1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * This file contains NUMA specific variables and functions which are used on
7 * NUMA machines with contiguous memory.
8 * 2002/08/07 Erich Focht <efocht@ess.nec.de>
9 * Populate cpu entries in sysfs for non-numa systems as well
10 * Intel Corporation - Ashok Raj
11 * 02/27/2006 Zhang, Yanmin
12 * Populate cpu cache entries in sysfs for cpu cache info
13 */
14
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/node.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/memblock.h>
22 #include <linux/nodemask.h>
23 #include <linux/notifier.h>
24 #include <linux/export.h>
25 #include <asm/mmzone.h>
26 #include <asm/numa.h>
27 #include <asm/cpu.h>
28
29 static struct ia64_cpu *sysfs_cpus;
30
arch_fix_phys_package_id(int num,u32 slot)31 void arch_fix_phys_package_id(int num, u32 slot)
32 {
33 #ifdef CONFIG_SMP
34 if (cpu_data(num)->socket_id == -1)
35 cpu_data(num)->socket_id = slot;
36 #endif
37 }
38 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
39
40
41 #ifdef CONFIG_HOTPLUG_CPU
arch_register_cpu(int num)42 int __ref arch_register_cpu(int num)
43 {
44 /*
45 * If CPEI can be re-targeted or if this is not
46 * CPEI target, then it is hotpluggable
47 */
48 if (can_cpei_retarget() || !is_cpu_cpei_target(num))
49 sysfs_cpus[num].cpu.hotpluggable = 1;
50 map_cpu_to_node(num, node_cpuid[num].nid);
51 return register_cpu(&sysfs_cpus[num].cpu, num);
52 }
53 EXPORT_SYMBOL(arch_register_cpu);
54
arch_unregister_cpu(int num)55 void __ref arch_unregister_cpu(int num)
56 {
57 unregister_cpu(&sysfs_cpus[num].cpu);
58 unmap_cpu_from_node(num, cpu_to_node(num));
59 }
60 EXPORT_SYMBOL(arch_unregister_cpu);
61 #else
arch_register_cpu(int num)62 static int __init arch_register_cpu(int num)
63 {
64 return register_cpu(&sysfs_cpus[num].cpu, num);
65 }
66 #endif /*CONFIG_HOTPLUG_CPU*/
67
68
topology_init(void)69 static int __init topology_init(void)
70 {
71 int i, err = 0;
72
73 #ifdef CONFIG_NUMA
74 /*
75 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
76 */
77 for_each_online_node(i) {
78 if ((err = register_one_node(i)))
79 goto out;
80 }
81 #endif
82
83 sysfs_cpus = kcalloc(NR_CPUS, sizeof(struct ia64_cpu), GFP_KERNEL);
84 if (!sysfs_cpus)
85 panic("kzalloc in topology_init failed - NR_CPUS too big?");
86
87 for_each_present_cpu(i) {
88 if((err = arch_register_cpu(i)))
89 goto out;
90 }
91 out:
92 return err;
93 }
94
95 subsys_initcall(topology_init);
96
97
98 /*
99 * Export cpu cache information through sysfs
100 */
101
102 /*
103 * A bunch of string array to get pretty printing
104 */
105 static const char *cache_types[] = {
106 "", /* not used */
107 "Instruction",
108 "Data",
109 "Unified" /* unified */
110 };
111
112 static const char *cache_mattrib[]={
113 "WriteThrough",
114 "WriteBack",
115 "", /* reserved */
116 "" /* reserved */
117 };
118
119 struct cache_info {
120 pal_cache_config_info_t cci;
121 cpumask_t shared_cpu_map;
122 int level;
123 int type;
124 struct kobject kobj;
125 };
126
127 struct cpu_cache_info {
128 struct cache_info *cache_leaves;
129 int num_cache_leaves;
130 struct kobject kobj;
131 };
132
133 static struct cpu_cache_info all_cpu_cache_info[NR_CPUS];
134 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y])
135
136 #ifdef CONFIG_SMP
cache_shared_cpu_map_setup(unsigned int cpu,struct cache_info * this_leaf)137 static void cache_shared_cpu_map_setup(unsigned int cpu,
138 struct cache_info * this_leaf)
139 {
140 pal_cache_shared_info_t csi;
141 int num_shared, i = 0;
142 unsigned int j;
143
144 if (cpu_data(cpu)->threads_per_core <= 1 &&
145 cpu_data(cpu)->cores_per_socket <= 1) {
146 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
147 return;
148 }
149
150 if (ia64_pal_cache_shared_info(this_leaf->level,
151 this_leaf->type,
152 0,
153 &csi) != PAL_STATUS_SUCCESS)
154 return;
155
156 num_shared = (int) csi.num_shared;
157 do {
158 for_each_possible_cpu(j)
159 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
160 && cpu_data(j)->core_id == csi.log1_cid
161 && cpu_data(j)->thread_id == csi.log1_tid)
162 cpumask_set_cpu(j, &this_leaf->shared_cpu_map);
163
164 i++;
165 } while (i < num_shared &&
166 ia64_pal_cache_shared_info(this_leaf->level,
167 this_leaf->type,
168 i,
169 &csi) == PAL_STATUS_SUCCESS);
170 }
171 #else
cache_shared_cpu_map_setup(unsigned int cpu,struct cache_info * this_leaf)172 static void cache_shared_cpu_map_setup(unsigned int cpu,
173 struct cache_info * this_leaf)
174 {
175 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
176 return;
177 }
178 #endif
179
show_coherency_line_size(struct cache_info * this_leaf,char * buf)180 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
181 char *buf)
182 {
183 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
184 }
185
show_ways_of_associativity(struct cache_info * this_leaf,char * buf)186 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
187 char *buf)
188 {
189 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
190 }
191
show_attributes(struct cache_info * this_leaf,char * buf)192 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
193 {
194 return sprintf(buf,
195 "%s\n",
196 cache_mattrib[this_leaf->cci.pcci_cache_attr]);
197 }
198
show_size(struct cache_info * this_leaf,char * buf)199 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
200 {
201 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
202 }
203
show_number_of_sets(struct cache_info * this_leaf,char * buf)204 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
205 {
206 unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
207 number_of_sets /= this_leaf->cci.pcci_assoc;
208 number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
209
210 return sprintf(buf, "%u\n", number_of_sets);
211 }
212
show_shared_cpu_map(struct cache_info * this_leaf,char * buf)213 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
214 {
215 cpumask_t shared_cpu_map;
216
217 cpumask_and(&shared_cpu_map,
218 &this_leaf->shared_cpu_map, cpu_online_mask);
219 return scnprintf(buf, PAGE_SIZE, "%*pb\n",
220 cpumask_pr_args(&shared_cpu_map));
221 }
222
show_type(struct cache_info * this_leaf,char * buf)223 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
224 {
225 int type = this_leaf->type + this_leaf->cci.pcci_unified;
226 return sprintf(buf, "%s\n", cache_types[type]);
227 }
228
show_level(struct cache_info * this_leaf,char * buf)229 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
230 {
231 return sprintf(buf, "%u\n", this_leaf->level);
232 }
233
234 struct cache_attr {
235 struct attribute attr;
236 ssize_t (*show)(struct cache_info *, char *);
237 ssize_t (*store)(struct cache_info *, const char *, size_t count);
238 };
239
240 #ifdef define_one_ro
241 #undef define_one_ro
242 #endif
243 #define define_one_ro(_name) \
244 static struct cache_attr _name = \
245 __ATTR(_name, 0444, show_##_name, NULL)
246
247 define_one_ro(level);
248 define_one_ro(type);
249 define_one_ro(coherency_line_size);
250 define_one_ro(ways_of_associativity);
251 define_one_ro(size);
252 define_one_ro(number_of_sets);
253 define_one_ro(shared_cpu_map);
254 define_one_ro(attributes);
255
256 static struct attribute * cache_default_attrs[] = {
257 &type.attr,
258 &level.attr,
259 &coherency_line_size.attr,
260 &ways_of_associativity.attr,
261 &attributes.attr,
262 &size.attr,
263 &number_of_sets.attr,
264 &shared_cpu_map.attr,
265 NULL
266 };
267
268 #define to_object(k) container_of(k, struct cache_info, kobj)
269 #define to_attr(a) container_of(a, struct cache_attr, attr)
270
ia64_cache_show(struct kobject * kobj,struct attribute * attr,char * buf)271 static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
272 {
273 struct cache_attr *fattr = to_attr(attr);
274 struct cache_info *this_leaf = to_object(kobj);
275 ssize_t ret;
276
277 ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
278 return ret;
279 }
280
281 static const struct sysfs_ops cache_sysfs_ops = {
282 .show = ia64_cache_show
283 };
284
285 static struct kobj_type cache_ktype = {
286 .sysfs_ops = &cache_sysfs_ops,
287 .default_attrs = cache_default_attrs,
288 };
289
290 static struct kobj_type cache_ktype_percpu_entry = {
291 .sysfs_ops = &cache_sysfs_ops,
292 };
293
cpu_cache_sysfs_exit(unsigned int cpu)294 static void cpu_cache_sysfs_exit(unsigned int cpu)
295 {
296 kfree(all_cpu_cache_info[cpu].cache_leaves);
297 all_cpu_cache_info[cpu].cache_leaves = NULL;
298 all_cpu_cache_info[cpu].num_cache_leaves = 0;
299 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
300 return;
301 }
302
cpu_cache_sysfs_init(unsigned int cpu)303 static int cpu_cache_sysfs_init(unsigned int cpu)
304 {
305 unsigned long i, levels, unique_caches;
306 pal_cache_config_info_t cci;
307 int j;
308 long status;
309 struct cache_info *this_cache;
310 int num_cache_leaves = 0;
311
312 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
313 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
314 return -1;
315 }
316
317 this_cache=kcalloc(unique_caches, sizeof(struct cache_info),
318 GFP_KERNEL);
319 if (this_cache == NULL)
320 return -ENOMEM;
321
322 for (i=0; i < levels; i++) {
323 for (j=2; j >0 ; j--) {
324 if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
325 PAL_STATUS_SUCCESS)
326 continue;
327
328 this_cache[num_cache_leaves].cci = cci;
329 this_cache[num_cache_leaves].level = i + 1;
330 this_cache[num_cache_leaves].type = j;
331
332 cache_shared_cpu_map_setup(cpu,
333 &this_cache[num_cache_leaves]);
334 num_cache_leaves ++;
335 }
336 }
337
338 all_cpu_cache_info[cpu].cache_leaves = this_cache;
339 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
340
341 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
342
343 return 0;
344 }
345
346 /* Add cache interface for CPU device */
cache_add_dev(unsigned int cpu)347 static int cache_add_dev(unsigned int cpu)
348 {
349 struct device *sys_dev = get_cpu_device(cpu);
350 unsigned long i, j;
351 struct cache_info *this_object;
352 int retval = 0;
353
354 if (all_cpu_cache_info[cpu].kobj.parent)
355 return 0;
356
357
358 retval = cpu_cache_sysfs_init(cpu);
359 if (unlikely(retval < 0))
360 return retval;
361
362 retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
363 &cache_ktype_percpu_entry, &sys_dev->kobj,
364 "%s", "cache");
365 if (unlikely(retval < 0)) {
366 cpu_cache_sysfs_exit(cpu);
367 return retval;
368 }
369
370 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
371 this_object = LEAF_KOBJECT_PTR(cpu,i);
372 retval = kobject_init_and_add(&(this_object->kobj),
373 &cache_ktype,
374 &all_cpu_cache_info[cpu].kobj,
375 "index%1lu", i);
376 if (unlikely(retval)) {
377 for (j = 0; j < i; j++) {
378 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
379 }
380 kobject_put(&all_cpu_cache_info[cpu].kobj);
381 cpu_cache_sysfs_exit(cpu);
382 return retval;
383 }
384 kobject_uevent(&(this_object->kobj), KOBJ_ADD);
385 }
386 kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
387 return retval;
388 }
389
390 /* Remove cache interface for CPU device */
cache_remove_dev(unsigned int cpu)391 static int cache_remove_dev(unsigned int cpu)
392 {
393 unsigned long i;
394
395 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
396 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
397
398 if (all_cpu_cache_info[cpu].kobj.parent) {
399 kobject_put(&all_cpu_cache_info[cpu].kobj);
400 memset(&all_cpu_cache_info[cpu].kobj,
401 0,
402 sizeof(struct kobject));
403 }
404
405 cpu_cache_sysfs_exit(cpu);
406
407 return 0;
408 }
409
cache_sysfs_init(void)410 static int __init cache_sysfs_init(void)
411 {
412 int ret;
413
414 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/topology:online",
415 cache_add_dev, cache_remove_dev);
416 WARN_ON(ret < 0);
417 return 0;
418 }
419 device_initcall(cache_sysfs_init);
420