• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Page table support for the Hexagon architecture
4  *
5  * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
6  */
7 
8 #ifndef _ASM_PGTABLE_H
9 #define _ASM_PGTABLE_H
10 
11 /*
12  * Page table definitions for Qualcomm Hexagon processor.
13  */
14 #include <asm/page.h>
15 #include <asm-generic/pgtable-nopmd.h>
16 
17 /* A handy thing to have if one has the RAM. Declared in head.S */
18 extern unsigned long empty_zero_page;
19 
20 /*
21  * The PTE model described here is that of the Hexagon Virtual Machine,
22  * which autonomously walks 2-level page tables.  At a lower level, we
23  * also describe the RISCish software-loaded TLB entry structure of
24  * the underlying Hexagon processor. A kernel built to run on the
25  * virtual machine has no need to know about the underlying hardware.
26  */
27 #include <asm/vm_mmu.h>
28 
29 /*
30  * To maximize the comfort level for the PTE manipulation macros,
31  * define the "well known" architecture-specific bits.
32  */
33 #define _PAGE_READ	__HVM_PTE_R
34 #define _PAGE_WRITE	__HVM_PTE_W
35 #define _PAGE_EXECUTE	__HVM_PTE_X
36 #define _PAGE_USER	__HVM_PTE_U
37 
38 /*
39  * We have a total of 4 "soft" bits available in the abstract PTE.
40  * The two mandatory software bits are Dirty and Accessed.
41  * To make nonlinear swap work according to the more recent
42  * model, we want a low order "Present" bit to indicate whether
43  * the PTE describes MMU programming or swap space.
44  */
45 #define _PAGE_PRESENT	(1<<0)
46 #define _PAGE_DIRTY	(1<<1)
47 #define _PAGE_ACCESSED	(1<<2)
48 
49 /*
50  * For now, let's say that Valid and Present are the same thing.
51  * Alternatively, we could say that it's the "or" of R, W, and X
52  * permissions.
53  */
54 #define _PAGE_VALID	_PAGE_PRESENT
55 
56 /*
57  * We're not defining _PAGE_GLOBAL here, since there's no concept
58  * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
59  * and we want to use the same page table structures and macros in
60  * the native kernel as we do in the virtual machine kernel.
61  * So we'll put up with a bit of inefficiency for now...
62  */
63 
64 /*
65  * Top "FOURTH" level (pgd), which for the Hexagon VM is really
66  * only the second from the bottom, pgd and pud both being collapsed.
67  * Each entry represents 4MB of virtual address space, 4K of table
68  * thus maps the full 4GB.
69  */
70 #define PGDIR_SHIFT 22
71 #define PTRS_PER_PGD 1024
72 
73 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
74 #define PGDIR_MASK (~(PGDIR_SIZE-1))
75 
76 #ifdef CONFIG_PAGE_SIZE_4KB
77 #define PTRS_PER_PTE 1024
78 #endif
79 
80 #ifdef CONFIG_PAGE_SIZE_16KB
81 #define PTRS_PER_PTE 256
82 #endif
83 
84 #ifdef CONFIG_PAGE_SIZE_64KB
85 #define PTRS_PER_PTE 64
86 #endif
87 
88 #ifdef CONFIG_PAGE_SIZE_256KB
89 #define PTRS_PER_PTE 16
90 #endif
91 
92 #ifdef CONFIG_PAGE_SIZE_1MB
93 #define PTRS_PER_PTE 4
94 #endif
95 
96 /*  Any bigger and the PTE disappears.  */
97 #define pgd_ERROR(e) \
98 	printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
99 		pgd_val(e))
100 
101 /*
102  * Page Protection Constants. Includes (in this variant) cache attributes.
103  */
104 extern unsigned long _dflt_cache_att;
105 
106 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
107 				_dflt_cache_att)
108 #define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
109 				_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
110 #define PAGE_COPY	PAGE_READONLY
111 #define PAGE_EXEC	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
112 				_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
113 #define PAGE_COPY_EXEC	PAGE_EXEC
114 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
115 				_PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
116 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | \
117 				_PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
118 
119 
120 /*
121  * Aliases for mapping mmap() protection bits to page protections.
122  * These get used for static initialization, so using the _dflt_cache_att
123  * variable for the default cache attribute isn't workable. If the
124  * default gets changed at boot time, the boot option code has to
125  * update data structures like the protaction_map[] array.
126  */
127 #define CACHEDEF	(CACHE_DEFAULT << 6)
128 
129 /* Private (copy-on-write) page protections. */
130 #define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF)
131 #define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF)
132 #define __P010 __P000	/* Write-only copy-on-write */
133 #define __P011 __P001	/* Read/Write copy-on-write */
134 #define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
135 			_PAGE_EXECUTE | CACHEDEF)
136 #define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \
137 			_PAGE_READ | CACHEDEF)
138 #define __P110 __P100	/* Write/execute copy-on-write */
139 #define __P111 __P101	/* Read/Write/Execute, copy-on-write */
140 
141 /* Shared page protections. */
142 #define __S000 __P000
143 #define __S001 __P001
144 #define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
145 			_PAGE_WRITE | CACHEDEF)
146 #define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
147 			_PAGE_WRITE | CACHEDEF)
148 #define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
149 			_PAGE_EXECUTE | CACHEDEF)
150 #define __S101 __P101
151 #define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
152 			_PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
153 #define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
154 			_PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
155 
156 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];  /* located in head.S */
157 
158 /*  HUGETLB not working currently  */
159 #ifdef CONFIG_HUGETLB_PAGE
160 #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
161 #endif
162 
163 /*
164  * For now, assume that higher-level code will do TLB/MMU invalidations
165  * and don't insert that overhead into this low-level function.
166  */
167 extern void sync_icache_dcache(pte_t pte);
168 
169 #define pte_present_exec_user(pte) \
170 	((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
171 	(_PAGE_EXECUTE | _PAGE_USER))
172 
set_pte(pte_t * ptep,pte_t pteval)173 static inline void set_pte(pte_t *ptep, pte_t pteval)
174 {
175 	/*  should really be using pte_exec, if it weren't declared later. */
176 	if (pte_present_exec_user(pteval))
177 		sync_icache_dcache(pteval);
178 
179 	*ptep = pteval;
180 }
181 
182 /*
183  * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
184  * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
185  * (Linux PTE), the key is to have bits 11..9 all zero.  We'd use 0x7
186  * as a universal null entry, but some of those least significant bits
187  * are interpreted by software.
188  */
189 #define _NULL_PMD	0x7
190 #define _NULL_PTE	0x0
191 
pmd_clear(pmd_t * pmd_entry_ptr)192 static inline void pmd_clear(pmd_t *pmd_entry_ptr)
193 {
194 	 pmd_val(*pmd_entry_ptr) = _NULL_PMD;
195 }
196 
197 /*
198  * Conveniently, a null PTE value is invalid.
199  */
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)200 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
201 				pte_t *ptep)
202 {
203 	pte_val(*ptep) = _NULL_PTE;
204 }
205 
206 /**
207  * pmd_none - check if pmd_entry is mapped
208  * @pmd_entry:  pmd entry
209  *
210  * MIPS checks it against that "invalid pte table" thing.
211  */
pmd_none(pmd_t pmd)212 static inline int pmd_none(pmd_t pmd)
213 {
214 	return pmd_val(pmd) == _NULL_PMD;
215 }
216 
217 /**
218  * pmd_present - is there a page table behind this?
219  * Essentially the inverse of pmd_none.  We maybe
220  * save an inline instruction by defining it this
221  * way, instead of simply "!pmd_none".
222  */
pmd_present(pmd_t pmd)223 static inline int pmd_present(pmd_t pmd)
224 {
225 	return pmd_val(pmd) != (unsigned long)_NULL_PMD;
226 }
227 
228 /**
229  * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
230  * As we have no known cause of badness, it's null, as it is for many
231  * architectures.
232  */
pmd_bad(pmd_t pmd)233 static inline int pmd_bad(pmd_t pmd)
234 {
235 	return 0;
236 }
237 
238 /*
239  * pmd_page - converts a PMD entry to a page pointer
240  */
241 #define pmd_page(pmd)  (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
242 
243 /**
244  * pte_none - check if pte is mapped
245  * @pte: pte_t entry
246  */
pte_none(pte_t pte)247 static inline int pte_none(pte_t pte)
248 {
249 	return pte_val(pte) == _NULL_PTE;
250 };
251 
252 /*
253  * pte_present - check if page is present
254  */
pte_present(pte_t pte)255 static inline int pte_present(pte_t pte)
256 {
257 	return pte_val(pte) & _PAGE_PRESENT;
258 }
259 
260 /* mk_pte - make a PTE out of a page pointer and protection bits */
261 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
262 
263 /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
264 #define pte_page(x) pfn_to_page(pte_pfn(x))
265 
266 /* pte_mkold - mark PTE as not recently accessed */
pte_mkold(pte_t pte)267 static inline pte_t pte_mkold(pte_t pte)
268 {
269 	pte_val(pte) &= ~_PAGE_ACCESSED;
270 	return pte;
271 }
272 
273 /* pte_mkyoung - mark PTE as recently accessed */
pte_mkyoung(pte_t pte)274 static inline pte_t pte_mkyoung(pte_t pte)
275 {
276 	pte_val(pte) |= _PAGE_ACCESSED;
277 	return pte;
278 }
279 
280 /* pte_mkclean - mark page as in sync with backing store */
pte_mkclean(pte_t pte)281 static inline pte_t pte_mkclean(pte_t pte)
282 {
283 	pte_val(pte) &= ~_PAGE_DIRTY;
284 	return pte;
285 }
286 
287 /* pte_mkdirty - mark page as modified */
pte_mkdirty(pte_t pte)288 static inline pte_t pte_mkdirty(pte_t pte)
289 {
290 	pte_val(pte) |= _PAGE_DIRTY;
291 	return pte;
292 }
293 
294 /* pte_young - "is PTE marked as accessed"? */
pte_young(pte_t pte)295 static inline int pte_young(pte_t pte)
296 {
297 	return pte_val(pte) & _PAGE_ACCESSED;
298 }
299 
300 /* pte_dirty - "is PTE dirty?" */
pte_dirty(pte_t pte)301 static inline int pte_dirty(pte_t pte)
302 {
303 	return pte_val(pte) & _PAGE_DIRTY;
304 }
305 
306 /* pte_modify - set protection bits on PTE */
pte_modify(pte_t pte,pgprot_t prot)307 static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
308 {
309 	pte_val(pte) &= PAGE_MASK;
310 	pte_val(pte) |= pgprot_val(prot);
311 	return pte;
312 }
313 
314 /* pte_wrprotect - mark page as not writable */
pte_wrprotect(pte_t pte)315 static inline pte_t pte_wrprotect(pte_t pte)
316 {
317 	pte_val(pte) &= ~_PAGE_WRITE;
318 	return pte;
319 }
320 
321 /* pte_mkwrite - mark page as writable */
pte_mkwrite(pte_t pte)322 static inline pte_t pte_mkwrite(pte_t pte)
323 {
324 	pte_val(pte) |= _PAGE_WRITE;
325 	return pte;
326 }
327 
328 /* pte_mkexec - mark PTE as executable */
pte_mkexec(pte_t pte)329 static inline pte_t pte_mkexec(pte_t pte)
330 {
331 	pte_val(pte) |= _PAGE_EXECUTE;
332 	return pte;
333 }
334 
335 /* pte_read - "is PTE marked as readable?" */
pte_read(pte_t pte)336 static inline int pte_read(pte_t pte)
337 {
338 	return pte_val(pte) & _PAGE_READ;
339 }
340 
341 /* pte_write - "is PTE marked as writable?" */
pte_write(pte_t pte)342 static inline int pte_write(pte_t pte)
343 {
344 	return pte_val(pte) & _PAGE_WRITE;
345 }
346 
347 
348 /* pte_exec - "is PTE marked as executable?" */
pte_exec(pte_t pte)349 static inline int pte_exec(pte_t pte)
350 {
351 	return pte_val(pte) & _PAGE_EXECUTE;
352 }
353 
354 /* __pte_to_swp_entry - extract swap entry from PTE */
355 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
356 
357 /* __swp_entry_to_pte - extract PTE from swap entry */
358 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
359 
360 /* pfn_pte - convert page number and protection value to page table entry */
361 #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
362 
363 /* pte_pfn - convert pte to page frame number */
364 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
365 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
366 
367 /*
368  * set_pte_at - update page table and do whatever magic may be
369  * necessary to make the underlying hardware/firmware take note.
370  *
371  * VM may require a virtual instruction to alert the MMU.
372  */
373 #define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)
374 
pmd_page_vaddr(pmd_t pmd)375 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
376 {
377 	return (unsigned long)__va(pmd_val(pmd) & PAGE_MASK);
378 }
379 
380 /* ZERO_PAGE - returns the globally shared zero page */
381 #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
382 
383 /*
384  * Swap/file PTE definitions.  If _PAGE_PRESENT is zero, the rest of the PTE is
385  * interpreted as swap information.  The remaining free bits are interpreted as
386  * swap type/offset tuple.  Rather than have the TLB fill handler test
387  * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to
388  * all zeros for swap entries, which speeds up the miss handler at the cost of
389  * 3 bits of offset.  That trade-off can be revisited if necessary, but Hexagon
390  * processor architecture and target applications suggest a lot of TLB misses
391  * and not much swap space.
392  *
393  * Format of swap PTE:
394  *	bit	0:	Present (zero)
395  *	bits	1-5:	swap type (arch independent layer uses 5 bits max)
396  *	bits	6-9:	bits 3:0 of offset
397  *	bits	10-12:	effectively _PAGE_PROTNONE (all zero)
398  *	bits	13-31:  bits 22:4 of swap offset
399  *
400  * The split offset makes some of the following macros a little gnarly,
401  * but there's plenty of precedent for this sort of thing.
402  */
403 
404 /* Used for swap PTEs */
405 #define __swp_type(swp_pte)		(((swp_pte).val >> 1) & 0x1f)
406 
407 #define __swp_offset(swp_pte) \
408 	((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0))
409 
410 #define __swp_entry(type, offset) \
411 	((swp_entry_t)	{ \
412 		((type << 1) | \
413 		 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) })
414 
415 #endif
416