* Get the next entry on the pre-computed freelist randomized */
next_freelist_entry(struct kmem_cache * s,struct page * page,unsigned long * pos,void * start,unsigned long page_limit,unsigned long freelist_count)1844 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1845 unsigned long *pos, void *start,
1846 unsigned long page_limit,
1847 unsigned long freelist_count)
1848 {
1849 unsigned int idx;
1850
1851 /*
1852 * If the target page allocation failed, the number of objects on the
1853 * page might be smaller than the usual size defined by the cache.
1854 */
1855 do {
1856 idx = s->random_seq[*pos];
1857 *pos += 1;
1858 if (*pos >= freelist_count)
1859 *pos = 0;
1860 } while (unlikely(idx >= page_limit));
1861
1862 return (char *)start + idx;
1863 }
1864
1865 /* Shuffle the single linked freelist based on a random pre-computed sequence */
shuffle_freelist(struct kmem_cache * s,struct page * page)1866 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1867 {
1868 void *start;
1869 void *cur;
1870 void *next;
1871 unsigned long idx, pos, page_limit, freelist_count;
1872
1873 if (page->objects < 2 || !s->random_seq)
1874 return false;
1875
1876 freelist_count = oo_objects(s->oo);
1877 pos = get_random_int() % freelist_count;
1878
1879 page_limit = page->objects * s->size;
1880 start = fixup_red_left(s, page_address(page));
1881
1882 /* First entry is used as the base of the freelist */
1883 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1884 freelist_count);
1885 cur = setup_object(s, page, cur);
1886 page->freelist = cur;
1887
1888 for (idx = 1; idx < page->objects; idx++) {
1889 next = next_freelist_entry(s, page, &pos, start, page_limit,
1890 freelist_count);
1891 next = setup_object(s, page, next);
1892 set_freepointer(s, cur, next);
1893 cur = next;
1894 }
1895 set_freepointer(s, cur, NULL);
1896
1897 return true;
1898 }
1899 #else
init_cache_random_seq(struct kmem_cache * s)1900 static inline int init_cache_random_seq(struct kmem_cache *s)
1901 {
1902 return 0;
1903 }
init_freelist_randomization(void)1904 static inline void init_freelist_randomization(void) { }
shuffle_freelist(struct kmem_cache * s,struct page * page)1905 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1906 {
1907 return false;
1908 }
1909 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1910
allocate_slab(struct kmem_cache * s,gfp_t flags,int node)1911 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1912 {
1913 struct page *page;
1914 struct kmem_cache_order_objects oo = s->oo;
1915 gfp_t alloc_gfp;
1916 void *start, *p, *next;
1917 int idx;
1918 bool shuffle;
1919
1920 flags &= gfp_allowed_mask;
1921
1922 flags |= s->allocflags;
1923
1924 /*
1925 * Let the initial higher-order allocation fail under memory pressure
1926 * so we fall-back to the minimum order allocation.
1927 */
1928 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1929 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1930 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1931
1932 page = alloc_slab_page(s, alloc_gfp, node, oo);
1933 if (unlikely(!page)) {
1934 oo = s->min;
1935 alloc_gfp = flags;
1936 /*
1937 * Allocation may have failed due to fragmentation.
1938 * Try a lower order alloc if possible
1939 */
1940 page = alloc_slab_page(s, alloc_gfp, node, oo);
1941 if (unlikely(!page))
1942 goto out;
1943 stat(s, ORDER_FALLBACK);
1944 }
1945
1946 page->objects = oo_objects(oo);
1947
1948 account_slab_page(page, oo_order(oo), s, flags);
1949
1950 page->slab_cache = s;
1951 __SetPageSlab(page);
1952 if (page_is_pfmemalloc(page))
1953 SetPageSlabPfmemalloc(page);
1954
1955 kasan_poison_slab(page);
1956
1957 start = page_address(page);
1958
1959 setup_page_debug(s, page, start);
1960
1961 shuffle = shuffle_freelist(s, page);
1962
1963 if (!shuffle) {
1964 start = fixup_red_left(s, start);
1965 start = setup_object(s, page, start);
1966 page->freelist = start;
1967 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1968 next = p + s->size;
1969 next = setup_object(s, page, next);
1970 set_freepointer(s, p, next);
1971 p = next;
1972 }
1973 set_freepointer(s, p, NULL);
1974 }
1975
1976 page->inuse = page->objects;
1977 page->frozen = 1;
1978
1979 out:
1980 if (!page)
1981 return NULL;
1982
1983 inc_slabs_node(s, page_to_nid(page), page->objects);
1984
1985 return page;
1986 }
1987
new_slab(struct kmem_cache * s,gfp_t flags,int node)1988 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1989 {
1990 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1991 flags = kmalloc_fix_flags(flags);
1992
1993 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
1994
1995 return allocate_slab(s,
1996 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1997 }
1998
__free_slab(struct kmem_cache * s,struct page * page)1999 static void __free_slab(struct kmem_cache *s, struct page *page)
2000 {
2001 int order = compound_order(page);
2002 int pages = 1 << order;
2003
2004 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2005 void *p;
2006
2007 slab_pad_check(s, page);
2008 for_each_object(p, s, page_address(page),
2009 page->objects)
2010 check_object(s, page, p, SLUB_RED_INACTIVE);
2011 }
2012
2013 __ClearPageSlabPfmemalloc(page);
2014 __ClearPageSlab(page);
2015 /* In union with page->mapping where page allocator expects NULL */
2016 page->slab_cache = NULL;
2017 if (current->reclaim_state)
2018 current->reclaim_state->reclaimed_slab += pages;
2019 unaccount_slab_page(page, order, s);
2020 __free_pages(page, order);
2021 }
2022
rcu_free_slab(struct rcu_head * h)2023 static void rcu_free_slab(struct rcu_head *h)
2024 {
2025 struct page *page = container_of(h, struct page, rcu_head);
2026
2027 __free_slab(page->slab_cache, page);
2028 }
2029
free_slab(struct kmem_cache * s,struct page * page)2030 static void free_slab(struct kmem_cache *s, struct page *page)
2031 {
2032 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
2033 call_rcu(&page->rcu_head, rcu_free_slab);
2034 } else
2035 __free_slab(s, page);
2036 }
2037
discard_slab(struct kmem_cache * s,struct page * page)2038 static void discard_slab(struct kmem_cache *s, struct page *page)
2039 {
2040 dec_slabs_node(s, page_to_nid(page), page->objects);
2041 free_slab(s, page);
2042 }
2043
2044 /*
2045 * Management of partially allocated slabs.
2046 */
2047 static inline void
__add_partial(struct kmem_cache_node * n,struct page * page,int tail)2048 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
2049 {
2050 n->nr_partial++;
2051 if (tail == DEACTIVATE_TO_TAIL)
2052 list_add_tail(&page->slab_list, &n->partial);
2053 else
2054 list_add(&page->slab_list, &n->partial);
2055 }
2056
add_partial(struct kmem_cache_node * n,struct page * page,int tail)2057 static inline void add_partial(struct kmem_cache_node *n,
2058 struct page *page, int tail)
2059 {
2060 lockdep_assert_held(&n->list_lock);
2061 __add_partial(n, page, tail);
2062 }
2063
remove_partial(struct kmem_cache_node * n,struct page * page)2064 static inline void remove_partial(struct kmem_cache_node *n,
2065 struct page *page)
2066 {
2067 lockdep_assert_held(&n->list_lock);
2068 list_del(&page->slab_list);
2069 n->nr_partial--;
2070 }
2071
2072 /*
2073 * Remove slab from the partial list, freeze it and
2074 * return the pointer to the freelist.
2075 *
2076 * Returns a list of objects or NULL if it fails.
2077 */
acquire_slab(struct kmem_cache * s,struct kmem_cache_node * n,struct page * page,int mode,int * objects)2078 static inline void *acquire_slab(struct kmem_cache *s,
2079 struct kmem_cache_node *n, struct page *page,
2080 int mode, int *objects)
2081 {
2082 void *freelist;
2083 unsigned long counters;
2084 struct page new;
2085
2086 lockdep_assert_held(&n->list_lock);
2087
2088 /*
2089 * Zap the freelist and set the frozen bit.
2090 * The old freelist is the list of objects for the
2091 * per cpu allocation list.
2092 */
2093 freelist = page->freelist;
2094 counters = page->counters;
2095 new.counters = counters;
2096 *objects = new.objects - new.inuse;
2097 if (mode) {
2098 new.inuse = page->objects;
2099 new.freelist = NULL;
2100 } else {
2101 new.freelist = freelist;
2102 }
2103
2104 VM_BUG_ON(new.frozen);
2105 new.frozen = 1;
2106
2107 if (!__cmpxchg_double_slab(s, page,
2108 freelist, counters,
2109 new.freelist, new.counters,
2110 "acquire_slab"))
2111 return NULL;
2112
2113 remove_partial(n, page);
2114 WARN_ON(!freelist);
2115 return freelist;
2116 }
2117
2118 #ifdef CONFIG_SLUB_CPU_PARTIAL
2119 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
2120 #else
put_cpu_partial(struct kmem_cache * s,struct page * page,int drain)2121 static inline void put_cpu_partial(struct kmem_cache *s, struct page *page,
2122 int drain) { }
2123 #endif
2124 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
2125
2126 /*
2127 * Try to allocate a partial slab from a specific node.
2128 */
get_partial_node(struct kmem_cache * s,struct kmem_cache_node * n,struct page ** ret_page,gfp_t gfpflags)2129 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2130 struct page **ret_page, gfp_t gfpflags)
2131 {
2132 struct page *page, *page2;
2133 void *object = NULL;
2134 unsigned int available = 0;
2135 unsigned long flags;
2136 int objects;
2137
2138 /*
2139 * Racy check. If we mistakenly see no partial slabs then we
2140 * just allocate an empty slab. If we mistakenly try to get a
2141 * partial slab and there is none available then get_partial()
2142 * will return NULL.
2143 */
2144 if (!n || !n->nr_partial)
2145 return NULL;
2146
2147 spin_lock_irqsave(&n->list_lock, flags);
2148 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
2149 void *t;
2150
2151 if (!pfmemalloc_match(page, gfpflags))
2152 continue;
2153
2154 t = acquire_slab(s, n, page, object == NULL, &objects);
2155 if (!t)
2156 break;
2157
2158 available += objects;
2159 if (!object) {
2160 *ret_page = page;
2161 stat(s, ALLOC_FROM_PARTIAL);
2162 object = t;
2163 } else {
2164 put_cpu_partial(s, page, 0);
2165 stat(s, CPU_PARTIAL_NODE);
2166 }
2167 if (!kmem_cache_has_cpu_partial(s)
2168 || available > slub_cpu_partial(s) / 2)
2169 break;
2170
2171 }
2172 spin_unlock_irqrestore(&n->list_lock, flags);
2173 return object;
2174 }
2175
2176 /*
2177 * Get a page from somewhere. Search in increasing NUMA distances.
2178 */
get_any_partial(struct kmem_cache * s,gfp_t flags,struct page ** ret_page)2179 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2180 struct page **ret_page)
2181 {
2182 #ifdef CONFIG_NUMA
2183 struct zonelist *zonelist;
2184 struct zoneref *z;
2185 struct zone *zone;
2186 enum zone_type highest_zoneidx = gfp_zone(flags);
2187 void *object;
2188 unsigned int cpuset_mems_cookie;
2189
2190 /*
2191 * The defrag ratio allows a configuration of the tradeoffs between
2192 * inter node defragmentation and node local allocations. A lower
2193 * defrag_ratio increases the tendency to do local allocations
2194 * instead of attempting to obtain partial slabs from other nodes.
2195 *
2196 * If the defrag_ratio is set to 0 then kmalloc() always
2197 * returns node local objects. If the ratio is higher then kmalloc()
2198 * may return off node objects because partial slabs are obtained
2199 * from other nodes and filled up.
2200 *
2201 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2202 * (which makes defrag_ratio = 1000) then every (well almost)
2203 * allocation will first attempt to defrag slab caches on other nodes.
2204 * This means scanning over all nodes to look for partial slabs which
2205 * may be expensive if we do it every time we are trying to find a slab
2206 * with available objects.
2207 */
2208 if (!s->remote_node_defrag_ratio ||
2209 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2210 return NULL;
2211
2212 do {
2213 cpuset_mems_cookie = read_mems_allowed_begin();
2214 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2215 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2216 struct kmem_cache_node *n;
2217
2218 n = get_node(s, zone_to_nid(zone));
2219
2220 if (n && cpuset_zone_allowed(zone, flags) &&
2221 n->nr_partial > s->min_partial) {
2222 object = get_partial_node(s, n, ret_page, flags);
2223 if (object) {
2224 /*
2225 * Don't check read_mems_allowed_retry()
2226 * here - if mems_allowed was updated in
2227 * parallel, that was a harmless race
2228 * between allocation and the cpuset
2229 * update
2230 */
2231 return object;
2232 }
2233 }
2234 }
2235 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2236 #endif /* CONFIG_NUMA */
2237 return NULL;
2238 }
2239
2240 /*
2241 * Get a partial page, lock it and return it.
2242 */
get_partial(struct kmem_cache * s,gfp_t flags,int node,struct page ** ret_page)2243 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2244 struct page **ret_page)
2245 {
2246 void *object;
2247 int searchnode = node;
2248
2249 if (node == NUMA_NO_NODE)
2250 searchnode = numa_mem_id();
2251
2252 object = get_partial_node(s, get_node(s, searchnode), ret_page, flags);
2253 if (object || node != NUMA_NO_NODE)
2254 return object;
2255
2256 return get_any_partial(s, flags, ret_page);
2257 }
2258
2259 #ifdef CONFIG_PREEMPTION
2260 /*
2261 * Calculate the next globally unique transaction for disambiguation
2262 * during cmpxchg. The transactions start with the cpu number and are then
2263 * incremented by CONFIG_NR_CPUS.
2264 */
2265 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2266 #else
2267 /*
2268 * No preemption supported therefore also no need to check for
2269 * different cpus.
2270 */
2271 #define TID_STEP 1
2272 #endif
2273
next_tid(unsigned long tid)2274 static inline unsigned long next_tid(unsigned long tid)
2275 {
2276 return tid + TID_STEP;
2277 }
2278
2279 #ifdef SLUB_DEBUG_CMPXCHG
tid_to_cpu(unsigned long tid)2280 static inline unsigned int tid_to_cpu(unsigned long tid)
2281 {
2282 return tid % TID_STEP;
2283 }
2284
tid_to_event(unsigned long tid)2285 static inline unsigned long tid_to_event(unsigned long tid)
2286 {
2287 return tid / TID_STEP;
2288 }
2289 #endif
2290
init_tid(int cpu)2291 static inline unsigned int init_tid(int cpu)
2292 {
2293 return cpu;
2294 }
2295
note_cmpxchg_failure(const char * n,const struct kmem_cache * s,unsigned long tid)2296 static inline void note_cmpxchg_failure(const char *n,
2297 const struct kmem_cache *s, unsigned long tid)
2298 {
2299 #ifdef SLUB_DEBUG_CMPXCHG
2300 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2301
2302 pr_info("%s %s: cmpxchg redo ", n, s->name);
2303
2304 #ifdef CONFIG_PREEMPTION
2305 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2306 pr_warn("due to cpu change %d -> %d\n",
2307 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2308 else
2309 #endif
2310 if (tid_to_event(tid) != tid_to_event(actual_tid))
2311 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2312 tid_to_event(tid), tid_to_event(actual_tid));
2313 else
2314 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2315 actual_tid, tid, next_tid(tid));
2316 #endif
2317 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2318 }
2319
init_kmem_cache_cpus(struct kmem_cache * s)2320 static void init_kmem_cache_cpus(struct kmem_cache *s)
2321 {
2322 int cpu;
2323 struct kmem_cache_cpu *c;
2324
2325 for_each_possible_cpu(cpu) {
2326 c = per_cpu_ptr(s->cpu_slab, cpu);
2327 local_lock_init(&c->lock);
2328 c->tid = init_tid(cpu);
2329 }
2330 }
2331
2332 /*
2333 * Finishes removing the cpu slab. Merges cpu's freelist with page's freelist,
2334 * unfreezes the slabs and puts it on the proper list.
2335 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2336 * by the caller.
2337 */
deactivate_slab(struct kmem_cache * s,struct page * page,void * freelist)2338 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2339 void *freelist)
2340 {
2341 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2342 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2343 int lock = 0, free_delta = 0;
2344 enum slab_modes l = M_NONE, m = M_NONE;
2345 void *nextfree, *freelist_iter, *freelist_tail;
2346 int tail = DEACTIVATE_TO_HEAD;
2347 unsigned long flags = 0;
2348 struct page new;
2349 struct page old;
2350
2351 if (page->freelist) {
2352 stat(s, DEACTIVATE_REMOTE_FREES);
2353 tail = DEACTIVATE_TO_TAIL;
2354 }
2355
2356 /*
2357 * Stage one: Count the objects on cpu's freelist as free_delta and
2358 * remember the last object in freelist_tail for later splicing.
2359 */
2360 freelist_tail = NULL;
2361 freelist_iter = freelist;
2362 while (freelist_iter) {
2363 nextfree = get_freepointer(s, freelist_iter);
2364
2365 /*
2366 * If 'nextfree' is invalid, it is possible that the object at
2367 * 'freelist_iter' is already corrupted. So isolate all objects
2368 * starting at 'freelist_iter' by skipping them.
2369 */
2370 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2371 break;
2372
2373 freelist_tail = freelist_iter;
2374 free_delta++;
2375
2376 freelist_iter = nextfree;
2377 }
2378
2379 /*
2380 * Stage two: Unfreeze the page while splicing the per-cpu
2381 * freelist to the head of page's freelist.
2382 *
2383 * Ensure that the page is unfrozen while the list presence
2384 * reflects the actual number of objects during unfreeze.
2385 *
2386 * We setup the list membership and then perform a cmpxchg
2387 * with the count. If there is a mismatch then the page
2388 * is not unfrozen but the page is on the wrong list.
2389 *
2390 * Then we restart the process which may have to remove
2391 * the page from the list that we just put it on again
2392 * because the number of objects in the slab may have
2393 * changed.
2394 */
2395 redo:
2396
2397 old.freelist = READ_ONCE(page->freelist);
2398 old.counters = READ_ONCE(page->counters);
2399 VM_BUG_ON(!old.frozen);
2400
2401 /* Determine target state of the slab */
2402 new.counters = old.counters;
2403 if (freelist_tail) {
2404 new.inuse -= free_delta;
2405 set_freepointer(s, freelist_tail, old.freelist);
2406 new.freelist = freelist;
2407 } else
2408 new.freelist = old.freelist;
2409
2410 new.frozen = 0;
2411
2412 if (!new.inuse && n->nr_partial >= s->min_partial)
2413 m = M_FREE;
2414 else if (new.freelist) {
2415 m = M_PARTIAL;
2416 if (!lock) {
2417 lock = 1;
2418 /*
2419 * Taking the spinlock removes the possibility
2420 * that acquire_slab() will see a slab page that
2421 * is frozen
2422 */
2423 spin_lock_irqsave(&n->list_lock, flags);
2424 }
2425 } else {
2426 m = M_FULL;
2427 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2428 lock = 1;
2429 /*
2430 * This also ensures that the scanning of full
2431 * slabs from diagnostic functions will not see
2432 * any frozen slabs.
2433 */
2434 spin_lock_irqsave(&n->list_lock, flags);
2435 }
2436 }
2437
2438 if (l != m) {
2439 if (l == M_PARTIAL)
2440 remove_partial(n, page);
2441 else if (l == M_FULL)
2442 remove_full(s, n, page);
2443
2444 if (m == M_PARTIAL)
2445 add_partial(n, page, tail);
2446 else if (m == M_FULL)
2447 add_full(s, n, page);
2448 }
2449
2450 l = m;
2451 if (!cmpxchg_double_slab(s, page,
2452 old.freelist, old.counters,
2453 new.freelist, new.counters,
2454 "unfreezing slab"))
2455 goto redo;
2456
2457 if (lock)
2458 spin_unlock_irqrestore(&n->list_lock, flags);
2459
2460 if (m == M_PARTIAL)
2461 stat(s, tail);
2462 else if (m == M_FULL)
2463 stat(s, DEACTIVATE_FULL);
2464 else if (m == M_FREE) {
2465 stat(s, DEACTIVATE_EMPTY);
2466 discard_slab(s, page);
2467 stat(s, FREE_SLAB);
2468 }
2469 }
2470
2471 #ifdef CONFIG_SLUB_CPU_PARTIAL
__unfreeze_partials(struct kmem_cache * s,struct page * partial_page)2472 static void __unfreeze_partials(struct kmem_cache *s, struct page *partial_page)
2473 {
2474 struct kmem_cache_node *n = NULL, *n2 = NULL;
2475 struct page *page, *discard_page = NULL;
2476 unsigned long flags = 0;
2477
2478 while (partial_page) {
2479 struct page new;
2480 struct page old;
2481
2482 page = partial_page;
2483 partial_page = page->next;
2484
2485 n2 = get_node(s, page_to_nid(page));
2486 if (n != n2) {
2487 if (n)
2488 spin_unlock_irqrestore(&n->list_lock, flags);
2489
2490 n = n2;
2491 spin_lock_irqsave(&n->list_lock, flags);
2492 }
2493
2494 do {
2495
2496 old.freelist = page->freelist;
2497 old.counters = page->counters;
2498 VM_BUG_ON(!old.frozen);
2499
2500 new.counters = old.counters;
2501 new.freelist = old.freelist;
2502
2503 new.frozen = 0;
2504
2505 } while (!__cmpxchg_double_slab(s, page,
2506 old.freelist, old.counters,
2507 new.freelist, new.counters,
2508 "unfreezing slab"));
2509
2510 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2511 page->next = discard_page;
2512 discard_page = page;
2513 } else {
2514 add_partial(n, page, DEACTIVATE_TO_TAIL);
2515 stat(s, FREE_ADD_PARTIAL);
2516 }
2517 }
2518
2519 if (n)
2520 spin_unlock_irqrestore(&n->list_lock, flags);
2521
2522 while (discard_page) {
2523 page = discard_page;
2524 discard_page = discard_page->next;
2525
2526 stat(s, DEACTIVATE_EMPTY);
2527 discard_slab(s, page);
2528 stat(s, FREE_SLAB);
2529 }
2530 }
2531
2532 /*
2533 * Unfreeze all the cpu partial slabs.
2534 */
unfreeze_partials(struct kmem_cache * s)2535 static void unfreeze_partials(struct kmem_cache *s)
2536 {
2537 struct page *partial_page;
2538 unsigned long flags;
2539
2540 local_lock_irqsave(&s->cpu_slab->lock, flags);
2541 partial_page = this_cpu_read(s->cpu_slab->partial);
2542 this_cpu_write(s->cpu_slab->partial, NULL);
2543 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2544
2545 if (partial_page)
2546 __unfreeze_partials(s, partial_page);
2547 }
2548
unfreeze_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)2549 static void unfreeze_partials_cpu(struct kmem_cache *s,
2550 struct kmem_cache_cpu *c)
2551 {
2552 struct page *partial_page;
2553
2554 partial_page = slub_percpu_partial(c);
2555 c->partial = NULL;
2556
2557 if (partial_page)
2558 __unfreeze_partials(s, partial_page);
2559 }
2560
2561 /*
2562 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2563 * partial page slot if available.
2564 *
2565 * If we did not find a slot then simply move all the partials to the
2566 * per node partial list.
2567 */
put_cpu_partial(struct kmem_cache * s,struct page * page,int drain)2568 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2569 {
2570 struct page *oldpage;
2571 struct page *page_to_unfreeze = NULL;
2572 unsigned long flags;
2573 int pages = 0;
2574 int pobjects = 0;
2575
2576 local_lock_irqsave(&s->cpu_slab->lock, flags);
2577
2578 oldpage = this_cpu_read(s->cpu_slab->partial);
2579
2580 if (oldpage) {
2581 if (drain && oldpage->pobjects > slub_cpu_partial(s)) {
2582 /*
2583 * Partial array is full. Move the existing set to the
2584 * per node partial list. Postpone the actual unfreezing
2585 * outside of the critical section.
2586 */
2587 page_to_unfreeze = oldpage;
2588 oldpage = NULL;
2589 } else {
2590 pobjects = oldpage->pobjects;
2591 pages = oldpage->pages;
2592 }
2593 }
2594
2595 pages++;
2596 pobjects += page->objects - page->inuse;
2597
2598 page->pages = pages;
2599 page->pobjects = pobjects;
2600 page->next = oldpage;
2601
2602 this_cpu_write(s->cpu_slab->partial, page);
2603
2604 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2605
2606 if (page_to_unfreeze) {
2607 __unfreeze_partials(s, page_to_unfreeze);
2608 stat(s, CPU_PARTIAL_DRAIN);
2609 }
2610 }
2611
2612 #else /* CONFIG_SLUB_CPU_PARTIAL */
2613
unfreeze_partials(struct kmem_cache * s)2614 static inline void unfreeze_partials(struct kmem_cache *s) { }
unfreeze_partials_cpu(struct kmem_cache * s,struct kmem_cache_cpu * c)2615 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2616 struct kmem_cache_cpu *c) { }
2617
2618 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2619
flush_slab(struct kmem_cache * s,struct kmem_cache_cpu * c)2620 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2621 {
2622 unsigned long flags;
2623 struct page *page;
2624 void *freelist;
2625
2626 local_lock_irqsave(&s->cpu_slab->lock, flags);
2627
2628 page = c->page;
2629 freelist = c->freelist;
2630
2631 c->page = NULL;
2632 c->freelist = NULL;
2633 c->tid = next_tid(c->tid);
2634
2635 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2636
2637 if (page) {
2638 deactivate_slab(s, page, freelist);
2639 stat(s, CPUSLAB_FLUSH);
2640 }
2641 }
2642
__flush_cpu_slab(struct kmem_cache * s,int cpu)2643 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2644 {
2645 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2646 void *freelist = c->freelist;
2647 struct page *page = c->page;
2648
2649 c->page = NULL;
2650 c->freelist = NULL;
2651 c->tid = next_tid(c->tid);
2652
2653 if (page) {
2654 deactivate_slab(s, page, freelist);
2655 stat(s, CPUSLAB_FLUSH);
2656 }
2657
2658 unfreeze_partials_cpu(s, c);
2659 }
2660
2661 struct slub_flush_work {
2662 struct work_struct work;
2663 struct kmem_cache *s;
2664 bool skip;
2665 };
2666
2667 /*
2668 * Flush cpu slab.
2669 *
2670 * Called from CPU work handler with migration disabled.
2671 */
flush_cpu_slab(struct work_struct * w)2672 static void flush_cpu_slab(struct work_struct *w)
2673 {
2674 struct kmem_cache *s;
2675 struct kmem_cache_cpu *c;
2676 struct slub_flush_work *sfw;
2677
2678 sfw = container_of(w, struct slub_flush_work, work);
2679
2680 s = sfw->s;
2681 c = this_cpu_ptr(s->cpu_slab);
2682
2683 if (c->page)
2684 flush_slab(s, c);
2685
2686 unfreeze_partials(s);
2687 }
2688
has_cpu_slab(int cpu,struct kmem_cache * s)2689 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2690 {
2691 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2692
2693 return c->page || slub_percpu_partial(c);
2694 }
2695
2696 static DEFINE_MUTEX(flush_lock);
2697 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2698
flush_all_cpus_locked(struct kmem_cache * s)2699 static void flush_all_cpus_locked(struct kmem_cache *s)
2700 {
2701 struct slub_flush_work *sfw;
2702 unsigned int cpu;
2703
2704 lockdep_assert_cpus_held();
2705 mutex_lock(&flush_lock);
2706
2707 for_each_online_cpu(cpu) {
2708 sfw = &per_cpu(slub_flush, cpu);
2709 if (!has_cpu_slab(cpu, s)) {
2710 sfw->skip = true;
2711 continue;
2712 }
2713 INIT_WORK(&sfw->work, flush_cpu_slab);
2714 sfw->skip = false;
2715 sfw->s = s;
2716 queue_work_on(cpu, flushwq, &sfw->work);
2717 }
2718
2719 for_each_online_cpu(cpu) {
2720 sfw = &per_cpu(slub_flush, cpu);
2721 if (sfw->skip)
2722 continue;
2723 flush_work(&sfw->work);
2724 }
2725
2726 mutex_unlock(&flush_lock);
2727 }
2728
flush_all(struct kmem_cache * s)2729 static void flush_all(struct kmem_cache *s)
2730 {
2731 cpus_read_lock();
2732 flush_all_cpus_locked(s);
2733 cpus_read_unlock();
2734 }
2735
2736 /*
2737 * Use the cpu notifier to insure that the cpu slabs are flushed when
2738 * necessary.
2739 */
slub_cpu_dead(unsigned int cpu)2740 static int slub_cpu_dead(unsigned int cpu)
2741 {
2742 struct kmem_cache *s;
2743
2744 mutex_lock(&slab_mutex);
2745 list_for_each_entry(s, &slab_caches, list)
2746 __flush_cpu_slab(s, cpu);
2747 mutex_unlock(&slab_mutex);
2748 return 0;
2749 }
2750
2751 /*
2752 * Check if the objects in a per cpu structure fit numa
2753 * locality expectations.
2754 */
node_match(struct page * page,int node)2755 static inline int node_match(struct page *page, int node)
2756 {
2757 #ifdef CONFIG_NUMA
2758 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2759 return 0;
2760 #endif
2761 return 1;
2762 }
2763
2764 #ifdef CONFIG_SLUB_DEBUG
count_free(struct page * page)2765 static int count_free(struct page *page)
2766 {
2767 return page->objects - page->inuse;
2768 }
2769
node_nr_objs(struct kmem_cache_node * n)2770 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2771 {
2772 return atomic_long_read(&n->total_objects);
2773 }
2774 #endif /* CONFIG_SLUB_DEBUG */
2775
2776 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
count_partial(struct kmem_cache_node * n,int (* get_count)(struct page *))2777 static unsigned long count_partial(struct kmem_cache_node *n,
2778 int (*get_count)(struct page *))
2779 {
2780 unsigned long flags;
2781 unsigned long x = 0;
2782 struct page *page;
2783
2784 spin_lock_irqsave(&n->list_lock, flags);
2785 list_for_each_entry(page, &n->partial, slab_list)
2786 x += get_count(page);
2787 spin_unlock_irqrestore(&n->list_lock, flags);
2788 return x;
2789 }
2790 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2791
2792 static noinline void
slab_out_of_memory(struct kmem_cache * s,gfp_t gfpflags,int nid)2793 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2794 {
2795 #ifdef CONFIG_SLUB_DEBUG
2796 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2797 DEFAULT_RATELIMIT_BURST);
2798 int node;
2799 struct kmem_cache_node *n;
2800
2801 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2802 return;
2803
2804 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2805 nid, gfpflags, &gfpflags);
2806 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2807 s->name, s->object_size, s->size, oo_order(s->oo),
2808 oo_order(s->min));
2809
2810 if (oo_order(s->min) > get_order(s->object_size))
2811 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2812 s->name);
2813
2814 for_each_kmem_cache_node(s, node, n) {
2815 unsigned long nr_slabs;
2816 unsigned long nr_objs;
2817 unsigned long nr_free;
2818
2819 nr_free = count_partial(n, count_free);
2820 nr_slabs = node_nr_slabs(n);
2821 nr_objs = node_nr_objs(n);
2822
2823 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2824 node, nr_slabs, nr_objs, nr_free);
2825 }
2826 #endif
2827 }
2828
pfmemalloc_match(struct page * page,gfp_t gfpflags)2829 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2830 {
2831 if (unlikely(PageSlabPfmemalloc(page)))
2832 return gfp_pfmemalloc_allowed(gfpflags);
2833
2834 return true;
2835 }
2836
2837 /*
2838 * A variant of pfmemalloc_match() that tests page flags without asserting
2839 * PageSlab. Intended for opportunistic checks before taking a lock and
2840 * rechecking that nobody else freed the page under us.
2841 */
pfmemalloc_match_unsafe(struct page * page,gfp_t gfpflags)2842 static inline bool pfmemalloc_match_unsafe(struct page *page, gfp_t gfpflags)
2843 {
2844 if (unlikely(__PageSlabPfmemalloc(page)))
2845 return gfp_pfmemalloc_allowed(gfpflags);
2846
2847 return true;
2848 }
2849
2850 /*
2851 * Check the page->freelist of a page and either transfer the freelist to the
2852 * per cpu freelist or deactivate the page.
2853 *
2854 * The page is still frozen if the return value is not NULL.
2855 *
2856 * If this function returns NULL then the page has been unfrozen.
2857 */
get_freelist(struct kmem_cache * s,struct page * page)2858 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2859 {
2860 struct page new;
2861 unsigned long counters;
2862 void *freelist;
2863
2864 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2865
2866 do {
2867 freelist = page->freelist;
2868 counters = page->counters;
2869
2870 new.counters = counters;
2871 VM_BUG_ON(!new.frozen);
2872
2873 new.inuse = page->objects;
2874 new.frozen = freelist != NULL;
2875
2876 } while (!__cmpxchg_double_slab(s, page,
2877 freelist, counters,
2878 NULL, new.counters,
2879 "get_freelist"));
2880
2881 return freelist;
2882 }
2883
2884 /*
2885 * Slow path. The lockless freelist is empty or we need to perform
2886 * debugging duties.
2887 *
2888 * Processing is still very fast if new objects have been freed to the
2889 * regular freelist. In that case we simply take over the regular freelist
2890 * as the lockless freelist and zap the regular freelist.
2891 *
2892 * If that is not working then we fall back to the partial lists. We take the
2893 * first element of the freelist as the object to allocate now and move the
2894 * rest of the freelist to the lockless freelist.
2895 *
2896 * And if we were unable to get a new slab from the partial slab lists then
2897 * we need to allocate a new slab. This is the slowest path since it involves
2898 * a call to the page allocator and the setup of a new slab.
2899 *
2900 * Version of __slab_alloc to use when we know that preemption is
2901 * already disabled (which is the case for bulk allocation).
2902 */
___slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c)2903 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2904 unsigned long addr, struct kmem_cache_cpu *c)
2905 {
2906 void *freelist;
2907 struct page *page;
2908 unsigned long flags;
2909
2910 stat(s, ALLOC_SLOWPATH);
2911
2912 reread_page:
2913
2914 page = READ_ONCE(c->page);
2915 if (!page) {
2916 /*
2917 * if the node is not online or has no normal memory, just
2918 * ignore the node constraint
2919 */
2920 if (unlikely(node != NUMA_NO_NODE &&
2921 !node_isset(node, slab_nodes)))
2922 node = NUMA_NO_NODE;
2923 goto new_slab;
2924 }
2925 redo:
2926
2927 if (unlikely(!node_match(page, node))) {
2928 /*
2929 * same as above but node_match() being false already
2930 * implies node != NUMA_NO_NODE
2931 */
2932 if (!node_isset(node, slab_nodes)) {
2933 node = NUMA_NO_NODE;
2934 goto redo;
2935 } else {
2936 stat(s, ALLOC_NODE_MISMATCH);
2937 goto deactivate_slab;
2938 }
2939 }
2940
2941 /*
2942 * By rights, we should be searching for a slab page that was
2943 * PFMEMALLOC but right now, we are losing the pfmemalloc
2944 * information when the page leaves the per-cpu allocator
2945 */
2946 if (unlikely(!pfmemalloc_match_unsafe(page, gfpflags)))
2947 goto deactivate_slab;
2948
2949 /* must check again c->page in case we got preempted and it changed */
2950 local_lock_irqsave(&s->cpu_slab->lock, flags);
2951 if (unlikely(page != c->page)) {
2952 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2953 goto reread_page;
2954 }
2955 freelist = c->freelist;
2956 if (freelist)
2957 goto load_freelist;
2958
2959 freelist = get_freelist(s, page);
2960
2961 if (!freelist) {
2962 c->page = NULL;
2963 c->tid = next_tid(c->tid);
2964 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2965 stat(s, DEACTIVATE_BYPASS);
2966 goto new_slab;
2967 }
2968
2969 stat(s, ALLOC_REFILL);
2970
2971 load_freelist:
2972
2973 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2974
2975 /*
2976 * freelist is pointing to the list of objects to be used.
2977 * page is pointing to the page from which the objects are obtained.
2978 * That page must be frozen for per cpu allocations to work.
2979 */
2980 VM_BUG_ON(!c->page->frozen);
2981 c->freelist = get_freepointer(s, freelist);
2982 c->tid = next_tid(c->tid);
2983 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2984 return freelist;
2985
2986 deactivate_slab:
2987
2988 local_lock_irqsave(&s->cpu_slab->lock, flags);
2989 if (page != c->page) {
2990 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2991 goto reread_page;
2992 }
2993 freelist = c->freelist;
2994 c->page = NULL;
2995 c->freelist = NULL;
2996 c->tid = next_tid(c->tid);
2997 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2998 deactivate_slab(s, page, freelist);
2999
3000 new_slab:
3001
3002 if (slub_percpu_partial(c)) {
3003 local_lock_irqsave(&s->cpu_slab->lock, flags);
3004 if (unlikely(c->page)) {
3005 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3006 goto reread_page;
3007 }
3008 if (unlikely(!slub_percpu_partial(c))) {
3009 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3010 /* we were preempted and partial list got empty */
3011 goto new_objects;
3012 }
3013
3014 page = c->page = slub_percpu_partial(c);
3015 slub_set_percpu_partial(c, page);
3016 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3017 stat(s, CPU_PARTIAL_ALLOC);
3018 goto redo;
3019 }
3020
3021 new_objects:
3022
3023 freelist = get_partial(s, gfpflags, node, &page);
3024 if (freelist)
3025 goto check_new_page;
3026
3027 slub_put_cpu_ptr(s->cpu_slab);
3028 page = new_slab(s, gfpflags, node);
3029 c = slub_get_cpu_ptr(s->cpu_slab);
3030
3031 if (unlikely(!page)) {
3032 slab_out_of_memory(s, gfpflags, node);
3033 return NULL;
3034 }
3035
3036 /*
3037 * No other reference to the page yet so we can
3038 * muck around with it freely without cmpxchg
3039 */
3040 freelist = page->freelist;
3041 page->freelist = NULL;
3042
3043 stat(s, ALLOC_SLAB);
3044
3045 check_new_page:
3046
3047 if (kmem_cache_debug(s)) {
3048 if (!alloc_debug_processing(s, page, freelist, addr)) {
3049 /* Slab failed checks. Next slab needed */
3050 goto new_slab;
3051 } else {
3052 /*
3053 * For debug case, we don't load freelist so that all
3054 * allocations go through alloc_debug_processing()
3055 */
3056 goto return_single;
3057 }
3058 }
3059
3060 if (unlikely(!pfmemalloc_match(page, gfpflags)))
3061 /*
3062 * For !pfmemalloc_match() case we don't load freelist so that
3063 * we don't make further mismatched allocations easier.
3064 */
3065 goto return_single;
3066
3067 retry_load_page:
3068
3069 local_lock_irqsave(&s->cpu_slab->lock, flags);
3070 if (unlikely(c->page)) {
3071 void *flush_freelist = c->freelist;
3072 struct page *flush_page = c->page;
3073
3074 c->page = NULL;
3075 c->freelist = NULL;
3076 c->tid = next_tid(c->tid);
3077
3078 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3079
3080 deactivate_slab(s, flush_page, flush_freelist);
3081
3082 stat(s, CPUSLAB_FLUSH);
3083
3084 goto retry_load_page;
3085 }
3086 c->page = page;
3087
3088 goto load_freelist;
3089
3090 return_single:
3091
3092 deactivate_slab(s, page, get_freepointer(s, freelist));
3093 return freelist;
3094 }
3095
3096 /*
3097 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3098 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3099 * pointer.
3100 */
__slab_alloc(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,struct kmem_cache_cpu * c)3101 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3102 unsigned long addr, struct kmem_cache_cpu *c)
3103 {
3104 void *p;
3105
3106 #ifdef CONFIG_PREEMPT_COUNT
3107 /*
3108 * We may have been preempted and rescheduled on a different
3109 * cpu before disabling preemption. Need to reload cpu area
3110 * pointer.
3111 */
3112 c = slub_get_cpu_ptr(s->cpu_slab);
3113 #endif
3114
3115 p = ___slab_alloc(s, gfpflags, node, addr, c);
3116 #ifdef CONFIG_PREEMPT_COUNT
3117 slub_put_cpu_ptr(s->cpu_slab);
3118 #endif
3119 return p;
3120 }
3121
3122 /*
3123 * If the object has been wiped upon free, make sure it's fully initialized by
3124 * zeroing out freelist pointer.
3125 */
maybe_wipe_obj_freeptr(struct kmem_cache * s,void * obj)3126 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3127 void *obj)
3128 {
3129 if (unlikely(slab_want_init_on_free(s)) && obj)
3130 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3131 0, sizeof(void *));
3132 }
3133
3134 /*
3135 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3136 * have the fastpath folded into their functions. So no function call
3137 * overhead for requests that can be satisfied on the fastpath.
3138 *
3139 * The fastpath works by first checking if the lockless freelist can be used.
3140 * If not then __slab_alloc is called for slow processing.
3141 *
3142 * Otherwise we can simply pick the next object from the lockless free list.
3143 */
slab_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node,unsigned long addr,size_t orig_size)3144 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
3145 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3146 {
3147 void *object;
3148 struct kmem_cache_cpu *c;
3149 struct page *page;
3150 unsigned long tid;
3151 struct obj_cgroup *objcg = NULL;
3152 bool init = false;
3153
3154 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
3155 if (!s)
3156 return NULL;
3157
3158 object = kfence_alloc(s, orig_size, gfpflags);
3159 if (unlikely(object))
3160 goto out;
3161
3162 redo:
3163 /*
3164 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3165 * enabled. We may switch back and forth between cpus while
3166 * reading from one cpu area. That does not matter as long
3167 * as we end up on the original cpu again when doing the cmpxchg.
3168 *
3169 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3170 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3171 * the tid. If we are preempted and switched to another cpu between the
3172 * two reads, it's OK as the two are still associated with the same cpu
3173 * and cmpxchg later will validate the cpu.
3174 */
3175 c = raw_cpu_ptr(s->cpu_slab);
3176 tid = READ_ONCE(c->tid);
3177
3178 /*
3179 * Irqless object alloc/free algorithm used here depends on sequence
3180 * of fetching cpu_slab's data. tid should be fetched before anything
3181 * on c to guarantee that object and page associated with previous tid
3182 * won't be used with current tid. If we fetch tid first, object and
3183 * page could be one associated with next tid and our alloc/free
3184 * request will be failed. In this case, we will retry. So, no problem.
3185 */
3186 barrier();
3187
3188 /*
3189 * The transaction ids are globally unique per cpu and per operation on
3190 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3191 * occurs on the right processor and that there was no operation on the
3192 * linked list in between.
3193 */
3194
3195 object = c->freelist;
3196 page = c->page;
3197 /*
3198 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3199 * slowpath has taken the local_lock_irqsave(), it is not protected
3200 * against a fast path operation in an irq handler. So we need to take
3201 * the slow path which uses local_lock. It is still relatively fast if
3202 * there is a suitable cpu freelist.
3203 */
3204 if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
3205 unlikely(!object || !page || !node_match(page, node))) {
3206 object = __slab_alloc(s, gfpflags, node, addr, c);
3207 } else {
3208 void *next_object = get_freepointer_safe(s, object);
3209
3210 /*
3211 * The cmpxchg will only match if there was no additional
3212 * operation and if we are on the right processor.
3213 *
3214 * The cmpxchg does the following atomically (without lock
3215 * semantics!)
3216 * 1. Relocate first pointer to the current per cpu area.
3217 * 2. Verify that tid and freelist have not been changed
3218 * 3. If they were not changed replace tid and freelist
3219 *
3220 * Since this is without lock semantics the protection is only
3221 * against code executing on this cpu *not* from access by
3222 * other cpus.
3223 */
3224 if (unlikely(!this_cpu_cmpxchg_double(
3225 s->cpu_slab->freelist, s->cpu_slab->tid,
3226 object, tid,
3227 next_object, next_tid(tid)))) {
3228
3229 note_cmpxchg_failure("slab_alloc", s, tid);
3230 goto redo;
3231 }
3232 prefetch_freepointer(s, next_object);
3233 stat(s, ALLOC_FASTPATH);
3234 }
3235
3236 maybe_wipe_obj_freeptr(s, object);
3237 init = slab_want_init_on_alloc(gfpflags, s);
3238
3239 out:
3240 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
3241
3242 return object;
3243 }
3244
slab_alloc(struct kmem_cache * s,gfp_t gfpflags,unsigned long addr,size_t orig_size)3245 static __always_inline void *slab_alloc(struct kmem_cache *s,
3246 gfp_t gfpflags, unsigned long addr, size_t orig_size)
3247 {
3248 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
3249 }
3250
kmem_cache_alloc(struct kmem_cache * s,gfp_t gfpflags)3251 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3252 {
3253 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
3254
3255 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
3256 s->size, gfpflags);
3257
3258 return ret;
3259 }
3260 EXPORT_SYMBOL(kmem_cache_alloc);
3261
3262 #ifdef CONFIG_TRACING
kmem_cache_alloc_trace(struct kmem_cache * s,gfp_t gfpflags,size_t size)3263 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3264 {
3265 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
3266 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
3267 ret = kasan_kmalloc(s, ret, size, gfpflags);
3268 return ret;
3269 }
3270 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3271 #endif
3272
3273 #ifdef CONFIG_NUMA
kmem_cache_alloc_node(struct kmem_cache * s,gfp_t gfpflags,int node)3274 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3275 {
3276 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
3277
3278 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3279 s->object_size, s->size, gfpflags, node);
3280
3281 return ret;
3282 }
3283 EXPORT_SYMBOL(kmem_cache_alloc_node);
3284
3285 #ifdef CONFIG_TRACING
kmem_cache_alloc_node_trace(struct kmem_cache * s,gfp_t gfpflags,int node,size_t size)3286 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3287 gfp_t gfpflags,
3288 int node, size_t size)
3289 {
3290 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
3291
3292 trace_kmalloc_node(_RET_IP_, ret,
3293 size, s->size, gfpflags, node);
3294
3295 ret = kasan_kmalloc(s, ret, size, gfpflags);
3296 return ret;
3297 }
3298 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3299 #endif
3300 #endif /* CONFIG_NUMA */
3301
3302 /*
3303 * Slow path handling. This may still be called frequently since objects
3304 * have a longer lifetime than the cpu slabs in most processing loads.
3305 *
3306 * So we still attempt to reduce cache line usage. Just take the slab
3307 * lock and free the item. If there is no additional partial page
3308 * handling required then we can return immediately.
3309 */
__slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)3310 static void __slab_free(struct kmem_cache *s, struct page *page,
3311 void *head, void *tail, int cnt,
3312 unsigned long addr)
3313
3314 {
3315 void *prior;
3316 int was_frozen;
3317 struct page new;
3318 unsigned long counters;
3319 struct kmem_cache_node *n = NULL;
3320 unsigned long flags;
3321
3322 stat(s, FREE_SLOWPATH);
3323
3324 if (kfence_free(head))
3325 return;
3326
3327 if (kmem_cache_debug(s) &&
3328 !free_debug_processing(s, page, head, tail, cnt, addr))
3329 return;
3330
3331 do {
3332 if (unlikely(n)) {
3333 spin_unlock_irqrestore(&n->list_lock, flags);
3334 n = NULL;
3335 }
3336 prior = page->freelist;
3337 counters = page->counters;
3338 set_freepointer(s, tail, prior);
3339 new.counters = counters;
3340 was_frozen = new.frozen;
3341 new.inuse -= cnt;
3342 if ((!new.inuse || !prior) && !was_frozen) {
3343
3344 if (kmem_cache_has_cpu_partial(s) && !prior) {
3345
3346 /*
3347 * Slab was on no list before and will be
3348 * partially empty
3349 * We can defer the list move and instead
3350 * freeze it.
3351 */
3352 new.frozen = 1;
3353
3354 } else { /* Needs to be taken off a list */
3355
3356 n = get_node(s, page_to_nid(page));
3357 /*
3358 * Speculatively acquire the list_lock.
3359 * If the cmpxchg does not succeed then we may
3360 * drop the list_lock without any processing.
3361 *
3362 * Otherwise the list_lock will synchronize with
3363 * other processors updating the list of slabs.
3364 */
3365 spin_lock_irqsave(&n->list_lock, flags);
3366
3367 }
3368 }
3369
3370 } while (!cmpxchg_double_slab(s, page,
3371 prior, counters,
3372 head, new.counters,
3373 "__slab_free"));
3374
3375 if (likely(!n)) {
3376
3377 if (likely(was_frozen)) {
3378 /*
3379 * The list lock was not taken therefore no list
3380 * activity can be necessary.
3381 */
3382 stat(s, FREE_FROZEN);
3383 } else if (new.frozen) {
3384 /*
3385 * If we just froze the page then put it onto the
3386 * per cpu partial list.
3387 */
3388 put_cpu_partial(s, page, 1);
3389 stat(s, CPU_PARTIAL_FREE);
3390 }
3391
3392 return;
3393 }
3394
3395 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3396 goto slab_empty;
3397
3398 /*
3399 * Objects left in the slab. If it was not on the partial list before
3400 * then add it.
3401 */
3402 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3403 remove_full(s, n, page);
3404 add_partial(n, page, DEACTIVATE_TO_TAIL);
3405 stat(s, FREE_ADD_PARTIAL);
3406 }
3407 spin_unlock_irqrestore(&n->list_lock, flags);
3408 return;
3409
3410 slab_empty:
3411 if (prior) {
3412 /*
3413 * Slab on the partial list.
3414 */
3415 remove_partial(n, page);
3416 stat(s, FREE_REMOVE_PARTIAL);
3417 } else {
3418 /* Slab must be on the full list */
3419 remove_full(s, n, page);
3420 }
3421
3422 spin_unlock_irqrestore(&n->list_lock, flags);
3423 stat(s, FREE_SLAB);
3424 discard_slab(s, page);
3425 }
3426
3427 /*
3428 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3429 * can perform fastpath freeing without additional function calls.
3430 *
3431 * The fastpath is only possible if we are freeing to the current cpu slab
3432 * of this processor. This typically the case if we have just allocated
3433 * the item before.
3434 *
3435 * If fastpath is not possible then fall back to __slab_free where we deal
3436 * with all sorts of special processing.
3437 *
3438 * Bulk free of a freelist with several objects (all pointing to the
3439 * same page) possible by specifying head and tail ptr, plus objects
3440 * count (cnt). Bulk free indicated by tail pointer being set.
3441 */
do_slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)3442 static __always_inline void do_slab_free(struct kmem_cache *s,
3443 struct page *page, void *head, void *tail,
3444 int cnt, unsigned long addr)
3445 {
3446 void *tail_obj = tail ? : head;
3447 struct kmem_cache_cpu *c;
3448 unsigned long tid;
3449
3450 /* memcg_slab_free_hook() is already called for bulk free. */
3451 if (!tail)
3452 memcg_slab_free_hook(s, &head, 1);
3453 redo:
3454 /*
3455 * Determine the currently cpus per cpu slab.
3456 * The cpu may change afterward. However that does not matter since
3457 * data is retrieved via this pointer. If we are on the same cpu
3458 * during the cmpxchg then the free will succeed.
3459 */
3460 c = raw_cpu_ptr(s->cpu_slab);
3461 tid = READ_ONCE(c->tid);
3462
3463 /* Same with comment on barrier() in slab_alloc_node() */
3464 barrier();
3465
3466 if (likely(page == c->page)) {
3467 #ifndef CONFIG_PREEMPT_RT
3468 void **freelist = READ_ONCE(c->freelist);
3469
3470 set_freepointer(s, tail_obj, freelist);
3471
3472 if (unlikely(!this_cpu_cmpxchg_double(
3473 s->cpu_slab->freelist, s->cpu_slab->tid,
3474 freelist, tid,
3475 head, next_tid(tid)))) {
3476
3477 note_cmpxchg_failure("slab_free", s, tid);
3478 goto redo;
3479 }
3480 #else /* CONFIG_PREEMPT_RT */
3481 /*
3482 * We cannot use the lockless fastpath on PREEMPT_RT because if
3483 * a slowpath has taken the local_lock_irqsave(), it is not
3484 * protected against a fast path operation in an irq handler. So
3485 * we need to take the local_lock. We shouldn't simply defer to
3486 * __slab_free() as that wouldn't use the cpu freelist at all.
3487 */
3488 void **freelist;
3489
3490 local_lock(&s->cpu_slab->lock);
3491 c = this_cpu_ptr(s->cpu_slab);
3492 if (unlikely(page != c->page)) {
3493 local_unlock(&s->cpu_slab->lock);
3494 goto redo;
3495 }
3496 tid = c->tid;
3497 freelist = c->freelist;
3498
3499 set_freepointer(s, tail_obj, freelist);
3500 c->freelist = head;
3501 c->tid = next_tid(tid);
3502
3503 local_unlock(&s->cpu_slab->lock);
3504 #endif
3505 stat(s, FREE_FASTPATH);
3506 } else
3507 __slab_free(s, page, head, tail_obj, cnt, addr);
3508
3509 }
3510
slab_free(struct kmem_cache * s,struct page * page,void * head,void * tail,int cnt,unsigned long addr)3511 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3512 void *head, void *tail, int cnt,
3513 unsigned long addr)
3514 {
3515 /*
3516 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3517 * to remove objects, whose reuse must be delayed.
3518 */
3519 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3520 do_slab_free(s, page, head, tail, cnt, addr);
3521 }
3522
3523 #ifdef CONFIG_KASAN_GENERIC
___cache_free(struct kmem_cache * cache,void * x,unsigned long addr)3524 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3525 {
3526 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3527 }
3528 #endif
3529
kmem_cache_free(struct kmem_cache * s,void * x)3530 void kmem_cache_free(struct kmem_cache *s, void *x)
3531 {
3532 s = cache_from_obj(s, x);
3533 if (!s)
3534 return;
3535 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3536 trace_kmem_cache_free(_RET_IP_, x, s->name);
3537 }
3538 EXPORT_SYMBOL(kmem_cache_free);
3539
3540 struct detached_freelist {
3541 struct page *page;
3542 void *tail;
3543 void *freelist;
3544 int cnt;
3545 struct kmem_cache *s;
3546 };
3547
free_nonslab_page(struct page * page,void * object)3548 static inline void free_nonslab_page(struct page *page, void *object)
3549 {
3550 unsigned int order = compound_order(page);
3551
3552 VM_BUG_ON_PAGE(!PageCompound(page), page);
3553 kfree_hook(object);
3554 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order));
3555 __free_pages(page, order);
3556 }
3557
3558 /*
3559 * This function progressively scans the array with free objects (with
3560 * a limited look ahead) and extract objects belonging to the same
3561 * page. It builds a detached freelist directly within the given
3562 * page/objects. This can happen without any need for
3563 * synchronization, because the objects are owned by running process.
3564 * The freelist is build up as a single linked list in the objects.
3565 * The idea is, that this detached freelist can then be bulk
3566 * transferred to the real freelist(s), but only requiring a single
3567 * synchronization primitive. Look ahead in the array is limited due
3568 * to performance reasons.
3569 */
3570 static inline
build_detached_freelist(struct kmem_cache * s,size_t size,void ** p,struct detached_freelist * df)3571 int build_detached_freelist(struct kmem_cache *s, size_t size,
3572 void **p, struct detached_freelist *df)
3573 {
3574 size_t first_skipped_index = 0;
3575 int lookahead = 3;
3576 void *object;
3577 struct page *page;
3578
3579 /* Always re-init detached_freelist */
3580 df->page = NULL;
3581
3582 do {
3583 object = p[--size];
3584 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3585 } while (!object && size);
3586
3587 if (!object)
3588 return 0;
3589
3590 page = virt_to_head_page(object);
3591 if (!s) {
3592 /* Handle kalloc'ed objects */
3593 if (unlikely(!PageSlab(page))) {
3594 free_nonslab_page(page, object);
3595 p[size] = NULL; /* mark object processed */
3596 return size;
3597 }
3598 /* Derive kmem_cache from object */
3599 df->s = page->slab_cache;
3600 } else {
3601 df->s = cache_from_obj(s, object); /* Support for memcg */
3602 }
3603
3604 if (is_kfence_address(object)) {
3605 slab_free_hook(df->s, object, false);
3606 __kfence_free(object);
3607 p[size] = NULL; /* mark object processed */
3608 return size;
3609 }
3610
3611 /* Start new detached freelist */
3612 df->page = page;
3613 set_freepointer(df->s, object, NULL);
3614 df->tail = object;
3615 df->freelist = object;
3616 p[size] = NULL; /* mark object processed */
3617 df->cnt = 1;
3618
3619 while (size) {
3620 object = p[--size];
3621 if (!object)
3622 continue; /* Skip processed objects */
3623
3624 /* df->page is always set at this point */
3625 if (df->page == virt_to_head_page(object)) {
3626 /* Opportunity build freelist */
3627 set_freepointer(df->s, object, df->freelist);
3628 df->freelist = object;
3629 df->cnt++;
3630 p[size] = NULL; /* mark object processed */
3631
3632 continue;
3633 }
3634
3635 /* Limit look ahead search */
3636 if (!--lookahead)
3637 break;
3638
3639 if (!first_skipped_index)
3640 first_skipped_index = size + 1;
3641 }
3642
3643 return first_skipped_index;
3644 }
3645
3646 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)3647 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3648 {
3649 if (WARN_ON(!size))
3650 return;
3651
3652 memcg_slab_free_hook(s, p, size);
3653 do {
3654 struct detached_freelist df;
3655
3656 size = build_detached_freelist(s, size, p, &df);
3657 if (!df.page)
3658 continue;
3659
3660 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3661 } while (likely(size));
3662 }
3663 EXPORT_SYMBOL(kmem_cache_free_bulk);
3664
3665 /* Note that interrupts must be enabled when calling this function. */
kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)3666 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3667 void **p)
3668 {
3669 struct kmem_cache_cpu *c;
3670 int i;
3671 struct obj_cgroup *objcg = NULL;
3672
3673 /* memcg and kmem_cache debug support */
3674 s = slab_pre_alloc_hook(s, &objcg, size, flags);
3675 if (unlikely(!s))
3676 return false;
3677 /*
3678 * Drain objects in the per cpu slab, while disabling local
3679 * IRQs, which protects against PREEMPT and interrupts
3680 * handlers invoking normal fastpath.
3681 */
3682 c = slub_get_cpu_ptr(s->cpu_slab);
3683 local_lock_irq(&s->cpu_slab->lock);
3684
3685 for (i = 0; i < size; i++) {
3686 void *object = kfence_alloc(s, s->object_size, flags);
3687
3688 if (unlikely(object)) {
3689 p[i] = object;
3690 continue;
3691 }
3692
3693 object = c->freelist;
3694 if (unlikely(!object)) {
3695 /*
3696 * We may have removed an object from c->freelist using
3697 * the fastpath in the previous iteration; in that case,
3698 * c->tid has not been bumped yet.
3699 * Since ___slab_alloc() may reenable interrupts while
3700 * allocating memory, we should bump c->tid now.
3701 */
3702 c->tid = next_tid(c->tid);
3703
3704 local_unlock_irq(&s->cpu_slab->lock);
3705
3706 /*
3707 * Invoking slow path likely have side-effect
3708 * of re-populating per CPU c->freelist
3709 */
3710 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3711 _RET_IP_, c);
3712 if (unlikely(!p[i]))
3713 goto error;
3714
3715 c = this_cpu_ptr(s->cpu_slab);
3716 maybe_wipe_obj_freeptr(s, p[i]);
3717
3718 local_lock_irq(&s->cpu_slab->lock);
3719
3720 continue; /* goto for-loop */
3721 }
3722 c->freelist = get_freepointer(s, object);
3723 p[i] = object;
3724 maybe_wipe_obj_freeptr(s, p[i]);
3725 }
3726 c->tid = next_tid(c->tid);
3727 local_unlock_irq(&s->cpu_slab->lock);
3728 slub_put_cpu_ptr(s->cpu_slab);
3729
3730 /*
3731 * memcg and kmem_cache debug support and memory initialization.
3732 * Done outside of the IRQ disabled fastpath loop.
3733 */
3734 slab_post_alloc_hook(s, objcg, flags, size, p,
3735 slab_want_init_on_alloc(flags, s));
3736 return i;
3737 error:
3738 slub_put_cpu_ptr(s->cpu_slab);
3739 slab_post_alloc_hook(s, objcg, flags, i, p, false);
3740 __kmem_cache_free_bulk(s, i, p);
3741 return 0;
3742 }
3743 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3744
3745
3746 /*
3747 * Object placement in a slab is made very easy because we always start at
3748 * offset 0. If we tune the size of the object to the alignment then we can
3749 * get the required alignment by putting one properly sized object after
3750 * another.
3751 *
3752 * Notice that the allocation order determines the sizes of the per cpu
3753 * caches. Each processor has always one slab available for allocations.
3754 * Increasing the allocation order reduces the number of times that slabs
3755 * must be moved on and off the partial lists and is therefore a factor in
3756 * locking overhead.
3757 */
3758
3759 /*
3760 * Minimum / Maximum order of slab pages. This influences locking overhead
3761 * and slab fragmentation. A higher order reduces the number of partial slabs
3762 * and increases the number of allocations possible without having to
3763 * take the list_lock.
3764 */
3765 static unsigned int slub_min_order;
3766 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3767 static unsigned int slub_min_objects;
3768
3769 /*
3770 * Calculate the order of allocation given an slab object size.
3771 *
3772 * The order of allocation has significant impact on performance and other
3773 * system components. Generally order 0 allocations should be preferred since
3774 * order 0 does not cause fragmentation in the page allocator. Larger objects
3775 * be problematic to put into order 0 slabs because there may be too much
3776 * unused space left. We go to a higher order if more than 1/16th of the slab
3777 * would be wasted.
3778 *
3779 * In order to reach satisfactory performance we must ensure that a minimum
3780 * number of objects is in one slab. Otherwise we may generate too much
3781 * activity on the partial lists which requires taking the list_lock. This is
3782 * less a concern for large slabs though which are rarely used.
3783 *
3784 * slub_max_order specifies the order where we begin to stop considering the
3785 * number of objects in a slab as critical. If we reach slub_max_order then
3786 * we try to keep the page order as low as possible. So we accept more waste
3787 * of space in favor of a small page order.
3788 *
3789 * Higher order allocations also allow the placement of more objects in a
3790 * slab and thereby reduce object handling overhead. If the user has
3791 * requested a higher minimum order then we start with that one instead of
3792 * the smallest order which will fit the object.
3793 */
slab_order(unsigned int size,unsigned int min_objects,unsigned int max_order,unsigned int fract_leftover)3794 static inline unsigned int slab_order(unsigned int size,
3795 unsigned int min_objects, unsigned int max_order,
3796 unsigned int fract_leftover)
3797 {
3798 unsigned int min_order = slub_min_order;
3799 unsigned int order;
3800
3801 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3802 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3803
3804 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3805 order <= max_order; order++) {
3806
3807 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3808 unsigned int rem;
3809
3810 rem = slab_size % size;
3811
3812 if (rem <= slab_size / fract_leftover)
3813 break;
3814 }
3815
3816 return order;
3817 }
3818
calculate_order(unsigned int size)3819 static inline int calculate_order(unsigned int size)
3820 {
3821 unsigned int order;
3822 unsigned int min_objects;
3823 unsigned int max_objects;
3824 unsigned int nr_cpus;
3825
3826 /*
3827 * Attempt to find best configuration for a slab. This
3828 * works by first attempting to generate a layout with
3829 * the best configuration and backing off gradually.
3830 *
3831 * First we increase the acceptable waste in a slab. Then
3832 * we reduce the minimum objects required in a slab.
3833 */
3834 min_objects = slub_min_objects;
3835 if (!min_objects) {
3836 /*
3837 * Some architectures will only update present cpus when
3838 * onlining them, so don't trust the number if it's just 1. But
3839 * we also don't want to use nr_cpu_ids always, as on some other
3840 * architectures, there can be many possible cpus, but never
3841 * onlined. Here we compromise between trying to avoid too high
3842 * order on systems that appear larger than they are, and too
3843 * low order on systems that appear smaller than they are.
3844 */
3845 nr_cpus = num_present_cpus();
3846 if (nr_cpus <= 1)
3847 nr_cpus = nr_cpu_ids;
3848 min_objects = 4 * (fls(nr_cpus) + 1);
3849 }
3850 max_objects = order_objects(slub_max_order, size);
3851 min_objects = min(min_objects, max_objects);
3852
3853 while (min_objects > 1) {
3854 unsigned int fraction;
3855
3856 fraction = 16;
3857 while (fraction >= 4) {
3858 order = slab_order(size, min_objects,
3859 slub_max_order, fraction);
3860 if (order <= slub_max_order)
3861 return order;
3862 fraction /= 2;
3863 }
3864 min_objects--;
3865 }
3866
3867 /*
3868 * We were unable to place multiple objects in a slab. Now
3869 * lets see if we can place a single object there.
3870 */
3871 order = slab_order(size, 1, slub_max_order, 1);
3872 if (order <= slub_max_order)
3873 return order;
3874
3875 /*
3876 * Doh this slab cannot be placed using slub_max_order.
3877 */
3878 order = slab_order(size, 1, MAX_ORDER, 1);
3879 if (order < MAX_ORDER)
3880 return order;
3881 return -ENOSYS;
3882 }
3883
3884 static void
init_kmem_cache_node(struct kmem_cache_node * n)3885 init_kmem_cache_node(struct kmem_cache_node *n)
3886 {
3887 n->nr_partial = 0;
3888 spin_lock_init(&n->list_lock);
3889 INIT_LIST_HEAD(&n->partial);
3890 #ifdef CONFIG_SLUB_DEBUG
3891 atomic_long_set(&n->nr_slabs, 0);
3892 atomic_long_set(&n->total_objects, 0);
3893 INIT_LIST_HEAD(&n->full);
3894 #endif
3895 }
3896
alloc_kmem_cache_cpus(struct kmem_cache * s)3897 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3898 {
3899 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3900 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3901
3902 /*
3903 * Must align to double word boundary for the double cmpxchg
3904 * instructions to work; see __pcpu_double_call_return_bool().
3905 */
3906 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3907 2 * sizeof(void *));
3908
3909 if (!s->cpu_slab)
3910 return 0;
3911
3912 init_kmem_cache_cpus(s);
3913
3914 return 1;
3915 }
3916
3917 static struct kmem_cache *kmem_cache_node;
3918
3919 /*
3920 * No kmalloc_node yet so do it by hand. We know that this is the first
3921 * slab on the node for this slabcache. There are no concurrent accesses
3922 * possible.
3923 *
3924 * Note that this function only works on the kmem_cache_node
3925 * when allocating for the kmem_cache_node. This is used for bootstrapping
3926 * memory on a fresh node that has no slab structures yet.
3927 */
early_kmem_cache_node_alloc(int node)3928 static void early_kmem_cache_node_alloc(int node)
3929 {
3930 struct page *page;
3931 struct kmem_cache_node *n;
3932
3933 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3934
3935 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3936
3937 BUG_ON(!page);
3938 if (page_to_nid(page) != node) {
3939 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3940 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3941 }
3942
3943 n = page->freelist;
3944 BUG_ON(!n);
3945 #ifdef CONFIG_SLUB_DEBUG
3946 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3947 init_tracking(kmem_cache_node, n);
3948 #endif
3949 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3950 page->freelist = get_freepointer(kmem_cache_node, n);
3951 page->inuse = 1;
3952 page->frozen = 0;
3953 kmem_cache_node->node[node] = n;
3954 init_kmem_cache_node(n);
3955 inc_slabs_node(kmem_cache_node, node, page->objects);
3956
3957 /*
3958 * No locks need to be taken here as it has just been
3959 * initialized and there is no concurrent access.
3960 */
3961 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3962 }
3963
free_kmem_cache_nodes(struct kmem_cache * s)3964 static void free_kmem_cache_nodes(struct kmem_cache *s)
3965 {
3966 int node;
3967 struct kmem_cache_node *n;
3968
3969 for_each_kmem_cache_node(s, node, n) {
3970 s->node[node] = NULL;
3971 kmem_cache_free(kmem_cache_node, n);
3972 }
3973 }
3974
__kmem_cache_release(struct kmem_cache * s)3975 void __kmem_cache_release(struct kmem_cache *s)
3976 {
3977 cache_random_seq_destroy(s);
3978 free_percpu(s->cpu_slab);
3979 free_kmem_cache_nodes(s);
3980 }
3981
init_kmem_cache_nodes(struct kmem_cache * s)3982 static int init_kmem_cache_nodes(struct kmem_cache *s)
3983 {
3984 int node;
3985
3986 for_each_node_mask(node, slab_nodes) {
3987 struct kmem_cache_node *n;
3988
3989 if (slab_state == DOWN) {
3990 early_kmem_cache_node_alloc(node);
3991 continue;
3992 }
3993 n = kmem_cache_alloc_node(kmem_cache_node,
3994 GFP_KERNEL, node);
3995
3996 if (!n) {
3997 free_kmem_cache_nodes(s);
3998 return 0;
3999 }
4000
4001 init_kmem_cache_node(n);
4002 s->node[node] = n;
4003 }
4004 return 1;
4005 }
4006
set_min_partial(struct kmem_cache * s,unsigned long min)4007 static void set_min_partial(struct kmem_cache *s, unsigned long min)
4008 {
4009 if (min < MIN_PARTIAL)
4010 min = MIN_PARTIAL;
4011 else if (min > MAX_PARTIAL)
4012 min = MAX_PARTIAL;
4013 s->min_partial = min;
4014 }
4015
set_cpu_partial(struct kmem_cache * s)4016 static void set_cpu_partial(struct kmem_cache *s)
4017 {
4018 #ifdef CONFIG_SLUB_CPU_PARTIAL
4019 /*
4020 * cpu_partial determined the maximum number of objects kept in the
4021 * per cpu partial lists of a processor.
4022 *
4023 * Per cpu partial lists mainly contain slabs that just have one
4024 * object freed. If they are used for allocation then they can be
4025 * filled up again with minimal effort. The slab will never hit the
4026 * per node partial lists and therefore no locking will be required.
4027 *
4028 * This setting also determines
4029 *
4030 * A) The number of objects from per cpu partial slabs dumped to the
4031 * per node list when we reach the limit.
4032 * B) The number of objects in cpu partial slabs to extract from the
4033 * per node list when we run out of per cpu objects. We only fetch
4034 * 50% to keep some capacity around for frees.
4035 */
4036 if (!kmem_cache_has_cpu_partial(s))
4037 slub_set_cpu_partial(s, 0);
4038 else if (s->size >= PAGE_SIZE)
4039 slub_set_cpu_partial(s, 2);
4040 else if (s->size >= 1024)
4041 slub_set_cpu_partial(s, 6);
4042 else if (s->size >= 256)
4043 slub_set_cpu_partial(s, 13);
4044 else
4045 slub_set_cpu_partial(s, 30);
4046 #endif
4047 }
4048
4049 /*
4050 * calculate_sizes() determines the order and the distribution of data within
4051 * a slab object.
4052 */
calculate_sizes(struct kmem_cache * s,int forced_order)4053 static int calculate_sizes(struct kmem_cache *s, int forced_order)
4054 {
4055 slab_flags_t flags = s->flags;
4056 unsigned int size = s->object_size;
4057 unsigned int order;
4058
4059 /*
4060 * Round up object size to the next word boundary. We can only
4061 * place the free pointer at word boundaries and this determines
4062 * the possible location of the free pointer.
4063 */
4064 size = ALIGN(size, sizeof(void *));
4065
4066 #ifdef CONFIG_SLUB_DEBUG
4067 /*
4068 * Determine if we can poison the object itself. If the user of
4069 * the slab may touch the object after free or before allocation
4070 * then we should never poison the object itself.
4071 */
4072 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4073 !s->ctor)
4074 s->flags |= __OBJECT_POISON;
4075 else
4076 s->flags &= ~__OBJECT_POISON;
4077
4078
4079 /*
4080 * If we are Redzoning then check if there is some space between the
4081 * end of the object and the free pointer. If not then add an
4082 * additional word to have some bytes to store Redzone information.
4083 */
4084 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4085 size += sizeof(void *);
4086 #endif
4087
4088 /*
4089 * With that we have determined the number of bytes in actual use
4090 * by the object and redzoning.
4091 */
4092 s->inuse = size;
4093
4094 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4095 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4096 s->ctor) {
4097 /*
4098 * Relocate free pointer after the object if it is not
4099 * permitted to overwrite the first word of the object on
4100 * kmem_cache_free.
4101 *
4102 * This is the case if we do RCU, have a constructor or
4103 * destructor, are poisoning the objects, or are
4104 * redzoning an object smaller than sizeof(void *).
4105 *
4106 * The assumption that s->offset >= s->inuse means free
4107 * pointer is outside of the object is used in the
4108 * freeptr_outside_object() function. If that is no
4109 * longer true, the function needs to be modified.
4110 */
4111 s->offset = size;
4112 size += sizeof(void *);
4113 } else {
4114 /*
4115 * Store freelist pointer near middle of object to keep
4116 * it away from the edges of the object to avoid small
4117 * sized over/underflows from neighboring allocations.
4118 */
4119 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4120 }
4121
4122 #ifdef CONFIG_SLUB_DEBUG
4123 if (flags & SLAB_STORE_USER)
4124 /*
4125 * Need to store information about allocs and frees after
4126 * the object.
4127 */
4128 size += 2 * sizeof(struct track);
4129 #endif
4130
4131 kasan_cache_create(s, &size, &s->flags);
4132 #ifdef CONFIG_SLUB_DEBUG
4133 if (flags & SLAB_RED_ZONE) {
4134 /*
4135 * Add some empty padding so that we can catch
4136 * overwrites from earlier objects rather than let
4137 * tracking information or the free pointer be
4138 * corrupted if a user writes before the start
4139 * of the object.
4140 */
4141 size += sizeof(void *);
4142
4143 s->red_left_pad = sizeof(void *);
4144 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4145 size += s->red_left_pad;
4146 }
4147 #endif
4148
4149 /*
4150 * SLUB stores one object immediately after another beginning from
4151 * offset 0. In order to align the objects we have to simply size
4152 * each object to conform to the alignment.
4153 */
4154 size = ALIGN(size, s->align);
4155 s->size = size;
4156 s->reciprocal_size = reciprocal_value(size);
4157 if (forced_order >= 0)
4158 order = forced_order;
4159 else
4160 order = calculate_order(size);
4161
4162 if ((int)order < 0)
4163 return 0;
4164
4165 s->allocflags = 0;
4166 if (order)
4167 s->allocflags |= __GFP_COMP;
4168
4169 if (s->flags & SLAB_CACHE_DMA)
4170 s->allocflags |= GFP_DMA;
4171
4172 if (s->flags & SLAB_CACHE_DMA32)
4173 s->allocflags |= GFP_DMA32;
4174
4175 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4176 s->allocflags |= __GFP_RECLAIMABLE;
4177
4178 /*
4179 * Determine the number of objects per slab
4180 */
4181 s->oo = oo_make(order, size);
4182 s->min = oo_make(get_order(size), size);
4183 if (oo_objects(s->oo) > oo_objects(s->max))
4184 s->max = s->oo;
4185
4186 return !!oo_objects(s->oo);
4187 }
4188
kmem_cache_open(struct kmem_cache * s,slab_flags_t flags)4189 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4190 {
4191 s->flags = kmem_cache_flags(s->size, flags, s->name);
4192 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4193 s->random = get_random_long();
4194 #endif
4195
4196 if (!calculate_sizes(s, -1))
4197 goto error;
4198 if (disable_higher_order_debug) {
4199 /*
4200 * Disable debugging flags that store metadata if the min slab
4201 * order increased.
4202 */
4203 if (get_order(s->size) > get_order(s->object_size)) {
4204 s->flags &= ~DEBUG_METADATA_FLAGS;
4205 s->offset = 0;
4206 if (!calculate_sizes(s, -1))
4207 goto error;
4208 }
4209 }
4210
4211 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4212 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4213 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4214 /* Enable fast mode */
4215 s->flags |= __CMPXCHG_DOUBLE;
4216 #endif
4217
4218 /*
4219 * The larger the object size is, the more pages we want on the partial
4220 * list to avoid pounding the page allocator excessively.
4221 */
4222 set_min_partial(s, ilog2(s->size) / 2);
4223
4224 set_cpu_partial(s);
4225
4226 #ifdef CONFIG_NUMA
4227 s->remote_node_defrag_ratio = 1000;
4228 #endif
4229
4230 /* Initialize the pre-computed randomized freelist if slab is up */
4231 if (slab_state >= UP) {
4232 if (init_cache_random_seq(s))
4233 goto error;
4234 }
4235
4236 if (!init_kmem_cache_nodes(s))
4237 goto error;
4238
4239 if (alloc_kmem_cache_cpus(s))
4240 return 0;
4241
4242 error:
4243 __kmem_cache_release(s);
4244 return -EINVAL;
4245 }
4246
list_slab_objects(struct kmem_cache * s,struct page * page,const char * text)4247 static void list_slab_objects(struct kmem_cache *s, struct page *page,
4248 const char *text)
4249 {
4250 #ifdef CONFIG_SLUB_DEBUG
4251 void *addr = page_address(page);
4252 unsigned long flags;
4253 unsigned long *map;
4254 void *p;
4255
4256 slab_err(s, page, text, s->name);
4257 slab_lock(page, &flags);
4258
4259 map = get_map(s, page);
4260 for_each_object(p, s, addr, page->objects) {
4261
4262 if (!test_bit(__obj_to_index(s, addr, p), map)) {
4263 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4264 print_tracking(s, p);
4265 }
4266 }
4267 put_map(map);
4268 slab_unlock(page, &flags);
4269 #endif
4270 }
4271
4272 /*
4273 * Attempt to free all partial slabs on a node.
4274 * This is called from __kmem_cache_shutdown(). We must take list_lock
4275 * because sysfs file might still access partial list after the shutdowning.
4276 */
free_partial(struct kmem_cache * s,struct kmem_cache_node * n)4277 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4278 {
4279 LIST_HEAD(discard);
4280 struct page *page, *h;
4281
4282 BUG_ON(irqs_disabled());
4283 spin_lock_irq(&n->list_lock);
4284 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
4285 if (!page->inuse) {
4286 remove_partial(n, page);
4287 list_add(&page->slab_list, &discard);
4288 } else {
4289 list_slab_objects(s, page,
4290 "Objects remaining in %s on __kmem_cache_shutdown()");
4291 }
4292 }
4293 spin_unlock_irq(&n->list_lock);
4294
4295 list_for_each_entry_safe(page, h, &discard, slab_list)
4296 discard_slab(s, page);
4297 }
4298
__kmem_cache_empty(struct kmem_cache * s)4299 bool __kmem_cache_empty(struct kmem_cache *s)
4300 {
4301 int node;
4302 struct kmem_cache_node *n;
4303
4304 for_each_kmem_cache_node(s, node, n)
4305 if (n->nr_partial || slabs_node(s, node))
4306 return false;
4307 return true;
4308 }
4309
4310 /*
4311 * Release all resources used by a slab cache.
4312 */
__kmem_cache_shutdown(struct kmem_cache * s)4313 int __kmem_cache_shutdown(struct kmem_cache *s)
4314 {
4315 int node;
4316 struct kmem_cache_node *n;
4317
4318 flush_all_cpus_locked(s);
4319 /* Attempt to free all objects */
4320 for_each_kmem_cache_node(s, node, n) {
4321 free_partial(s, n);
4322 if (n->nr_partial || slabs_node(s, node))
4323 return 1;
4324 }
4325 return 0;
4326 }
4327
4328 #ifdef CONFIG_PRINTK
__kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct page * page)4329 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4330 {
4331 void *base;
4332 int __maybe_unused i;
4333 unsigned int objnr;
4334 void *objp;
4335 void *objp0;
4336 struct kmem_cache *s = page->slab_cache;
4337 struct track __maybe_unused *trackp;
4338
4339 kpp->kp_ptr = object;
4340 kpp->kp_page = page;
4341 kpp->kp_slab_cache = s;
4342 base = page_address(page);
4343 objp0 = kasan_reset_tag(object);
4344 #ifdef CONFIG_SLUB_DEBUG
4345 objp = restore_red_left(s, objp0);
4346 #else
4347 objp = objp0;
4348 #endif
4349 objnr = obj_to_index(s, page, objp);
4350 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4351 objp = base + s->size * objnr;
4352 kpp->kp_objp = objp;
4353 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4354 !(s->flags & SLAB_STORE_USER))
4355 return;
4356 #ifdef CONFIG_SLUB_DEBUG
4357 objp = fixup_red_left(s, objp);
4358 trackp = get_track(s, objp, TRACK_ALLOC);
4359 kpp->kp_ret = (void *)trackp->addr;
4360 #ifdef CONFIG_STACKTRACE
4361 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4362 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4363 if (!kpp->kp_stack[i])
4364 break;
4365 }
4366
4367 trackp = get_track(s, objp, TRACK_FREE);
4368 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4369 kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4370 if (!kpp->kp_free_stack[i])
4371 break;
4372 }
4373 #endif
4374 #endif
4375 }
4376 #endif
4377
4378 /********************************************************************
4379 * Kmalloc subsystem
4380 *******************************************************************/
4381
setup_slub_min_order(char * str)4382 static int __init setup_slub_min_order(char *str)
4383 {
4384 get_option(&str, (int *)&slub_min_order);
4385
4386 return 1;
4387 }
4388
4389 __setup("slub_min_order=", setup_slub_min_order);
4390
setup_slub_max_order(char * str)4391 static int __init setup_slub_max_order(char *str)
4392 {
4393 get_option(&str, (int *)&slub_max_order);
4394 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4395
4396 return 1;
4397 }
4398
4399 __setup("slub_max_order=", setup_slub_max_order);
4400
setup_slub_min_objects(char * str)4401 static int __init setup_slub_min_objects(char *str)
4402 {
4403 get_option(&str, (int *)&slub_min_objects);
4404
4405 return 1;
4406 }
4407
4408 __setup("slub_min_objects=", setup_slub_min_objects);
4409
__kmalloc(size_t size,gfp_t flags)4410 void *__kmalloc(size_t size, gfp_t flags)
4411 {
4412 struct kmem_cache *s;
4413 void *ret;
4414
4415 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4416 return kmalloc_large(size, flags);
4417
4418 s = kmalloc_slab(size, flags);
4419
4420 if (unlikely(ZERO_OR_NULL_PTR(s)))
4421 return s;
4422
4423 ret = slab_alloc(s, flags, _RET_IP_, size);
4424
4425 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4426
4427 ret = kasan_kmalloc(s, ret, size, flags);
4428
4429 return ret;
4430 }
4431 EXPORT_SYMBOL(__kmalloc);
4432
4433 #ifdef CONFIG_NUMA
kmalloc_large_node(size_t size,gfp_t flags,int node)4434 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4435 {
4436 struct page *page;
4437 void *ptr = NULL;
4438 unsigned int order = get_order(size);
4439
4440 flags |= __GFP_COMP;
4441 page = alloc_pages_node(node, flags, order);
4442 if (page) {
4443 ptr = page_address(page);
4444 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4445 PAGE_SIZE << order);
4446 }
4447
4448 return kmalloc_large_node_hook(ptr, size, flags);
4449 }
4450
__kmalloc_node(size_t size,gfp_t flags,int node)4451 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4452 {
4453 struct kmem_cache *s;
4454 void *ret;
4455
4456 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4457 ret = kmalloc_large_node(size, flags, node);
4458
4459 trace_kmalloc_node(_RET_IP_, ret,
4460 size, PAGE_SIZE << get_order(size),
4461 flags, node);
4462
4463 return ret;
4464 }
4465
4466 s = kmalloc_slab(size, flags);
4467
4468 if (unlikely(ZERO_OR_NULL_PTR(s)))
4469 return s;
4470
4471 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4472
4473 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4474
4475 ret = kasan_kmalloc(s, ret, size, flags);
4476
4477 return ret;
4478 }
4479 EXPORT_SYMBOL(__kmalloc_node);
4480 #endif /* CONFIG_NUMA */
4481
4482 #ifdef CONFIG_HARDENED_USERCOPY
4483 /*
4484 * Rejects incorrectly sized objects and objects that are to be copied
4485 * to/from userspace but do not fall entirely within the containing slab
4486 * cache's usercopy region.
4487 *
4488 * Returns NULL if check passes, otherwise const char * to name of cache
4489 * to indicate an error.
4490 */
__check_heap_object(const void * ptr,unsigned long n,struct page * page,bool to_user)4491 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4492 bool to_user)
4493 {
4494 struct kmem_cache *s;
4495 unsigned int offset;
4496 size_t object_size;
4497 bool is_kfence = is_kfence_address(ptr);
4498
4499 ptr = kasan_reset_tag(ptr);
4500
4501 /* Find object and usable object size. */
4502 s = page->slab_cache;
4503
4504 /* Reject impossible pointers. */
4505 if (ptr < page_address(page))
4506 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4507 to_user, 0, n);
4508
4509 /* Find offset within object. */
4510 if (is_kfence)
4511 offset = ptr - kfence_object_start(ptr);
4512 else
4513 offset = (ptr - page_address(page)) % s->size;
4514
4515 /* Adjust for redzone and reject if within the redzone. */
4516 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4517 if (offset < s->red_left_pad)
4518 usercopy_abort("SLUB object in left red zone",
4519 s->name, to_user, offset, n);
4520 offset -= s->red_left_pad;
4521 }
4522
4523 /* Allow address range falling entirely within usercopy region. */
4524 if (offset >= s->useroffset &&
4525 offset - s->useroffset <= s->usersize &&
4526 n <= s->useroffset - offset + s->usersize)
4527 return;
4528
4529 /*
4530 * If the copy is still within the allocated object, produce
4531 * a warning instead of rejecting the copy. This is intended
4532 * to be a temporary method to find any missing usercopy
4533 * whitelists.
4534 */
4535 object_size = slab_ksize(s);
4536 if (usercopy_fallback &&
4537 offset <= object_size && n <= object_size - offset) {
4538 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4539 return;
4540 }
4541
4542 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4543 }
4544 #endif /* CONFIG_HARDENED_USERCOPY */
4545
__ksize(const void * object)4546 size_t __ksize(const void *object)
4547 {
4548 struct page *page;
4549
4550 if (unlikely(object == ZERO_SIZE_PTR))
4551 return 0;
4552
4553 page = virt_to_head_page(object);
4554
4555 if (unlikely(!PageSlab(page))) {
4556 WARN_ON(!PageCompound(page));
4557 return page_size(page);
4558 }
4559
4560 return slab_ksize(page->slab_cache);
4561 }
4562 EXPORT_SYMBOL(__ksize);
4563
kfree(const void * x)4564 void kfree(const void *x)
4565 {
4566 struct page *page;
4567 void *object = (void *)x;
4568
4569 trace_kfree(_RET_IP_, x);
4570
4571 if (unlikely(ZERO_OR_NULL_PTR(x)))
4572 return;
4573
4574 page = virt_to_head_page(x);
4575 if (unlikely(!PageSlab(page))) {
4576 free_nonslab_page(page, object);
4577 return;
4578 }
4579 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4580 }
4581 EXPORT_SYMBOL(kfree);
4582
4583 #define SHRINK_PROMOTE_MAX 32
4584
4585 /*
4586 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4587 * up most to the head of the partial lists. New allocations will then
4588 * fill those up and thus they can be removed from the partial lists.
4589 *
4590 * The slabs with the least items are placed last. This results in them
4591 * being allocated from last increasing the chance that the last objects
4592 * are freed in them.
4593 */
__kmem_cache_do_shrink(struct kmem_cache * s)4594 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4595 {
4596 int node;
4597 int i;
4598 struct kmem_cache_node *n;
4599 struct page *page;
4600 struct page *t;
4601 struct list_head discard;
4602 struct list_head promote[SHRINK_PROMOTE_MAX];
4603 unsigned long flags;
4604 int ret = 0;
4605
4606 for_each_kmem_cache_node(s, node, n) {
4607 INIT_LIST_HEAD(&discard);
4608 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4609 INIT_LIST_HEAD(promote + i);
4610
4611 spin_lock_irqsave(&n->list_lock, flags);
4612
4613 /*
4614 * Build lists of slabs to discard or promote.
4615 *
4616 * Note that concurrent frees may occur while we hold the
4617 * list_lock. page->inuse here is the upper limit.
4618 */
4619 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4620 int free = page->objects - page->inuse;
4621
4622 /* Do not reread page->inuse */
4623 barrier();
4624
4625 /* We do not keep full slabs on the list */
4626 BUG_ON(free <= 0);
4627
4628 if (free == page->objects) {
4629 list_move(&page->slab_list, &discard);
4630 n->nr_partial--;
4631 } else if (free <= SHRINK_PROMOTE_MAX)
4632 list_move(&page->slab_list, promote + free - 1);
4633 }
4634
4635 /*
4636 * Promote the slabs filled up most to the head of the
4637 * partial list.
4638 */
4639 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4640 list_splice(promote + i, &n->partial);
4641
4642 spin_unlock_irqrestore(&n->list_lock, flags);
4643
4644 /* Release empty slabs */
4645 list_for_each_entry_safe(page, t, &discard, slab_list)
4646 discard_slab(s, page);
4647
4648 if (slabs_node(s, node))
4649 ret = 1;
4650 }
4651
4652 return ret;
4653 }
4654
__kmem_cache_shrink(struct kmem_cache * s)4655 int __kmem_cache_shrink(struct kmem_cache *s)
4656 {
4657 flush_all(s);
4658 return __kmem_cache_do_shrink(s);
4659 }
4660
slab_mem_going_offline_callback(void * arg)4661 static int slab_mem_going_offline_callback(void *arg)
4662 {
4663 struct kmem_cache *s;
4664
4665 mutex_lock(&slab_mutex);
4666 list_for_each_entry(s, &slab_caches, list) {
4667 flush_all_cpus_locked(s);
4668 __kmem_cache_do_shrink(s);
4669 }
4670 mutex_unlock(&slab_mutex);
4671
4672 return 0;
4673 }
4674
slab_mem_offline_callback(void * arg)4675 static void slab_mem_offline_callback(void *arg)
4676 {
4677 struct memory_notify *marg = arg;
4678 int offline_node;
4679
4680 offline_node = marg->status_change_nid_normal;
4681
4682 /*
4683 * If the node still has available memory. we need kmem_cache_node
4684 * for it yet.
4685 */
4686 if (offline_node < 0)
4687 return;
4688
4689 mutex_lock(&slab_mutex);
4690 node_clear(offline_node, slab_nodes);
4691 /*
4692 * We no longer free kmem_cache_node structures here, as it would be
4693 * racy with all get_node() users, and infeasible to protect them with
4694 * slab_mutex.
4695 */
4696 mutex_unlock(&slab_mutex);
4697 }
4698
slab_mem_going_online_callback(void * arg)4699 static int slab_mem_going_online_callback(void *arg)
4700 {
4701 struct kmem_cache_node *n;
4702 struct kmem_cache *s;
4703 struct memory_notify *marg = arg;
4704 int nid = marg->status_change_nid_normal;
4705 int ret = 0;
4706
4707 /*
4708 * If the node's memory is already available, then kmem_cache_node is
4709 * already created. Nothing to do.
4710 */
4711 if (nid < 0)
4712 return 0;
4713
4714 /*
4715 * We are bringing a node online. No memory is available yet. We must
4716 * allocate a kmem_cache_node structure in order to bring the node
4717 * online.
4718 */
4719 mutex_lock(&slab_mutex);
4720 list_for_each_entry(s, &slab_caches, list) {
4721 /*
4722 * The structure may already exist if the node was previously
4723 * onlined and offlined.
4724 */
4725 if (get_node(s, nid))
4726 continue;
4727 /*
4728 * XXX: kmem_cache_alloc_node will fallback to other nodes
4729 * since memory is not yet available from the node that
4730 * is brought up.
4731 */
4732 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4733 if (!n) {
4734 ret = -ENOMEM;
4735 goto out;
4736 }
4737 init_kmem_cache_node(n);
4738 s->node[nid] = n;
4739 }
4740 /*
4741 * Any cache created after this point will also have kmem_cache_node
4742 * initialized for the new node.
4743 */
4744 node_set(nid, slab_nodes);
4745 out:
4746 mutex_unlock(&slab_mutex);
4747 return ret;
4748 }
4749
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)4750 static int slab_memory_callback(struct notifier_block *self,
4751 unsigned long action, void *arg)
4752 {
4753 int ret = 0;
4754
4755 switch (action) {
4756 case MEM_GOING_ONLINE:
4757 ret = slab_mem_going_online_callback(arg);
4758 break;
4759 case MEM_GOING_OFFLINE:
4760 ret = slab_mem_going_offline_callback(arg);
4761 break;
4762 case MEM_OFFLINE:
4763 case MEM_CANCEL_ONLINE:
4764 slab_mem_offline_callback(arg);
4765 break;
4766 case MEM_ONLINE:
4767 case MEM_CANCEL_OFFLINE:
4768 break;
4769 }
4770 if (ret)
4771 ret = notifier_from_errno(ret);
4772 else
4773 ret = NOTIFY_OK;
4774 return ret;
4775 }
4776
4777 static struct notifier_block slab_memory_callback_nb = {
4778 .notifier_call = slab_memory_callback,
4779 .priority = SLAB_CALLBACK_PRI,
4780 };
4781
4782 /********************************************************************
4783 * Basic setup of slabs
4784 *******************************************************************/
4785
4786 /*
4787 * Used for early kmem_cache structures that were allocated using
4788 * the page allocator. Allocate them properly then fix up the pointers
4789 * that may be pointing to the wrong kmem_cache structure.
4790 */
4791
bootstrap(struct kmem_cache * static_cache)4792 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4793 {
4794 int node;
4795 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4796 struct kmem_cache_node *n;
4797
4798 memcpy(s, static_cache, kmem_cache->object_size);
4799
4800 /*
4801 * This runs very early, and only the boot processor is supposed to be
4802 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4803 * IPIs around.
4804 */
4805 __flush_cpu_slab(s, smp_processor_id());
4806 for_each_kmem_cache_node(s, node, n) {
4807 struct page *p;
4808
4809 list_for_each_entry(p, &n->partial, slab_list)
4810 p->slab_cache = s;
4811
4812 #ifdef CONFIG_SLUB_DEBUG
4813 list_for_each_entry(p, &n->full, slab_list)
4814 p->slab_cache = s;
4815 #endif
4816 }
4817 list_add(&s->list, &slab_caches);
4818 return s;
4819 }
4820
kmem_cache_init(void)4821 void __init kmem_cache_init(void)
4822 {
4823 static __initdata struct kmem_cache boot_kmem_cache,
4824 boot_kmem_cache_node;
4825 int node;
4826
4827 if (debug_guardpage_minorder())
4828 slub_max_order = 0;
4829
4830 /* Print slub debugging pointers without hashing */
4831 if (__slub_debug_enabled())
4832 no_hash_pointers_enable(NULL);
4833
4834 kmem_cache_node = &boot_kmem_cache_node;
4835 kmem_cache = &boot_kmem_cache;
4836
4837 /*
4838 * Initialize the nodemask for which we will allocate per node
4839 * structures. Here we don't need taking slab_mutex yet.
4840 */
4841 for_each_node_state(node, N_NORMAL_MEMORY)
4842 node_set(node, slab_nodes);
4843
4844 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4845 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4846
4847 register_hotmemory_notifier(&slab_memory_callback_nb);
4848
4849 /* Able to allocate the per node structures */
4850 slab_state = PARTIAL;
4851
4852 create_boot_cache(kmem_cache, "kmem_cache",
4853 offsetof(struct kmem_cache, node) +
4854 nr_node_ids * sizeof(struct kmem_cache_node *),
4855 SLAB_HWCACHE_ALIGN, 0, 0);
4856
4857 kmem_cache = bootstrap(&boot_kmem_cache);
4858 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4859
4860 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4861 setup_kmalloc_cache_index_table();
4862 create_kmalloc_caches(0);
4863
4864 /* Setup random freelists for each cache */
4865 init_freelist_randomization();
4866
4867 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4868 slub_cpu_dead);
4869
4870 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4871 cache_line_size(),
4872 slub_min_order, slub_max_order, slub_min_objects,
4873 nr_cpu_ids, nr_node_ids);
4874 }
4875
kmem_cache_init_late(void)4876 void __init kmem_cache_init_late(void)
4877 {
4878 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
4879 WARN_ON(!flushwq);
4880 }
4881
4882 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))4883 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4884 slab_flags_t flags, void (*ctor)(void *))
4885 {
4886 struct kmem_cache *s;
4887
4888 s = find_mergeable(size, align, flags, name, ctor);
4889 if (s) {
4890 s->refcount++;
4891
4892 /*
4893 * Adjust the object sizes so that we clear
4894 * the complete object on kzalloc.
4895 */
4896 s->object_size = max(s->object_size, size);
4897 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4898
4899 if (sysfs_slab_alias(s, name)) {
4900 s->refcount--;
4901 s = NULL;
4902 }
4903 }
4904
4905 return s;
4906 }
4907
__kmem_cache_create(struct kmem_cache * s,slab_flags_t flags)4908 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4909 {
4910 int err;
4911
4912 err = kmem_cache_open(s, flags);
4913 if (err)
4914 return err;
4915
4916 /* Mutex is not taken during early boot */
4917 if (slab_state <= UP)
4918 return 0;
4919
4920 err = sysfs_slab_add(s);
4921 if (err) {
4922 __kmem_cache_release(s);
4923 return err;
4924 }
4925
4926 if (s->flags & SLAB_STORE_USER)
4927 debugfs_slab_add(s);
4928
4929 return 0;
4930 }
4931
__kmalloc_track_caller(size_t size,gfp_t gfpflags,unsigned long caller)4932 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4933 {
4934 struct kmem_cache *s;
4935 void *ret;
4936
4937 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4938 return kmalloc_large(size, gfpflags);
4939
4940 s = kmalloc_slab(size, gfpflags);
4941
4942 if (unlikely(ZERO_OR_NULL_PTR(s)))
4943 return s;
4944
4945 ret = slab_alloc(s, gfpflags, caller, size);
4946
4947 /* Honor the call site pointer we received. */
4948 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4949
4950 ret = kasan_kmalloc(s, ret, size, gfpflags);
4951
4952 return ret;
4953 }
4954 EXPORT_SYMBOL(__kmalloc_track_caller);
4955
4956 #ifdef CONFIG_NUMA
__kmalloc_node_track_caller(size_t size,gfp_t gfpflags,int node,unsigned long caller)4957 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4958 int node, unsigned long caller)
4959 {
4960 struct kmem_cache *s;
4961 void *ret;
4962
4963 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4964 ret = kmalloc_large_node(size, gfpflags, node);
4965
4966 trace_kmalloc_node(caller, ret,
4967 size, PAGE_SIZE << get_order(size),
4968 gfpflags, node);
4969
4970 return ret;
4971 }
4972
4973 s = kmalloc_slab(size, gfpflags);
4974
4975 if (unlikely(ZERO_OR_NULL_PTR(s)))
4976 return s;
4977
4978 ret = slab_alloc_node(s, gfpflags, node, caller, size);
4979
4980 /* Honor the call site pointer we received. */
4981 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4982
4983 ret = kasan_kmalloc(s, ret, size, gfpflags);
4984
4985 return ret;
4986 }
4987 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4988 #endif
4989
4990 #ifdef CONFIG_SYSFS
count_inuse(struct page * page)4991 static int count_inuse(struct page *page)
4992 {
4993 return page->inuse;
4994 }
4995
count_total(struct page * page)4996 static int count_total(struct page *page)
4997 {
4998 return page->objects;
4999 }
5000 #endif
5001
5002 #ifdef CONFIG_SLUB_DEBUG
validate_slab(struct kmem_cache * s,struct page * page,unsigned long * obj_map)5003 static void validate_slab(struct kmem_cache *s, struct page *page,
5004 unsigned long *obj_map)
5005 {
5006 void *p;
5007 void *addr = page_address(page);
5008 unsigned long flags;
5009
5010 slab_lock(page, &flags);
5011
5012 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
5013 goto unlock;
5014
5015 /* Now we know that a valid freelist exists */
5016 __fill_map(obj_map, s, page);
5017 for_each_object(p, s, addr, page->objects) {
5018 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5019 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5020
5021 if (!check_object(s, page, p, val))
5022 break;
5023 }
5024 unlock:
5025 slab_unlock(page, &flags);
5026 }
5027
validate_slab_node(struct kmem_cache * s,struct kmem_cache_node * n,unsigned long * obj_map)5028 static int validate_slab_node(struct kmem_cache *s,
5029 struct kmem_cache_node *n, unsigned long *obj_map)
5030 {
5031 unsigned long count = 0;
5032 struct page *page;
5033 unsigned long flags;
5034
5035 spin_lock_irqsave(&n->list_lock, flags);
5036
5037 list_for_each_entry(page, &n->partial, slab_list) {
5038 validate_slab(s, page, obj_map);
5039 count++;
5040 }
5041 if (count != n->nr_partial) {
5042 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5043 s->name, count, n->nr_partial);
5044 slab_add_kunit_errors();
5045 }
5046
5047 if (!(s->flags & SLAB_STORE_USER))
5048 goto out;
5049
5050 list_for_each_entry(page, &n->full, slab_list) {
5051 validate_slab(s, page, obj_map);
5052 count++;
5053 }
5054 if (count != atomic_long_read(&n->nr_slabs)) {
5055 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5056 s->name, count, atomic_long_read(&n->nr_slabs));
5057 slab_add_kunit_errors();
5058 }
5059
5060 out:
5061 spin_unlock_irqrestore(&n->list_lock, flags);
5062 return count;
5063 }
5064
validate_slab_cache(struct kmem_cache * s)5065 long validate_slab_cache(struct kmem_cache *s)
5066 {
5067 int node;
5068 unsigned long count = 0;
5069 struct kmem_cache_node *n;
5070 unsigned long *obj_map;
5071
5072 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5073 if (!obj_map)
5074 return -ENOMEM;
5075
5076 flush_all(s);
5077 for_each_kmem_cache_node(s, node, n)
5078 count += validate_slab_node(s, n, obj_map);
5079
5080 bitmap_free(obj_map);
5081
5082 return count;
5083 }
5084 EXPORT_SYMBOL(validate_slab_cache);
5085
5086 #ifdef CONFIG_DEBUG_FS
5087 /*
5088 * Generate lists of code addresses where slabcache objects are allocated
5089 * and freed.
5090 */
5091
5092 struct location {
5093 unsigned long count;
5094 unsigned long addr;
5095 long long sum_time;
5096 long min_time;
5097 long max_time;
5098 long min_pid;
5099 long max_pid;
5100 DECLARE_BITMAP(cpus, NR_CPUS);
5101 nodemask_t nodes;
5102 };
5103
5104 struct loc_track {
5105 unsigned long max;
5106 unsigned long count;
5107 struct location *loc;
5108 loff_t idx;
5109 };
5110
5111 static struct dentry *slab_debugfs_root;
5112
free_loc_track(struct loc_track * t)5113 static void free_loc_track(struct loc_track *t)
5114 {
5115 if (t->max)
5116 free_pages((unsigned long)t->loc,
5117 get_order(sizeof(struct location) * t->max));
5118 }
5119
alloc_loc_track(struct loc_track * t,unsigned long max,gfp_t flags)5120 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5121 {
5122 struct location *l;
5123 int order;
5124
5125 order = get_order(sizeof(struct location) * max);
5126
5127 l = (void *)__get_free_pages(flags, order);
5128 if (!l)
5129 return 0;
5130
5131 if (t->count) {
5132 memcpy(l, t->loc, sizeof(struct location) * t->count);
5133 free_loc_track(t);
5134 }
5135 t->max = max;
5136 t->loc = l;
5137 return 1;
5138 }
5139
add_location(struct loc_track * t,struct kmem_cache * s,const struct track * track)5140 static int add_location(struct loc_track *t, struct kmem_cache *s,
5141 const struct track *track)
5142 {
5143 long start, end, pos;
5144 struct location *l;
5145 unsigned long caddr;
5146 unsigned long age = jiffies - track->when;
5147
5148 start = -1;
5149 end = t->count;
5150
5151 for ( ; ; ) {
5152 pos = start + (end - start + 1) / 2;
5153
5154 /*
5155 * There is nothing at "end". If we end up there
5156 * we need to add something to before end.
5157 */
5158 if (pos == end)
5159 break;
5160
5161 caddr = t->loc[pos].addr;
5162 if (track->addr == caddr) {
5163
5164 l = &t->loc[pos];
5165 l->count++;
5166 if (track->when) {
5167 l->sum_time += age;
5168 if (age < l->min_time)
5169 l->min_time = age;
5170 if (age > l->max_time)
5171 l->max_time = age;
5172
5173 if (track->pid < l->min_pid)
5174 l->min_pid = track->pid;
5175 if (track->pid > l->max_pid)
5176 l->max_pid = track->pid;
5177
5178 cpumask_set_cpu(track->cpu,
5179 to_cpumask(l->cpus));
5180 }
5181 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5182 return 1;
5183 }
5184
5185 if (track->addr < caddr)
5186 end = pos;
5187 else
5188 start = pos;
5189 }
5190
5191 /*
5192 * Not found. Insert new tracking element.
5193 */
5194 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5195 return 0;
5196
5197 l = t->loc + pos;
5198 if (pos < t->count)
5199 memmove(l + 1, l,
5200 (t->count - pos) * sizeof(struct location));
5201 t->count++;
5202 l->count = 1;
5203 l->addr = track->addr;
5204 l->sum_time = age;
5205 l->min_time = age;
5206 l->max_time = age;
5207 l->min_pid = track->pid;
5208 l->max_pid = track->pid;
5209 cpumask_clear(to_cpumask(l->cpus));
5210 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5211 nodes_clear(l->nodes);
5212 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5213 return 1;
5214 }
5215
process_slab(struct loc_track * t,struct kmem_cache * s,struct page * page,enum track_item alloc,unsigned long * obj_map)5216 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5217 struct page *page, enum track_item alloc,
5218 unsigned long *obj_map)
5219 {
5220 void *addr = page_address(page);
5221 void *p;
5222
5223 __fill_map(obj_map, s, page);
5224
5225 for_each_object(p, s, addr, page->objects)
5226 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5227 add_location(t, s, get_track(s, p, alloc));
5228 }
5229 #endif /* CONFIG_DEBUG_FS */
5230 #endif /* CONFIG_SLUB_DEBUG */
5231
5232 #ifdef CONFIG_SYSFS
5233 enum slab_stat_type {
5234 SL_ALL, /* All slabs */
5235 SL_PARTIAL, /* Only partially allocated slabs */
5236 SL_CPU, /* Only slabs used for cpu caches */
5237 SL_OBJECTS, /* Determine allocated objects not slabs */
5238 SL_TOTAL /* Determine object capacity not slabs */
5239 };
5240
5241 #define SO_ALL (1 << SL_ALL)
5242 #define SO_PARTIAL (1 << SL_PARTIAL)
5243 #define SO_CPU (1 << SL_CPU)
5244 #define SO_OBJECTS (1 << SL_OBJECTS)
5245 #define SO_TOTAL (1 << SL_TOTAL)
5246
show_slab_objects(struct kmem_cache * s,char * buf,unsigned long flags)5247 static ssize_t show_slab_objects(struct kmem_cache *s,
5248 char *buf, unsigned long flags)
5249 {
5250 unsigned long total = 0;
5251 int node;
5252 int x;
5253 unsigned long *nodes;
5254 int len = 0;
5255
5256 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5257 if (!nodes)
5258 return -ENOMEM;
5259
5260 if (flags & SO_CPU) {
5261 int cpu;
5262
5263 for_each_possible_cpu(cpu) {
5264 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5265 cpu);
5266 int node;
5267 struct page *page;
5268
5269 page = READ_ONCE(c->page);
5270 if (!page)
5271 continue;
5272
5273 node = page_to_nid(page);
5274 if (flags & SO_TOTAL)
5275 x = page->objects;
5276 else if (flags & SO_OBJECTS)
5277 x = page->inuse;
5278 else
5279 x = 1;
5280
5281 total += x;
5282 nodes[node] += x;
5283
5284 page = slub_percpu_partial_read_once(c);
5285 if (page) {
5286 node = page_to_nid(page);
5287 if (flags & SO_TOTAL)
5288 WARN_ON_ONCE(1);
5289 else if (flags & SO_OBJECTS)
5290 WARN_ON_ONCE(1);
5291 else
5292 x = page->pages;
5293 total += x;
5294 nodes[node] += x;
5295 }
5296 }
5297 }
5298
5299 /*
5300 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5301 * already held which will conflict with an existing lock order:
5302 *
5303 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5304 *
5305 * We don't really need mem_hotplug_lock (to hold off
5306 * slab_mem_going_offline_callback) here because slab's memory hot
5307 * unplug code doesn't destroy the kmem_cache->node[] data.
5308 */
5309
5310 #ifdef CONFIG_SLUB_DEBUG
5311 if (flags & SO_ALL) {
5312 struct kmem_cache_node *n;
5313
5314 for_each_kmem_cache_node(s, node, n) {
5315
5316 if (flags & SO_TOTAL)
5317 x = atomic_long_read(&n->total_objects);
5318 else if (flags & SO_OBJECTS)
5319 x = atomic_long_read(&n->total_objects) -
5320 count_partial(n, count_free);
5321 else
5322 x = atomic_long_read(&n->nr_slabs);
5323 total += x;
5324 nodes[node] += x;
5325 }
5326
5327 } else
5328 #endif
5329 if (flags & SO_PARTIAL) {
5330 struct kmem_cache_node *n;
5331
5332 for_each_kmem_cache_node(s, node, n) {
5333 if (flags & SO_TOTAL)
5334 x = count_partial(n, count_total);
5335 else if (flags & SO_OBJECTS)
5336 x = count_partial(n, count_inuse);
5337 else
5338 x = n->nr_partial;
5339 total += x;
5340 nodes[node] += x;
5341 }
5342 }
5343
5344 len += sysfs_emit_at(buf, len, "%lu", total);
5345 #ifdef CONFIG_NUMA
5346 for (node = 0; node < nr_node_ids; node++) {
5347 if (nodes[node])
5348 len += sysfs_emit_at(buf, len, " N%d=%lu",
5349 node, nodes[node]);
5350 }
5351 #endif
5352 len += sysfs_emit_at(buf, len, "\n");
5353 kfree(nodes);
5354
5355 return len;
5356 }
5357
5358 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5359 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5360
5361 struct slab_attribute {
5362 struct attribute attr;
5363 ssize_t (*show)(struct kmem_cache *s, char *buf);
5364 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5365 };
5366
5367 #define SLAB_ATTR_RO(_name) \
5368 static struct slab_attribute _name##_attr = \
5369 __ATTR(_name, 0400, _name##_show, NULL)
5370
5371 #define SLAB_ATTR(_name) \
5372 static struct slab_attribute _name##_attr = \
5373 __ATTR(_name, 0600, _name##_show, _name##_store)
5374
slab_size_show(struct kmem_cache * s,char * buf)5375 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5376 {
5377 return sysfs_emit(buf, "%u\n", s->size);
5378 }
5379 SLAB_ATTR_RO(slab_size);
5380
align_show(struct kmem_cache * s,char * buf)5381 static ssize_t align_show(struct kmem_cache *s, char *buf)
5382 {
5383 return sysfs_emit(buf, "%u\n", s->align);
5384 }
5385 SLAB_ATTR_RO(align);
5386
object_size_show(struct kmem_cache * s,char * buf)5387 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5388 {
5389 return sysfs_emit(buf, "%u\n", s->object_size);
5390 }
5391 SLAB_ATTR_RO(object_size);
5392
objs_per_slab_show(struct kmem_cache * s,char * buf)5393 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5394 {
5395 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5396 }
5397 SLAB_ATTR_RO(objs_per_slab);
5398
order_show(struct kmem_cache * s,char * buf)5399 static ssize_t order_show(struct kmem_cache *s, char *buf)
5400 {
5401 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5402 }
5403 SLAB_ATTR_RO(order);
5404
min_partial_show(struct kmem_cache * s,char * buf)5405 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5406 {
5407 return sysfs_emit(buf, "%lu\n", s->min_partial);
5408 }
5409
min_partial_store(struct kmem_cache * s,const char * buf,size_t length)5410 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5411 size_t length)
5412 {
5413 unsigned long min;
5414 int err;
5415
5416 err = kstrtoul(buf, 10, &min);
5417 if (err)
5418 return err;
5419
5420 set_min_partial(s, min);
5421 return length;
5422 }
5423 SLAB_ATTR(min_partial);
5424
cpu_partial_show(struct kmem_cache * s,char * buf)5425 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5426 {
5427 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5428 }
5429
cpu_partial_store(struct kmem_cache * s,const char * buf,size_t length)5430 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5431 size_t length)
5432 {
5433 unsigned int objects;
5434 int err;
5435
5436 err = kstrtouint(buf, 10, &objects);
5437 if (err)
5438 return err;
5439 if (objects && !kmem_cache_has_cpu_partial(s))
5440 return -EINVAL;
5441
5442 slub_set_cpu_partial(s, objects);
5443 flush_all(s);
5444 return length;
5445 }
5446 SLAB_ATTR(cpu_partial);
5447
ctor_show(struct kmem_cache * s,char * buf)5448 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5449 {
5450 if (!s->ctor)
5451 return 0;
5452 return sysfs_emit(buf, "%pS\n", s->ctor);
5453 }
5454 SLAB_ATTR_RO(ctor);
5455
aliases_show(struct kmem_cache * s,char * buf)5456 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5457 {
5458 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5459 }
5460 SLAB_ATTR_RO(aliases);
5461
partial_show(struct kmem_cache * s,char * buf)5462 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5463 {
5464 return show_slab_objects(s, buf, SO_PARTIAL);
5465 }
5466 SLAB_ATTR_RO(partial);
5467
cpu_slabs_show(struct kmem_cache * s,char * buf)5468 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5469 {
5470 return show_slab_objects(s, buf, SO_CPU);
5471 }
5472 SLAB_ATTR_RO(cpu_slabs);
5473
objects_show(struct kmem_cache * s,char * buf)5474 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5475 {
5476 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5477 }
5478 SLAB_ATTR_RO(objects);
5479
objects_partial_show(struct kmem_cache * s,char * buf)5480 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5481 {
5482 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5483 }
5484 SLAB_ATTR_RO(objects_partial);
5485
slabs_cpu_partial_show(struct kmem_cache * s,char * buf)5486 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5487 {
5488 int objects = 0;
5489 int pages = 0;
5490 int cpu;
5491 int len = 0;
5492
5493 for_each_online_cpu(cpu) {
5494 struct page *page;
5495
5496 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5497
5498 if (page) {
5499 pages += page->pages;
5500 objects += page->pobjects;
5501 }
5502 }
5503
5504 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5505
5506 #ifdef CONFIG_SMP
5507 for_each_online_cpu(cpu) {
5508 struct page *page;
5509
5510 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5511 if (page)
5512 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5513 cpu, page->pobjects, page->pages);
5514 }
5515 #endif
5516 len += sysfs_emit_at(buf, len, "\n");
5517
5518 return len;
5519 }
5520 SLAB_ATTR_RO(slabs_cpu_partial);
5521
reclaim_account_show(struct kmem_cache * s,char * buf)5522 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5523 {
5524 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5525 }
5526 SLAB_ATTR_RO(reclaim_account);
5527
hwcache_align_show(struct kmem_cache * s,char * buf)5528 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5529 {
5530 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5531 }
5532 SLAB_ATTR_RO(hwcache_align);
5533
5534 #ifdef CONFIG_ZONE_DMA
cache_dma_show(struct kmem_cache * s,char * buf)5535 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5536 {
5537 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5538 }
5539 SLAB_ATTR_RO(cache_dma);
5540 #endif
5541
usersize_show(struct kmem_cache * s,char * buf)5542 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5543 {
5544 return sysfs_emit(buf, "%u\n", s->usersize);
5545 }
5546 SLAB_ATTR_RO(usersize);
5547
destroy_by_rcu_show(struct kmem_cache * s,char * buf)5548 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5549 {
5550 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5551 }
5552 SLAB_ATTR_RO(destroy_by_rcu);
5553
5554 #ifdef CONFIG_SLUB_DEBUG
slabs_show(struct kmem_cache * s,char * buf)5555 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5556 {
5557 return show_slab_objects(s, buf, SO_ALL);
5558 }
5559 SLAB_ATTR_RO(slabs);
5560
total_objects_show(struct kmem_cache * s,char * buf)5561 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5562 {
5563 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5564 }
5565 SLAB_ATTR_RO(total_objects);
5566
sanity_checks_show(struct kmem_cache * s,char * buf)5567 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5568 {
5569 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5570 }
5571 SLAB_ATTR_RO(sanity_checks);
5572
trace_show(struct kmem_cache * s,char * buf)5573 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5574 {
5575 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5576 }
5577 SLAB_ATTR_RO(trace);
5578
red_zone_show(struct kmem_cache * s,char * buf)5579 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5580 {
5581 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5582 }
5583
5584 SLAB_ATTR_RO(red_zone);
5585
poison_show(struct kmem_cache * s,char * buf)5586 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5587 {
5588 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5589 }
5590
5591 SLAB_ATTR_RO(poison);
5592
store_user_show(struct kmem_cache * s,char * buf)5593 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5594 {
5595 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5596 }
5597
5598 SLAB_ATTR_RO(store_user);
5599
validate_show(struct kmem_cache * s,char * buf)5600 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5601 {
5602 return 0;
5603 }
5604
validate_store(struct kmem_cache * s,const char * buf,size_t length)5605 static ssize_t validate_store(struct kmem_cache *s,
5606 const char *buf, size_t length)
5607 {
5608 int ret = -EINVAL;
5609
5610 if (buf[0] == '1') {
5611 ret = validate_slab_cache(s);
5612 if (ret >= 0)
5613 ret = length;
5614 }
5615 return ret;
5616 }
5617 SLAB_ATTR(validate);
5618
5619 #endif /* CONFIG_SLUB_DEBUG */
5620
5621 #ifdef CONFIG_FAILSLAB
failslab_show(struct kmem_cache * s,char * buf)5622 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5623 {
5624 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5625 }
5626 SLAB_ATTR_RO(failslab);
5627 #endif
5628
shrink_show(struct kmem_cache * s,char * buf)5629 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5630 {
5631 return 0;
5632 }
5633
shrink_store(struct kmem_cache * s,const char * buf,size_t length)5634 static ssize_t shrink_store(struct kmem_cache *s,
5635 const char *buf, size_t length)
5636 {
5637 if (buf[0] == '1')
5638 kmem_cache_shrink(s);
5639 else
5640 return -EINVAL;
5641 return length;
5642 }
5643 SLAB_ATTR(shrink);
5644
5645 #ifdef CONFIG_NUMA
remote_node_defrag_ratio_show(struct kmem_cache * s,char * buf)5646 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5647 {
5648 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5649 }
5650
remote_node_defrag_ratio_store(struct kmem_cache * s,const char * buf,size_t length)5651 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5652 const char *buf, size_t length)
5653 {
5654 unsigned int ratio;
5655 int err;
5656
5657 err = kstrtouint(buf, 10, &ratio);
5658 if (err)
5659 return err;
5660 if (ratio > 100)
5661 return -ERANGE;
5662
5663 s->remote_node_defrag_ratio = ratio * 10;
5664
5665 return length;
5666 }
5667 SLAB_ATTR(remote_node_defrag_ratio);
5668 #endif
5669
5670 #ifdef CONFIG_SLUB_STATS
show_stat(struct kmem_cache * s,char * buf,enum stat_item si)5671 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5672 {
5673 unsigned long sum = 0;
5674 int cpu;
5675 int len = 0;
5676 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5677
5678 if (!data)
5679 return -ENOMEM;
5680
5681 for_each_online_cpu(cpu) {
5682 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5683
5684 data[cpu] = x;
5685 sum += x;
5686 }
5687
5688 len += sysfs_emit_at(buf, len, "%lu", sum);
5689
5690 #ifdef CONFIG_SMP
5691 for_each_online_cpu(cpu) {
5692 if (data[cpu])
5693 len += sysfs_emit_at(buf, len, " C%d=%u",
5694 cpu, data[cpu]);
5695 }
5696 #endif
5697 kfree(data);
5698 len += sysfs_emit_at(buf, len, "\n");
5699
5700 return len;
5701 }
5702
clear_stat(struct kmem_cache * s,enum stat_item si)5703 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5704 {
5705 int cpu;
5706
5707 for_each_online_cpu(cpu)
5708 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5709 }
5710
5711 #define STAT_ATTR(si, text) \
5712 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5713 { \
5714 return show_stat(s, buf, si); \
5715 } \
5716 static ssize_t text##_store(struct kmem_cache *s, \
5717 const char *buf, size_t length) \
5718 { \
5719 if (buf[0] != '0') \
5720 return -EINVAL; \
5721 clear_stat(s, si); \
5722 return length; \
5723 } \
5724 SLAB_ATTR(text); \
5725
5726 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5727 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5728 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5729 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5730 STAT_ATTR(FREE_FROZEN, free_frozen);
5731 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5732 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5733 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5734 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5735 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5736 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5737 STAT_ATTR(FREE_SLAB, free_slab);
5738 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5739 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5740 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5741 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5742 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5743 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5744 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5745 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5746 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5747 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5748 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5749 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5750 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5751 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5752 #endif /* CONFIG_SLUB_STATS */
5753
5754 static struct attribute *slab_attrs[] = {
5755 &slab_size_attr.attr,
5756 &object_size_attr.attr,
5757 &objs_per_slab_attr.attr,
5758 &order_attr.attr,
5759 &min_partial_attr.attr,
5760 &cpu_partial_attr.attr,
5761 &objects_attr.attr,
5762 &objects_partial_attr.attr,
5763 &partial_attr.attr,
5764 &cpu_slabs_attr.attr,
5765 &ctor_attr.attr,
5766 &aliases_attr.attr,
5767 &align_attr.attr,
5768 &hwcache_align_attr.attr,
5769 &reclaim_account_attr.attr,
5770 &destroy_by_rcu_attr.attr,
5771 &shrink_attr.attr,
5772 &slabs_cpu_partial_attr.attr,
5773 #ifdef CONFIG_SLUB_DEBUG
5774 &total_objects_attr.attr,
5775 &slabs_attr.attr,
5776 &sanity_checks_attr.attr,
5777 &trace_attr.attr,
5778 &red_zone_attr.attr,
5779 &poison_attr.attr,
5780 &store_user_attr.attr,
5781 &validate_attr.attr,
5782 #endif
5783 #ifdef CONFIG_ZONE_DMA
5784 &cache_dma_attr.attr,
5785 #endif
5786 #ifdef CONFIG_NUMA
5787 &remote_node_defrag_ratio_attr.attr,
5788 #endif
5789 #ifdef CONFIG_SLUB_STATS
5790 &alloc_fastpath_attr.attr,
5791 &alloc_slowpath_attr.attr,
5792 &free_fastpath_attr.attr,
5793 &free_slowpath_attr.attr,
5794 &free_frozen_attr.attr,
5795 &free_add_partial_attr.attr,
5796 &free_remove_partial_attr.attr,
5797 &alloc_from_partial_attr.attr,
5798 &alloc_slab_attr.attr,
5799 &alloc_refill_attr.attr,
5800 &alloc_node_mismatch_attr.attr,
5801 &free_slab_attr.attr,
5802 &cpuslab_flush_attr.attr,
5803 &deactivate_full_attr.attr,
5804 &deactivate_empty_attr.attr,
5805 &deactivate_to_head_attr.attr,
5806 &deactivate_to_tail_attr.attr,
5807 &deactivate_remote_frees_attr.attr,
5808 &deactivate_bypass_attr.attr,
5809 &order_fallback_attr.attr,
5810 &cmpxchg_double_fail_attr.attr,
5811 &cmpxchg_double_cpu_fail_attr.attr,
5812 &cpu_partial_alloc_attr.attr,
5813 &cpu_partial_free_attr.attr,
5814 &cpu_partial_node_attr.attr,
5815 &cpu_partial_drain_attr.attr,
5816 #endif
5817 #ifdef CONFIG_FAILSLAB
5818 &failslab_attr.attr,
5819 #endif
5820 &usersize_attr.attr,
5821
5822 NULL
5823 };
5824
5825 static const struct attribute_group slab_attr_group = {
5826 .attrs = slab_attrs,
5827 };
5828
slab_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)5829 static ssize_t slab_attr_show(struct kobject *kobj,
5830 struct attribute *attr,
5831 char *buf)
5832 {
5833 struct slab_attribute *attribute;
5834 struct kmem_cache *s;
5835 int err;
5836
5837 attribute = to_slab_attr(attr);
5838 s = to_slab(kobj);
5839
5840 if (!attribute->show)
5841 return -EIO;
5842
5843 err = attribute->show(s, buf);
5844
5845 return err;
5846 }
5847
slab_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t len)5848 static ssize_t slab_attr_store(struct kobject *kobj,
5849 struct attribute *attr,
5850 const char *buf, size_t len)
5851 {
5852 struct slab_attribute *attribute;
5853 struct kmem_cache *s;
5854 int err;
5855
5856 attribute = to_slab_attr(attr);
5857 s = to_slab(kobj);
5858
5859 if (!attribute->store)
5860 return -EIO;
5861
5862 err = attribute->store(s, buf, len);
5863 return err;
5864 }
5865
kmem_cache_release(struct kobject * k)5866 static void kmem_cache_release(struct kobject *k)
5867 {
5868 slab_kmem_cache_release(to_slab(k));
5869 }
5870
5871 static const struct sysfs_ops slab_sysfs_ops = {
5872 .show = slab_attr_show,
5873 .store = slab_attr_store,
5874 };
5875
5876 static struct kobj_type slab_ktype = {
5877 .sysfs_ops = &slab_sysfs_ops,
5878 .release = kmem_cache_release,
5879 };
5880
5881 static struct kset *slab_kset;
5882
cache_kset(struct kmem_cache * s)5883 static inline struct kset *cache_kset(struct kmem_cache *s)
5884 {
5885 return slab_kset;
5886 }
5887
5888 #define ID_STR_LENGTH 64
5889
5890 /* Create a unique string id for a slab cache:
5891 *
5892 * Format :[flags-]size
5893 */
create_unique_id(struct kmem_cache * s)5894 static char *create_unique_id(struct kmem_cache *s)
5895 {
5896 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5897 char *p = name;
5898
5899 if (!name)
5900 return ERR_PTR(-ENOMEM);
5901
5902 *p++ = ':';
5903 /*
5904 * First flags affecting slabcache operations. We will only
5905 * get here for aliasable slabs so we do not need to support
5906 * too many flags. The flags here must cover all flags that
5907 * are matched during merging to guarantee that the id is
5908 * unique.
5909 */
5910 if (s->flags & SLAB_CACHE_DMA)
5911 *p++ = 'd';
5912 if (s->flags & SLAB_CACHE_DMA32)
5913 *p++ = 'D';
5914 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5915 *p++ = 'a';
5916 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5917 *p++ = 'F';
5918 if (s->flags & SLAB_ACCOUNT)
5919 *p++ = 'A';
5920 if (p != name + 1)
5921 *p++ = '-';
5922 p += sprintf(p, "%07u", s->size);
5923
5924 BUG_ON(p > name + ID_STR_LENGTH - 1);
5925 return name;
5926 }
5927
sysfs_slab_add(struct kmem_cache * s)5928 static int sysfs_slab_add(struct kmem_cache *s)
5929 {
5930 int err;
5931 const char *name;
5932 struct kset *kset = cache_kset(s);
5933 int unmergeable = slab_unmergeable(s);
5934
5935 if (!kset) {
5936 kobject_init(&s->kobj, &slab_ktype);
5937 return 0;
5938 }
5939
5940 if (!unmergeable && disable_higher_order_debug &&
5941 (slub_debug & DEBUG_METADATA_FLAGS))
5942 unmergeable = 1;
5943
5944 if (unmergeable) {
5945 /*
5946 * Slabcache can never be merged so we can use the name proper.
5947 * This is typically the case for debug situations. In that
5948 * case we can catch duplicate names easily.
5949 */
5950 sysfs_remove_link(&slab_kset->kobj, s->name);
5951 name = s->name;
5952 } else {
5953 /*
5954 * Create a unique name for the slab as a target
5955 * for the symlinks.
5956 */
5957 name = create_unique_id(s);
5958 if (IS_ERR(name))
5959 return PTR_ERR(name);
5960 }
5961
5962 s->kobj.kset = kset;
5963 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5964 if (err)
5965 goto out;
5966
5967 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5968 if (err)
5969 goto out_del_kobj;
5970
5971 if (!unmergeable) {
5972 /* Setup first alias */
5973 sysfs_slab_alias(s, s->name);
5974 }
5975 out:
5976 if (!unmergeable)
5977 kfree(name);
5978 return err;
5979 out_del_kobj:
5980 kobject_del(&s->kobj);
5981 goto out;
5982 }
5983
sysfs_slab_unlink(struct kmem_cache * s)5984 void sysfs_slab_unlink(struct kmem_cache *s)
5985 {
5986 if (slab_state >= FULL)
5987 kobject_del(&s->kobj);
5988 }
5989
sysfs_slab_release(struct kmem_cache * s)5990 void sysfs_slab_release(struct kmem_cache *s)
5991 {
5992 if (slab_state >= FULL)
5993 kobject_put(&s->kobj);
5994 }
5995
5996 /*
5997 * Need to buffer aliases during bootup until sysfs becomes
5998 * available lest we lose that information.
5999 */
6000 struct saved_alias {
6001 struct kmem_cache *s;
6002 const char *name;
6003 struct saved_alias *next;
6004 };
6005
6006 static struct saved_alias *alias_list;
6007
sysfs_slab_alias(struct kmem_cache * s,const char * name)6008 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6009 {
6010 struct saved_alias *al;
6011
6012 if (slab_state == FULL) {
6013 /*
6014 * If we have a leftover link then remove it.
6015 */
6016 sysfs_remove_link(&slab_kset->kobj, name);
6017 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6018 }
6019
6020 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6021 if (!al)
6022 return -ENOMEM;
6023
6024 al->s = s;
6025 al->name = name;
6026 al->next = alias_list;
6027 alias_list = al;
6028 return 0;
6029 }
6030
slab_sysfs_init(void)6031 static int __init slab_sysfs_init(void)
6032 {
6033 struct kmem_cache *s;
6034 int err;
6035
6036 mutex_lock(&slab_mutex);
6037
6038 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6039 if (!slab_kset) {
6040 mutex_unlock(&slab_mutex);
6041 pr_err("Cannot register slab subsystem.\n");
6042 return -ENOSYS;
6043 }
6044
6045 slab_state = FULL;
6046
6047 list_for_each_entry(s, &slab_caches, list) {
6048 err = sysfs_slab_add(s);
6049 if (err)
6050 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6051 s->name);
6052 }
6053
6054 while (alias_list) {
6055 struct saved_alias *al = alias_list;
6056
6057 alias_list = alias_list->next;
6058 err = sysfs_slab_alias(al->s, al->name);
6059 if (err)
6060 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6061 al->name);
6062 kfree(al);
6063 }
6064
6065 mutex_unlock(&slab_mutex);
6066 return 0;
6067 }
6068
6069 __initcall(slab_sysfs_init);
6070 #endif /* CONFIG_SYSFS */
6071
6072 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
slab_debugfs_show(struct seq_file * seq,void * v)6073 static int slab_debugfs_show(struct seq_file *seq, void *v)
6074 {
6075 struct loc_track *t = seq->private;
6076 struct location *l;
6077 unsigned long idx;
6078
6079 idx = (unsigned long) t->idx;
6080 if (idx < t->count) {
6081 l = &t->loc[idx];
6082
6083 seq_printf(seq, "%7ld ", l->count);
6084
6085 if (l->addr)
6086 seq_printf(seq, "%pS", (void *)l->addr);
6087 else
6088 seq_puts(seq, "<not-available>");
6089
6090 if (l->sum_time != l->min_time) {
6091 seq_printf(seq, " age=%ld/%llu/%ld",
6092 l->min_time, div_u64(l->sum_time, l->count),
6093 l->max_time);
6094 } else
6095 seq_printf(seq, " age=%ld", l->min_time);
6096
6097 if (l->min_pid != l->max_pid)
6098 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6099 else
6100 seq_printf(seq, " pid=%ld",
6101 l->min_pid);
6102
6103 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6104 seq_printf(seq, " cpus=%*pbl",
6105 cpumask_pr_args(to_cpumask(l->cpus)));
6106
6107 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6108 seq_printf(seq, " nodes=%*pbl",
6109 nodemask_pr_args(&l->nodes));
6110
6111 seq_puts(seq, "\n");
6112 }
6113
6114 if (!idx && !t->count)
6115 seq_puts(seq, "No data\n");
6116
6117 return 0;
6118 }
6119
slab_debugfs_stop(struct seq_file * seq,void * v)6120 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6121 {
6122 }
6123
slab_debugfs_next(struct seq_file * seq,void * v,loff_t * ppos)6124 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6125 {
6126 struct loc_track *t = seq->private;
6127
6128 t->idx = ++(*ppos);
6129 if (*ppos <= t->count)
6130 return ppos;
6131
6132 return NULL;
6133 }
6134
slab_debugfs_start(struct seq_file * seq,loff_t * ppos)6135 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6136 {
6137 struct loc_track *t = seq->private;
6138
6139 t->idx = *ppos;
6140 return ppos;
6141 }
6142
6143 static const struct seq_operations slab_debugfs_sops = {
6144 .start = slab_debugfs_start,
6145 .next = slab_debugfs_next,
6146 .stop = slab_debugfs_stop,
6147 .show = slab_debugfs_show,
6148 };
6149
slab_debug_trace_open(struct inode * inode,struct file * filep)6150 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6151 {
6152
6153 struct kmem_cache_node *n;
6154 enum track_item alloc;
6155 int node;
6156 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6157 sizeof(struct loc_track));
6158 struct kmem_cache *s = file_inode(filep)->i_private;
6159 unsigned long *obj_map;
6160
6161 if (!t)
6162 return -ENOMEM;
6163
6164 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6165 if (!obj_map) {
6166 seq_release_private(inode, filep);
6167 return -ENOMEM;
6168 }
6169
6170 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6171 alloc = TRACK_ALLOC;
6172 else
6173 alloc = TRACK_FREE;
6174
6175 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6176 bitmap_free(obj_map);
6177 seq_release_private(inode, filep);
6178 return -ENOMEM;
6179 }
6180
6181 for_each_kmem_cache_node(s, node, n) {
6182 unsigned long flags;
6183 struct page *page;
6184
6185 if (!atomic_long_read(&n->nr_slabs))
6186 continue;
6187
6188 spin_lock_irqsave(&n->list_lock, flags);
6189 list_for_each_entry(page, &n->partial, slab_list)
6190 process_slab(t, s, page, alloc, obj_map);
6191 list_for_each_entry(page, &n->full, slab_list)
6192 process_slab(t, s, page, alloc, obj_map);
6193 spin_unlock_irqrestore(&n->list_lock, flags);
6194 }
6195
6196 bitmap_free(obj_map);
6197 return 0;
6198 }
6199
slab_debug_trace_release(struct inode * inode,struct file * file)6200 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6201 {
6202 struct seq_file *seq = file->private_data;
6203 struct loc_track *t = seq->private;
6204
6205 free_loc_track(t);
6206 return seq_release_private(inode, file);
6207 }
6208
6209 static const struct file_operations slab_debugfs_fops = {
6210 .open = slab_debug_trace_open,
6211 .read = seq_read,
6212 .llseek = seq_lseek,
6213 .release = slab_debug_trace_release,
6214 };
6215
debugfs_slab_add(struct kmem_cache * s)6216 static void debugfs_slab_add(struct kmem_cache *s)
6217 {
6218 struct dentry *slab_cache_dir;
6219
6220 if (unlikely(!slab_debugfs_root))
6221 return;
6222
6223 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6224
6225 debugfs_create_file("alloc_traces", 0400,
6226 slab_cache_dir, s, &slab_debugfs_fops);
6227
6228 debugfs_create_file("free_traces", 0400,
6229 slab_cache_dir, s, &slab_debugfs_fops);
6230 }
6231
debugfs_slab_release(struct kmem_cache * s)6232 void debugfs_slab_release(struct kmem_cache *s)
6233 {
6234 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6235 }
6236
slab_debugfs_init(void)6237 static int __init slab_debugfs_init(void)
6238 {
6239 struct kmem_cache *s;
6240
6241 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6242
6243 list_for_each_entry(s, &slab_caches, list)
6244 if (s->flags & SLAB_STORE_USER)
6245 debugfs_slab_add(s);
6246
6247 return 0;
6248
6249 }
6250 __initcall(slab_debugfs_init);
6251 #endif
6252 /*
6253 * The /proc/slabinfo ABI
6254 */
6255 #ifdef CONFIG_SLUB_DEBUG
get_slabinfo(struct kmem_cache * s,struct slabinfo * sinfo)6256 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6257 {
6258 unsigned long nr_slabs = 0;
6259 unsigned long nr_objs = 0;
6260 unsigned long nr_free = 0;
6261 int node;
6262 struct kmem_cache_node *n;
6263
6264 for_each_kmem_cache_node(s, node, n) {
6265 nr_slabs += node_nr_slabs(n);
6266 nr_objs += node_nr_objs(n);
6267 nr_free += count_partial(n, count_free);
6268 }
6269
6270 sinfo->active_objs = nr_objs - nr_free;
6271 sinfo->num_objs = nr_objs;
6272 sinfo->active_slabs = nr_slabs;
6273 sinfo->num_slabs = nr_slabs;
6274 sinfo->objects_per_slab = oo_objects(s->oo);
6275 sinfo->cache_order = oo_order(s->oo);
6276 }
6277 EXPORT_SYMBOL_NS_GPL(get_slabinfo, MINIDUMP);
6278
slabinfo_show_stats(struct seq_file * m,struct kmem_cache * s)6279 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6280 {
6281 }
6282
slabinfo_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)6283 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6284 size_t count, loff_t *ppos)
6285 {
6286 return -EIO;
6287 }
6288 #endif /* CONFIG_SLUB_DEBUG */
6289