• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/kernel/setup.c
4  *
5  * Copyright (C) 1995-2001 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/initrd.h>
16 #include <linux/console.h>
17 #include <linux/cache.h>
18 #include <linux/screen_info.h>
19 #include <linux/init.h>
20 #include <linux/kexec.h>
21 #include <linux/root_dev.h>
22 #include <linux/cpu.h>
23 #include <linux/interrupt.h>
24 #include <linux/smp.h>
25 #include <linux/fs.h>
26 #include <linux/panic_notifier.h>
27 #include <linux/proc_fs.h>
28 #include <linux/memblock.h>
29 #include <linux/of_fdt.h>
30 #include <linux/efi.h>
31 #include <linux/psci.h>
32 #include <linux/sched/task.h>
33 #include <linux/mm.h>
34 
35 #include <asm/acpi.h>
36 #include <asm/fixmap.h>
37 #include <asm/cpu.h>
38 #include <asm/cputype.h>
39 #include <asm/daifflags.h>
40 #include <asm/elf.h>
41 #include <asm/cpufeature.h>
42 #include <asm/cpu_ops.h>
43 #include <asm/hypervisor.h>
44 #include <asm/kasan.h>
45 #include <asm/numa.h>
46 #include <asm/sections.h>
47 #include <asm/setup.h>
48 #include <asm/smp_plat.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlbflush.h>
51 #include <asm/traps.h>
52 #include <asm/efi.h>
53 #include <asm/hypervisor.h>
54 #include <asm/xen/hypervisor.h>
55 #include <asm/mmu_context.h>
56 
57 static int num_standard_resources;
58 static struct resource *standard_resources;
59 
60 phys_addr_t __fdt_pointer __initdata;
61 
62 /*
63  * Standard memory resources
64  */
65 static struct resource mem_res[] = {
66 	{
67 		.name = "Kernel code",
68 		.start = 0,
69 		.end = 0,
70 		.flags = IORESOURCE_SYSTEM_RAM
71 	},
72 	{
73 		.name = "Kernel data",
74 		.start = 0,
75 		.end = 0,
76 		.flags = IORESOURCE_SYSTEM_RAM
77 	}
78 };
79 
80 #define kernel_code mem_res[0]
81 #define kernel_data mem_res[1]
82 
83 /*
84  * The recorded values of x0 .. x3 upon kernel entry.
85  */
86 u64 __cacheline_aligned boot_args[4];
87 
smp_setup_processor_id(void)88 void __init smp_setup_processor_id(void)
89 {
90 	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
91 	set_cpu_logical_map(0, mpidr);
92 
93 	pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
94 		(unsigned long)mpidr, read_cpuid_id());
95 }
96 
arch_match_cpu_phys_id(int cpu,u64 phys_id)97 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
98 {
99 	return phys_id == cpu_logical_map(cpu);
100 }
101 
102 struct mpidr_hash mpidr_hash;
103 /**
104  * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
105  *			  level in order to build a linear index from an
106  *			  MPIDR value. Resulting algorithm is a collision
107  *			  free hash carried out through shifting and ORing
108  */
smp_build_mpidr_hash(void)109 static void __init smp_build_mpidr_hash(void)
110 {
111 	u32 i, affinity, fs[4], bits[4], ls;
112 	u64 mask = 0;
113 	/*
114 	 * Pre-scan the list of MPIDRS and filter out bits that do
115 	 * not contribute to affinity levels, ie they never toggle.
116 	 */
117 	for_each_possible_cpu(i)
118 		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
119 	pr_debug("mask of set bits %#llx\n", mask);
120 	/*
121 	 * Find and stash the last and first bit set at all affinity levels to
122 	 * check how many bits are required to represent them.
123 	 */
124 	for (i = 0; i < 4; i++) {
125 		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
126 		/*
127 		 * Find the MSB bit and LSB bits position
128 		 * to determine how many bits are required
129 		 * to express the affinity level.
130 		 */
131 		ls = fls(affinity);
132 		fs[i] = affinity ? ffs(affinity) - 1 : 0;
133 		bits[i] = ls - fs[i];
134 	}
135 	/*
136 	 * An index can be created from the MPIDR_EL1 by isolating the
137 	 * significant bits at each affinity level and by shifting
138 	 * them in order to compress the 32 bits values space to a
139 	 * compressed set of values. This is equivalent to hashing
140 	 * the MPIDR_EL1 through shifting and ORing. It is a collision free
141 	 * hash though not minimal since some levels might contain a number
142 	 * of CPUs that is not an exact power of 2 and their bit
143 	 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
144 	 */
145 	mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
146 	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
147 	mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
148 						(bits[1] + bits[0]);
149 	mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
150 				  fs[3] - (bits[2] + bits[1] + bits[0]);
151 	mpidr_hash.mask = mask;
152 	mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
153 	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
154 		mpidr_hash.shift_aff[0],
155 		mpidr_hash.shift_aff[1],
156 		mpidr_hash.shift_aff[2],
157 		mpidr_hash.shift_aff[3],
158 		mpidr_hash.mask,
159 		mpidr_hash.bits);
160 	/*
161 	 * 4x is an arbitrary value used to warn on a hash table much bigger
162 	 * than expected on most systems.
163 	 */
164 	if (mpidr_hash_size() > 4 * num_possible_cpus())
165 		pr_warn("Large number of MPIDR hash buckets detected\n");
166 }
167 
168 static void *early_fdt_ptr __initdata;
169 
get_early_fdt_ptr(void)170 void __init *get_early_fdt_ptr(void)
171 {
172 	return early_fdt_ptr;
173 }
174 
early_fdt_map(u64 dt_phys)175 asmlinkage void __init early_fdt_map(u64 dt_phys)
176 {
177 	int fdt_size;
178 
179 	early_fixmap_init();
180 	early_fdt_ptr = fixmap_remap_fdt(dt_phys, &fdt_size, PAGE_KERNEL);
181 }
182 
setup_machine_fdt(phys_addr_t dt_phys)183 static void __init setup_machine_fdt(phys_addr_t dt_phys)
184 {
185 	int size;
186 	void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
187 	const char *name;
188 
189 	if (dt_virt)
190 		memblock_reserve(dt_phys, size);
191 
192 	if (!dt_virt || !early_init_dt_scan(dt_virt)) {
193 		pr_crit("\n"
194 			"Error: invalid device tree blob at physical address %pa (virtual address 0x%p)\n"
195 			"The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
196 			"\nPlease check your bootloader.",
197 			&dt_phys, dt_virt);
198 
199 		while (true)
200 			cpu_relax();
201 	}
202 
203 	/* Early fixups are done, map the FDT as read-only now */
204 	fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
205 
206 	name = of_flat_dt_get_machine_name();
207 	if (!name)
208 		return;
209 
210 	pr_info("Machine model: %s\n", name);
211 	dump_stack_set_arch_desc("%s (DT)", name);
212 }
213 
request_standard_resources(void)214 static void __init request_standard_resources(void)
215 {
216 	struct memblock_region *region;
217 	struct resource *res;
218 	unsigned long i = 0;
219 	size_t res_size;
220 
221 	kernel_code.start   = __pa_symbol(_stext);
222 	kernel_code.end     = __pa_symbol(__init_begin - 1);
223 	kernel_data.start   = __pa_symbol(_sdata);
224 	kernel_data.end     = __pa_symbol(_end - 1);
225 
226 	num_standard_resources = memblock.memory.cnt;
227 	res_size = num_standard_resources * sizeof(*standard_resources);
228 	standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
229 	if (!standard_resources)
230 		panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
231 
232 	for_each_mem_region(region) {
233 		res = &standard_resources[i++];
234 		if (memblock_is_nomap(region)) {
235 			res->name  = "reserved";
236 			res->flags = IORESOURCE_MEM;
237 		} else {
238 			res->name  = "System RAM";
239 			res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
240 		}
241 		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
242 		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
243 
244 		request_resource(&iomem_resource, res);
245 
246 		if (kernel_code.start >= res->start &&
247 		    kernel_code.end <= res->end)
248 			request_resource(res, &kernel_code);
249 		if (kernel_data.start >= res->start &&
250 		    kernel_data.end <= res->end)
251 			request_resource(res, &kernel_data);
252 #ifdef CONFIG_KEXEC_CORE
253 		/* Userspace will find "Crash kernel" region in /proc/iomem. */
254 		if (crashk_res.end && crashk_res.start >= res->start &&
255 		    crashk_res.end <= res->end)
256 			request_resource(res, &crashk_res);
257 #endif
258 	}
259 }
260 
reserve_memblock_reserved_regions(void)261 static int __init reserve_memblock_reserved_regions(void)
262 {
263 	u64 i, j;
264 
265 	for (i = 0; i < num_standard_resources; ++i) {
266 		struct resource *mem = &standard_resources[i];
267 		phys_addr_t r_start, r_end, mem_size = resource_size(mem);
268 
269 		if (!memblock_is_region_reserved(mem->start, mem_size))
270 			continue;
271 
272 		for_each_reserved_mem_range(j, &r_start, &r_end) {
273 			resource_size_t start, end;
274 
275 			start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
276 			end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
277 
278 			if (start > mem->end || end < mem->start)
279 				continue;
280 
281 			reserve_region_with_split(mem, start, end, "reserved");
282 		}
283 	}
284 
285 	return 0;
286 }
287 arch_initcall(reserve_memblock_reserved_regions);
288 
289 u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
290 
cpu_logical_map(unsigned int cpu)291 u64 cpu_logical_map(unsigned int cpu)
292 {
293 	return __cpu_logical_map[cpu];
294 }
295 
setup_arch(char ** cmdline_p)296 void __init __no_sanitize_address setup_arch(char **cmdline_p)
297 {
298 	setup_initial_init_mm(_stext, _etext, _edata, _end);
299 
300 	*cmdline_p = boot_command_line;
301 
302 	/*
303 	 * If know now we are going to need KPTI then use non-global
304 	 * mappings from the start, avoiding the cost of rewriting
305 	 * everything later.
306 	 */
307 	arm64_use_ng_mappings = kaslr_requires_kpti();
308 
309 	early_fixmap_init();
310 	early_ioremap_init();
311 
312 	setup_machine_fdt(__fdt_pointer);
313 
314 	/*
315 	 * Initialise the static keys early as they may be enabled by the
316 	 * cpufeature code and early parameters.
317 	 */
318 	jump_label_init();
319 	parse_early_param();
320 
321 	/*
322 	 * Unmask asynchronous aborts and fiq after bringing up possible
323 	 * earlycon. (Report possible System Errors once we can report this
324 	 * occurred).
325 	 */
326 	local_daif_restore(DAIF_PROCCTX_NOIRQ);
327 
328 	/*
329 	 * TTBR0 is only used for the identity mapping at this stage. Make it
330 	 * point to zero page to avoid speculatively fetching new entries.
331 	 */
332 	cpu_uninstall_idmap();
333 
334 	xen_early_init();
335 	efi_init();
336 
337 	if (!efi_enabled(EFI_BOOT) && ((u64)_text % MIN_KIMG_ALIGN) != 0)
338 	     pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!");
339 
340 	arm64_memblock_init();
341 
342 	paging_init();
343 
344 	acpi_table_upgrade();
345 
346 	/* Parse the ACPI tables for possible boot-time configuration */
347 	acpi_boot_table_init();
348 
349 	if (acpi_disabled)
350 		unflatten_device_tree();
351 
352 	bootmem_init();
353 
354 	kasan_init();
355 
356 	request_standard_resources();
357 
358 	early_ioremap_reset();
359 
360 	if (acpi_disabled)
361 		psci_dt_init();
362 	else
363 		psci_acpi_init();
364 
365 	init_bootcpu_ops();
366 	smp_init_cpus();
367 	smp_build_mpidr_hash();
368 
369 	/* Init percpu seeds for random tags after cpus are set up. */
370 	kasan_init_sw_tags();
371 
372 #ifdef CONFIG_ARM64_SW_TTBR0_PAN
373 	/*
374 	 * Make sure init_thread_info.ttbr0 always generates translation
375 	 * faults in case uaccess_enable() is inadvertently called by the init
376 	 * thread.
377 	 */
378 	init_task.thread_info.ttbr0 = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
379 #endif
380 
381 	if (boot_args[1] || boot_args[2] || boot_args[3]) {
382 		pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
383 			"\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
384 			"This indicates a broken bootloader or old kernel\n",
385 			boot_args[1], boot_args[2], boot_args[3]);
386 	}
387 }
388 
cpu_can_disable(unsigned int cpu)389 static inline bool cpu_can_disable(unsigned int cpu)
390 {
391 #ifdef CONFIG_HOTPLUG_CPU
392 	const struct cpu_operations *ops = get_cpu_ops(cpu);
393 
394 	if (ops && ops->cpu_can_disable)
395 		return ops->cpu_can_disable(cpu);
396 #endif
397 	return false;
398 }
399 
topology_init(void)400 static int __init topology_init(void)
401 {
402 	int i;
403 
404 	for_each_online_node(i)
405 		register_one_node(i);
406 
407 	for_each_possible_cpu(i) {
408 		struct cpu *cpu = &per_cpu(cpu_data.cpu, i);
409 		cpu->hotpluggable = cpu_can_disable(i);
410 		register_cpu(cpu, i);
411 	}
412 
413 	return 0;
414 }
415 subsys_initcall(topology_init);
416 
dump_kernel_offset(void)417 static void dump_kernel_offset(void)
418 {
419 	const unsigned long offset = kaslr_offset();
420 
421 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
422 		pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
423 			 offset, KIMAGE_VADDR);
424 		pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
425 	} else {
426 		pr_emerg("Kernel Offset: disabled\n");
427 	}
428 }
429 
arm64_panic_block_dump(struct notifier_block * self,unsigned long v,void * p)430 static int arm64_panic_block_dump(struct notifier_block *self,
431 				  unsigned long v, void *p)
432 {
433 	dump_kernel_offset();
434 	dump_cpu_features();
435 	dump_mem_limit();
436 	return 0;
437 }
438 
439 static struct notifier_block arm64_panic_block = {
440 	.notifier_call = arm64_panic_block_dump
441 };
442 
register_arm64_panic_block(void)443 static int __init register_arm64_panic_block(void)
444 {
445 	atomic_notifier_chain_register(&panic_notifier_list,
446 				       &arm64_panic_block);
447 	return 0;
448 }
449 device_initcall(register_arm64_panic_block);
450 
kvm_arm_init_hyp_services(void)451 void kvm_arm_init_hyp_services(void)
452 {
453 	kvm_init_ioremap_services();
454 	kvm_init_memshare_services();
455 }
456