1 /*
2 * Just-In-Time compiler for BPF filters on MIPS
3 *
4 * Copyright (c) 2014 Imagination Technologies Ltd.
5 * Author: Markos Chandras <markos.chandras@imgtec.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License as published by the
9 * Free Software Foundation; version 2 of the License.
10 */
11
12 #include <linux/bitops.h>
13 #include <linux/compiler.h>
14 #include <linux/errno.h>
15 #include <linux/filter.h>
16 #include <linux/if_vlan.h>
17 #include <linux/moduleloader.h>
18 #include <linux/netdevice.h>
19 #include <linux/string.h>
20 #include <linux/slab.h>
21 #include <linux/types.h>
22 #include <asm/asm.h>
23 #include <asm/bitops.h>
24 #include <asm/cacheflush.h>
25 #include <asm/cpu-features.h>
26 #include <asm/uasm.h>
27
28 #include "bpf_jit.h"
29
30 /* ABI
31 * r_skb_hl SKB header length
32 * r_data SKB data pointer
33 * r_off Offset
34 * r_A BPF register A
35 * r_X BPF register X
36 * r_skb *skb
37 * r_M *scratch memory
38 * r_skb_len SKB length
39 *
40 * On entry (*bpf_func)(*skb, *filter)
41 * a0 = MIPS_R_A0 = skb;
42 * a1 = MIPS_R_A1 = filter;
43 *
44 * Stack
45 * ...
46 * M[15]
47 * M[14]
48 * M[13]
49 * ...
50 * M[0] <-- r_M
51 * saved reg k-1
52 * saved reg k-2
53 * ...
54 * saved reg 0 <-- r_sp
55 * <no argument area>
56 *
57 * Packet layout
58 *
59 * <--------------------- len ------------------------>
60 * <--skb-len(r_skb_hl)-->< ----- skb->data_len ------>
61 * ----------------------------------------------------
62 * | skb->data |
63 * ----------------------------------------------------
64 */
65
66 #define ptr typeof(unsigned long)
67
68 #define SCRATCH_OFF(k) (4 * (k))
69
70 /* JIT flags */
71 #define SEEN_CALL (1 << BPF_MEMWORDS)
72 #define SEEN_SREG_SFT (BPF_MEMWORDS + 1)
73 #define SEEN_SREG_BASE (1 << SEEN_SREG_SFT)
74 #define SEEN_SREG(x) (SEEN_SREG_BASE << (x))
75 #define SEEN_OFF SEEN_SREG(2)
76 #define SEEN_A SEEN_SREG(3)
77 #define SEEN_X SEEN_SREG(4)
78 #define SEEN_SKB SEEN_SREG(5)
79 #define SEEN_MEM SEEN_SREG(6)
80 /* SEEN_SK_DATA also implies skb_hl an skb_len */
81 #define SEEN_SKB_DATA (SEEN_SREG(7) | SEEN_SREG(1) | SEEN_SREG(0))
82
83 /* Arguments used by JIT */
84 #define ARGS_USED_BY_JIT 2 /* only applicable to 64-bit */
85
86 #define SBIT(x) (1 << (x)) /* Signed version of BIT() */
87
88 /**
89 * struct jit_ctx - JIT context
90 * @skf: The sk_filter
91 * @prologue_bytes: Number of bytes for prologue
92 * @idx: Instruction index
93 * @flags: JIT flags
94 * @offsets: Instruction offsets
95 * @target: Memory location for the compiled filter
96 */
97 struct jit_ctx {
98 const struct bpf_prog *skf;
99 unsigned int prologue_bytes;
100 u32 idx;
101 u32 flags;
102 u32 *offsets;
103 u32 *target;
104 };
105
106
optimize_div(u32 * k)107 static inline int optimize_div(u32 *k)
108 {
109 /* power of 2 divides can be implemented with right shift */
110 if (!(*k & (*k-1))) {
111 *k = ilog2(*k);
112 return 1;
113 }
114
115 return 0;
116 }
117
118 static inline void emit_jit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx);
119
120 /* Simply emit the instruction if the JIT memory space has been allocated */
121 #define emit_instr(ctx, func, ...) \
122 do { \
123 if ((ctx)->target != NULL) { \
124 u32 *p = &(ctx)->target[ctx->idx]; \
125 uasm_i_##func(&p, ##__VA_ARGS__); \
126 } \
127 (ctx)->idx++; \
128 } while (0)
129
130 /*
131 * Similar to emit_instr but it must be used when we need to emit
132 * 32-bit or 64-bit instructions
133 */
134 #define emit_long_instr(ctx, func, ...) \
135 do { \
136 if ((ctx)->target != NULL) { \
137 u32 *p = &(ctx)->target[ctx->idx]; \
138 UASM_i_##func(&p, ##__VA_ARGS__); \
139 } \
140 (ctx)->idx++; \
141 } while (0)
142
143 /* Determine if immediate is within the 16-bit signed range */
is_range16(s32 imm)144 static inline bool is_range16(s32 imm)
145 {
146 return !(imm >= SBIT(15) || imm < -SBIT(15));
147 }
148
emit_addu(unsigned int dst,unsigned int src1,unsigned int src2,struct jit_ctx * ctx)149 static inline void emit_addu(unsigned int dst, unsigned int src1,
150 unsigned int src2, struct jit_ctx *ctx)
151 {
152 emit_instr(ctx, addu, dst, src1, src2);
153 }
154
emit_nop(struct jit_ctx * ctx)155 static inline void emit_nop(struct jit_ctx *ctx)
156 {
157 emit_instr(ctx, nop);
158 }
159
160 /* Load a u32 immediate to a register */
emit_load_imm(unsigned int dst,u32 imm,struct jit_ctx * ctx)161 static inline void emit_load_imm(unsigned int dst, u32 imm, struct jit_ctx *ctx)
162 {
163 if (ctx->target != NULL) {
164 /* addiu can only handle s16 */
165 if (!is_range16(imm)) {
166 u32 *p = &ctx->target[ctx->idx];
167 uasm_i_lui(&p, r_tmp_imm, (s32)imm >> 16);
168 p = &ctx->target[ctx->idx + 1];
169 uasm_i_ori(&p, dst, r_tmp_imm, imm & 0xffff);
170 } else {
171 u32 *p = &ctx->target[ctx->idx];
172 uasm_i_addiu(&p, dst, r_zero, imm);
173 }
174 }
175 ctx->idx++;
176
177 if (!is_range16(imm))
178 ctx->idx++;
179 }
180
emit_or(unsigned int dst,unsigned int src1,unsigned int src2,struct jit_ctx * ctx)181 static inline void emit_or(unsigned int dst, unsigned int src1,
182 unsigned int src2, struct jit_ctx *ctx)
183 {
184 emit_instr(ctx, or, dst, src1, src2);
185 }
186
emit_ori(unsigned int dst,unsigned src,u32 imm,struct jit_ctx * ctx)187 static inline void emit_ori(unsigned int dst, unsigned src, u32 imm,
188 struct jit_ctx *ctx)
189 {
190 if (imm >= BIT(16)) {
191 emit_load_imm(r_tmp, imm, ctx);
192 emit_or(dst, src, r_tmp, ctx);
193 } else {
194 emit_instr(ctx, ori, dst, src, imm);
195 }
196 }
197
emit_daddiu(unsigned int dst,unsigned int src,int imm,struct jit_ctx * ctx)198 static inline void emit_daddiu(unsigned int dst, unsigned int src,
199 int imm, struct jit_ctx *ctx)
200 {
201 /*
202 * Only used for stack, so the imm is relatively small
203 * and it fits in 15-bits
204 */
205 emit_instr(ctx, daddiu, dst, src, imm);
206 }
207
emit_addiu(unsigned int dst,unsigned int src,u32 imm,struct jit_ctx * ctx)208 static inline void emit_addiu(unsigned int dst, unsigned int src,
209 u32 imm, struct jit_ctx *ctx)
210 {
211 if (!is_range16(imm)) {
212 emit_load_imm(r_tmp, imm, ctx);
213 emit_addu(dst, r_tmp, src, ctx);
214 } else {
215 emit_instr(ctx, addiu, dst, src, imm);
216 }
217 }
218
emit_and(unsigned int dst,unsigned int src1,unsigned int src2,struct jit_ctx * ctx)219 static inline void emit_and(unsigned int dst, unsigned int src1,
220 unsigned int src2, struct jit_ctx *ctx)
221 {
222 emit_instr(ctx, and, dst, src1, src2);
223 }
224
emit_andi(unsigned int dst,unsigned int src,u32 imm,struct jit_ctx * ctx)225 static inline void emit_andi(unsigned int dst, unsigned int src,
226 u32 imm, struct jit_ctx *ctx)
227 {
228 /* If imm does not fit in u16 then load it to register */
229 if (imm >= BIT(16)) {
230 emit_load_imm(r_tmp, imm, ctx);
231 emit_and(dst, src, r_tmp, ctx);
232 } else {
233 emit_instr(ctx, andi, dst, src, imm);
234 }
235 }
236
emit_xor(unsigned int dst,unsigned int src1,unsigned int src2,struct jit_ctx * ctx)237 static inline void emit_xor(unsigned int dst, unsigned int src1,
238 unsigned int src2, struct jit_ctx *ctx)
239 {
240 emit_instr(ctx, xor, dst, src1, src2);
241 }
242
emit_xori(ptr dst,ptr src,u32 imm,struct jit_ctx * ctx)243 static inline void emit_xori(ptr dst, ptr src, u32 imm, struct jit_ctx *ctx)
244 {
245 /* If imm does not fit in u16 then load it to register */
246 if (imm >= BIT(16)) {
247 emit_load_imm(r_tmp, imm, ctx);
248 emit_xor(dst, src, r_tmp, ctx);
249 } else {
250 emit_instr(ctx, xori, dst, src, imm);
251 }
252 }
253
emit_stack_offset(int offset,struct jit_ctx * ctx)254 static inline void emit_stack_offset(int offset, struct jit_ctx *ctx)
255 {
256 emit_long_instr(ctx, ADDIU, r_sp, r_sp, offset);
257 }
258
emit_subu(unsigned int dst,unsigned int src1,unsigned int src2,struct jit_ctx * ctx)259 static inline void emit_subu(unsigned int dst, unsigned int src1,
260 unsigned int src2, struct jit_ctx *ctx)
261 {
262 emit_instr(ctx, subu, dst, src1, src2);
263 }
264
emit_neg(unsigned int reg,struct jit_ctx * ctx)265 static inline void emit_neg(unsigned int reg, struct jit_ctx *ctx)
266 {
267 emit_subu(reg, r_zero, reg, ctx);
268 }
269
emit_sllv(unsigned int dst,unsigned int src,unsigned int sa,struct jit_ctx * ctx)270 static inline void emit_sllv(unsigned int dst, unsigned int src,
271 unsigned int sa, struct jit_ctx *ctx)
272 {
273 emit_instr(ctx, sllv, dst, src, sa);
274 }
275
emit_sll(unsigned int dst,unsigned int src,unsigned int sa,struct jit_ctx * ctx)276 static inline void emit_sll(unsigned int dst, unsigned int src,
277 unsigned int sa, struct jit_ctx *ctx)
278 {
279 /* sa is 5-bits long */
280 if (sa >= BIT(5))
281 /* Shifting >= 32 results in zero */
282 emit_jit_reg_move(dst, r_zero, ctx);
283 else
284 emit_instr(ctx, sll, dst, src, sa);
285 }
286
emit_srlv(unsigned int dst,unsigned int src,unsigned int sa,struct jit_ctx * ctx)287 static inline void emit_srlv(unsigned int dst, unsigned int src,
288 unsigned int sa, struct jit_ctx *ctx)
289 {
290 emit_instr(ctx, srlv, dst, src, sa);
291 }
292
emit_srl(unsigned int dst,unsigned int src,unsigned int sa,struct jit_ctx * ctx)293 static inline void emit_srl(unsigned int dst, unsigned int src,
294 unsigned int sa, struct jit_ctx *ctx)
295 {
296 /* sa is 5-bits long */
297 if (sa >= BIT(5))
298 /* Shifting >= 32 results in zero */
299 emit_jit_reg_move(dst, r_zero, ctx);
300 else
301 emit_instr(ctx, srl, dst, src, sa);
302 }
303
emit_slt(unsigned int dst,unsigned int src1,unsigned int src2,struct jit_ctx * ctx)304 static inline void emit_slt(unsigned int dst, unsigned int src1,
305 unsigned int src2, struct jit_ctx *ctx)
306 {
307 emit_instr(ctx, slt, dst, src1, src2);
308 }
309
emit_sltu(unsigned int dst,unsigned int src1,unsigned int src2,struct jit_ctx * ctx)310 static inline void emit_sltu(unsigned int dst, unsigned int src1,
311 unsigned int src2, struct jit_ctx *ctx)
312 {
313 emit_instr(ctx, sltu, dst, src1, src2);
314 }
315
emit_sltiu(unsigned dst,unsigned int src,unsigned int imm,struct jit_ctx * ctx)316 static inline void emit_sltiu(unsigned dst, unsigned int src,
317 unsigned int imm, struct jit_ctx *ctx)
318 {
319 /* 16 bit immediate */
320 if (!is_range16((s32)imm)) {
321 emit_load_imm(r_tmp, imm, ctx);
322 emit_sltu(dst, src, r_tmp, ctx);
323 } else {
324 emit_instr(ctx, sltiu, dst, src, imm);
325 }
326
327 }
328
329 /* Store register on the stack */
emit_store_stack_reg(ptr reg,ptr base,unsigned int offset,struct jit_ctx * ctx)330 static inline void emit_store_stack_reg(ptr reg, ptr base,
331 unsigned int offset,
332 struct jit_ctx *ctx)
333 {
334 emit_long_instr(ctx, SW, reg, offset, base);
335 }
336
emit_store(ptr reg,ptr base,unsigned int offset,struct jit_ctx * ctx)337 static inline void emit_store(ptr reg, ptr base, unsigned int offset,
338 struct jit_ctx *ctx)
339 {
340 emit_instr(ctx, sw, reg, offset, base);
341 }
342
emit_load_stack_reg(ptr reg,ptr base,unsigned int offset,struct jit_ctx * ctx)343 static inline void emit_load_stack_reg(ptr reg, ptr base,
344 unsigned int offset,
345 struct jit_ctx *ctx)
346 {
347 emit_long_instr(ctx, LW, reg, offset, base);
348 }
349
emit_load(unsigned int reg,unsigned int base,unsigned int offset,struct jit_ctx * ctx)350 static inline void emit_load(unsigned int reg, unsigned int base,
351 unsigned int offset, struct jit_ctx *ctx)
352 {
353 emit_instr(ctx, lw, reg, offset, base);
354 }
355
emit_load_byte(unsigned int reg,unsigned int base,unsigned int offset,struct jit_ctx * ctx)356 static inline void emit_load_byte(unsigned int reg, unsigned int base,
357 unsigned int offset, struct jit_ctx *ctx)
358 {
359 emit_instr(ctx, lb, reg, offset, base);
360 }
361
emit_half_load(unsigned int reg,unsigned int base,unsigned int offset,struct jit_ctx * ctx)362 static inline void emit_half_load(unsigned int reg, unsigned int base,
363 unsigned int offset, struct jit_ctx *ctx)
364 {
365 emit_instr(ctx, lh, reg, offset, base);
366 }
367
emit_half_load_unsigned(unsigned int reg,unsigned int base,unsigned int offset,struct jit_ctx * ctx)368 static inline void emit_half_load_unsigned(unsigned int reg, unsigned int base,
369 unsigned int offset, struct jit_ctx *ctx)
370 {
371 emit_instr(ctx, lhu, reg, offset, base);
372 }
373
emit_mul(unsigned int dst,unsigned int src1,unsigned int src2,struct jit_ctx * ctx)374 static inline void emit_mul(unsigned int dst, unsigned int src1,
375 unsigned int src2, struct jit_ctx *ctx)
376 {
377 emit_instr(ctx, mul, dst, src1, src2);
378 }
379
emit_div(unsigned int dst,unsigned int src,struct jit_ctx * ctx)380 static inline void emit_div(unsigned int dst, unsigned int src,
381 struct jit_ctx *ctx)
382 {
383 if (ctx->target != NULL) {
384 u32 *p = &ctx->target[ctx->idx];
385 uasm_i_divu(&p, dst, src);
386 p = &ctx->target[ctx->idx + 1];
387 uasm_i_mflo(&p, dst);
388 }
389 ctx->idx += 2; /* 2 insts */
390 }
391
emit_mod(unsigned int dst,unsigned int src,struct jit_ctx * ctx)392 static inline void emit_mod(unsigned int dst, unsigned int src,
393 struct jit_ctx *ctx)
394 {
395 if (ctx->target != NULL) {
396 u32 *p = &ctx->target[ctx->idx];
397 uasm_i_divu(&p, dst, src);
398 p = &ctx->target[ctx->idx + 1];
399 uasm_i_mfhi(&p, dst);
400 }
401 ctx->idx += 2; /* 2 insts */
402 }
403
emit_dsll(unsigned int dst,unsigned int src,unsigned int sa,struct jit_ctx * ctx)404 static inline void emit_dsll(unsigned int dst, unsigned int src,
405 unsigned int sa, struct jit_ctx *ctx)
406 {
407 emit_instr(ctx, dsll, dst, src, sa);
408 }
409
emit_dsrl32(unsigned int dst,unsigned int src,unsigned int sa,struct jit_ctx * ctx)410 static inline void emit_dsrl32(unsigned int dst, unsigned int src,
411 unsigned int sa, struct jit_ctx *ctx)
412 {
413 emit_instr(ctx, dsrl32, dst, src, sa);
414 }
415
emit_wsbh(unsigned int dst,unsigned int src,struct jit_ctx * ctx)416 static inline void emit_wsbh(unsigned int dst, unsigned int src,
417 struct jit_ctx *ctx)
418 {
419 emit_instr(ctx, wsbh, dst, src);
420 }
421
422 /* load pointer to register */
emit_load_ptr(unsigned int dst,unsigned int src,int imm,struct jit_ctx * ctx)423 static inline void emit_load_ptr(unsigned int dst, unsigned int src,
424 int imm, struct jit_ctx *ctx)
425 {
426 /* src contains the base addr of the 32/64-pointer */
427 emit_long_instr(ctx, LW, dst, imm, src);
428 }
429
430 /* load a function pointer to register */
emit_load_func(unsigned int reg,ptr imm,struct jit_ctx * ctx)431 static inline void emit_load_func(unsigned int reg, ptr imm,
432 struct jit_ctx *ctx)
433 {
434 if (IS_ENABLED(CONFIG_64BIT)) {
435 /* At this point imm is always 64-bit */
436 emit_load_imm(r_tmp, (u64)imm >> 32, ctx);
437 emit_dsll(r_tmp_imm, r_tmp, 16, ctx); /* left shift by 16 */
438 emit_ori(r_tmp, r_tmp_imm, (imm >> 16) & 0xffff, ctx);
439 emit_dsll(r_tmp_imm, r_tmp, 16, ctx); /* left shift by 16 */
440 emit_ori(reg, r_tmp_imm, imm & 0xffff, ctx);
441 } else {
442 emit_load_imm(reg, imm, ctx);
443 }
444 }
445
446 /* Move to real MIPS register */
emit_reg_move(ptr dst,ptr src,struct jit_ctx * ctx)447 static inline void emit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx)
448 {
449 emit_long_instr(ctx, ADDU, dst, src, r_zero);
450 }
451
452 /* Move to JIT (32-bit) register */
emit_jit_reg_move(ptr dst,ptr src,struct jit_ctx * ctx)453 static inline void emit_jit_reg_move(ptr dst, ptr src, struct jit_ctx *ctx)
454 {
455 emit_addu(dst, src, r_zero, ctx);
456 }
457
458 /* Compute the immediate value for PC-relative branches. */
b_imm(unsigned int tgt,struct jit_ctx * ctx)459 static inline u32 b_imm(unsigned int tgt, struct jit_ctx *ctx)
460 {
461 if (ctx->target == NULL)
462 return 0;
463
464 /*
465 * We want a pc-relative branch. We only do forward branches
466 * so tgt is always after pc. tgt is the instruction offset
467 * we want to jump to.
468
469 * Branch on MIPS:
470 * I: target_offset <- sign_extend(offset)
471 * I+1: PC += target_offset (delay slot)
472 *
473 * ctx->idx currently points to the branch instruction
474 * but the offset is added to the delay slot so we need
475 * to subtract 4.
476 */
477 return ctx->offsets[tgt] -
478 (ctx->idx * 4 - ctx->prologue_bytes) - 4;
479 }
480
emit_bcond(int cond,unsigned int reg1,unsigned int reg2,unsigned int imm,struct jit_ctx * ctx)481 static inline void emit_bcond(int cond, unsigned int reg1, unsigned int reg2,
482 unsigned int imm, struct jit_ctx *ctx)
483 {
484 if (ctx->target != NULL) {
485 u32 *p = &ctx->target[ctx->idx];
486
487 switch (cond) {
488 case MIPS_COND_EQ:
489 uasm_i_beq(&p, reg1, reg2, imm);
490 break;
491 case MIPS_COND_NE:
492 uasm_i_bne(&p, reg1, reg2, imm);
493 break;
494 case MIPS_COND_ALL:
495 uasm_i_b(&p, imm);
496 break;
497 default:
498 pr_warn("%s: Unhandled branch conditional: %d\n",
499 __func__, cond);
500 }
501 }
502 ctx->idx++;
503 }
504
emit_b(unsigned int imm,struct jit_ctx * ctx)505 static inline void emit_b(unsigned int imm, struct jit_ctx *ctx)
506 {
507 emit_bcond(MIPS_COND_ALL, r_zero, r_zero, imm, ctx);
508 }
509
emit_jalr(unsigned int link,unsigned int reg,struct jit_ctx * ctx)510 static inline void emit_jalr(unsigned int link, unsigned int reg,
511 struct jit_ctx *ctx)
512 {
513 emit_instr(ctx, jalr, link, reg);
514 }
515
emit_jr(unsigned int reg,struct jit_ctx * ctx)516 static inline void emit_jr(unsigned int reg, struct jit_ctx *ctx)
517 {
518 emit_instr(ctx, jr, reg);
519 }
520
align_sp(unsigned int num)521 static inline u16 align_sp(unsigned int num)
522 {
523 /* Double word alignment for 32-bit, quadword for 64-bit */
524 unsigned int align = IS_ENABLED(CONFIG_64BIT) ? 16 : 8;
525 num = (num + (align - 1)) & -align;
526 return num;
527 }
528
save_bpf_jit_regs(struct jit_ctx * ctx,unsigned offset)529 static void save_bpf_jit_regs(struct jit_ctx *ctx, unsigned offset)
530 {
531 int i = 0, real_off = 0;
532 u32 sflags, tmp_flags;
533
534 /* Adjust the stack pointer */
535 if (offset)
536 emit_stack_offset(-align_sp(offset), ctx);
537
538 tmp_flags = sflags = ctx->flags >> SEEN_SREG_SFT;
539 /* sflags is essentially a bitmap */
540 while (tmp_flags) {
541 if ((sflags >> i) & 0x1) {
542 emit_store_stack_reg(MIPS_R_S0 + i, r_sp, real_off,
543 ctx);
544 real_off += SZREG;
545 }
546 i++;
547 tmp_flags >>= 1;
548 }
549
550 /* save return address */
551 if (ctx->flags & SEEN_CALL) {
552 emit_store_stack_reg(r_ra, r_sp, real_off, ctx);
553 real_off += SZREG;
554 }
555
556 /* Setup r_M leaving the alignment gap if necessary */
557 if (ctx->flags & SEEN_MEM) {
558 if (real_off % (SZREG * 2))
559 real_off += SZREG;
560 emit_long_instr(ctx, ADDIU, r_M, r_sp, real_off);
561 }
562 }
563
restore_bpf_jit_regs(struct jit_ctx * ctx,unsigned int offset)564 static void restore_bpf_jit_regs(struct jit_ctx *ctx,
565 unsigned int offset)
566 {
567 int i, real_off = 0;
568 u32 sflags, tmp_flags;
569
570 tmp_flags = sflags = ctx->flags >> SEEN_SREG_SFT;
571 /* sflags is a bitmap */
572 i = 0;
573 while (tmp_flags) {
574 if ((sflags >> i) & 0x1) {
575 emit_load_stack_reg(MIPS_R_S0 + i, r_sp, real_off,
576 ctx);
577 real_off += SZREG;
578 }
579 i++;
580 tmp_flags >>= 1;
581 }
582
583 /* restore return address */
584 if (ctx->flags & SEEN_CALL)
585 emit_load_stack_reg(r_ra, r_sp, real_off, ctx);
586
587 /* Restore the sp and discard the scrach memory */
588 if (offset)
589 emit_stack_offset(align_sp(offset), ctx);
590 }
591
get_stack_depth(struct jit_ctx * ctx)592 static unsigned int get_stack_depth(struct jit_ctx *ctx)
593 {
594 int sp_off = 0;
595
596
597 /* How may s* regs do we need to preserved? */
598 sp_off += hweight32(ctx->flags >> SEEN_SREG_SFT) * SZREG;
599
600 if (ctx->flags & SEEN_MEM)
601 sp_off += 4 * BPF_MEMWORDS; /* BPF_MEMWORDS are 32-bit */
602
603 if (ctx->flags & SEEN_CALL)
604 sp_off += SZREG; /* Space for our ra register */
605
606 return sp_off;
607 }
608
build_prologue(struct jit_ctx * ctx)609 static void build_prologue(struct jit_ctx *ctx)
610 {
611 int sp_off;
612
613 /* Calculate the total offset for the stack pointer */
614 sp_off = get_stack_depth(ctx);
615 save_bpf_jit_regs(ctx, sp_off);
616
617 if (ctx->flags & SEEN_SKB)
618 emit_reg_move(r_skb, MIPS_R_A0, ctx);
619
620 if (ctx->flags & SEEN_SKB_DATA) {
621 /* Load packet length */
622 emit_load(r_skb_len, r_skb, offsetof(struct sk_buff, len),
623 ctx);
624 emit_load(r_tmp, r_skb, offsetof(struct sk_buff, data_len),
625 ctx);
626 /* Load the data pointer */
627 emit_load_ptr(r_skb_data, r_skb,
628 offsetof(struct sk_buff, data), ctx);
629 /* Load the header length */
630 emit_subu(r_skb_hl, r_skb_len, r_tmp, ctx);
631 }
632
633 if (ctx->flags & SEEN_X)
634 emit_jit_reg_move(r_X, r_zero, ctx);
635
636 /*
637 * Do not leak kernel data to userspace, we only need to clear
638 * r_A if it is ever used. In fact if it is never used, we
639 * will not save/restore it, so clearing it in this case would
640 * corrupt the state of the caller.
641 */
642 if (bpf_needs_clear_a(&ctx->skf->insns[0]) &&
643 (ctx->flags & SEEN_A))
644 emit_jit_reg_move(r_A, r_zero, ctx);
645 }
646
build_epilogue(struct jit_ctx * ctx)647 static void build_epilogue(struct jit_ctx *ctx)
648 {
649 unsigned int sp_off;
650
651 /* Calculate the total offset for the stack pointer */
652
653 sp_off = get_stack_depth(ctx);
654 restore_bpf_jit_regs(ctx, sp_off);
655
656 /* Return */
657 emit_jr(r_ra, ctx);
658 emit_nop(ctx);
659 }
660
661 #define CHOOSE_LOAD_FUNC(K, func) \
662 ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative : func) : \
663 func##_positive)
664
is_bad_offset(int b_off)665 static bool is_bad_offset(int b_off)
666 {
667 return b_off > 0x1ffff || b_off < -0x20000;
668 }
669
build_body(struct jit_ctx * ctx)670 static int build_body(struct jit_ctx *ctx)
671 {
672 const struct bpf_prog *prog = ctx->skf;
673 const struct sock_filter *inst;
674 unsigned int i, off, condt;
675 u32 k, b_off __maybe_unused;
676 u8 (*sk_load_func)(unsigned long *skb, int offset);
677
678 for (i = 0; i < prog->len; i++) {
679 u16 code;
680
681 inst = &(prog->insns[i]);
682 pr_debug("%s: code->0x%02x, jt->0x%x, jf->0x%x, k->0x%x\n",
683 __func__, inst->code, inst->jt, inst->jf, inst->k);
684 k = inst->k;
685 code = bpf_anc_helper(inst);
686
687 if (ctx->target == NULL)
688 ctx->offsets[i] = ctx->idx * 4;
689
690 switch (code) {
691 case BPF_LD | BPF_IMM:
692 /* A <- k ==> li r_A, k */
693 ctx->flags |= SEEN_A;
694 emit_load_imm(r_A, k, ctx);
695 break;
696 case BPF_LD | BPF_W | BPF_LEN:
697 BUILD_BUG_ON(sizeof_field(struct sk_buff, len) != 4);
698 /* A <- len ==> lw r_A, offset(skb) */
699 ctx->flags |= SEEN_SKB | SEEN_A;
700 off = offsetof(struct sk_buff, len);
701 emit_load(r_A, r_skb, off, ctx);
702 break;
703 case BPF_LD | BPF_MEM:
704 /* A <- M[k] ==> lw r_A, offset(M) */
705 ctx->flags |= SEEN_MEM | SEEN_A;
706 emit_load(r_A, r_M, SCRATCH_OFF(k), ctx);
707 break;
708 case BPF_LD | BPF_W | BPF_ABS:
709 /* A <- P[k:4] */
710 sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_word);
711 goto load;
712 case BPF_LD | BPF_H | BPF_ABS:
713 /* A <- P[k:2] */
714 sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_half);
715 goto load;
716 case BPF_LD | BPF_B | BPF_ABS:
717 /* A <- P[k:1] */
718 sk_load_func = CHOOSE_LOAD_FUNC(k, sk_load_byte);
719 load:
720 emit_load_imm(r_off, k, ctx);
721 load_common:
722 ctx->flags |= SEEN_CALL | SEEN_OFF |
723 SEEN_SKB | SEEN_A | SEEN_SKB_DATA;
724
725 emit_load_func(r_s0, (ptr)sk_load_func, ctx);
726 emit_reg_move(MIPS_R_A0, r_skb, ctx);
727 emit_jalr(MIPS_R_RA, r_s0, ctx);
728 /* Load second argument to delay slot */
729 emit_reg_move(MIPS_R_A1, r_off, ctx);
730 /* Check the error value */
731 emit_bcond(MIPS_COND_EQ, r_ret, 0, b_imm(i + 1, ctx),
732 ctx);
733 /* Load return register on DS for failures */
734 emit_reg_move(r_ret, r_zero, ctx);
735 /* Return with error */
736 b_off = b_imm(prog->len, ctx);
737 if (is_bad_offset(b_off))
738 return -E2BIG;
739 emit_b(b_off, ctx);
740 emit_nop(ctx);
741 break;
742 case BPF_LD | BPF_W | BPF_IND:
743 /* A <- P[X + k:4] */
744 sk_load_func = sk_load_word;
745 goto load_ind;
746 case BPF_LD | BPF_H | BPF_IND:
747 /* A <- P[X + k:2] */
748 sk_load_func = sk_load_half;
749 goto load_ind;
750 case BPF_LD | BPF_B | BPF_IND:
751 /* A <- P[X + k:1] */
752 sk_load_func = sk_load_byte;
753 load_ind:
754 ctx->flags |= SEEN_OFF | SEEN_X;
755 emit_addiu(r_off, r_X, k, ctx);
756 goto load_common;
757 case BPF_LDX | BPF_IMM:
758 /* X <- k */
759 ctx->flags |= SEEN_X;
760 emit_load_imm(r_X, k, ctx);
761 break;
762 case BPF_LDX | BPF_MEM:
763 /* X <- M[k] */
764 ctx->flags |= SEEN_X | SEEN_MEM;
765 emit_load(r_X, r_M, SCRATCH_OFF(k), ctx);
766 break;
767 case BPF_LDX | BPF_W | BPF_LEN:
768 /* X <- len */
769 ctx->flags |= SEEN_X | SEEN_SKB;
770 off = offsetof(struct sk_buff, len);
771 emit_load(r_X, r_skb, off, ctx);
772 break;
773 case BPF_LDX | BPF_B | BPF_MSH:
774 /* X <- 4 * (P[k:1] & 0xf) */
775 ctx->flags |= SEEN_X | SEEN_CALL | SEEN_SKB;
776 /* Load offset to a1 */
777 emit_load_func(r_s0, (ptr)sk_load_byte, ctx);
778 /*
779 * This may emit two instructions so it may not fit
780 * in the delay slot. So use a0 in the delay slot.
781 */
782 emit_load_imm(MIPS_R_A1, k, ctx);
783 emit_jalr(MIPS_R_RA, r_s0, ctx);
784 emit_reg_move(MIPS_R_A0, r_skb, ctx); /* delay slot */
785 /* Check the error value */
786 b_off = b_imm(prog->len, ctx);
787 if (is_bad_offset(b_off))
788 return -E2BIG;
789 emit_bcond(MIPS_COND_NE, r_ret, 0, b_off, ctx);
790 emit_reg_move(r_ret, r_zero, ctx);
791 /* We are good */
792 /* X <- P[1:K] & 0xf */
793 emit_andi(r_X, r_A, 0xf, ctx);
794 /* X << 2 */
795 emit_b(b_imm(i + 1, ctx), ctx);
796 emit_sll(r_X, r_X, 2, ctx); /* delay slot */
797 break;
798 case BPF_ST:
799 /* M[k] <- A */
800 ctx->flags |= SEEN_MEM | SEEN_A;
801 emit_store(r_A, r_M, SCRATCH_OFF(k), ctx);
802 break;
803 case BPF_STX:
804 /* M[k] <- X */
805 ctx->flags |= SEEN_MEM | SEEN_X;
806 emit_store(r_X, r_M, SCRATCH_OFF(k), ctx);
807 break;
808 case BPF_ALU | BPF_ADD | BPF_K:
809 /* A += K */
810 ctx->flags |= SEEN_A;
811 emit_addiu(r_A, r_A, k, ctx);
812 break;
813 case BPF_ALU | BPF_ADD | BPF_X:
814 /* A += X */
815 ctx->flags |= SEEN_A | SEEN_X;
816 emit_addu(r_A, r_A, r_X, ctx);
817 break;
818 case BPF_ALU | BPF_SUB | BPF_K:
819 /* A -= K */
820 ctx->flags |= SEEN_A;
821 emit_addiu(r_A, r_A, -k, ctx);
822 break;
823 case BPF_ALU | BPF_SUB | BPF_X:
824 /* A -= X */
825 ctx->flags |= SEEN_A | SEEN_X;
826 emit_subu(r_A, r_A, r_X, ctx);
827 break;
828 case BPF_ALU | BPF_MUL | BPF_K:
829 /* A *= K */
830 /* Load K to scratch register before MUL */
831 ctx->flags |= SEEN_A;
832 emit_load_imm(r_s0, k, ctx);
833 emit_mul(r_A, r_A, r_s0, ctx);
834 break;
835 case BPF_ALU | BPF_MUL | BPF_X:
836 /* A *= X */
837 ctx->flags |= SEEN_A | SEEN_X;
838 emit_mul(r_A, r_A, r_X, ctx);
839 break;
840 case BPF_ALU | BPF_DIV | BPF_K:
841 /* A /= k */
842 if (k == 1)
843 break;
844 if (optimize_div(&k)) {
845 ctx->flags |= SEEN_A;
846 emit_srl(r_A, r_A, k, ctx);
847 break;
848 }
849 ctx->flags |= SEEN_A;
850 emit_load_imm(r_s0, k, ctx);
851 emit_div(r_A, r_s0, ctx);
852 break;
853 case BPF_ALU | BPF_MOD | BPF_K:
854 /* A %= k */
855 if (k == 1) {
856 ctx->flags |= SEEN_A;
857 emit_jit_reg_move(r_A, r_zero, ctx);
858 } else {
859 ctx->flags |= SEEN_A;
860 emit_load_imm(r_s0, k, ctx);
861 emit_mod(r_A, r_s0, ctx);
862 }
863 break;
864 case BPF_ALU | BPF_DIV | BPF_X:
865 /* A /= X */
866 ctx->flags |= SEEN_X | SEEN_A;
867 /* Check if r_X is zero */
868 b_off = b_imm(prog->len, ctx);
869 if (is_bad_offset(b_off))
870 return -E2BIG;
871 emit_bcond(MIPS_COND_EQ, r_X, r_zero, b_off, ctx);
872 emit_load_imm(r_ret, 0, ctx); /* delay slot */
873 emit_div(r_A, r_X, ctx);
874 break;
875 case BPF_ALU | BPF_MOD | BPF_X:
876 /* A %= X */
877 ctx->flags |= SEEN_X | SEEN_A;
878 /* Check if r_X is zero */
879 b_off = b_imm(prog->len, ctx);
880 if (is_bad_offset(b_off))
881 return -E2BIG;
882 emit_bcond(MIPS_COND_EQ, r_X, r_zero, b_off, ctx);
883 emit_load_imm(r_ret, 0, ctx); /* delay slot */
884 emit_mod(r_A, r_X, ctx);
885 break;
886 case BPF_ALU | BPF_OR | BPF_K:
887 /* A |= K */
888 ctx->flags |= SEEN_A;
889 emit_ori(r_A, r_A, k, ctx);
890 break;
891 case BPF_ALU | BPF_OR | BPF_X:
892 /* A |= X */
893 ctx->flags |= SEEN_A;
894 emit_ori(r_A, r_A, r_X, ctx);
895 break;
896 case BPF_ALU | BPF_XOR | BPF_K:
897 /* A ^= k */
898 ctx->flags |= SEEN_A;
899 emit_xori(r_A, r_A, k, ctx);
900 break;
901 case BPF_ANC | SKF_AD_ALU_XOR_X:
902 case BPF_ALU | BPF_XOR | BPF_X:
903 /* A ^= X */
904 ctx->flags |= SEEN_A;
905 emit_xor(r_A, r_A, r_X, ctx);
906 break;
907 case BPF_ALU | BPF_AND | BPF_K:
908 /* A &= K */
909 ctx->flags |= SEEN_A;
910 emit_andi(r_A, r_A, k, ctx);
911 break;
912 case BPF_ALU | BPF_AND | BPF_X:
913 /* A &= X */
914 ctx->flags |= SEEN_A | SEEN_X;
915 emit_and(r_A, r_A, r_X, ctx);
916 break;
917 case BPF_ALU | BPF_LSH | BPF_K:
918 /* A <<= K */
919 ctx->flags |= SEEN_A;
920 emit_sll(r_A, r_A, k, ctx);
921 break;
922 case BPF_ALU | BPF_LSH | BPF_X:
923 /* A <<= X */
924 ctx->flags |= SEEN_A | SEEN_X;
925 emit_sllv(r_A, r_A, r_X, ctx);
926 break;
927 case BPF_ALU | BPF_RSH | BPF_K:
928 /* A >>= K */
929 ctx->flags |= SEEN_A;
930 emit_srl(r_A, r_A, k, ctx);
931 break;
932 case BPF_ALU | BPF_RSH | BPF_X:
933 ctx->flags |= SEEN_A | SEEN_X;
934 emit_srlv(r_A, r_A, r_X, ctx);
935 break;
936 case BPF_ALU | BPF_NEG:
937 /* A = -A */
938 ctx->flags |= SEEN_A;
939 emit_neg(r_A, ctx);
940 break;
941 case BPF_JMP | BPF_JA:
942 /* pc += K */
943 b_off = b_imm(i + k + 1, ctx);
944 if (is_bad_offset(b_off))
945 return -E2BIG;
946 emit_b(b_off, ctx);
947 emit_nop(ctx);
948 break;
949 case BPF_JMP | BPF_JEQ | BPF_K:
950 /* pc += ( A == K ) ? pc->jt : pc->jf */
951 condt = MIPS_COND_EQ | MIPS_COND_K;
952 goto jmp_cmp;
953 case BPF_JMP | BPF_JEQ | BPF_X:
954 ctx->flags |= SEEN_X;
955 /* pc += ( A == X ) ? pc->jt : pc->jf */
956 condt = MIPS_COND_EQ | MIPS_COND_X;
957 goto jmp_cmp;
958 case BPF_JMP | BPF_JGE | BPF_K:
959 /* pc += ( A >= K ) ? pc->jt : pc->jf */
960 condt = MIPS_COND_GE | MIPS_COND_K;
961 goto jmp_cmp;
962 case BPF_JMP | BPF_JGE | BPF_X:
963 ctx->flags |= SEEN_X;
964 /* pc += ( A >= X ) ? pc->jt : pc->jf */
965 condt = MIPS_COND_GE | MIPS_COND_X;
966 goto jmp_cmp;
967 case BPF_JMP | BPF_JGT | BPF_K:
968 /* pc += ( A > K ) ? pc->jt : pc->jf */
969 condt = MIPS_COND_GT | MIPS_COND_K;
970 goto jmp_cmp;
971 case BPF_JMP | BPF_JGT | BPF_X:
972 ctx->flags |= SEEN_X;
973 /* pc += ( A > X ) ? pc->jt : pc->jf */
974 condt = MIPS_COND_GT | MIPS_COND_X;
975 jmp_cmp:
976 /* Greater or Equal */
977 if ((condt & MIPS_COND_GE) ||
978 (condt & MIPS_COND_GT)) {
979 if (condt & MIPS_COND_K) { /* K */
980 ctx->flags |= SEEN_A;
981 emit_sltiu(r_s0, r_A, k, ctx);
982 } else { /* X */
983 ctx->flags |= SEEN_A |
984 SEEN_X;
985 emit_sltu(r_s0, r_A, r_X, ctx);
986 }
987 /* A < (K|X) ? r_scrach = 1 */
988 b_off = b_imm(i + inst->jf + 1, ctx);
989 emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off,
990 ctx);
991 emit_nop(ctx);
992 /* A > (K|X) ? scratch = 0 */
993 if (condt & MIPS_COND_GT) {
994 /* Checking for equality */
995 ctx->flags |= SEEN_A | SEEN_X;
996 if (condt & MIPS_COND_K)
997 emit_load_imm(r_s0, k, ctx);
998 else
999 emit_jit_reg_move(r_s0, r_X,
1000 ctx);
1001 b_off = b_imm(i + inst->jf + 1, ctx);
1002 emit_bcond(MIPS_COND_EQ, r_A, r_s0,
1003 b_off, ctx);
1004 emit_nop(ctx);
1005 /* Finally, A > K|X */
1006 b_off = b_imm(i + inst->jt + 1, ctx);
1007 emit_b(b_off, ctx);
1008 emit_nop(ctx);
1009 } else {
1010 /* A >= (K|X) so jump */
1011 b_off = b_imm(i + inst->jt + 1, ctx);
1012 emit_b(b_off, ctx);
1013 emit_nop(ctx);
1014 }
1015 } else {
1016 /* A == K|X */
1017 if (condt & MIPS_COND_K) { /* K */
1018 ctx->flags |= SEEN_A;
1019 emit_load_imm(r_s0, k, ctx);
1020 /* jump true */
1021 b_off = b_imm(i + inst->jt + 1, ctx);
1022 emit_bcond(MIPS_COND_EQ, r_A, r_s0,
1023 b_off, ctx);
1024 emit_nop(ctx);
1025 /* jump false */
1026 b_off = b_imm(i + inst->jf + 1,
1027 ctx);
1028 emit_bcond(MIPS_COND_NE, r_A, r_s0,
1029 b_off, ctx);
1030 emit_nop(ctx);
1031 } else { /* X */
1032 /* jump true */
1033 ctx->flags |= SEEN_A | SEEN_X;
1034 b_off = b_imm(i + inst->jt + 1,
1035 ctx);
1036 emit_bcond(MIPS_COND_EQ, r_A, r_X,
1037 b_off, ctx);
1038 emit_nop(ctx);
1039 /* jump false */
1040 b_off = b_imm(i + inst->jf + 1, ctx);
1041 emit_bcond(MIPS_COND_NE, r_A, r_X,
1042 b_off, ctx);
1043 emit_nop(ctx);
1044 }
1045 }
1046 break;
1047 case BPF_JMP | BPF_JSET | BPF_K:
1048 ctx->flags |= SEEN_A;
1049 /* pc += (A & K) ? pc -> jt : pc -> jf */
1050 emit_load_imm(r_s1, k, ctx);
1051 emit_and(r_s0, r_A, r_s1, ctx);
1052 /* jump true */
1053 b_off = b_imm(i + inst->jt + 1, ctx);
1054 emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx);
1055 emit_nop(ctx);
1056 /* jump false */
1057 b_off = b_imm(i + inst->jf + 1, ctx);
1058 emit_b(b_off, ctx);
1059 emit_nop(ctx);
1060 break;
1061 case BPF_JMP | BPF_JSET | BPF_X:
1062 ctx->flags |= SEEN_X | SEEN_A;
1063 /* pc += (A & X) ? pc -> jt : pc -> jf */
1064 emit_and(r_s0, r_A, r_X, ctx);
1065 /* jump true */
1066 b_off = b_imm(i + inst->jt + 1, ctx);
1067 emit_bcond(MIPS_COND_NE, r_s0, r_zero, b_off, ctx);
1068 emit_nop(ctx);
1069 /* jump false */
1070 b_off = b_imm(i + inst->jf + 1, ctx);
1071 emit_b(b_off, ctx);
1072 emit_nop(ctx);
1073 break;
1074 case BPF_RET | BPF_A:
1075 ctx->flags |= SEEN_A;
1076 if (i != prog->len - 1) {
1077 /*
1078 * If this is not the last instruction
1079 * then jump to the epilogue
1080 */
1081 b_off = b_imm(prog->len, ctx);
1082 if (is_bad_offset(b_off))
1083 return -E2BIG;
1084 emit_b(b_off, ctx);
1085 }
1086 emit_reg_move(r_ret, r_A, ctx); /* delay slot */
1087 break;
1088 case BPF_RET | BPF_K:
1089 /*
1090 * It can emit two instructions so it does not fit on
1091 * the delay slot.
1092 */
1093 emit_load_imm(r_ret, k, ctx);
1094 if (i != prog->len - 1) {
1095 /*
1096 * If this is not the last instruction
1097 * then jump to the epilogue
1098 */
1099 b_off = b_imm(prog->len, ctx);
1100 if (is_bad_offset(b_off))
1101 return -E2BIG;
1102 emit_b(b_off, ctx);
1103 emit_nop(ctx);
1104 }
1105 break;
1106 case BPF_MISC | BPF_TAX:
1107 /* X = A */
1108 ctx->flags |= SEEN_X | SEEN_A;
1109 emit_jit_reg_move(r_X, r_A, ctx);
1110 break;
1111 case BPF_MISC | BPF_TXA:
1112 /* A = X */
1113 ctx->flags |= SEEN_A | SEEN_X;
1114 emit_jit_reg_move(r_A, r_X, ctx);
1115 break;
1116 /* AUX */
1117 case BPF_ANC | SKF_AD_PROTOCOL:
1118 /* A = ntohs(skb->protocol */
1119 ctx->flags |= SEEN_SKB | SEEN_OFF | SEEN_A;
1120 BUILD_BUG_ON(sizeof_field(struct sk_buff,
1121 protocol) != 2);
1122 off = offsetof(struct sk_buff, protocol);
1123 emit_half_load(r_A, r_skb, off, ctx);
1124 #ifdef CONFIG_CPU_LITTLE_ENDIAN
1125 /* This needs little endian fixup */
1126 if (cpu_has_wsbh) {
1127 /* R2 and later have the wsbh instruction */
1128 emit_wsbh(r_A, r_A, ctx);
1129 } else {
1130 /* Get first byte */
1131 emit_andi(r_tmp_imm, r_A, 0xff, ctx);
1132 /* Shift it */
1133 emit_sll(r_tmp, r_tmp_imm, 8, ctx);
1134 /* Get second byte */
1135 emit_srl(r_tmp_imm, r_A, 8, ctx);
1136 emit_andi(r_tmp_imm, r_tmp_imm, 0xff, ctx);
1137 /* Put everyting together in r_A */
1138 emit_or(r_A, r_tmp, r_tmp_imm, ctx);
1139 }
1140 #endif
1141 break;
1142 case BPF_ANC | SKF_AD_CPU:
1143 ctx->flags |= SEEN_A | SEEN_OFF;
1144 /* A = current_thread_info()->cpu */
1145 BUILD_BUG_ON(sizeof_field(struct thread_info,
1146 cpu) != 4);
1147 off = offsetof(struct thread_info, cpu);
1148 /* $28/gp points to the thread_info struct */
1149 emit_load(r_A, 28, off, ctx);
1150 break;
1151 case BPF_ANC | SKF_AD_IFINDEX:
1152 /* A = skb->dev->ifindex */
1153 case BPF_ANC | SKF_AD_HATYPE:
1154 /* A = skb->dev->type */
1155 ctx->flags |= SEEN_SKB | SEEN_A;
1156 off = offsetof(struct sk_buff, dev);
1157 /* Load *dev pointer */
1158 emit_load_ptr(r_s0, r_skb, off, ctx);
1159 /* error (0) in the delay slot */
1160 b_off = b_imm(prog->len, ctx);
1161 if (is_bad_offset(b_off))
1162 return -E2BIG;
1163 emit_bcond(MIPS_COND_EQ, r_s0, r_zero, b_off, ctx);
1164 emit_reg_move(r_ret, r_zero, ctx);
1165 if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
1166 BUILD_BUG_ON(sizeof_field(struct net_device, ifindex) != 4);
1167 off = offsetof(struct net_device, ifindex);
1168 emit_load(r_A, r_s0, off, ctx);
1169 } else { /* (code == (BPF_ANC | SKF_AD_HATYPE) */
1170 BUILD_BUG_ON(sizeof_field(struct net_device, type) != 2);
1171 off = offsetof(struct net_device, type);
1172 emit_half_load_unsigned(r_A, r_s0, off, ctx);
1173 }
1174 break;
1175 case BPF_ANC | SKF_AD_MARK:
1176 ctx->flags |= SEEN_SKB | SEEN_A;
1177 BUILD_BUG_ON(sizeof_field(struct sk_buff, mark) != 4);
1178 off = offsetof(struct sk_buff, mark);
1179 emit_load(r_A, r_skb, off, ctx);
1180 break;
1181 case BPF_ANC | SKF_AD_RXHASH:
1182 ctx->flags |= SEEN_SKB | SEEN_A;
1183 BUILD_BUG_ON(sizeof_field(struct sk_buff, hash) != 4);
1184 off = offsetof(struct sk_buff, hash);
1185 emit_load(r_A, r_skb, off, ctx);
1186 break;
1187 case BPF_ANC | SKF_AD_VLAN_TAG:
1188 ctx->flags |= SEEN_SKB | SEEN_A;
1189 BUILD_BUG_ON(sizeof_field(struct sk_buff,
1190 vlan_tci) != 2);
1191 off = offsetof(struct sk_buff, vlan_tci);
1192 emit_half_load_unsigned(r_A, r_skb, off, ctx);
1193 break;
1194 case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
1195 ctx->flags |= SEEN_SKB | SEEN_A;
1196 emit_load_byte(r_A, r_skb, PKT_VLAN_PRESENT_OFFSET(), ctx);
1197 if (PKT_VLAN_PRESENT_BIT)
1198 emit_srl(r_A, r_A, PKT_VLAN_PRESENT_BIT, ctx);
1199 if (PKT_VLAN_PRESENT_BIT < 7)
1200 emit_andi(r_A, r_A, 1, ctx);
1201 break;
1202 case BPF_ANC | SKF_AD_PKTTYPE:
1203 ctx->flags |= SEEN_SKB;
1204
1205 emit_load_byte(r_tmp, r_skb, PKT_TYPE_OFFSET(), ctx);
1206 /* Keep only the last 3 bits */
1207 emit_andi(r_A, r_tmp, PKT_TYPE_MAX, ctx);
1208 #ifdef __BIG_ENDIAN_BITFIELD
1209 /* Get the actual packet type to the lower 3 bits */
1210 emit_srl(r_A, r_A, 5, ctx);
1211 #endif
1212 break;
1213 case BPF_ANC | SKF_AD_QUEUE:
1214 ctx->flags |= SEEN_SKB | SEEN_A;
1215 BUILD_BUG_ON(sizeof_field(struct sk_buff,
1216 queue_mapping) != 2);
1217 BUILD_BUG_ON(offsetof(struct sk_buff,
1218 queue_mapping) > 0xff);
1219 off = offsetof(struct sk_buff, queue_mapping);
1220 emit_half_load_unsigned(r_A, r_skb, off, ctx);
1221 break;
1222 default:
1223 pr_debug("%s: Unhandled opcode: 0x%02x\n", __FILE__,
1224 inst->code);
1225 return -1;
1226 }
1227 }
1228
1229 /* compute offsets only during the first pass */
1230 if (ctx->target == NULL)
1231 ctx->offsets[i] = ctx->idx * 4;
1232
1233 return 0;
1234 }
1235
bpf_jit_compile(struct bpf_prog * fp)1236 void bpf_jit_compile(struct bpf_prog *fp)
1237 {
1238 struct jit_ctx ctx;
1239 unsigned int alloc_size, tmp_idx;
1240
1241 if (!bpf_jit_enable)
1242 return;
1243
1244 memset(&ctx, 0, sizeof(ctx));
1245
1246 ctx.offsets = kcalloc(fp->len + 1, sizeof(*ctx.offsets), GFP_KERNEL);
1247 if (ctx.offsets == NULL)
1248 return;
1249
1250 ctx.skf = fp;
1251
1252 if (build_body(&ctx))
1253 goto out;
1254
1255 tmp_idx = ctx.idx;
1256 build_prologue(&ctx);
1257 ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1258 /* just to complete the ctx.idx count */
1259 build_epilogue(&ctx);
1260
1261 alloc_size = 4 * ctx.idx;
1262 ctx.target = module_alloc(alloc_size);
1263 if (ctx.target == NULL)
1264 goto out;
1265
1266 /* Clean it */
1267 memset(ctx.target, 0, alloc_size);
1268
1269 ctx.idx = 0;
1270
1271 /* Generate the actual JIT code */
1272 build_prologue(&ctx);
1273 if (build_body(&ctx)) {
1274 module_memfree(ctx.target);
1275 goto out;
1276 }
1277 build_epilogue(&ctx);
1278
1279 /* Update the icache */
1280 flush_icache_range((ptr)ctx.target, (ptr)(ctx.target + ctx.idx));
1281
1282 if (bpf_jit_enable > 1)
1283 /* Dump JIT code */
1284 bpf_jit_dump(fp->len, alloc_size, 2, ctx.target);
1285
1286 fp->bpf_func = (void *)ctx.target;
1287 fp->jited = 1;
1288
1289 out:
1290 kfree(ctx.offsets);
1291 }
1292
bpf_jit_free(struct bpf_prog * fp)1293 void bpf_jit_free(struct bpf_prog *fp)
1294 {
1295 if (fp->jited)
1296 module_memfree(fp->bpf_func);
1297
1298 bpf_prog_unlock_free(fp);
1299 }
1300