1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/string.h>
16 #include <linux/init.h>
17 #include <linux/threads.h>
18 #include <linux/spinlock.h>
19 #include <linux/types.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/initrd.h>
23 #include <linux/bitops.h>
24 #include <linux/export.h>
25 #include <linux/kexec.h>
26 #include <linux/irq.h>
27 #include <linux/memblock.h>
28 #include <linux/of.h>
29 #include <linux/of_fdt.h>
30 #include <linux/libfdt.h>
31 #include <linux/cpu.h>
32 #include <linux/pgtable.h>
33
34 #include <asm/prom.h>
35 #include <asm/rtas.h>
36 #include <asm/page.h>
37 #include <asm/processor.h>
38 #include <asm/irq.h>
39 #include <asm/io.h>
40 #include <asm/kdump.h>
41 #include <asm/smp.h>
42 #include <asm/mmu.h>
43 #include <asm/paca.h>
44 #include <asm/powernv.h>
45 #include <asm/iommu.h>
46 #include <asm/btext.h>
47 #include <asm/sections.h>
48 #include <asm/machdep.h>
49 #include <asm/pci-bridge.h>
50 #include <asm/kexec.h>
51 #include <asm/opal.h>
52 #include <asm/fadump.h>
53 #include <asm/epapr_hcalls.h>
54 #include <asm/firmware.h>
55 #include <asm/dt_cpu_ftrs.h>
56 #include <asm/drmem.h>
57 #include <asm/ultravisor.h>
58
59 #include <mm/mmu_decl.h>
60
61 #ifdef DEBUG
62 #define DBG(fmt...) printk(KERN_ERR fmt)
63 #else
64 #define DBG(fmt...)
65 #endif
66
67 int *chip_id_lookup_table;
68
69 #ifdef CONFIG_PPC64
70 int __initdata iommu_is_off;
71 int __initdata iommu_force_on;
72 unsigned long tce_alloc_start, tce_alloc_end;
73 u64 ppc64_rma_size;
74 #endif
75 static phys_addr_t first_memblock_size;
76 static int __initdata boot_cpu_count;
77
early_parse_mem(char * p)78 static int __init early_parse_mem(char *p)
79 {
80 if (!p)
81 return 1;
82
83 memory_limit = PAGE_ALIGN(memparse(p, &p));
84 DBG("memory limit = 0x%llx\n", memory_limit);
85
86 return 0;
87 }
88 early_param("mem", early_parse_mem);
89
90 /*
91 * overlaps_initrd - check for overlap with page aligned extension of
92 * initrd.
93 */
overlaps_initrd(unsigned long start,unsigned long size)94 static inline int overlaps_initrd(unsigned long start, unsigned long size)
95 {
96 #ifdef CONFIG_BLK_DEV_INITRD
97 if (!initrd_start)
98 return 0;
99
100 return (start + size) > ALIGN_DOWN(initrd_start, PAGE_SIZE) &&
101 start <= ALIGN(initrd_end, PAGE_SIZE);
102 #else
103 return 0;
104 #endif
105 }
106
107 /**
108 * move_device_tree - move tree to an unused area, if needed.
109 *
110 * The device tree may be allocated beyond our memory limit, or inside the
111 * crash kernel region for kdump, or within the page aligned range of initrd.
112 * If so, move it out of the way.
113 */
move_device_tree(void)114 static void __init move_device_tree(void)
115 {
116 unsigned long start, size;
117 void *p;
118
119 DBG("-> move_device_tree\n");
120
121 start = __pa(initial_boot_params);
122 size = fdt_totalsize(initial_boot_params);
123
124 if ((memory_limit && (start + size) > PHYSICAL_START + memory_limit) ||
125 !memblock_is_memory(start + size - 1) ||
126 overlaps_crashkernel(start, size) || overlaps_initrd(start, size)) {
127 p = memblock_alloc_raw(size, PAGE_SIZE);
128 if (!p)
129 panic("Failed to allocate %lu bytes to move device tree\n",
130 size);
131 memcpy(p, initial_boot_params, size);
132 initial_boot_params = p;
133 DBG("Moved device tree to 0x%px\n", p);
134 }
135
136 DBG("<- move_device_tree\n");
137 }
138
139 /*
140 * ibm,pa-features is a per-cpu property that contains a string of
141 * attribute descriptors, each of which has a 2 byte header plus up
142 * to 254 bytes worth of processor attribute bits. First header
143 * byte specifies the number of bytes following the header.
144 * Second header byte is an "attribute-specifier" type, of which
145 * zero is the only currently-defined value.
146 * Implementation: Pass in the byte and bit offset for the feature
147 * that we are interested in. The function will return -1 if the
148 * pa-features property is missing, or a 1/0 to indicate if the feature
149 * is supported/not supported. Note that the bit numbers are
150 * big-endian to match the definition in PAPR.
151 */
152 static struct ibm_pa_feature {
153 unsigned long cpu_features; /* CPU_FTR_xxx bit */
154 unsigned long mmu_features; /* MMU_FTR_xxx bit */
155 unsigned int cpu_user_ftrs; /* PPC_FEATURE_xxx bit */
156 unsigned int cpu_user_ftrs2; /* PPC_FEATURE2_xxx bit */
157 unsigned char pabyte; /* byte number in ibm,pa-features */
158 unsigned char pabit; /* bit number (big-endian) */
159 unsigned char invert; /* if 1, pa bit set => clear feature */
160 } ibm_pa_features[] __initdata = {
161 { .pabyte = 0, .pabit = 0, .cpu_user_ftrs = PPC_FEATURE_HAS_MMU },
162 { .pabyte = 0, .pabit = 1, .cpu_user_ftrs = PPC_FEATURE_HAS_FPU },
163 { .pabyte = 0, .pabit = 3, .cpu_features = CPU_FTR_CTRL },
164 { .pabyte = 0, .pabit = 6, .cpu_features = CPU_FTR_NOEXECUTE },
165 { .pabyte = 1, .pabit = 2, .mmu_features = MMU_FTR_CI_LARGE_PAGE },
166 #ifdef CONFIG_PPC_RADIX_MMU
167 { .pabyte = 40, .pabit = 0, .mmu_features = MMU_FTR_TYPE_RADIX | MMU_FTR_GTSE },
168 #endif
169 { .pabyte = 5, .pabit = 0, .cpu_features = CPU_FTR_REAL_LE,
170 .cpu_user_ftrs = PPC_FEATURE_TRUE_LE },
171 /*
172 * If the kernel doesn't support TM (ie CONFIG_PPC_TRANSACTIONAL_MEM=n),
173 * we don't want to turn on TM here, so we use the *_COMP versions
174 * which are 0 if the kernel doesn't support TM.
175 */
176 { .pabyte = 22, .pabit = 0, .cpu_features = CPU_FTR_TM_COMP,
177 .cpu_user_ftrs2 = PPC_FEATURE2_HTM_COMP | PPC_FEATURE2_HTM_NOSC_COMP },
178
179 { .pabyte = 64, .pabit = 0, .cpu_features = CPU_FTR_DAWR1 },
180 };
181
scan_features(unsigned long node,const unsigned char * ftrs,unsigned long tablelen,struct ibm_pa_feature * fp,unsigned long ft_size)182 static void __init scan_features(unsigned long node, const unsigned char *ftrs,
183 unsigned long tablelen,
184 struct ibm_pa_feature *fp,
185 unsigned long ft_size)
186 {
187 unsigned long i, len, bit;
188
189 /* find descriptor with type == 0 */
190 for (;;) {
191 if (tablelen < 3)
192 return;
193 len = 2 + ftrs[0];
194 if (tablelen < len)
195 return; /* descriptor 0 not found */
196 if (ftrs[1] == 0)
197 break;
198 tablelen -= len;
199 ftrs += len;
200 }
201
202 /* loop over bits we know about */
203 for (i = 0; i < ft_size; ++i, ++fp) {
204 if (fp->pabyte >= ftrs[0])
205 continue;
206 bit = (ftrs[2 + fp->pabyte] >> (7 - fp->pabit)) & 1;
207 if (bit ^ fp->invert) {
208 cur_cpu_spec->cpu_features |= fp->cpu_features;
209 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftrs;
210 cur_cpu_spec->cpu_user_features2 |= fp->cpu_user_ftrs2;
211 cur_cpu_spec->mmu_features |= fp->mmu_features;
212 } else {
213 cur_cpu_spec->cpu_features &= ~fp->cpu_features;
214 cur_cpu_spec->cpu_user_features &= ~fp->cpu_user_ftrs;
215 cur_cpu_spec->cpu_user_features2 &= ~fp->cpu_user_ftrs2;
216 cur_cpu_spec->mmu_features &= ~fp->mmu_features;
217 }
218 }
219 }
220
check_cpu_pa_features(unsigned long node)221 static void __init check_cpu_pa_features(unsigned long node)
222 {
223 const unsigned char *pa_ftrs;
224 int tablelen;
225
226 pa_ftrs = of_get_flat_dt_prop(node, "ibm,pa-features", &tablelen);
227 if (pa_ftrs == NULL)
228 return;
229
230 scan_features(node, pa_ftrs, tablelen,
231 ibm_pa_features, ARRAY_SIZE(ibm_pa_features));
232 }
233
234 #ifdef CONFIG_PPC_BOOK3S_64
init_mmu_slb_size(unsigned long node)235 static void __init init_mmu_slb_size(unsigned long node)
236 {
237 const __be32 *slb_size_ptr;
238
239 slb_size_ptr = of_get_flat_dt_prop(node, "slb-size", NULL) ? :
240 of_get_flat_dt_prop(node, "ibm,slb-size", NULL);
241
242 if (slb_size_ptr)
243 mmu_slb_size = be32_to_cpup(slb_size_ptr);
244 }
245 #else
246 #define init_mmu_slb_size(node) do { } while(0)
247 #endif
248
249 static struct feature_property {
250 const char *name;
251 u32 min_value;
252 unsigned long cpu_feature;
253 unsigned long cpu_user_ftr;
254 } feature_properties[] __initdata = {
255 #ifdef CONFIG_ALTIVEC
256 {"altivec", 0, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
257 {"ibm,vmx", 1, CPU_FTR_ALTIVEC, PPC_FEATURE_HAS_ALTIVEC},
258 #endif /* CONFIG_ALTIVEC */
259 #ifdef CONFIG_VSX
260 /* Yes, this _really_ is ibm,vmx == 2 to enable VSX */
261 {"ibm,vmx", 2, CPU_FTR_VSX, PPC_FEATURE_HAS_VSX},
262 #endif /* CONFIG_VSX */
263 #ifdef CONFIG_PPC64
264 {"ibm,dfp", 1, 0, PPC_FEATURE_HAS_DFP},
265 {"ibm,purr", 1, CPU_FTR_PURR, 0},
266 {"ibm,spurr", 1, CPU_FTR_SPURR, 0},
267 #endif /* CONFIG_PPC64 */
268 };
269
270 #if defined(CONFIG_44x) && defined(CONFIG_PPC_FPU)
identical_pvr_fixup(unsigned long node)271 static __init void identical_pvr_fixup(unsigned long node)
272 {
273 unsigned int pvr;
274 const char *model = of_get_flat_dt_prop(node, "model", NULL);
275
276 /*
277 * Since 440GR(x)/440EP(x) processors have the same pvr,
278 * we check the node path and set bit 28 in the cur_cpu_spec
279 * pvr for EP(x) processor version. This bit is always 0 in
280 * the "real" pvr. Then we call identify_cpu again with
281 * the new logical pvr to enable FPU support.
282 */
283 if (model && strstr(model, "440EP")) {
284 pvr = cur_cpu_spec->pvr_value | 0x8;
285 identify_cpu(0, pvr);
286 DBG("Using logical pvr %x for %s\n", pvr, model);
287 }
288 }
289 #else
290 #define identical_pvr_fixup(node) do { } while(0)
291 #endif
292
check_cpu_feature_properties(unsigned long node)293 static void __init check_cpu_feature_properties(unsigned long node)
294 {
295 int i;
296 struct feature_property *fp = feature_properties;
297 const __be32 *prop;
298
299 for (i = 0; i < (int)ARRAY_SIZE(feature_properties); ++i, ++fp) {
300 prop = of_get_flat_dt_prop(node, fp->name, NULL);
301 if (prop && be32_to_cpup(prop) >= fp->min_value) {
302 cur_cpu_spec->cpu_features |= fp->cpu_feature;
303 cur_cpu_spec->cpu_user_features |= fp->cpu_user_ftr;
304 }
305 }
306 }
307
early_init_dt_scan_cpus(unsigned long node,const char * uname,int depth,void * data)308 static int __init early_init_dt_scan_cpus(unsigned long node,
309 const char *uname, int depth,
310 void *data)
311 {
312 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
313 const __be32 *prop;
314 const __be32 *intserv;
315 int i, nthreads;
316 int len;
317 int found = -1;
318 int found_thread = 0;
319
320 /* We are scanning "cpu" nodes only */
321 if (type == NULL || strcmp(type, "cpu") != 0)
322 return 0;
323
324 /* Get physical cpuid */
325 intserv = of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s", &len);
326 if (!intserv)
327 intserv = of_get_flat_dt_prop(node, "reg", &len);
328
329 nthreads = len / sizeof(int);
330
331 /*
332 * Now see if any of these threads match our boot cpu.
333 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
334 */
335 for (i = 0; i < nthreads; i++) {
336 if (be32_to_cpu(intserv[i]) ==
337 fdt_boot_cpuid_phys(initial_boot_params)) {
338 found = boot_cpu_count;
339 found_thread = i;
340 }
341 #ifdef CONFIG_SMP
342 /* logical cpu id is always 0 on UP kernels */
343 boot_cpu_count++;
344 #endif
345 }
346
347 /* Not the boot CPU */
348 if (found < 0)
349 return 0;
350
351 DBG("boot cpu: logical %d physical %d\n", found,
352 be32_to_cpu(intserv[found_thread]));
353 boot_cpuid = found;
354
355 /*
356 * PAPR defines "logical" PVR values for cpus that
357 * meet various levels of the architecture:
358 * 0x0f000001 Architecture version 2.04
359 * 0x0f000002 Architecture version 2.05
360 * If the cpu-version property in the cpu node contains
361 * such a value, we call identify_cpu again with the
362 * logical PVR value in order to use the cpu feature
363 * bits appropriate for the architecture level.
364 *
365 * A POWER6 partition in "POWER6 architected" mode
366 * uses the 0x0f000002 PVR value; in POWER5+ mode
367 * it uses 0x0f000001.
368 *
369 * If we're using device tree CPU feature discovery then we don't
370 * support the cpu-version property, and it's the responsibility of the
371 * firmware/hypervisor to provide the correct feature set for the
372 * architecture level via the ibm,powerpc-cpu-features binding.
373 */
374 if (!dt_cpu_ftrs_in_use()) {
375 prop = of_get_flat_dt_prop(node, "cpu-version", NULL);
376 if (prop && (be32_to_cpup(prop) & 0xff000000) == 0x0f000000)
377 identify_cpu(0, be32_to_cpup(prop));
378
379 check_cpu_feature_properties(node);
380 check_cpu_pa_features(node);
381 }
382
383 identical_pvr_fixup(node);
384 init_mmu_slb_size(node);
385
386 #ifdef CONFIG_PPC64
387 if (nthreads == 1)
388 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
389 else if (!dt_cpu_ftrs_in_use())
390 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
391 allocate_paca(boot_cpuid);
392 #endif
393 set_hard_smp_processor_id(found, be32_to_cpu(intserv[found_thread]));
394
395 return 0;
396 }
397
early_init_dt_scan_chosen_ppc(unsigned long node,const char * uname,int depth,void * data)398 static int __init early_init_dt_scan_chosen_ppc(unsigned long node,
399 const char *uname,
400 int depth, void *data)
401 {
402 const unsigned long *lprop; /* All these set by kernel, so no need to convert endian */
403
404 /* Use common scan routine to determine if this is the chosen node */
405 if (early_init_dt_scan_chosen(node, uname, depth, data) == 0)
406 return 0;
407
408 #ifdef CONFIG_PPC64
409 /* check if iommu is forced on or off */
410 if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
411 iommu_is_off = 1;
412 if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
413 iommu_force_on = 1;
414 #endif
415
416 /* mem=x on the command line is the preferred mechanism */
417 lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
418 if (lprop)
419 memory_limit = *lprop;
420
421 #ifdef CONFIG_PPC64
422 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
423 if (lprop)
424 tce_alloc_start = *lprop;
425 lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
426 if (lprop)
427 tce_alloc_end = *lprop;
428 #endif
429
430 #ifdef CONFIG_KEXEC_CORE
431 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-base", NULL);
432 if (lprop)
433 crashk_res.start = *lprop;
434
435 lprop = of_get_flat_dt_prop(node, "linux,crashkernel-size", NULL);
436 if (lprop)
437 crashk_res.end = crashk_res.start + *lprop - 1;
438 #endif
439
440 /* break now */
441 return 1;
442 }
443
444 /*
445 * Compare the range against max mem limit and update
446 * size if it cross the limit.
447 */
448
449 #ifdef CONFIG_SPARSEMEM
validate_mem_limit(u64 base,u64 * size)450 static bool validate_mem_limit(u64 base, u64 *size)
451 {
452 u64 max_mem = 1UL << (MAX_PHYSMEM_BITS);
453
454 if (base >= max_mem)
455 return false;
456 if ((base + *size) > max_mem)
457 *size = max_mem - base;
458 return true;
459 }
460 #else
validate_mem_limit(u64 base,u64 * size)461 static bool validate_mem_limit(u64 base, u64 *size)
462 {
463 return true;
464 }
465 #endif
466
467 #ifdef CONFIG_PPC_PSERIES
468 /*
469 * Interpret the ibm dynamic reconfiguration memory LMBs.
470 * This contains a list of memory blocks along with NUMA affinity
471 * information.
472 */
early_init_drmem_lmb(struct drmem_lmb * lmb,const __be32 ** usm,void * data)473 static int __init early_init_drmem_lmb(struct drmem_lmb *lmb,
474 const __be32 **usm,
475 void *data)
476 {
477 u64 base, size;
478 int is_kexec_kdump = 0, rngs;
479
480 base = lmb->base_addr;
481 size = drmem_lmb_size();
482 rngs = 1;
483
484 /*
485 * Skip this block if the reserved bit is set in flags
486 * or if the block is not assigned to this partition.
487 */
488 if ((lmb->flags & DRCONF_MEM_RESERVED) ||
489 !(lmb->flags & DRCONF_MEM_ASSIGNED))
490 return 0;
491
492 if (*usm)
493 is_kexec_kdump = 1;
494
495 if (is_kexec_kdump) {
496 /*
497 * For each memblock in ibm,dynamic-memory, a
498 * corresponding entry in linux,drconf-usable-memory
499 * property contains a counter 'p' followed by 'p'
500 * (base, size) duple. Now read the counter from
501 * linux,drconf-usable-memory property
502 */
503 rngs = dt_mem_next_cell(dt_root_size_cells, usm);
504 if (!rngs) /* there are no (base, size) duple */
505 return 0;
506 }
507
508 do {
509 if (is_kexec_kdump) {
510 base = dt_mem_next_cell(dt_root_addr_cells, usm);
511 size = dt_mem_next_cell(dt_root_size_cells, usm);
512 }
513
514 if (iommu_is_off) {
515 if (base >= 0x80000000ul)
516 continue;
517 if ((base + size) > 0x80000000ul)
518 size = 0x80000000ul - base;
519 }
520
521 if (!validate_mem_limit(base, &size))
522 continue;
523
524 DBG("Adding: %llx -> %llx\n", base, size);
525 memblock_add(base, size);
526
527 if (lmb->flags & DRCONF_MEM_HOTREMOVABLE)
528 memblock_mark_hotplug(base, size);
529 } while (--rngs);
530
531 return 0;
532 }
533 #endif /* CONFIG_PPC_PSERIES */
534
early_init_dt_scan_memory_ppc(unsigned long node,const char * uname,int depth,void * data)535 static int __init early_init_dt_scan_memory_ppc(unsigned long node,
536 const char *uname,
537 int depth, void *data)
538 {
539 #ifdef CONFIG_PPC_PSERIES
540 if (depth == 1 &&
541 strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0) {
542 walk_drmem_lmbs_early(node, NULL, early_init_drmem_lmb);
543 return 0;
544 }
545 #endif
546
547 return early_init_dt_scan_memory(node, uname, depth, data);
548 }
549
550 /*
551 * For a relocatable kernel, we need to get the memstart_addr first,
552 * then use it to calculate the virtual kernel start address. This has
553 * to happen at a very early stage (before machine_init). In this case,
554 * we just want to get the memstart_address and would not like to mess the
555 * memblock at this stage. So introduce a variable to skip the memblock_add()
556 * for this reason.
557 */
558 #ifdef CONFIG_RELOCATABLE
559 static int add_mem_to_memblock = 1;
560 #else
561 #define add_mem_to_memblock 1
562 #endif
563
early_init_dt_add_memory_arch(u64 base,u64 size)564 void __init early_init_dt_add_memory_arch(u64 base, u64 size)
565 {
566 #ifdef CONFIG_PPC64
567 if (iommu_is_off) {
568 if (base >= 0x80000000ul)
569 return;
570 if ((base + size) > 0x80000000ul)
571 size = 0x80000000ul - base;
572 }
573 #endif
574 /* Keep track of the beginning of memory -and- the size of
575 * the very first block in the device-tree as it represents
576 * the RMA on ppc64 server
577 */
578 if (base < memstart_addr) {
579 memstart_addr = base;
580 first_memblock_size = size;
581 }
582
583 /* Add the chunk to the MEMBLOCK list */
584 if (add_mem_to_memblock) {
585 if (validate_mem_limit(base, &size))
586 memblock_add(base, size);
587 }
588 }
589
early_reserve_mem_dt(void)590 static void __init early_reserve_mem_dt(void)
591 {
592 unsigned long i, dt_root;
593 int len;
594 const __be32 *prop;
595
596 early_init_fdt_reserve_self();
597 early_init_fdt_scan_reserved_mem();
598
599 dt_root = of_get_flat_dt_root();
600
601 prop = of_get_flat_dt_prop(dt_root, "reserved-ranges", &len);
602
603 if (!prop)
604 return;
605
606 DBG("Found new-style reserved-ranges\n");
607
608 /* Each reserved range is an (address,size) pair, 2 cells each,
609 * totalling 4 cells per range. */
610 for (i = 0; i < len / (sizeof(*prop) * 4); i++) {
611 u64 base, size;
612
613 base = of_read_number(prop + (i * 4) + 0, 2);
614 size = of_read_number(prop + (i * 4) + 2, 2);
615
616 if (size) {
617 DBG("reserving: %llx -> %llx\n", base, size);
618 memblock_reserve(base, size);
619 }
620 }
621 }
622
early_reserve_mem(void)623 static void __init early_reserve_mem(void)
624 {
625 __be64 *reserve_map;
626
627 reserve_map = (__be64 *)(((unsigned long)initial_boot_params) +
628 fdt_off_mem_rsvmap(initial_boot_params));
629
630 /* Look for the new "reserved-regions" property in the DT */
631 early_reserve_mem_dt();
632
633 #ifdef CONFIG_BLK_DEV_INITRD
634 /* Then reserve the initrd, if any */
635 if (initrd_start && (initrd_end > initrd_start)) {
636 memblock_reserve(ALIGN_DOWN(__pa(initrd_start), PAGE_SIZE),
637 ALIGN(initrd_end, PAGE_SIZE) -
638 ALIGN_DOWN(initrd_start, PAGE_SIZE));
639 }
640 #endif /* CONFIG_BLK_DEV_INITRD */
641
642 if (!IS_ENABLED(CONFIG_PPC32))
643 return;
644
645 /*
646 * Handle the case where we might be booting from an old kexec
647 * image that setup the mem_rsvmap as pairs of 32-bit values
648 */
649 if (be64_to_cpup(reserve_map) > 0xffffffffull) {
650 u32 base_32, size_32;
651 __be32 *reserve_map_32 = (__be32 *)reserve_map;
652
653 DBG("Found old 32-bit reserve map\n");
654
655 while (1) {
656 base_32 = be32_to_cpup(reserve_map_32++);
657 size_32 = be32_to_cpup(reserve_map_32++);
658 if (size_32 == 0)
659 break;
660 DBG("reserving: %x -> %x\n", base_32, size_32);
661 memblock_reserve(base_32, size_32);
662 }
663 return;
664 }
665 }
666
667 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
668 static bool tm_disabled __initdata;
669
parse_ppc_tm(char * str)670 static int __init parse_ppc_tm(char *str)
671 {
672 bool res;
673
674 if (kstrtobool(str, &res))
675 return -EINVAL;
676
677 tm_disabled = !res;
678
679 return 0;
680 }
681 early_param("ppc_tm", parse_ppc_tm);
682
tm_init(void)683 static void __init tm_init(void)
684 {
685 if (tm_disabled) {
686 pr_info("Disabling hardware transactional memory (HTM)\n");
687 cur_cpu_spec->cpu_user_features2 &=
688 ~(PPC_FEATURE2_HTM_NOSC | PPC_FEATURE2_HTM);
689 cur_cpu_spec->cpu_features &= ~CPU_FTR_TM;
690 return;
691 }
692
693 pnv_tm_init();
694 }
695 #else
tm_init(void)696 static void tm_init(void) { }
697 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
698
699 #ifdef CONFIG_PPC64
save_fscr_to_task(void)700 static void __init save_fscr_to_task(void)
701 {
702 /*
703 * Ensure the init_task (pid 0, aka swapper) uses the value of FSCR we
704 * have configured via the device tree features or via __init_FSCR().
705 * That value will then be propagated to pid 1 (init) and all future
706 * processes.
707 */
708 if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
709 init_task.thread.fscr = mfspr(SPRN_FSCR);
710 }
711 #else
save_fscr_to_task(void)712 static inline void save_fscr_to_task(void) {}
713 #endif
714
715
early_init_devtree(void * params)716 void __init early_init_devtree(void *params)
717 {
718 phys_addr_t limit;
719
720 DBG(" -> early_init_devtree(%px)\n", params);
721
722 /* Too early to BUG_ON(), do it by hand */
723 if (!early_init_dt_verify(params))
724 panic("BUG: Failed verifying flat device tree, bad version?");
725
726 #ifdef CONFIG_PPC_RTAS
727 /* Some machines might need RTAS info for debugging, grab it now. */
728 of_scan_flat_dt(early_init_dt_scan_rtas, NULL);
729 #endif
730
731 #ifdef CONFIG_PPC_POWERNV
732 /* Some machines might need OPAL info for debugging, grab it now. */
733 of_scan_flat_dt(early_init_dt_scan_opal, NULL);
734
735 /* Scan tree for ultravisor feature */
736 of_scan_flat_dt(early_init_dt_scan_ultravisor, NULL);
737 #endif
738
739 #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP)
740 /* scan tree to see if dump is active during last boot */
741 of_scan_flat_dt(early_init_dt_scan_fw_dump, NULL);
742 #endif
743
744 /* Retrieve various informations from the /chosen node of the
745 * device-tree, including the platform type, initrd location and
746 * size, TCE reserve, and more ...
747 */
748 of_scan_flat_dt(early_init_dt_scan_chosen_ppc, boot_command_line);
749
750 /* Scan memory nodes and rebuild MEMBLOCKs */
751 of_scan_flat_dt(early_init_dt_scan_root, NULL);
752 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
753
754 /*
755 * As generic code authors expect to be able to use static keys
756 * in early_param() handlers, we initialize the static keys just
757 * before parsing early params (it's fine to call jump_label_init()
758 * more than once).
759 */
760 jump_label_init();
761 parse_early_param();
762
763 /* make sure we've parsed cmdline for mem= before this */
764 if (memory_limit)
765 first_memblock_size = min_t(u64, first_memblock_size, memory_limit);
766 setup_initial_memory_limit(memstart_addr, first_memblock_size);
767 /* Reserve MEMBLOCK regions used by kernel, initrd, dt, etc... */
768 memblock_reserve(PHYSICAL_START, __pa(_end) - PHYSICAL_START);
769 /* If relocatable, reserve first 32k for interrupt vectors etc. */
770 if (PHYSICAL_START > MEMORY_START)
771 memblock_reserve(MEMORY_START, 0x8000);
772 reserve_kdump_trampoline();
773 #if defined(CONFIG_FA_DUMP) || defined(CONFIG_PRESERVE_FA_DUMP)
774 /*
775 * If we fail to reserve memory for firmware-assisted dump then
776 * fallback to kexec based kdump.
777 */
778 if (fadump_reserve_mem() == 0)
779 #endif
780 reserve_crashkernel();
781 early_reserve_mem();
782
783 /* Ensure that total memory size is page-aligned. */
784 limit = ALIGN(memory_limit ?: memblock_phys_mem_size(), PAGE_SIZE);
785 memblock_enforce_memory_limit(limit);
786
787 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_PPC_4K_PAGES)
788 if (!early_radix_enabled())
789 memblock_cap_memory_range(0, 1UL << (H_MAX_PHYSMEM_BITS));
790 #endif
791
792 memblock_allow_resize();
793 memblock_dump_all();
794
795 DBG("Phys. mem: %llx\n", (unsigned long long)memblock_phys_mem_size());
796
797 /* We may need to relocate the flat tree, do it now.
798 * FIXME .. and the initrd too? */
799 move_device_tree();
800
801 allocate_paca_ptrs();
802
803 DBG("Scanning CPUs ...\n");
804
805 dt_cpu_ftrs_scan();
806
807 /* Retrieve CPU related informations from the flat tree
808 * (altivec support, boot CPU ID, ...)
809 */
810 of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
811 if (boot_cpuid < 0) {
812 printk("Failed to identify boot CPU !\n");
813 BUG();
814 }
815
816 save_fscr_to_task();
817
818 #if defined(CONFIG_SMP) && defined(CONFIG_PPC64)
819 /* We'll later wait for secondaries to check in; there are
820 * NCPUS-1 non-boot CPUs :-)
821 */
822 spinning_secondaries = boot_cpu_count - 1;
823 #endif
824
825 mmu_early_init_devtree();
826
827 #ifdef CONFIG_PPC_POWERNV
828 /* Scan and build the list of machine check recoverable ranges */
829 of_scan_flat_dt(early_init_dt_scan_recoverable_ranges, NULL);
830 #endif
831 epapr_paravirt_early_init();
832
833 /* Now try to figure out if we are running on LPAR and so on */
834 pseries_probe_fw_features();
835
836 /*
837 * Initialize pkey features and default AMR/IAMR values
838 */
839 pkey_early_init_devtree();
840
841 #ifdef CONFIG_PPC_PS3
842 /* Identify PS3 firmware */
843 if (of_flat_dt_is_compatible(of_get_flat_dt_root(), "sony,ps3"))
844 powerpc_firmware_features |= FW_FEATURE_PS3_POSSIBLE;
845 #endif
846
847 tm_init();
848
849 DBG(" <- early_init_devtree()\n");
850 }
851
852 #ifdef CONFIG_RELOCATABLE
853 /*
854 * This function run before early_init_devtree, so we have to init
855 * initial_boot_params.
856 */
early_get_first_memblock_info(void * params,phys_addr_t * size)857 void __init early_get_first_memblock_info(void *params, phys_addr_t *size)
858 {
859 /* Setup flat device-tree pointer */
860 initial_boot_params = params;
861
862 /*
863 * Scan the memory nodes and set add_mem_to_memblock to 0 to avoid
864 * mess the memblock.
865 */
866 add_mem_to_memblock = 0;
867 of_scan_flat_dt(early_init_dt_scan_root, NULL);
868 of_scan_flat_dt(early_init_dt_scan_memory_ppc, NULL);
869 add_mem_to_memblock = 1;
870
871 if (size)
872 *size = first_memblock_size;
873 }
874 #endif
875
876 /*******
877 *
878 * New implementation of the OF "find" APIs, return a refcounted
879 * object, call of_node_put() when done. The device tree and list
880 * are protected by a rw_lock.
881 *
882 * Note that property management will need some locking as well,
883 * this isn't dealt with yet.
884 *
885 *******/
886
887 /**
888 * of_get_ibm_chip_id - Returns the IBM "chip-id" of a device
889 * @np: device node of the device
890 *
891 * This looks for a property "ibm,chip-id" in the node or any
892 * of its parents and returns its content, or -1 if it cannot
893 * be found.
894 */
of_get_ibm_chip_id(struct device_node * np)895 int of_get_ibm_chip_id(struct device_node *np)
896 {
897 of_node_get(np);
898 while (np) {
899 u32 chip_id;
900
901 /*
902 * Skiboot may produce memory nodes that contain more than one
903 * cell in chip-id, we only read the first one here.
904 */
905 if (!of_property_read_u32(np, "ibm,chip-id", &chip_id)) {
906 of_node_put(np);
907 return chip_id;
908 }
909
910 np = of_get_next_parent(np);
911 }
912 return -1;
913 }
914 EXPORT_SYMBOL(of_get_ibm_chip_id);
915
916 /**
917 * cpu_to_chip_id - Return the cpus chip-id
918 * @cpu: The logical cpu number.
919 *
920 * Return the value of the ibm,chip-id property corresponding to the given
921 * logical cpu number. If the chip-id can not be found, returns -1.
922 */
cpu_to_chip_id(int cpu)923 int cpu_to_chip_id(int cpu)
924 {
925 struct device_node *np;
926 int ret = -1, idx;
927
928 idx = cpu / threads_per_core;
929 if (chip_id_lookup_table && chip_id_lookup_table[idx] != -1)
930 return chip_id_lookup_table[idx];
931
932 np = of_get_cpu_node(cpu, NULL);
933 if (np) {
934 ret = of_get_ibm_chip_id(np);
935 of_node_put(np);
936
937 if (chip_id_lookup_table)
938 chip_id_lookup_table[idx] = ret;
939 }
940
941 return ret;
942 }
943 EXPORT_SYMBOL(cpu_to_chip_id);
944
arch_match_cpu_phys_id(int cpu,u64 phys_id)945 bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
946 {
947 #ifdef CONFIG_SMP
948 /*
949 * Early firmware scanning must use this rather than
950 * get_hard_smp_processor_id because we don't have pacas allocated
951 * until memory topology is discovered.
952 */
953 if (cpu_to_phys_id != NULL)
954 return (int)phys_id == cpu_to_phys_id[cpu];
955 #endif
956
957 return (int)phys_id == get_hard_smp_processor_id(cpu);
958 }
959