1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2020 ARM Ltd.
4 */
5
6 #include <linux/bitops.h>
7 #include <linux/cpu.h>
8 #include <linux/kernel.h>
9 #include <linux/mm.h>
10 #include <linux/prctl.h>
11 #include <linux/sched.h>
12 #include <linux/sched/mm.h>
13 #include <linux/string.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/thread_info.h>
17 #include <linux/types.h>
18 #include <linux/uio.h>
19
20 #include <asm/barrier.h>
21 #include <asm/cpufeature.h>
22 #include <asm/mte.h>
23 #include <asm/ptrace.h>
24 #include <asm/sysreg.h>
25
26 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
27
28 #ifdef CONFIG_KASAN_HW_TAGS
29 /*
30 * The asynchronous and asymmetric MTE modes have the same behavior for
31 * store operations. This flag is set when either of these modes is enabled.
32 */
33 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
34 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
35 #endif
36
mte_sync_page_tags(struct page * page,pte_t old_pte,bool check_swap,bool pte_is_tagged)37 static void mte_sync_page_tags(struct page *page, pte_t old_pte,
38 bool check_swap, bool pte_is_tagged)
39 {
40 if (check_swap && is_swap_pte(old_pte)) {
41 swp_entry_t entry = pte_to_swp_entry(old_pte);
42
43 if (!non_swap_entry(entry) && mte_restore_tags(entry, page))
44 return;
45 }
46
47 if (!pte_is_tagged)
48 return;
49
50 page_kasan_tag_reset(page);
51 /*
52 * We need smp_wmb() in between setting the flags and clearing the
53 * tags because if another thread reads page->flags and builds a
54 * tagged address out of it, there is an actual dependency to the
55 * memory access, but on the current thread we do not guarantee that
56 * the new page->flags are visible before the tags were updated.
57 */
58 smp_wmb();
59 /*
60 * Test PG_mte_tagged again in case it was racing with another
61 * set_pte_at().
62 */
63 if (!test_and_set_bit(PG_mte_tagged, &page->flags))
64 mte_clear_page_tags(page_address(page));
65 }
66
mte_sync_tags(pte_t old_pte,pte_t pte)67 void mte_sync_tags(pte_t old_pte, pte_t pte)
68 {
69 struct page *page = pte_page(pte);
70 long i, nr_pages = compound_nr(page);
71 bool check_swap = nr_pages == 1;
72 bool pte_is_tagged = pte_tagged(pte);
73
74 /* Early out if there's nothing to do */
75 if (!check_swap && !pte_is_tagged)
76 return;
77
78 /* if PG_mte_tagged is set, tags have already been initialised */
79 for (i = 0; i < nr_pages; i++, page++) {
80 if (!test_bit(PG_mte_tagged, &page->flags))
81 mte_sync_page_tags(page, old_pte, check_swap,
82 pte_is_tagged);
83 }
84
85 /* ensure the tags are visible before the PTE is set */
86 smp_wmb();
87 }
88
memcmp_pages(struct page * page1,struct page * page2)89 int memcmp_pages(struct page *page1, struct page *page2)
90 {
91 char *addr1, *addr2;
92 int ret;
93
94 addr1 = page_address(page1);
95 addr2 = page_address(page2);
96 ret = memcmp(addr1, addr2, PAGE_SIZE);
97
98 if (!system_supports_mte() || ret)
99 return ret;
100
101 /*
102 * If the page content is identical but at least one of the pages is
103 * tagged, return non-zero to avoid KSM merging. If only one of the
104 * pages is tagged, set_pte_at() may zero or change the tags of the
105 * other page via mte_sync_tags().
106 */
107 if (test_bit(PG_mte_tagged, &page1->flags) ||
108 test_bit(PG_mte_tagged, &page2->flags))
109 return addr1 != addr2;
110
111 return ret;
112 }
113
__mte_enable_kernel(const char * mode,unsigned long tcf)114 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
115 {
116 /* Enable MTE Sync Mode for EL1. */
117 sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, tcf);
118 isb();
119
120 pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
121 }
122
123 #ifdef CONFIG_KASAN_HW_TAGS
mte_enable_kernel_sync(void)124 void mte_enable_kernel_sync(void)
125 {
126 /*
127 * Make sure we enter this function when no PE has set
128 * async mode previously.
129 */
130 WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
131 "MTE async mode enabled system wide!");
132
133 __mte_enable_kernel("synchronous", SCTLR_ELx_TCF_SYNC);
134 }
135
mte_enable_kernel_async(void)136 void mte_enable_kernel_async(void)
137 {
138 __mte_enable_kernel("asynchronous", SCTLR_ELx_TCF_ASYNC);
139
140 /*
141 * MTE async mode is set system wide by the first PE that
142 * executes this function.
143 *
144 * Note: If in future KASAN acquires a runtime switching
145 * mode in between sync and async, this strategy needs
146 * to be reviewed.
147 */
148 if (!system_uses_mte_async_or_asymm_mode())
149 static_branch_enable(&mte_async_or_asymm_mode);
150 }
151
mte_enable_kernel_asymm(void)152 void mte_enable_kernel_asymm(void)
153 {
154 if (cpus_have_cap(ARM64_MTE_ASYMM)) {
155 __mte_enable_kernel("asymmetric", SCTLR_ELx_TCF_ASYMM);
156
157 /*
158 * MTE asymm mode behaves as async mode for store
159 * operations. The mode is set system wide by the
160 * first PE that executes this function.
161 *
162 * Note: If in future KASAN acquires a runtime switching
163 * mode in between sync and async, this strategy needs
164 * to be reviewed.
165 */
166 if (!system_uses_mte_async_or_asymm_mode())
167 static_branch_enable(&mte_async_or_asymm_mode);
168 } else {
169 /*
170 * If the CPU does not support MTE asymmetric mode the
171 * kernel falls back on synchronous mode which is the
172 * default for kasan=on.
173 */
174 mte_enable_kernel_sync();
175 }
176 }
177 #endif
178
179 #ifdef CONFIG_KASAN_HW_TAGS
mte_check_tfsr_el1(void)180 void mte_check_tfsr_el1(void)
181 {
182 u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
183
184 if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
185 /*
186 * Note: isb() is not required after this direct write
187 * because there is no indirect read subsequent to it
188 * (per ARM DDI 0487F.c table D13-1).
189 */
190 write_sysreg_s(0, SYS_TFSR_EL1);
191
192 kasan_report_async();
193 }
194 }
195 #endif
196
197 /*
198 * This is where we actually resolve the system and process MTE mode
199 * configuration into an actual value in SCTLR_EL1 that affects
200 * userspace.
201 */
mte_update_sctlr_user(struct task_struct * task)202 static void mte_update_sctlr_user(struct task_struct *task)
203 {
204 /*
205 * This must be called with preemption disabled and can only be called
206 * on the current or next task since the CPU must match where the thread
207 * is going to run. The caller is responsible for calling
208 * update_sctlr_el1() later in the same preemption disabled block.
209 */
210 unsigned long sctlr = task->thread.sctlr_user;
211 unsigned long mte_ctrl = task->thread.mte_ctrl;
212 unsigned long pref, resolved_mte_tcf;
213
214 pref = __this_cpu_read(mte_tcf_preferred);
215 /*
216 * If there is no overlap between the system preferred and
217 * program requested values go with what was requested.
218 */
219 resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
220 sctlr &= ~SCTLR_EL1_TCF0_MASK;
221 /*
222 * Pick an actual setting. The order in which we check for
223 * set bits and map into register values determines our
224 * default order.
225 */
226 if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
227 sctlr |= SCTLR_EL1_TCF0_ASYMM;
228 else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
229 sctlr |= SCTLR_EL1_TCF0_ASYNC;
230 else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
231 sctlr |= SCTLR_EL1_TCF0_SYNC;
232 task->thread.sctlr_user = sctlr;
233 }
234
mte_update_gcr_excl(struct task_struct * task)235 static void mte_update_gcr_excl(struct task_struct *task)
236 {
237 /*
238 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
239 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
240 */
241 if (kasan_hw_tags_enabled())
242 return;
243
244 write_sysreg_s(
245 ((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
246 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
247 SYS_GCR_EL1);
248 }
249
kasan_hw_tags_enable(struct alt_instr * alt,__le32 * origptr,__le32 * updptr,int nr_inst)250 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
251 __le32 *updptr, int nr_inst)
252 {
253 BUG_ON(nr_inst != 1); /* Branch -> NOP */
254
255 if (kasan_hw_tags_enabled())
256 *updptr = cpu_to_le32(aarch64_insn_gen_nop());
257 }
258
mte_thread_init_user(void)259 void mte_thread_init_user(void)
260 {
261 if (!system_supports_mte())
262 return;
263
264 /* clear any pending asynchronous tag fault */
265 dsb(ish);
266 write_sysreg_s(0, SYS_TFSRE0_EL1);
267 clear_thread_flag(TIF_MTE_ASYNC_FAULT);
268 /* disable tag checking and reset tag generation mask */
269 set_mte_ctrl(current, 0);
270 }
271
mte_thread_switch(struct task_struct * next)272 void mte_thread_switch(struct task_struct *next)
273 {
274 if (!system_supports_mte())
275 return;
276
277 mte_update_sctlr_user(next);
278 mte_update_gcr_excl(next);
279
280 /*
281 * Check if an async tag exception occurred at EL1.
282 *
283 * Note: On the context switch path we rely on the dsb() present
284 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1
285 * are synchronized before this point.
286 */
287 isb();
288 mte_check_tfsr_el1();
289 }
290
mte_cpu_setup(void)291 void mte_cpu_setup(void)
292 {
293 u64 rgsr;
294
295 /*
296 * CnP must be enabled only after the MAIR_EL1 register has been set
297 * up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may
298 * lead to the wrong memory type being used for a brief window during
299 * CPU power-up.
300 *
301 * CnP is not a boot feature so MTE gets enabled before CnP, but let's
302 * make sure that is the case.
303 */
304 BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT);
305 BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT);
306
307 /* Normal Tagged memory type at the corresponding MAIR index */
308 sysreg_clear_set(mair_el1,
309 MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED),
310 MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED,
311 MT_NORMAL_TAGGED));
312
313 write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1);
314
315 /*
316 * If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then
317 * RGSR_EL1.SEED must be non-zero for IRG to produce
318 * pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we
319 * must initialize it.
320 */
321 rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) <<
322 SYS_RGSR_EL1_SEED_SHIFT;
323 if (rgsr == 0)
324 rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT;
325 write_sysreg_s(rgsr, SYS_RGSR_EL1);
326
327 /* clear any pending tag check faults in TFSR*_EL1 */
328 write_sysreg_s(0, SYS_TFSR_EL1);
329 write_sysreg_s(0, SYS_TFSRE0_EL1);
330
331 local_flush_tlb_all();
332 }
333
mte_suspend_enter(void)334 void mte_suspend_enter(void)
335 {
336 if (!system_supports_mte())
337 return;
338
339 /*
340 * The barriers are required to guarantee that the indirect writes
341 * to TFSR_EL1 are synchronized before we report the state.
342 */
343 dsb(nsh);
344 isb();
345
346 /* Report SYS_TFSR_EL1 before suspend entry */
347 mte_check_tfsr_el1();
348 }
349
mte_suspend_exit(void)350 void mte_suspend_exit(void)
351 {
352 if (!system_supports_mte())
353 return;
354
355 mte_cpu_setup();
356 }
357
set_mte_ctrl(struct task_struct * task,unsigned long arg)358 long set_mte_ctrl(struct task_struct *task, unsigned long arg)
359 {
360 u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
361 SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
362
363 if (!system_supports_mte())
364 return 0;
365
366 if (arg & PR_MTE_TCF_ASYNC)
367 mte_ctrl |= MTE_CTRL_TCF_ASYNC;
368 if (arg & PR_MTE_TCF_SYNC)
369 mte_ctrl |= MTE_CTRL_TCF_SYNC;
370
371 /*
372 * If the system supports it and both sync and async modes are
373 * specified then implicitly enable asymmetric mode.
374 * Userspace could see a mix of both sync and async anyway due
375 * to differing or changing defaults on CPUs.
376 */
377 if (cpus_have_cap(ARM64_MTE_ASYMM) &&
378 (arg & PR_MTE_TCF_ASYNC) &&
379 (arg & PR_MTE_TCF_SYNC))
380 mte_ctrl |= MTE_CTRL_TCF_ASYMM;
381
382 task->thread.mte_ctrl = mte_ctrl;
383 if (task == current) {
384 preempt_disable();
385 mte_update_sctlr_user(task);
386 mte_update_gcr_excl(task);
387 update_sctlr_el1(task->thread.sctlr_user);
388 preempt_enable();
389 }
390
391 return 0;
392 }
393
get_mte_ctrl(struct task_struct * task)394 long get_mte_ctrl(struct task_struct *task)
395 {
396 unsigned long ret;
397 u64 mte_ctrl = task->thread.mte_ctrl;
398 u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
399 SYS_GCR_EL1_EXCL_MASK;
400
401 if (!system_supports_mte())
402 return 0;
403
404 ret = incl << PR_MTE_TAG_SHIFT;
405 if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
406 ret |= PR_MTE_TCF_ASYNC;
407 if (mte_ctrl & MTE_CTRL_TCF_SYNC)
408 ret |= PR_MTE_TCF_SYNC;
409
410 return ret;
411 }
412
413 /*
414 * Access MTE tags in another process' address space as given in mm. Update
415 * the number of tags copied. Return 0 if any tags copied, error otherwise.
416 * Inspired by __access_remote_vm().
417 */
__access_remote_tags(struct mm_struct * mm,unsigned long addr,struct iovec * kiov,unsigned int gup_flags)418 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
419 struct iovec *kiov, unsigned int gup_flags)
420 {
421 struct vm_area_struct *vma;
422 void __user *buf = kiov->iov_base;
423 size_t len = kiov->iov_len;
424 int ret;
425 int write = gup_flags & FOLL_WRITE;
426
427 if (!access_ok(buf, len))
428 return -EFAULT;
429
430 if (mmap_read_lock_killable(mm))
431 return -EIO;
432
433 while (len) {
434 unsigned long tags, offset;
435 void *maddr;
436 struct page *page = NULL;
437
438 ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page,
439 &vma, NULL);
440 if (ret <= 0)
441 break;
442
443 /*
444 * Only copy tags if the page has been mapped as PROT_MTE
445 * (PG_mte_tagged set). Otherwise the tags are not valid and
446 * not accessible to user. Moreover, an mprotect(PROT_MTE)
447 * would cause the existing tags to be cleared if the page
448 * was never mapped with PROT_MTE.
449 */
450 if (!(vma->vm_flags & VM_MTE)) {
451 ret = -EOPNOTSUPP;
452 put_page(page);
453 break;
454 }
455 WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags));
456
457 /* limit access to the end of the page */
458 offset = offset_in_page(addr);
459 tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
460
461 maddr = page_address(page);
462 if (write) {
463 tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
464 set_page_dirty_lock(page);
465 } else {
466 tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
467 }
468 put_page(page);
469
470 /* error accessing the tracer's buffer */
471 if (!tags)
472 break;
473
474 len -= tags;
475 buf += tags;
476 addr += tags * MTE_GRANULE_SIZE;
477 }
478 mmap_read_unlock(mm);
479
480 /* return an error if no tags copied */
481 kiov->iov_len = buf - kiov->iov_base;
482 if (!kiov->iov_len) {
483 /* check for error accessing the tracee's address space */
484 if (ret <= 0)
485 return -EIO;
486 else
487 return -EFAULT;
488 }
489
490 return 0;
491 }
492
493 /*
494 * Copy MTE tags in another process' address space at 'addr' to/from tracer's
495 * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
496 */
access_remote_tags(struct task_struct * tsk,unsigned long addr,struct iovec * kiov,unsigned int gup_flags)497 static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
498 struct iovec *kiov, unsigned int gup_flags)
499 {
500 struct mm_struct *mm;
501 int ret;
502
503 mm = get_task_mm(tsk);
504 if (!mm)
505 return -EPERM;
506
507 if (!tsk->ptrace || (current != tsk->parent) ||
508 ((get_dumpable(mm) != SUID_DUMP_USER) &&
509 !ptracer_capable(tsk, mm->user_ns))) {
510 mmput(mm);
511 return -EPERM;
512 }
513
514 ret = __access_remote_tags(mm, addr, kiov, gup_flags);
515 mmput(mm);
516
517 return ret;
518 }
519
mte_ptrace_copy_tags(struct task_struct * child,long request,unsigned long addr,unsigned long data)520 int mte_ptrace_copy_tags(struct task_struct *child, long request,
521 unsigned long addr, unsigned long data)
522 {
523 int ret;
524 struct iovec kiov;
525 struct iovec __user *uiov = (void __user *)data;
526 unsigned int gup_flags = FOLL_FORCE;
527
528 if (!system_supports_mte())
529 return -EIO;
530
531 if (get_user(kiov.iov_base, &uiov->iov_base) ||
532 get_user(kiov.iov_len, &uiov->iov_len))
533 return -EFAULT;
534
535 if (request == PTRACE_POKEMTETAGS)
536 gup_flags |= FOLL_WRITE;
537
538 /* align addr to the MTE tag granule */
539 addr &= MTE_GRANULE_MASK;
540
541 ret = access_remote_tags(child, addr, &kiov, gup_flags);
542 if (!ret)
543 ret = put_user(kiov.iov_len, &uiov->iov_len);
544
545 return ret;
546 }
547
mte_tcf_preferred_show(struct device * dev,struct device_attribute * attr,char * buf)548 static ssize_t mte_tcf_preferred_show(struct device *dev,
549 struct device_attribute *attr, char *buf)
550 {
551 switch (per_cpu(mte_tcf_preferred, dev->id)) {
552 case MTE_CTRL_TCF_ASYNC:
553 return sysfs_emit(buf, "async\n");
554 case MTE_CTRL_TCF_SYNC:
555 return sysfs_emit(buf, "sync\n");
556 case MTE_CTRL_TCF_ASYMM:
557 return sysfs_emit(buf, "asymm\n");
558 default:
559 return sysfs_emit(buf, "???\n");
560 }
561 }
562
mte_tcf_preferred_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)563 static ssize_t mte_tcf_preferred_store(struct device *dev,
564 struct device_attribute *attr,
565 const char *buf, size_t count)
566 {
567 u64 tcf;
568
569 if (sysfs_streq(buf, "async"))
570 tcf = MTE_CTRL_TCF_ASYNC;
571 else if (sysfs_streq(buf, "sync"))
572 tcf = MTE_CTRL_TCF_SYNC;
573 else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm"))
574 tcf = MTE_CTRL_TCF_ASYMM;
575 else
576 return -EINVAL;
577
578 device_lock(dev);
579 per_cpu(mte_tcf_preferred, dev->id) = tcf;
580 device_unlock(dev);
581
582 return count;
583 }
584 static DEVICE_ATTR_RW(mte_tcf_preferred);
585
register_mte_tcf_preferred_sysctl(void)586 static int register_mte_tcf_preferred_sysctl(void)
587 {
588 unsigned int cpu;
589
590 if (!system_supports_mte())
591 return 0;
592
593 for_each_possible_cpu(cpu) {
594 per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
595 device_create_file(get_cpu_device(cpu),
596 &dev_attr_mte_tcf_preferred);
597 }
598
599 return 0;
600 }
601 subsys_initcall(register_mte_tcf_preferred_sysctl);
602