1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Page table handling routines for radix page table.
4 *
5 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6 */
7
8 #define pr_fmt(fmt) "radix-mmu: " fmt
9
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/sched/mm.h>
13 #include <linux/memblock.h>
14 #include <linux/of.h>
15 #include <linux/of_fdt.h>
16 #include <linux/mm.h>
17 #include <linux/hugetlb.h>
18 #include <linux/string_helpers.h>
19 #include <linux/memory.h>
20
21 #include <asm/pgalloc.h>
22 #include <asm/mmu_context.h>
23 #include <asm/dma.h>
24 #include <asm/machdep.h>
25 #include <asm/mmu.h>
26 #include <asm/firmware.h>
27 #include <asm/powernv.h>
28 #include <asm/sections.h>
29 #include <asm/smp.h>
30 #include <asm/trace.h>
31 #include <asm/uaccess.h>
32 #include <asm/ultravisor.h>
33
34 #include <trace/events/thp.h>
35
36 unsigned int mmu_pid_bits;
37 unsigned int mmu_base_pid;
38 unsigned long radix_mem_block_size __ro_after_init;
39
early_alloc_pgtable(unsigned long size,int nid,unsigned long region_start,unsigned long region_end)40 static __ref void *early_alloc_pgtable(unsigned long size, int nid,
41 unsigned long region_start, unsigned long region_end)
42 {
43 phys_addr_t min_addr = MEMBLOCK_LOW_LIMIT;
44 phys_addr_t max_addr = MEMBLOCK_ALLOC_ANYWHERE;
45 void *ptr;
46
47 if (region_start)
48 min_addr = region_start;
49 if (region_end)
50 max_addr = region_end;
51
52 ptr = memblock_alloc_try_nid(size, size, min_addr, max_addr, nid);
53
54 if (!ptr)
55 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa max_addr=%pa\n",
56 __func__, size, size, nid, &min_addr, &max_addr);
57
58 return ptr;
59 }
60
61 /*
62 * When allocating pud or pmd pointers, we allocate a complete page
63 * of PAGE_SIZE rather than PUD_TABLE_SIZE or PMD_TABLE_SIZE. This
64 * is to ensure that the page obtained from the memblock allocator
65 * can be completely used as page table page and can be freed
66 * correctly when the page table entries are removed.
67 */
early_map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size,int nid,unsigned long region_start,unsigned long region_end)68 static int early_map_kernel_page(unsigned long ea, unsigned long pa,
69 pgprot_t flags,
70 unsigned int map_page_size,
71 int nid,
72 unsigned long region_start, unsigned long region_end)
73 {
74 unsigned long pfn = pa >> PAGE_SHIFT;
75 pgd_t *pgdp;
76 p4d_t *p4dp;
77 pud_t *pudp;
78 pmd_t *pmdp;
79 pte_t *ptep;
80
81 pgdp = pgd_offset_k(ea);
82 p4dp = p4d_offset(pgdp, ea);
83 if (p4d_none(*p4dp)) {
84 pudp = early_alloc_pgtable(PAGE_SIZE, nid,
85 region_start, region_end);
86 p4d_populate(&init_mm, p4dp, pudp);
87 }
88 pudp = pud_offset(p4dp, ea);
89 if (map_page_size == PUD_SIZE) {
90 ptep = (pte_t *)pudp;
91 goto set_the_pte;
92 }
93 if (pud_none(*pudp)) {
94 pmdp = early_alloc_pgtable(PAGE_SIZE, nid, region_start,
95 region_end);
96 pud_populate(&init_mm, pudp, pmdp);
97 }
98 pmdp = pmd_offset(pudp, ea);
99 if (map_page_size == PMD_SIZE) {
100 ptep = pmdp_ptep(pmdp);
101 goto set_the_pte;
102 }
103 if (!pmd_present(*pmdp)) {
104 ptep = early_alloc_pgtable(PAGE_SIZE, nid,
105 region_start, region_end);
106 pmd_populate_kernel(&init_mm, pmdp, ptep);
107 }
108 ptep = pte_offset_kernel(pmdp, ea);
109
110 set_the_pte:
111 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
112 asm volatile("ptesync": : :"memory");
113 return 0;
114 }
115
116 /*
117 * nid, region_start, and region_end are hints to try to place the page
118 * table memory in the same node or region.
119 */
__map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size,int nid,unsigned long region_start,unsigned long region_end)120 static int __map_kernel_page(unsigned long ea, unsigned long pa,
121 pgprot_t flags,
122 unsigned int map_page_size,
123 int nid,
124 unsigned long region_start, unsigned long region_end)
125 {
126 unsigned long pfn = pa >> PAGE_SHIFT;
127 pgd_t *pgdp;
128 p4d_t *p4dp;
129 pud_t *pudp;
130 pmd_t *pmdp;
131 pte_t *ptep;
132 /*
133 * Make sure task size is correct as per the max adddr
134 */
135 BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
136
137 #ifdef CONFIG_PPC_64K_PAGES
138 BUILD_BUG_ON(RADIX_KERN_MAP_SIZE != (1UL << MAX_EA_BITS_PER_CONTEXT));
139 #endif
140
141 if (unlikely(!slab_is_available()))
142 return early_map_kernel_page(ea, pa, flags, map_page_size,
143 nid, region_start, region_end);
144
145 /*
146 * Should make page table allocation functions be able to take a
147 * node, so we can place kernel page tables on the right nodes after
148 * boot.
149 */
150 pgdp = pgd_offset_k(ea);
151 p4dp = p4d_offset(pgdp, ea);
152 pudp = pud_alloc(&init_mm, p4dp, ea);
153 if (!pudp)
154 return -ENOMEM;
155 if (map_page_size == PUD_SIZE) {
156 ptep = (pte_t *)pudp;
157 goto set_the_pte;
158 }
159 pmdp = pmd_alloc(&init_mm, pudp, ea);
160 if (!pmdp)
161 return -ENOMEM;
162 if (map_page_size == PMD_SIZE) {
163 ptep = pmdp_ptep(pmdp);
164 goto set_the_pte;
165 }
166 ptep = pte_alloc_kernel(pmdp, ea);
167 if (!ptep)
168 return -ENOMEM;
169
170 set_the_pte:
171 set_pte_at(&init_mm, ea, ptep, pfn_pte(pfn, flags));
172 asm volatile("ptesync": : :"memory");
173 return 0;
174 }
175
radix__map_kernel_page(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size)176 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
177 pgprot_t flags,
178 unsigned int map_page_size)
179 {
180 return __map_kernel_page(ea, pa, flags, map_page_size, -1, 0, 0);
181 }
182
183 #ifdef CONFIG_STRICT_KERNEL_RWX
radix__change_memory_range(unsigned long start,unsigned long end,unsigned long clear)184 static void radix__change_memory_range(unsigned long start, unsigned long end,
185 unsigned long clear)
186 {
187 unsigned long idx;
188 pgd_t *pgdp;
189 p4d_t *p4dp;
190 pud_t *pudp;
191 pmd_t *pmdp;
192 pte_t *ptep;
193
194 start = ALIGN_DOWN(start, PAGE_SIZE);
195 end = PAGE_ALIGN(end); // aligns up
196
197 pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
198 start, end, clear);
199
200 for (idx = start; idx < end; idx += PAGE_SIZE) {
201 pgdp = pgd_offset_k(idx);
202 p4dp = p4d_offset(pgdp, idx);
203 pudp = pud_alloc(&init_mm, p4dp, idx);
204 if (!pudp)
205 continue;
206 if (pud_is_leaf(*pudp)) {
207 ptep = (pte_t *)pudp;
208 goto update_the_pte;
209 }
210 pmdp = pmd_alloc(&init_mm, pudp, idx);
211 if (!pmdp)
212 continue;
213 if (pmd_is_leaf(*pmdp)) {
214 ptep = pmdp_ptep(pmdp);
215 goto update_the_pte;
216 }
217 ptep = pte_alloc_kernel(pmdp, idx);
218 if (!ptep)
219 continue;
220 update_the_pte:
221 radix__pte_update(&init_mm, idx, ptep, clear, 0, 0);
222 }
223
224 radix__flush_tlb_kernel_range(start, end);
225 }
226
radix__mark_rodata_ro(void)227 void radix__mark_rodata_ro(void)
228 {
229 unsigned long start, end;
230
231 start = (unsigned long)_stext;
232 end = (unsigned long)__init_begin;
233
234 radix__change_memory_range(start, end, _PAGE_WRITE);
235
236 for (start = PAGE_OFFSET; start < (unsigned long)_stext; start += PAGE_SIZE) {
237 end = start + PAGE_SIZE;
238 if (overlaps_interrupt_vector_text(start, end))
239 radix__change_memory_range(start, end, _PAGE_WRITE);
240 else
241 break;
242 }
243 }
244
radix__mark_initmem_nx(void)245 void radix__mark_initmem_nx(void)
246 {
247 unsigned long start = (unsigned long)__init_begin;
248 unsigned long end = (unsigned long)__init_end;
249
250 radix__change_memory_range(start, end, _PAGE_EXEC);
251 }
252 #endif /* CONFIG_STRICT_KERNEL_RWX */
253
254 static inline void __meminit
print_mapping(unsigned long start,unsigned long end,unsigned long size,bool exec)255 print_mapping(unsigned long start, unsigned long end, unsigned long size, bool exec)
256 {
257 char buf[10];
258
259 if (end <= start)
260 return;
261
262 string_get_size(size, 1, STRING_UNITS_2, buf, sizeof(buf));
263
264 pr_info("Mapped 0x%016lx-0x%016lx with %s pages%s\n", start, end, buf,
265 exec ? " (exec)" : "");
266 }
267
next_boundary(unsigned long addr,unsigned long end)268 static unsigned long next_boundary(unsigned long addr, unsigned long end)
269 {
270 #ifdef CONFIG_STRICT_KERNEL_RWX
271 unsigned long stext_phys;
272
273 stext_phys = __pa_symbol(_stext);
274
275 // Relocatable kernel running at non-zero real address
276 if (stext_phys != 0) {
277 // The end of interrupts code at zero is a rodata boundary
278 unsigned long end_intr = __pa_symbol(__end_interrupts) - stext_phys;
279 if (addr < end_intr)
280 return end_intr;
281
282 // Start of relocated kernel text is a rodata boundary
283 if (addr < stext_phys)
284 return stext_phys;
285 }
286
287 if (addr < __pa_symbol(__srwx_boundary))
288 return __pa_symbol(__srwx_boundary);
289 #endif
290 return end;
291 }
292
create_physical_mapping(unsigned long start,unsigned long end,unsigned long max_mapping_size,int nid,pgprot_t _prot)293 static int __meminit create_physical_mapping(unsigned long start,
294 unsigned long end,
295 unsigned long max_mapping_size,
296 int nid, pgprot_t _prot)
297 {
298 unsigned long vaddr, addr, mapping_size = 0;
299 bool prev_exec, exec = false;
300 pgprot_t prot;
301 int psize;
302
303 start = ALIGN(start, PAGE_SIZE);
304 end = ALIGN_DOWN(end, PAGE_SIZE);
305 for (addr = start; addr < end; addr += mapping_size) {
306 unsigned long gap, previous_size;
307 int rc;
308
309 gap = next_boundary(addr, end) - addr;
310 if (gap > max_mapping_size)
311 gap = max_mapping_size;
312 previous_size = mapping_size;
313 prev_exec = exec;
314
315 if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
316 mmu_psize_defs[MMU_PAGE_1G].shift) {
317 mapping_size = PUD_SIZE;
318 psize = MMU_PAGE_1G;
319 } else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
320 mmu_psize_defs[MMU_PAGE_2M].shift) {
321 mapping_size = PMD_SIZE;
322 psize = MMU_PAGE_2M;
323 } else {
324 mapping_size = PAGE_SIZE;
325 psize = mmu_virtual_psize;
326 }
327
328 vaddr = (unsigned long)__va(addr);
329
330 if (overlaps_kernel_text(vaddr, vaddr + mapping_size) ||
331 overlaps_interrupt_vector_text(vaddr, vaddr + mapping_size)) {
332 prot = PAGE_KERNEL_X;
333 exec = true;
334 } else {
335 prot = _prot;
336 exec = false;
337 }
338
339 if (mapping_size != previous_size || exec != prev_exec) {
340 print_mapping(start, addr, previous_size, prev_exec);
341 start = addr;
342 }
343
344 rc = __map_kernel_page(vaddr, addr, prot, mapping_size, nid, start, end);
345 if (rc)
346 return rc;
347
348 update_page_count(psize, 1);
349 }
350
351 print_mapping(start, addr, mapping_size, exec);
352 return 0;
353 }
354
radix_init_pgtable(void)355 static void __init radix_init_pgtable(void)
356 {
357 unsigned long rts_field;
358 phys_addr_t start, end;
359 u64 i;
360
361 /* We don't support slb for radix */
362 mmu_slb_size = 0;
363
364 /*
365 * Create the linear mapping
366 */
367 for_each_mem_range(i, &start, &end) {
368 /*
369 * The memblock allocator is up at this point, so the
370 * page tables will be allocated within the range. No
371 * need or a node (which we don't have yet).
372 */
373
374 if (end >= RADIX_VMALLOC_START) {
375 pr_warn("Outside the supported range\n");
376 continue;
377 }
378
379 WARN_ON(create_physical_mapping(start, end,
380 radix_mem_block_size,
381 -1, PAGE_KERNEL));
382 }
383
384 /* Find out how many PID bits are supported */
385 if (!cpu_has_feature(CPU_FTR_HVMODE) &&
386 cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG)) {
387 /*
388 * Older versions of KVM on these machines perfer if the
389 * guest only uses the low 19 PID bits.
390 */
391 if (!mmu_pid_bits)
392 mmu_pid_bits = 19;
393 } else {
394 if (!mmu_pid_bits)
395 mmu_pid_bits = 20;
396 }
397 mmu_base_pid = 1;
398
399 /*
400 * Allocate Partition table and process table for the
401 * host.
402 */
403 BUG_ON(PRTB_SIZE_SHIFT > 36);
404 process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT, -1, 0, 0);
405 /*
406 * Fill in the process table.
407 */
408 rts_field = radix__get_tree_size();
409 process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
410
411 /*
412 * The init_mm context is given the first available (non-zero) PID,
413 * which is the "guard PID" and contains no page table. PIDR should
414 * never be set to zero because that duplicates the kernel address
415 * space at the 0x0... offset (quadrant 0)!
416 *
417 * An arbitrary PID that may later be allocated by the PID allocator
418 * for userspace processes must not be used either, because that
419 * would cause stale user mappings for that PID on CPUs outside of
420 * the TLB invalidation scheme (because it won't be in mm_cpumask).
421 *
422 * So permanently carve out one PID for the purpose of a guard PID.
423 */
424 init_mm.context.id = mmu_base_pid;
425 mmu_base_pid++;
426 }
427
radix_init_partition_table(void)428 static void __init radix_init_partition_table(void)
429 {
430 unsigned long rts_field, dw0, dw1;
431
432 mmu_partition_table_init();
433 rts_field = radix__get_tree_size();
434 dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
435 dw1 = __pa(process_tb) | (PRTB_SIZE_SHIFT - 12) | PATB_GR;
436 mmu_partition_table_set_entry(0, dw0, dw1, false);
437
438 pr_info("Initializing Radix MMU\n");
439 }
440
get_idx_from_shift(unsigned int shift)441 static int __init get_idx_from_shift(unsigned int shift)
442 {
443 int idx = -1;
444
445 switch (shift) {
446 case 0xc:
447 idx = MMU_PAGE_4K;
448 break;
449 case 0x10:
450 idx = MMU_PAGE_64K;
451 break;
452 case 0x15:
453 idx = MMU_PAGE_2M;
454 break;
455 case 0x1e:
456 idx = MMU_PAGE_1G;
457 break;
458 }
459 return idx;
460 }
461
radix_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)462 static int __init radix_dt_scan_page_sizes(unsigned long node,
463 const char *uname, int depth,
464 void *data)
465 {
466 int size = 0;
467 int shift, idx;
468 unsigned int ap;
469 const __be32 *prop;
470 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
471
472 /* We are scanning "cpu" nodes only */
473 if (type == NULL || strcmp(type, "cpu") != 0)
474 return 0;
475
476 /* Find MMU PID size */
477 prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
478 if (prop && size == 4)
479 mmu_pid_bits = be32_to_cpup(prop);
480
481 /* Grab page size encodings */
482 prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
483 if (!prop)
484 return 0;
485
486 pr_info("Page sizes from device-tree:\n");
487 for (; size >= 4; size -= 4, ++prop) {
488
489 struct mmu_psize_def *def;
490
491 /* top 3 bit is AP encoding */
492 shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
493 ap = be32_to_cpu(prop[0]) >> 29;
494 pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
495
496 idx = get_idx_from_shift(shift);
497 if (idx < 0)
498 continue;
499
500 def = &mmu_psize_defs[idx];
501 def->shift = shift;
502 def->ap = ap;
503 def->h_rpt_pgsize = psize_to_rpti_pgsize(idx);
504 }
505
506 /* needed ? */
507 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
508 return 1;
509 }
510
511 #ifdef CONFIG_MEMORY_HOTPLUG
probe_memory_block_size(unsigned long node,const char * uname,int depth,void * data)512 static int __init probe_memory_block_size(unsigned long node, const char *uname, int
513 depth, void *data)
514 {
515 unsigned long *mem_block_size = (unsigned long *)data;
516 const __be32 *prop;
517 int len;
518
519 if (depth != 1)
520 return 0;
521
522 if (strcmp(uname, "ibm,dynamic-reconfiguration-memory"))
523 return 0;
524
525 prop = of_get_flat_dt_prop(node, "ibm,lmb-size", &len);
526
527 if (!prop || len < dt_root_size_cells * sizeof(__be32))
528 /*
529 * Nothing in the device tree
530 */
531 *mem_block_size = MIN_MEMORY_BLOCK_SIZE;
532 else
533 *mem_block_size = of_read_number(prop, dt_root_size_cells);
534 return 1;
535 }
536
radix_memory_block_size(void)537 static unsigned long radix_memory_block_size(void)
538 {
539 unsigned long mem_block_size = MIN_MEMORY_BLOCK_SIZE;
540
541 /*
542 * OPAL firmware feature is set by now. Hence we are ok
543 * to test OPAL feature.
544 */
545 if (firmware_has_feature(FW_FEATURE_OPAL))
546 mem_block_size = 1UL * 1024 * 1024 * 1024;
547 else
548 of_scan_flat_dt(probe_memory_block_size, &mem_block_size);
549
550 return mem_block_size;
551 }
552
553 #else /* CONFIG_MEMORY_HOTPLUG */
554
radix_memory_block_size(void)555 static unsigned long radix_memory_block_size(void)
556 {
557 return 1UL * 1024 * 1024 * 1024;
558 }
559
560 #endif /* CONFIG_MEMORY_HOTPLUG */
561
562
radix__early_init_devtree(void)563 void __init radix__early_init_devtree(void)
564 {
565 int rc;
566
567 /*
568 * Try to find the available page sizes in the device-tree
569 */
570 rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
571 if (!rc) {
572 /*
573 * No page size details found in device tree.
574 * Let's assume we have page 4k and 64k support
575 */
576 mmu_psize_defs[MMU_PAGE_4K].shift = 12;
577 mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
578 mmu_psize_defs[MMU_PAGE_4K].h_rpt_pgsize =
579 psize_to_rpti_pgsize(MMU_PAGE_4K);
580
581 mmu_psize_defs[MMU_PAGE_64K].shift = 16;
582 mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
583 mmu_psize_defs[MMU_PAGE_64K].h_rpt_pgsize =
584 psize_to_rpti_pgsize(MMU_PAGE_64K);
585 }
586
587 /*
588 * Max mapping size used when mapping pages. We don't use
589 * ppc_md.memory_block_size() here because this get called
590 * early and we don't have machine probe called yet. Also
591 * the pseries implementation only check for ibm,lmb-size.
592 * All hypervisor supporting radix do expose that device
593 * tree node.
594 */
595 radix_mem_block_size = radix_memory_block_size();
596 return;
597 }
598
radix_init_amor(void)599 static void radix_init_amor(void)
600 {
601 /*
602 * In HV mode, we init AMOR (Authority Mask Override Register) so that
603 * the hypervisor and guest can setup IAMR (Instruction Authority Mask
604 * Register), enable key 0 and set it to 1.
605 *
606 * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
607 */
608 mtspr(SPRN_AMOR, (3ul << 62));
609 }
610
radix__early_init_mmu(void)611 void __init radix__early_init_mmu(void)
612 {
613 unsigned long lpcr;
614
615 #ifdef CONFIG_PPC_64K_PAGES
616 /* PAGE_SIZE mappings */
617 mmu_virtual_psize = MMU_PAGE_64K;
618 #else
619 mmu_virtual_psize = MMU_PAGE_4K;
620 #endif
621
622 #ifdef CONFIG_SPARSEMEM_VMEMMAP
623 /* vmemmap mapping */
624 if (mmu_psize_defs[MMU_PAGE_2M].shift) {
625 /*
626 * map vmemmap using 2M if available
627 */
628 mmu_vmemmap_psize = MMU_PAGE_2M;
629 } else
630 mmu_vmemmap_psize = mmu_virtual_psize;
631 #endif
632 /*
633 * initialize page table size
634 */
635 __pte_index_size = RADIX_PTE_INDEX_SIZE;
636 __pmd_index_size = RADIX_PMD_INDEX_SIZE;
637 __pud_index_size = RADIX_PUD_INDEX_SIZE;
638 __pgd_index_size = RADIX_PGD_INDEX_SIZE;
639 __pud_cache_index = RADIX_PUD_INDEX_SIZE;
640 __pte_table_size = RADIX_PTE_TABLE_SIZE;
641 __pmd_table_size = RADIX_PMD_TABLE_SIZE;
642 __pud_table_size = RADIX_PUD_TABLE_SIZE;
643 __pgd_table_size = RADIX_PGD_TABLE_SIZE;
644
645 __pmd_val_bits = RADIX_PMD_VAL_BITS;
646 __pud_val_bits = RADIX_PUD_VAL_BITS;
647 __pgd_val_bits = RADIX_PGD_VAL_BITS;
648
649 __kernel_virt_start = RADIX_KERN_VIRT_START;
650 __vmalloc_start = RADIX_VMALLOC_START;
651 __vmalloc_end = RADIX_VMALLOC_END;
652 __kernel_io_start = RADIX_KERN_IO_START;
653 __kernel_io_end = RADIX_KERN_IO_END;
654 vmemmap = (struct page *)RADIX_VMEMMAP_START;
655 ioremap_bot = IOREMAP_BASE;
656
657 #ifdef CONFIG_PCI
658 pci_io_base = ISA_IO_BASE;
659 #endif
660 __pte_frag_nr = RADIX_PTE_FRAG_NR;
661 __pte_frag_size_shift = RADIX_PTE_FRAG_SIZE_SHIFT;
662 __pmd_frag_nr = RADIX_PMD_FRAG_NR;
663 __pmd_frag_size_shift = RADIX_PMD_FRAG_SIZE_SHIFT;
664
665 radix_init_pgtable();
666
667 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
668 lpcr = mfspr(SPRN_LPCR);
669 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
670 radix_init_partition_table();
671 radix_init_amor();
672 } else {
673 radix_init_pseries();
674 }
675
676 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
677
678 /* Switch to the guard PID before turning on MMU */
679 radix__switch_mmu_context(NULL, &init_mm);
680 tlbiel_all();
681 }
682
radix__early_init_mmu_secondary(void)683 void radix__early_init_mmu_secondary(void)
684 {
685 unsigned long lpcr;
686 /*
687 * update partition table control register and UPRT
688 */
689 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
690 lpcr = mfspr(SPRN_LPCR);
691 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
692
693 set_ptcr_when_no_uv(__pa(partition_tb) |
694 (PATB_SIZE_SHIFT - 12));
695
696 radix_init_amor();
697 }
698
699 radix__switch_mmu_context(NULL, &init_mm);
700 tlbiel_all();
701
702 /* Make sure userspace can't change the AMR */
703 mtspr(SPRN_UAMOR, 0);
704 }
705
706 /* Called during kexec sequence with MMU off */
radix__mmu_cleanup_all(void)707 notrace void radix__mmu_cleanup_all(void)
708 {
709 unsigned long lpcr;
710
711 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
712 lpcr = mfspr(SPRN_LPCR);
713 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
714 set_ptcr_when_no_uv(0);
715 powernv_set_nmmu_ptcr(0);
716 radix__flush_tlb_all();
717 }
718 }
719
720 #ifdef CONFIG_MEMORY_HOTPLUG
free_pte_table(pte_t * pte_start,pmd_t * pmd)721 static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
722 {
723 pte_t *pte;
724 int i;
725
726 for (i = 0; i < PTRS_PER_PTE; i++) {
727 pte = pte_start + i;
728 if (!pte_none(*pte))
729 return;
730 }
731
732 pte_free_kernel(&init_mm, pte_start);
733 pmd_clear(pmd);
734 }
735
free_pmd_table(pmd_t * pmd_start,pud_t * pud)736 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
737 {
738 pmd_t *pmd;
739 int i;
740
741 for (i = 0; i < PTRS_PER_PMD; i++) {
742 pmd = pmd_start + i;
743 if (!pmd_none(*pmd))
744 return;
745 }
746
747 pmd_free(&init_mm, pmd_start);
748 pud_clear(pud);
749 }
750
free_pud_table(pud_t * pud_start,p4d_t * p4d)751 static void free_pud_table(pud_t *pud_start, p4d_t *p4d)
752 {
753 pud_t *pud;
754 int i;
755
756 for (i = 0; i < PTRS_PER_PUD; i++) {
757 pud = pud_start + i;
758 if (!pud_none(*pud))
759 return;
760 }
761
762 pud_free(&init_mm, pud_start);
763 p4d_clear(p4d);
764 }
765
remove_pte_table(pte_t * pte_start,unsigned long addr,unsigned long end,bool direct)766 static void remove_pte_table(pte_t *pte_start, unsigned long addr,
767 unsigned long end, bool direct)
768 {
769 unsigned long next, pages = 0;
770 pte_t *pte;
771
772 pte = pte_start + pte_index(addr);
773 for (; addr < end; addr = next, pte++) {
774 next = (addr + PAGE_SIZE) & PAGE_MASK;
775 if (next > end)
776 next = end;
777
778 if (!pte_present(*pte))
779 continue;
780
781 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
782 /*
783 * The vmemmap_free() and remove_section_mapping()
784 * codepaths call us with aligned addresses.
785 */
786 WARN_ONCE(1, "%s: unaligned range\n", __func__);
787 continue;
788 }
789
790 pte_clear(&init_mm, addr, pte);
791 pages++;
792 }
793 if (direct)
794 update_page_count(mmu_virtual_psize, -pages);
795 }
796
remove_pmd_table(pmd_t * pmd_start,unsigned long addr,unsigned long end,bool direct)797 static void __meminit remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
798 unsigned long end, bool direct)
799 {
800 unsigned long next, pages = 0;
801 pte_t *pte_base;
802 pmd_t *pmd;
803
804 pmd = pmd_start + pmd_index(addr);
805 for (; addr < end; addr = next, pmd++) {
806 next = pmd_addr_end(addr, end);
807
808 if (!pmd_present(*pmd))
809 continue;
810
811 if (pmd_is_leaf(*pmd)) {
812 if (!IS_ALIGNED(addr, PMD_SIZE) ||
813 !IS_ALIGNED(next, PMD_SIZE)) {
814 WARN_ONCE(1, "%s: unaligned range\n", __func__);
815 continue;
816 }
817 pte_clear(&init_mm, addr, (pte_t *)pmd);
818 pages++;
819 continue;
820 }
821
822 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
823 remove_pte_table(pte_base, addr, next, direct);
824 free_pte_table(pte_base, pmd);
825 }
826 if (direct)
827 update_page_count(MMU_PAGE_2M, -pages);
828 }
829
remove_pud_table(pud_t * pud_start,unsigned long addr,unsigned long end,bool direct)830 static void __meminit remove_pud_table(pud_t *pud_start, unsigned long addr,
831 unsigned long end, bool direct)
832 {
833 unsigned long next, pages = 0;
834 pmd_t *pmd_base;
835 pud_t *pud;
836
837 pud = pud_start + pud_index(addr);
838 for (; addr < end; addr = next, pud++) {
839 next = pud_addr_end(addr, end);
840
841 if (!pud_present(*pud))
842 continue;
843
844 if (pud_is_leaf(*pud)) {
845 if (!IS_ALIGNED(addr, PUD_SIZE) ||
846 !IS_ALIGNED(next, PUD_SIZE)) {
847 WARN_ONCE(1, "%s: unaligned range\n", __func__);
848 continue;
849 }
850 pte_clear(&init_mm, addr, (pte_t *)pud);
851 pages++;
852 continue;
853 }
854
855 pmd_base = pud_pgtable(*pud);
856 remove_pmd_table(pmd_base, addr, next, direct);
857 free_pmd_table(pmd_base, pud);
858 }
859 if (direct)
860 update_page_count(MMU_PAGE_1G, -pages);
861 }
862
remove_pagetable(unsigned long start,unsigned long end,bool direct)863 static void __meminit remove_pagetable(unsigned long start, unsigned long end,
864 bool direct)
865 {
866 unsigned long addr, next;
867 pud_t *pud_base;
868 pgd_t *pgd;
869 p4d_t *p4d;
870
871 spin_lock(&init_mm.page_table_lock);
872
873 for (addr = start; addr < end; addr = next) {
874 next = pgd_addr_end(addr, end);
875
876 pgd = pgd_offset_k(addr);
877 p4d = p4d_offset(pgd, addr);
878 if (!p4d_present(*p4d))
879 continue;
880
881 if (p4d_is_leaf(*p4d)) {
882 if (!IS_ALIGNED(addr, P4D_SIZE) ||
883 !IS_ALIGNED(next, P4D_SIZE)) {
884 WARN_ONCE(1, "%s: unaligned range\n", __func__);
885 continue;
886 }
887
888 pte_clear(&init_mm, addr, (pte_t *)pgd);
889 continue;
890 }
891
892 pud_base = p4d_pgtable(*p4d);
893 remove_pud_table(pud_base, addr, next, direct);
894 free_pud_table(pud_base, p4d);
895 }
896
897 spin_unlock(&init_mm.page_table_lock);
898 radix__flush_tlb_kernel_range(start, end);
899 }
900
radix__create_section_mapping(unsigned long start,unsigned long end,int nid,pgprot_t prot)901 int __meminit radix__create_section_mapping(unsigned long start,
902 unsigned long end, int nid,
903 pgprot_t prot)
904 {
905 if (end >= RADIX_VMALLOC_START) {
906 pr_warn("Outside the supported range\n");
907 return -1;
908 }
909
910 return create_physical_mapping(__pa(start), __pa(end),
911 radix_mem_block_size, nid, prot);
912 }
913
radix__remove_section_mapping(unsigned long start,unsigned long end)914 int __meminit radix__remove_section_mapping(unsigned long start, unsigned long end)
915 {
916 remove_pagetable(start, end, true);
917 return 0;
918 }
919 #endif /* CONFIG_MEMORY_HOTPLUG */
920
921 #ifdef CONFIG_SPARSEMEM_VMEMMAP
__map_kernel_page_nid(unsigned long ea,unsigned long pa,pgprot_t flags,unsigned int map_page_size,int nid)922 static int __map_kernel_page_nid(unsigned long ea, unsigned long pa,
923 pgprot_t flags, unsigned int map_page_size,
924 int nid)
925 {
926 return __map_kernel_page(ea, pa, flags, map_page_size, nid, 0, 0);
927 }
928
radix__vmemmap_create_mapping(unsigned long start,unsigned long page_size,unsigned long phys)929 int __meminit radix__vmemmap_create_mapping(unsigned long start,
930 unsigned long page_size,
931 unsigned long phys)
932 {
933 /* Create a PTE encoding */
934 unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
935 int nid = early_pfn_to_nid(phys >> PAGE_SHIFT);
936 int ret;
937
938 if ((start + page_size) >= RADIX_VMEMMAP_END) {
939 pr_warn("Outside the supported range\n");
940 return -1;
941 }
942
943 ret = __map_kernel_page_nid(start, phys, __pgprot(flags), page_size, nid);
944 BUG_ON(ret);
945
946 return 0;
947 }
948
949 #ifdef CONFIG_MEMORY_HOTPLUG
radix__vmemmap_remove_mapping(unsigned long start,unsigned long page_size)950 void __meminit radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
951 {
952 remove_pagetable(start, start + page_size, false);
953 }
954 #endif
955 #endif
956
957 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
958
radix__pmd_hugepage_update(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,unsigned long clr,unsigned long set)959 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
960 pmd_t *pmdp, unsigned long clr,
961 unsigned long set)
962 {
963 unsigned long old;
964
965 #ifdef CONFIG_DEBUG_VM
966 WARN_ON(!radix__pmd_trans_huge(*pmdp) && !pmd_devmap(*pmdp));
967 assert_spin_locked(pmd_lockptr(mm, pmdp));
968 #endif
969
970 old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
971 trace_hugepage_update(addr, old, clr, set);
972
973 return old;
974 }
975
radix__pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)976 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
977 pmd_t *pmdp)
978
979 {
980 pmd_t pmd;
981
982 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
983 VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
984 VM_BUG_ON(pmd_devmap(*pmdp));
985 /*
986 * khugepaged calls this for normal pmd
987 */
988 pmd = *pmdp;
989 pmd_clear(pmdp);
990
991 radix__flush_tlb_collapsed_pmd(vma->vm_mm, address);
992
993 return pmd;
994 }
995
996 /*
997 * For us pgtable_t is pte_t *. Inorder to save the deposisted
998 * page table, we consider the allocated page table as a list
999 * head. On withdraw we need to make sure we zero out the used
1000 * list_head memory area.
1001 */
radix__pgtable_trans_huge_deposit(struct mm_struct * mm,pmd_t * pmdp,pgtable_t pgtable)1002 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1003 pgtable_t pgtable)
1004 {
1005 struct list_head *lh = (struct list_head *) pgtable;
1006
1007 assert_spin_locked(pmd_lockptr(mm, pmdp));
1008
1009 /* FIFO */
1010 if (!pmd_huge_pte(mm, pmdp))
1011 INIT_LIST_HEAD(lh);
1012 else
1013 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
1014 pmd_huge_pte(mm, pmdp) = pgtable;
1015 }
1016
radix__pgtable_trans_huge_withdraw(struct mm_struct * mm,pmd_t * pmdp)1017 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1018 {
1019 pte_t *ptep;
1020 pgtable_t pgtable;
1021 struct list_head *lh;
1022
1023 assert_spin_locked(pmd_lockptr(mm, pmdp));
1024
1025 /* FIFO */
1026 pgtable = pmd_huge_pte(mm, pmdp);
1027 lh = (struct list_head *) pgtable;
1028 if (list_empty(lh))
1029 pmd_huge_pte(mm, pmdp) = NULL;
1030 else {
1031 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1032 list_del(lh);
1033 }
1034 ptep = (pte_t *) pgtable;
1035 *ptep = __pte(0);
1036 ptep++;
1037 *ptep = __pte(0);
1038 return pgtable;
1039 }
1040
radix__pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1041 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
1042 unsigned long addr, pmd_t *pmdp)
1043 {
1044 pmd_t old_pmd;
1045 unsigned long old;
1046
1047 old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
1048 old_pmd = __pmd(old);
1049 return old_pmd;
1050 }
1051
1052 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1053
radix__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)1054 void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep,
1055 pte_t entry, unsigned long address, int psize)
1056 {
1057 struct mm_struct *mm = vma->vm_mm;
1058 unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_SOFT_DIRTY |
1059 _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
1060
1061 unsigned long change = pte_val(entry) ^ pte_val(*ptep);
1062 /*
1063 * To avoid NMMU hang while relaxing access, we need mark
1064 * the pte invalid in between.
1065 */
1066 if ((change & _PAGE_RW) && atomic_read(&mm->context.copros) > 0) {
1067 unsigned long old_pte, new_pte;
1068
1069 old_pte = __radix_pte_update(ptep, _PAGE_PRESENT, _PAGE_INVALID);
1070 /*
1071 * new value of pte
1072 */
1073 new_pte = old_pte | set;
1074 radix__flush_tlb_page_psize(mm, address, psize);
1075 __radix_pte_update(ptep, _PAGE_INVALID, new_pte);
1076 } else {
1077 __radix_pte_update(ptep, 0, set);
1078 /*
1079 * Book3S does not require a TLB flush when relaxing access
1080 * restrictions when the address space is not attached to a
1081 * NMMU, because the core MMU will reload the pte after taking
1082 * an access fault, which is defined by the architecture.
1083 */
1084 }
1085 /* See ptesync comment in radix__set_pte_at */
1086 }
1087
radix__ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1088 void radix__ptep_modify_prot_commit(struct vm_area_struct *vma,
1089 unsigned long addr, pte_t *ptep,
1090 pte_t old_pte, pte_t pte)
1091 {
1092 struct mm_struct *mm = vma->vm_mm;
1093
1094 /*
1095 * To avoid NMMU hang while relaxing access we need to flush the tlb before
1096 * we set the new value. We need to do this only for radix, because hash
1097 * translation does flush when updating the linux pte.
1098 */
1099 if (is_pte_rw_upgrade(pte_val(old_pte), pte_val(pte)) &&
1100 (atomic_read(&mm->context.copros) > 0))
1101 radix__flush_tlb_page(vma, addr);
1102
1103 set_pte_at(mm, addr, ptep, pte);
1104 }
1105
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)1106 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1107 {
1108 pte_t *ptep = (pte_t *)pud;
1109 pte_t new_pud = pfn_pte(__phys_to_pfn(addr), prot);
1110
1111 if (!radix_enabled())
1112 return 0;
1113
1114 set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pud);
1115
1116 return 1;
1117 }
1118
pud_clear_huge(pud_t * pud)1119 int pud_clear_huge(pud_t *pud)
1120 {
1121 if (pud_is_leaf(*pud)) {
1122 pud_clear(pud);
1123 return 1;
1124 }
1125
1126 return 0;
1127 }
1128
pud_free_pmd_page(pud_t * pud,unsigned long addr)1129 int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1130 {
1131 pmd_t *pmd;
1132 int i;
1133
1134 pmd = pud_pgtable(*pud);
1135 pud_clear(pud);
1136
1137 flush_tlb_kernel_range(addr, addr + PUD_SIZE);
1138
1139 for (i = 0; i < PTRS_PER_PMD; i++) {
1140 if (!pmd_none(pmd[i])) {
1141 pte_t *pte;
1142 pte = (pte_t *)pmd_page_vaddr(pmd[i]);
1143
1144 pte_free_kernel(&init_mm, pte);
1145 }
1146 }
1147
1148 pmd_free(&init_mm, pmd);
1149
1150 return 1;
1151 }
1152
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)1153 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1154 {
1155 pte_t *ptep = (pte_t *)pmd;
1156 pte_t new_pmd = pfn_pte(__phys_to_pfn(addr), prot);
1157
1158 if (!radix_enabled())
1159 return 0;
1160
1161 set_pte_at(&init_mm, 0 /* radix unused */, ptep, new_pmd);
1162
1163 return 1;
1164 }
1165
pmd_clear_huge(pmd_t * pmd)1166 int pmd_clear_huge(pmd_t *pmd)
1167 {
1168 if (pmd_is_leaf(*pmd)) {
1169 pmd_clear(pmd);
1170 return 1;
1171 }
1172
1173 return 0;
1174 }
1175
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)1176 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1177 {
1178 pte_t *pte;
1179
1180 pte = (pte_t *)pmd_page_vaddr(*pmd);
1181 pmd_clear(pmd);
1182
1183 flush_tlb_kernel_range(addr, addr + PMD_SIZE);
1184
1185 pte_free_kernel(&init_mm, pte);
1186
1187 return 1;
1188 }
1189