1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * pSeries NUMA support
4 *
5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 */
7 #define pr_fmt(fmt) "numa: " fmt
8
9 #include <linux/threads.h>
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/mm.h>
13 #include <linux/mmzone.h>
14 #include <linux/export.h>
15 #include <linux/nodemask.h>
16 #include <linux/cpu.h>
17 #include <linux/notifier.h>
18 #include <linux/of.h>
19 #include <linux/pfn.h>
20 #include <linux/cpuset.h>
21 #include <linux/node.h>
22 #include <linux/stop_machine.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <asm/cputhreads.h>
28 #include <asm/sparsemem.h>
29 #include <asm/prom.h>
30 #include <asm/smp.h>
31 #include <asm/topology.h>
32 #include <asm/firmware.h>
33 #include <asm/paca.h>
34 #include <asm/hvcall.h>
35 #include <asm/setup.h>
36 #include <asm/vdso.h>
37 #include <asm/drmem.h>
38
39 static int numa_enabled = 1;
40
41 static char *cmdline __initdata;
42
43 int numa_cpu_lookup_table[NR_CPUS];
44 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
45 struct pglist_data *node_data[MAX_NUMNODES];
46
47 EXPORT_SYMBOL(numa_cpu_lookup_table);
48 EXPORT_SYMBOL(node_to_cpumask_map);
49 EXPORT_SYMBOL(node_data);
50
51 static int primary_domain_index;
52 static int n_mem_addr_cells, n_mem_size_cells;
53
54 #define FORM0_AFFINITY 0
55 #define FORM1_AFFINITY 1
56 #define FORM2_AFFINITY 2
57 static int affinity_form;
58
59 #define MAX_DISTANCE_REF_POINTS 4
60 static int distance_ref_points_depth;
61 static const __be32 *distance_ref_points;
62 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
63 static int numa_distance_table[MAX_NUMNODES][MAX_NUMNODES] = {
64 [0 ... MAX_NUMNODES - 1] = { [0 ... MAX_NUMNODES - 1] = -1 }
65 };
66 static int numa_id_index_table[MAX_NUMNODES] = { [0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE };
67
68 /*
69 * Allocate node_to_cpumask_map based on number of available nodes
70 * Requires node_possible_map to be valid.
71 *
72 * Note: cpumask_of_node() is not valid until after this is done.
73 */
setup_node_to_cpumask_map(void)74 static void __init setup_node_to_cpumask_map(void)
75 {
76 unsigned int node;
77
78 /* setup nr_node_ids if not done yet */
79 if (nr_node_ids == MAX_NUMNODES)
80 setup_nr_node_ids();
81
82 /* allocate the map */
83 for_each_node(node)
84 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
85
86 /* cpumask_of_node() will now work */
87 pr_debug("Node to cpumask map for %u nodes\n", nr_node_ids);
88 }
89
fake_numa_create_new_node(unsigned long end_pfn,unsigned int * nid)90 static int __init fake_numa_create_new_node(unsigned long end_pfn,
91 unsigned int *nid)
92 {
93 unsigned long long mem;
94 char *p = cmdline;
95 static unsigned int fake_nid;
96 static unsigned long long curr_boundary;
97
98 /*
99 * Modify node id, iff we started creating NUMA nodes
100 * We want to continue from where we left of the last time
101 */
102 if (fake_nid)
103 *nid = fake_nid;
104 /*
105 * In case there are no more arguments to parse, the
106 * node_id should be the same as the last fake node id
107 * (we've handled this above).
108 */
109 if (!p)
110 return 0;
111
112 mem = memparse(p, &p);
113 if (!mem)
114 return 0;
115
116 if (mem < curr_boundary)
117 return 0;
118
119 curr_boundary = mem;
120
121 if ((end_pfn << PAGE_SHIFT) > mem) {
122 /*
123 * Skip commas and spaces
124 */
125 while (*p == ',' || *p == ' ' || *p == '\t')
126 p++;
127
128 cmdline = p;
129 fake_nid++;
130 *nid = fake_nid;
131 pr_debug("created new fake_node with id %d\n", fake_nid);
132 return 1;
133 }
134 return 0;
135 }
136
reset_numa_cpu_lookup_table(void)137 static void reset_numa_cpu_lookup_table(void)
138 {
139 unsigned int cpu;
140
141 for_each_possible_cpu(cpu)
142 numa_cpu_lookup_table[cpu] = -1;
143 }
144
map_cpu_to_node(int cpu,int node)145 void map_cpu_to_node(int cpu, int node)
146 {
147 update_numa_cpu_lookup_table(cpu, node);
148
149 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) {
150 pr_debug("adding cpu %d to node %d\n", cpu, node);
151 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
152 }
153 }
154
155 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
unmap_cpu_from_node(unsigned long cpu)156 void unmap_cpu_from_node(unsigned long cpu)
157 {
158 int node = numa_cpu_lookup_table[cpu];
159
160 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
161 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
162 pr_debug("removing cpu %lu from node %d\n", cpu, node);
163 } else {
164 pr_warn("Warning: cpu %lu not found in node %d\n", cpu, node);
165 }
166 }
167 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
168
__associativity_to_nid(const __be32 * associativity,int max_array_sz)169 static int __associativity_to_nid(const __be32 *associativity,
170 int max_array_sz)
171 {
172 int nid;
173 /*
174 * primary_domain_index is 1 based array index.
175 */
176 int index = primary_domain_index - 1;
177
178 if (!numa_enabled || index >= max_array_sz)
179 return NUMA_NO_NODE;
180
181 nid = of_read_number(&associativity[index], 1);
182
183 /* POWER4 LPAR uses 0xffff as invalid node */
184 if (nid == 0xffff || nid >= nr_node_ids)
185 nid = NUMA_NO_NODE;
186 return nid;
187 }
188 /*
189 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
190 * info is found.
191 */
associativity_to_nid(const __be32 * associativity)192 static int associativity_to_nid(const __be32 *associativity)
193 {
194 int array_sz = of_read_number(associativity, 1);
195
196 /* Skip the first element in the associativity array */
197 return __associativity_to_nid((associativity + 1), array_sz);
198 }
199
__cpu_form2_relative_distance(__be32 * cpu1_assoc,__be32 * cpu2_assoc)200 static int __cpu_form2_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
201 {
202 int dist;
203 int node1, node2;
204
205 node1 = associativity_to_nid(cpu1_assoc);
206 node2 = associativity_to_nid(cpu2_assoc);
207
208 dist = numa_distance_table[node1][node2];
209 if (dist <= LOCAL_DISTANCE)
210 return 0;
211 else if (dist <= REMOTE_DISTANCE)
212 return 1;
213 else
214 return 2;
215 }
216
__cpu_form1_relative_distance(__be32 * cpu1_assoc,__be32 * cpu2_assoc)217 static int __cpu_form1_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
218 {
219 int dist = 0;
220
221 int i, index;
222
223 for (i = 0; i < distance_ref_points_depth; i++) {
224 index = be32_to_cpu(distance_ref_points[i]);
225 if (cpu1_assoc[index] == cpu2_assoc[index])
226 break;
227 dist++;
228 }
229
230 return dist;
231 }
232
cpu_relative_distance(__be32 * cpu1_assoc,__be32 * cpu2_assoc)233 int cpu_relative_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
234 {
235 /* We should not get called with FORM0 */
236 VM_WARN_ON(affinity_form == FORM0_AFFINITY);
237 if (affinity_form == FORM1_AFFINITY)
238 return __cpu_form1_relative_distance(cpu1_assoc, cpu2_assoc);
239 return __cpu_form2_relative_distance(cpu1_assoc, cpu2_assoc);
240 }
241
242 /* must hold reference to node during call */
of_get_associativity(struct device_node * dev)243 static const __be32 *of_get_associativity(struct device_node *dev)
244 {
245 return of_get_property(dev, "ibm,associativity", NULL);
246 }
247
__node_distance(int a,int b)248 int __node_distance(int a, int b)
249 {
250 int i;
251 int distance = LOCAL_DISTANCE;
252
253 if (affinity_form == FORM2_AFFINITY)
254 return numa_distance_table[a][b];
255 else if (affinity_form == FORM0_AFFINITY)
256 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
257
258 for (i = 0; i < distance_ref_points_depth; i++) {
259 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
260 break;
261
262 /* Double the distance for each NUMA level */
263 distance *= 2;
264 }
265
266 return distance;
267 }
268 EXPORT_SYMBOL(__node_distance);
269
270 /* Returns the nid associated with the given device tree node,
271 * or -1 if not found.
272 */
of_node_to_nid_single(struct device_node * device)273 static int of_node_to_nid_single(struct device_node *device)
274 {
275 int nid = NUMA_NO_NODE;
276 const __be32 *tmp;
277
278 tmp = of_get_associativity(device);
279 if (tmp)
280 nid = associativity_to_nid(tmp);
281 return nid;
282 }
283
284 /* Walk the device tree upwards, looking for an associativity id */
of_node_to_nid(struct device_node * device)285 int of_node_to_nid(struct device_node *device)
286 {
287 int nid = NUMA_NO_NODE;
288
289 of_node_get(device);
290 while (device) {
291 nid = of_node_to_nid_single(device);
292 if (nid != -1)
293 break;
294
295 device = of_get_next_parent(device);
296 }
297 of_node_put(device);
298
299 return nid;
300 }
301 EXPORT_SYMBOL(of_node_to_nid);
302
__initialize_form1_numa_distance(const __be32 * associativity,int max_array_sz)303 static void __initialize_form1_numa_distance(const __be32 *associativity,
304 int max_array_sz)
305 {
306 int i, nid;
307
308 if (affinity_form != FORM1_AFFINITY)
309 return;
310
311 nid = __associativity_to_nid(associativity, max_array_sz);
312 if (nid != NUMA_NO_NODE) {
313 for (i = 0; i < distance_ref_points_depth; i++) {
314 const __be32 *entry;
315 int index = be32_to_cpu(distance_ref_points[i]) - 1;
316
317 /*
318 * broken hierarchy, return with broken distance table
319 */
320 if (WARN(index >= max_array_sz, "Broken ibm,associativity property"))
321 return;
322
323 entry = &associativity[index];
324 distance_lookup_table[nid][i] = of_read_number(entry, 1);
325 }
326 }
327 }
328
initialize_form1_numa_distance(const __be32 * associativity)329 static void initialize_form1_numa_distance(const __be32 *associativity)
330 {
331 int array_sz;
332
333 array_sz = of_read_number(associativity, 1);
334 /* Skip the first element in the associativity array */
335 __initialize_form1_numa_distance(associativity + 1, array_sz);
336 }
337
338 /*
339 * Used to update distance information w.r.t newly added node.
340 */
update_numa_distance(struct device_node * node)341 void update_numa_distance(struct device_node *node)
342 {
343 int nid;
344
345 if (affinity_form == FORM0_AFFINITY)
346 return;
347 else if (affinity_form == FORM1_AFFINITY) {
348 const __be32 *associativity;
349
350 associativity = of_get_associativity(node);
351 if (!associativity)
352 return;
353
354 initialize_form1_numa_distance(associativity);
355 return;
356 }
357
358 /* FORM2 affinity */
359 nid = of_node_to_nid_single(node);
360 if (nid == NUMA_NO_NODE)
361 return;
362
363 /*
364 * With FORM2 we expect NUMA distance of all possible NUMA
365 * nodes to be provided during boot.
366 */
367 WARN(numa_distance_table[nid][nid] == -1,
368 "NUMA distance details for node %d not provided\n", nid);
369 }
370 EXPORT_SYMBOL_GPL(update_numa_distance);
371
372 /*
373 * ibm,numa-lookup-index-table= {N, domainid1, domainid2, ..... domainidN}
374 * ibm,numa-distance-table = { N, 1, 2, 4, 5, 1, 6, .... N elements}
375 */
initialize_form2_numa_distance_lookup_table(void)376 static void initialize_form2_numa_distance_lookup_table(void)
377 {
378 int i, j;
379 struct device_node *root;
380 const __u8 *form2_distances;
381 const __be32 *numa_lookup_index;
382 int form2_distances_length;
383 int max_numa_index, distance_index;
384
385 if (firmware_has_feature(FW_FEATURE_OPAL))
386 root = of_find_node_by_path("/ibm,opal");
387 else
388 root = of_find_node_by_path("/rtas");
389 if (!root)
390 root = of_find_node_by_path("/");
391
392 numa_lookup_index = of_get_property(root, "ibm,numa-lookup-index-table", NULL);
393 max_numa_index = of_read_number(&numa_lookup_index[0], 1);
394
395 /* first element of the array is the size and is encode-int */
396 form2_distances = of_get_property(root, "ibm,numa-distance-table", NULL);
397 form2_distances_length = of_read_number((const __be32 *)&form2_distances[0], 1);
398 /* Skip the size which is encoded int */
399 form2_distances += sizeof(__be32);
400
401 pr_debug("form2_distances_len = %d, numa_dist_indexes_len = %d\n",
402 form2_distances_length, max_numa_index);
403
404 for (i = 0; i < max_numa_index; i++)
405 /* +1 skip the max_numa_index in the property */
406 numa_id_index_table[i] = of_read_number(&numa_lookup_index[i + 1], 1);
407
408
409 if (form2_distances_length != max_numa_index * max_numa_index) {
410 WARN(1, "Wrong NUMA distance information\n");
411 form2_distances = NULL; // don't use it
412 }
413 distance_index = 0;
414 for (i = 0; i < max_numa_index; i++) {
415 for (j = 0; j < max_numa_index; j++) {
416 int nodeA = numa_id_index_table[i];
417 int nodeB = numa_id_index_table[j];
418 int dist;
419
420 if (form2_distances)
421 dist = form2_distances[distance_index++];
422 else if (nodeA == nodeB)
423 dist = LOCAL_DISTANCE;
424 else
425 dist = REMOTE_DISTANCE;
426 numa_distance_table[nodeA][nodeB] = dist;
427 pr_debug("dist[%d][%d]=%d ", nodeA, nodeB, dist);
428 }
429 }
430
431 of_node_put(root);
432 }
433
find_primary_domain_index(void)434 static int __init find_primary_domain_index(void)
435 {
436 int index;
437 struct device_node *root;
438
439 /*
440 * Check for which form of affinity.
441 */
442 if (firmware_has_feature(FW_FEATURE_OPAL)) {
443 affinity_form = FORM1_AFFINITY;
444 } else if (firmware_has_feature(FW_FEATURE_FORM2_AFFINITY)) {
445 pr_debug("Using form 2 affinity\n");
446 affinity_form = FORM2_AFFINITY;
447 } else if (firmware_has_feature(FW_FEATURE_FORM1_AFFINITY)) {
448 pr_debug("Using form 1 affinity\n");
449 affinity_form = FORM1_AFFINITY;
450 } else
451 affinity_form = FORM0_AFFINITY;
452
453 if (firmware_has_feature(FW_FEATURE_OPAL))
454 root = of_find_node_by_path("/ibm,opal");
455 else
456 root = of_find_node_by_path("/rtas");
457 if (!root)
458 root = of_find_node_by_path("/");
459
460 /*
461 * This property is a set of 32-bit integers, each representing
462 * an index into the ibm,associativity nodes.
463 *
464 * With form 0 affinity the first integer is for an SMP configuration
465 * (should be all 0's) and the second is for a normal NUMA
466 * configuration. We have only one level of NUMA.
467 *
468 * With form 1 affinity the first integer is the most significant
469 * NUMA boundary and the following are progressively less significant
470 * boundaries. There can be more than one level of NUMA.
471 */
472 distance_ref_points = of_get_property(root,
473 "ibm,associativity-reference-points",
474 &distance_ref_points_depth);
475
476 if (!distance_ref_points) {
477 pr_debug("ibm,associativity-reference-points not found.\n");
478 goto err;
479 }
480
481 distance_ref_points_depth /= sizeof(int);
482 if (affinity_form == FORM0_AFFINITY) {
483 if (distance_ref_points_depth < 2) {
484 pr_warn("short ibm,associativity-reference-points\n");
485 goto err;
486 }
487
488 index = of_read_number(&distance_ref_points[1], 1);
489 } else {
490 /*
491 * Both FORM1 and FORM2 affinity find the primary domain details
492 * at the same offset.
493 */
494 index = of_read_number(distance_ref_points, 1);
495 }
496 /*
497 * Warn and cap if the hardware supports more than
498 * MAX_DISTANCE_REF_POINTS domains.
499 */
500 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
501 pr_warn("distance array capped at %d entries\n",
502 MAX_DISTANCE_REF_POINTS);
503 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
504 }
505
506 of_node_put(root);
507 return index;
508
509 err:
510 of_node_put(root);
511 return -1;
512 }
513
get_n_mem_cells(int * n_addr_cells,int * n_size_cells)514 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
515 {
516 struct device_node *memory = NULL;
517
518 memory = of_find_node_by_type(memory, "memory");
519 if (!memory)
520 panic("numa.c: No memory nodes found!");
521
522 *n_addr_cells = of_n_addr_cells(memory);
523 *n_size_cells = of_n_size_cells(memory);
524 of_node_put(memory);
525 }
526
read_n_cells(int n,const __be32 ** buf)527 static unsigned long read_n_cells(int n, const __be32 **buf)
528 {
529 unsigned long result = 0;
530
531 while (n--) {
532 result = (result << 32) | of_read_number(*buf, 1);
533 (*buf)++;
534 }
535 return result;
536 }
537
538 struct assoc_arrays {
539 u32 n_arrays;
540 u32 array_sz;
541 const __be32 *arrays;
542 };
543
544 /*
545 * Retrieve and validate the list of associativity arrays for drconf
546 * memory from the ibm,associativity-lookup-arrays property of the
547 * device tree..
548 *
549 * The layout of the ibm,associativity-lookup-arrays property is a number N
550 * indicating the number of associativity arrays, followed by a number M
551 * indicating the size of each associativity array, followed by a list
552 * of N associativity arrays.
553 */
of_get_assoc_arrays(struct assoc_arrays * aa)554 static int of_get_assoc_arrays(struct assoc_arrays *aa)
555 {
556 struct device_node *memory;
557 const __be32 *prop;
558 u32 len;
559
560 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
561 if (!memory)
562 return -1;
563
564 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
565 if (!prop || len < 2 * sizeof(unsigned int)) {
566 of_node_put(memory);
567 return -1;
568 }
569
570 aa->n_arrays = of_read_number(prop++, 1);
571 aa->array_sz = of_read_number(prop++, 1);
572
573 of_node_put(memory);
574
575 /* Now that we know the number of arrays and size of each array,
576 * revalidate the size of the property read in.
577 */
578 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
579 return -1;
580
581 aa->arrays = prop;
582 return 0;
583 }
584
get_nid_and_numa_distance(struct drmem_lmb * lmb)585 static int get_nid_and_numa_distance(struct drmem_lmb *lmb)
586 {
587 struct assoc_arrays aa = { .arrays = NULL };
588 int default_nid = NUMA_NO_NODE;
589 int nid = default_nid;
590 int rc, index;
591
592 if ((primary_domain_index < 0) || !numa_enabled)
593 return default_nid;
594
595 rc = of_get_assoc_arrays(&aa);
596 if (rc)
597 return default_nid;
598
599 if (primary_domain_index <= aa.array_sz &&
600 !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
601 const __be32 *associativity;
602
603 index = lmb->aa_index * aa.array_sz;
604 associativity = &aa.arrays[index];
605 nid = __associativity_to_nid(associativity, aa.array_sz);
606 if (nid > 0 && affinity_form == FORM1_AFFINITY) {
607 /*
608 * lookup array associativity entries have
609 * no length of the array as the first element.
610 */
611 __initialize_form1_numa_distance(associativity, aa.array_sz);
612 }
613 }
614 return nid;
615 }
616
617 /*
618 * This is like of_node_to_nid_single() for memory represented in the
619 * ibm,dynamic-reconfiguration-memory node.
620 */
of_drconf_to_nid_single(struct drmem_lmb * lmb)621 int of_drconf_to_nid_single(struct drmem_lmb *lmb)
622 {
623 struct assoc_arrays aa = { .arrays = NULL };
624 int default_nid = NUMA_NO_NODE;
625 int nid = default_nid;
626 int rc, index;
627
628 if ((primary_domain_index < 0) || !numa_enabled)
629 return default_nid;
630
631 rc = of_get_assoc_arrays(&aa);
632 if (rc)
633 return default_nid;
634
635 if (primary_domain_index <= aa.array_sz &&
636 !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
637 const __be32 *associativity;
638
639 index = lmb->aa_index * aa.array_sz;
640 associativity = &aa.arrays[index];
641 nid = __associativity_to_nid(associativity, aa.array_sz);
642 }
643 return nid;
644 }
645
646 #ifdef CONFIG_PPC_SPLPAR
647
__vphn_get_associativity(long lcpu,__be32 * associativity)648 static int __vphn_get_associativity(long lcpu, __be32 *associativity)
649 {
650 long rc, hwid;
651
652 /*
653 * On a shared lpar, device tree will not have node associativity.
654 * At this time lppaca, or its __old_status field may not be
655 * updated. Hence kernel cannot detect if its on a shared lpar. So
656 * request an explicit associativity irrespective of whether the
657 * lpar is shared or dedicated. Use the device tree property as a
658 * fallback. cpu_to_phys_id is only valid between
659 * smp_setup_cpu_maps() and smp_setup_pacas().
660 */
661 if (firmware_has_feature(FW_FEATURE_VPHN)) {
662 if (cpu_to_phys_id)
663 hwid = cpu_to_phys_id[lcpu];
664 else
665 hwid = get_hard_smp_processor_id(lcpu);
666
667 rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
668 if (rc == H_SUCCESS)
669 return 0;
670 }
671
672 return -1;
673 }
674
vphn_get_nid(long lcpu)675 static int vphn_get_nid(long lcpu)
676 {
677 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
678
679
680 if (!__vphn_get_associativity(lcpu, associativity))
681 return associativity_to_nid(associativity);
682
683 return NUMA_NO_NODE;
684
685 }
686 #else
687
__vphn_get_associativity(long lcpu,__be32 * associativity)688 static int __vphn_get_associativity(long lcpu, __be32 *associativity)
689 {
690 return -1;
691 }
692
vphn_get_nid(long unused)693 static int vphn_get_nid(long unused)
694 {
695 return NUMA_NO_NODE;
696 }
697 #endif /* CONFIG_PPC_SPLPAR */
698
699 /*
700 * Figure out to which domain a cpu belongs and stick it there.
701 * Return the id of the domain used.
702 */
numa_setup_cpu(unsigned long lcpu)703 static int numa_setup_cpu(unsigned long lcpu)
704 {
705 struct device_node *cpu;
706 int fcpu = cpu_first_thread_sibling(lcpu);
707 int nid = NUMA_NO_NODE;
708
709 if (!cpu_present(lcpu)) {
710 set_cpu_numa_node(lcpu, first_online_node);
711 return first_online_node;
712 }
713
714 /*
715 * If a valid cpu-to-node mapping is already available, use it
716 * directly instead of querying the firmware, since it represents
717 * the most recent mapping notified to us by the platform (eg: VPHN).
718 * Since cpu_to_node binding remains the same for all threads in the
719 * core. If a valid cpu-to-node mapping is already available, for
720 * the first thread in the core, use it.
721 */
722 nid = numa_cpu_lookup_table[fcpu];
723 if (nid >= 0) {
724 map_cpu_to_node(lcpu, nid);
725 return nid;
726 }
727
728 nid = vphn_get_nid(lcpu);
729 if (nid != NUMA_NO_NODE)
730 goto out_present;
731
732 cpu = of_get_cpu_node(lcpu, NULL);
733
734 if (!cpu) {
735 WARN_ON(1);
736 if (cpu_present(lcpu))
737 goto out_present;
738 else
739 goto out;
740 }
741
742 nid = of_node_to_nid_single(cpu);
743 of_node_put(cpu);
744
745 out_present:
746 if (nid < 0 || !node_possible(nid))
747 nid = first_online_node;
748
749 /*
750 * Update for the first thread of the core. All threads of a core
751 * have to be part of the same node. This not only avoids querying
752 * for every other thread in the core, but always avoids a case
753 * where virtual node associativity change causes subsequent threads
754 * of a core to be associated with different nid. However if first
755 * thread is already online, expect it to have a valid mapping.
756 */
757 if (fcpu != lcpu) {
758 WARN_ON(cpu_online(fcpu));
759 map_cpu_to_node(fcpu, nid);
760 }
761
762 map_cpu_to_node(lcpu, nid);
763 out:
764 return nid;
765 }
766
verify_cpu_node_mapping(int cpu,int node)767 static void verify_cpu_node_mapping(int cpu, int node)
768 {
769 int base, sibling, i;
770
771 /* Verify that all the threads in the core belong to the same node */
772 base = cpu_first_thread_sibling(cpu);
773
774 for (i = 0; i < threads_per_core; i++) {
775 sibling = base + i;
776
777 if (sibling == cpu || cpu_is_offline(sibling))
778 continue;
779
780 if (cpu_to_node(sibling) != node) {
781 WARN(1, "CPU thread siblings %d and %d don't belong"
782 " to the same node!\n", cpu, sibling);
783 break;
784 }
785 }
786 }
787
788 /* Must run before sched domains notifier. */
ppc_numa_cpu_prepare(unsigned int cpu)789 static int ppc_numa_cpu_prepare(unsigned int cpu)
790 {
791 int nid;
792
793 nid = numa_setup_cpu(cpu);
794 verify_cpu_node_mapping(cpu, nid);
795 return 0;
796 }
797
ppc_numa_cpu_dead(unsigned int cpu)798 static int ppc_numa_cpu_dead(unsigned int cpu)
799 {
800 return 0;
801 }
802
803 /*
804 * Check and possibly modify a memory region to enforce the memory limit.
805 *
806 * Returns the size the region should have to enforce the memory limit.
807 * This will either be the original value of size, a truncated value,
808 * or zero. If the returned value of size is 0 the region should be
809 * discarded as it lies wholly above the memory limit.
810 */
numa_enforce_memory_limit(unsigned long start,unsigned long size)811 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
812 unsigned long size)
813 {
814 /*
815 * We use memblock_end_of_DRAM() in here instead of memory_limit because
816 * we've already adjusted it for the limit and it takes care of
817 * having memory holes below the limit. Also, in the case of
818 * iommu_is_off, memory_limit is not set but is implicitly enforced.
819 */
820
821 if (start + size <= memblock_end_of_DRAM())
822 return size;
823
824 if (start >= memblock_end_of_DRAM())
825 return 0;
826
827 return memblock_end_of_DRAM() - start;
828 }
829
830 /*
831 * Reads the counter for a given entry in
832 * linux,drconf-usable-memory property
833 */
read_usm_ranges(const __be32 ** usm)834 static inline int __init read_usm_ranges(const __be32 **usm)
835 {
836 /*
837 * For each lmb in ibm,dynamic-memory a corresponding
838 * entry in linux,drconf-usable-memory property contains
839 * a counter followed by that many (base, size) duple.
840 * read the counter from linux,drconf-usable-memory
841 */
842 return read_n_cells(n_mem_size_cells, usm);
843 }
844
845 /*
846 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
847 * node. This assumes n_mem_{addr,size}_cells have been set.
848 */
numa_setup_drmem_lmb(struct drmem_lmb * lmb,const __be32 ** usm,void * data)849 static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
850 const __be32 **usm,
851 void *data)
852 {
853 unsigned int ranges, is_kexec_kdump = 0;
854 unsigned long base, size, sz;
855 int nid;
856
857 /*
858 * Skip this block if the reserved bit is set in flags (0x80)
859 * or if the block is not assigned to this partition (0x8)
860 */
861 if ((lmb->flags & DRCONF_MEM_RESERVED)
862 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
863 return 0;
864
865 if (*usm)
866 is_kexec_kdump = 1;
867
868 base = lmb->base_addr;
869 size = drmem_lmb_size();
870 ranges = 1;
871
872 if (is_kexec_kdump) {
873 ranges = read_usm_ranges(usm);
874 if (!ranges) /* there are no (base, size) duple */
875 return 0;
876 }
877
878 do {
879 if (is_kexec_kdump) {
880 base = read_n_cells(n_mem_addr_cells, usm);
881 size = read_n_cells(n_mem_size_cells, usm);
882 }
883
884 nid = get_nid_and_numa_distance(lmb);
885 fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
886 &nid);
887 node_set_online(nid);
888 sz = numa_enforce_memory_limit(base, size);
889 if (sz)
890 memblock_set_node(base, sz, &memblock.memory, nid);
891 } while (--ranges);
892
893 return 0;
894 }
895
parse_numa_properties(void)896 static int __init parse_numa_properties(void)
897 {
898 struct device_node *memory;
899 int default_nid = 0;
900 unsigned long i;
901 const __be32 *associativity;
902
903 if (numa_enabled == 0) {
904 pr_warn("disabled by user\n");
905 return -1;
906 }
907
908 primary_domain_index = find_primary_domain_index();
909
910 if (primary_domain_index < 0) {
911 /*
912 * if we fail to parse primary_domain_index from device tree
913 * mark the numa disabled, boot with numa disabled.
914 */
915 numa_enabled = false;
916 return primary_domain_index;
917 }
918
919 pr_debug("associativity depth for CPU/Memory: %d\n", primary_domain_index);
920
921 /*
922 * If it is FORM2 initialize the distance table here.
923 */
924 if (affinity_form == FORM2_AFFINITY)
925 initialize_form2_numa_distance_lookup_table();
926
927 /*
928 * Even though we connect cpus to numa domains later in SMP
929 * init, we need to know the node ids now. This is because
930 * each node to be onlined must have NODE_DATA etc backing it.
931 */
932 for_each_present_cpu(i) {
933 __be32 vphn_assoc[VPHN_ASSOC_BUFSIZE];
934 struct device_node *cpu;
935 int nid = NUMA_NO_NODE;
936
937 memset(vphn_assoc, 0, VPHN_ASSOC_BUFSIZE * sizeof(__be32));
938
939 if (__vphn_get_associativity(i, vphn_assoc) == 0) {
940 nid = associativity_to_nid(vphn_assoc);
941 initialize_form1_numa_distance(vphn_assoc);
942 } else {
943
944 /*
945 * Don't fall back to default_nid yet -- we will plug
946 * cpus into nodes once the memory scan has discovered
947 * the topology.
948 */
949 cpu = of_get_cpu_node(i, NULL);
950 BUG_ON(!cpu);
951
952 associativity = of_get_associativity(cpu);
953 if (associativity) {
954 nid = associativity_to_nid(associativity);
955 initialize_form1_numa_distance(associativity);
956 }
957 of_node_put(cpu);
958 }
959
960 /* node_set_online() is an UB if 'nid' is negative */
961 if (likely(nid >= 0))
962 node_set_online(nid);
963 }
964
965 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
966
967 for_each_node_by_type(memory, "memory") {
968 unsigned long start;
969 unsigned long size;
970 int nid;
971 int ranges;
972 const __be32 *memcell_buf;
973 unsigned int len;
974
975 memcell_buf = of_get_property(memory,
976 "linux,usable-memory", &len);
977 if (!memcell_buf || len <= 0)
978 memcell_buf = of_get_property(memory, "reg", &len);
979 if (!memcell_buf || len <= 0)
980 continue;
981
982 /* ranges in cell */
983 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
984 new_range:
985 /* these are order-sensitive, and modify the buffer pointer */
986 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
987 size = read_n_cells(n_mem_size_cells, &memcell_buf);
988
989 /*
990 * Assumption: either all memory nodes or none will
991 * have associativity properties. If none, then
992 * everything goes to default_nid.
993 */
994 associativity = of_get_associativity(memory);
995 if (associativity) {
996 nid = associativity_to_nid(associativity);
997 initialize_form1_numa_distance(associativity);
998 } else
999 nid = default_nid;
1000
1001 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
1002 node_set_online(nid);
1003
1004 size = numa_enforce_memory_limit(start, size);
1005 if (size)
1006 memblock_set_node(start, size, &memblock.memory, nid);
1007
1008 if (--ranges)
1009 goto new_range;
1010 }
1011
1012 /*
1013 * Now do the same thing for each MEMBLOCK listed in the
1014 * ibm,dynamic-memory property in the
1015 * ibm,dynamic-reconfiguration-memory node.
1016 */
1017 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1018 if (memory) {
1019 walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
1020 of_node_put(memory);
1021 }
1022
1023 return 0;
1024 }
1025
setup_nonnuma(void)1026 static void __init setup_nonnuma(void)
1027 {
1028 unsigned long top_of_ram = memblock_end_of_DRAM();
1029 unsigned long total_ram = memblock_phys_mem_size();
1030 unsigned long start_pfn, end_pfn;
1031 unsigned int nid = 0;
1032 int i;
1033
1034 pr_debug("Top of RAM: 0x%lx, Total RAM: 0x%lx\n", top_of_ram, total_ram);
1035 pr_debug("Memory hole size: %ldMB\n", (top_of_ram - total_ram) >> 20);
1036
1037 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1038 fake_numa_create_new_node(end_pfn, &nid);
1039 memblock_set_node(PFN_PHYS(start_pfn),
1040 PFN_PHYS(end_pfn - start_pfn),
1041 &memblock.memory, nid);
1042 node_set_online(nid);
1043 }
1044 }
1045
dump_numa_cpu_topology(void)1046 void __init dump_numa_cpu_topology(void)
1047 {
1048 unsigned int node;
1049 unsigned int cpu, count;
1050
1051 if (!numa_enabled)
1052 return;
1053
1054 for_each_online_node(node) {
1055 pr_info("Node %d CPUs:", node);
1056
1057 count = 0;
1058 /*
1059 * If we used a CPU iterator here we would miss printing
1060 * the holes in the cpumap.
1061 */
1062 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1063 if (cpumask_test_cpu(cpu,
1064 node_to_cpumask_map[node])) {
1065 if (count == 0)
1066 pr_cont(" %u", cpu);
1067 ++count;
1068 } else {
1069 if (count > 1)
1070 pr_cont("-%u", cpu - 1);
1071 count = 0;
1072 }
1073 }
1074
1075 if (count > 1)
1076 pr_cont("-%u", nr_cpu_ids - 1);
1077 pr_cont("\n");
1078 }
1079 }
1080
1081 /* Initialize NODE_DATA for a node on the local memory */
setup_node_data(int nid,u64 start_pfn,u64 end_pfn)1082 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
1083 {
1084 u64 spanned_pages = end_pfn - start_pfn;
1085 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
1086 u64 nd_pa;
1087 void *nd;
1088 int tnid;
1089
1090 nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
1091 if (!nd_pa)
1092 panic("Cannot allocate %zu bytes for node %d data\n",
1093 nd_size, nid);
1094
1095 nd = __va(nd_pa);
1096
1097 /* report and initialize */
1098 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
1099 nd_pa, nd_pa + nd_size - 1);
1100 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
1101 if (tnid != nid)
1102 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
1103
1104 node_data[nid] = nd;
1105 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
1106 NODE_DATA(nid)->node_id = nid;
1107 NODE_DATA(nid)->node_start_pfn = start_pfn;
1108 NODE_DATA(nid)->node_spanned_pages = spanned_pages;
1109 }
1110
find_possible_nodes(void)1111 static void __init find_possible_nodes(void)
1112 {
1113 struct device_node *rtas;
1114 const __be32 *domains = NULL;
1115 int prop_length, max_nodes;
1116 u32 i;
1117
1118 if (!numa_enabled)
1119 return;
1120
1121 rtas = of_find_node_by_path("/rtas");
1122 if (!rtas)
1123 return;
1124
1125 /*
1126 * ibm,current-associativity-domains is a fairly recent property. If
1127 * it doesn't exist, then fallback on ibm,max-associativity-domains.
1128 * Current denotes what the platform can support compared to max
1129 * which denotes what the Hypervisor can support.
1130 *
1131 * If the LPAR is migratable, new nodes might be activated after a LPM,
1132 * so we should consider the max number in that case.
1133 */
1134 if (!of_get_property(of_root, "ibm,migratable-partition", NULL))
1135 domains = of_get_property(rtas,
1136 "ibm,current-associativity-domains",
1137 &prop_length);
1138 if (!domains) {
1139 domains = of_get_property(rtas, "ibm,max-associativity-domains",
1140 &prop_length);
1141 if (!domains)
1142 goto out;
1143 }
1144
1145 max_nodes = of_read_number(&domains[primary_domain_index], 1);
1146 pr_info("Partition configured for %d NUMA nodes.\n", max_nodes);
1147
1148 for (i = 0; i < max_nodes; i++) {
1149 if (!node_possible(i))
1150 node_set(i, node_possible_map);
1151 }
1152
1153 prop_length /= sizeof(int);
1154 if (prop_length > primary_domain_index + 2)
1155 coregroup_enabled = 1;
1156
1157 out:
1158 of_node_put(rtas);
1159 }
1160
mem_topology_setup(void)1161 void __init mem_topology_setup(void)
1162 {
1163 int cpu;
1164
1165 /*
1166 * Linux/mm assumes node 0 to be online at boot. However this is not
1167 * true on PowerPC, where node 0 is similar to any other node, it
1168 * could be cpuless, memoryless node. So force node 0 to be offline
1169 * for now. This will prevent cpuless, memoryless node 0 showing up
1170 * unnecessarily as online. If a node has cpus or memory that need
1171 * to be online, then node will anyway be marked online.
1172 */
1173 node_set_offline(0);
1174
1175 if (parse_numa_properties())
1176 setup_nonnuma();
1177
1178 /*
1179 * Modify the set of possible NUMA nodes to reflect information
1180 * available about the set of online nodes, and the set of nodes
1181 * that we expect to make use of for this platform's affinity
1182 * calculations.
1183 */
1184 nodes_and(node_possible_map, node_possible_map, node_online_map);
1185
1186 find_possible_nodes();
1187
1188 setup_node_to_cpumask_map();
1189
1190 reset_numa_cpu_lookup_table();
1191
1192 for_each_possible_cpu(cpu) {
1193 /*
1194 * Powerpc with CONFIG_NUMA always used to have a node 0,
1195 * even if it was memoryless or cpuless. For all cpus that
1196 * are possible but not present, cpu_to_node() would point
1197 * to node 0. To remove a cpuless, memoryless dummy node,
1198 * powerpc need to make sure all possible but not present
1199 * cpu_to_node are set to a proper node.
1200 */
1201 numa_setup_cpu(cpu);
1202 }
1203 }
1204
initmem_init(void)1205 void __init initmem_init(void)
1206 {
1207 int nid;
1208
1209 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1210 max_pfn = max_low_pfn;
1211
1212 memblock_dump_all();
1213
1214 for_each_online_node(nid) {
1215 unsigned long start_pfn, end_pfn;
1216
1217 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1218 setup_node_data(nid, start_pfn, end_pfn);
1219 }
1220
1221 sparse_init();
1222
1223 /*
1224 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1225 * even before we online them, so that we can use cpu_to_{node,mem}
1226 * early in boot, cf. smp_prepare_cpus().
1227 * _nocalls() + manual invocation is used because cpuhp is not yet
1228 * initialized for the boot CPU.
1229 */
1230 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1231 ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
1232 }
1233
early_numa(char * p)1234 static int __init early_numa(char *p)
1235 {
1236 if (!p)
1237 return 0;
1238
1239 if (strstr(p, "off"))
1240 numa_enabled = 0;
1241
1242 p = strstr(p, "fake=");
1243 if (p)
1244 cmdline = p + strlen("fake=");
1245
1246 return 0;
1247 }
1248 early_param("numa", early_numa);
1249
1250 #ifdef CONFIG_MEMORY_HOTPLUG
1251 /*
1252 * Find the node associated with a hot added memory section for
1253 * memory represented in the device tree by the property
1254 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1255 */
hot_add_drconf_scn_to_nid(unsigned long scn_addr)1256 static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1257 {
1258 struct drmem_lmb *lmb;
1259 unsigned long lmb_size;
1260 int nid = NUMA_NO_NODE;
1261
1262 lmb_size = drmem_lmb_size();
1263
1264 for_each_drmem_lmb(lmb) {
1265 /* skip this block if it is reserved or not assigned to
1266 * this partition */
1267 if ((lmb->flags & DRCONF_MEM_RESERVED)
1268 || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1269 continue;
1270
1271 if ((scn_addr < lmb->base_addr)
1272 || (scn_addr >= (lmb->base_addr + lmb_size)))
1273 continue;
1274
1275 nid = of_drconf_to_nid_single(lmb);
1276 break;
1277 }
1278
1279 return nid;
1280 }
1281
1282 /*
1283 * Find the node associated with a hot added memory section for memory
1284 * represented in the device tree as a node (i.e. memory@XXXX) for
1285 * each memblock.
1286 */
hot_add_node_scn_to_nid(unsigned long scn_addr)1287 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1288 {
1289 struct device_node *memory;
1290 int nid = NUMA_NO_NODE;
1291
1292 for_each_node_by_type(memory, "memory") {
1293 unsigned long start, size;
1294 int ranges;
1295 const __be32 *memcell_buf;
1296 unsigned int len;
1297
1298 memcell_buf = of_get_property(memory, "reg", &len);
1299 if (!memcell_buf || len <= 0)
1300 continue;
1301
1302 /* ranges in cell */
1303 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1304
1305 while (ranges--) {
1306 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1307 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1308
1309 if ((scn_addr < start) || (scn_addr >= (start + size)))
1310 continue;
1311
1312 nid = of_node_to_nid_single(memory);
1313 break;
1314 }
1315
1316 if (nid >= 0)
1317 break;
1318 }
1319
1320 of_node_put(memory);
1321
1322 return nid;
1323 }
1324
1325 /*
1326 * Find the node associated with a hot added memory section. Section
1327 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1328 * sections are fully contained within a single MEMBLOCK.
1329 */
hot_add_scn_to_nid(unsigned long scn_addr)1330 int hot_add_scn_to_nid(unsigned long scn_addr)
1331 {
1332 struct device_node *memory = NULL;
1333 int nid;
1334
1335 if (!numa_enabled)
1336 return first_online_node;
1337
1338 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1339 if (memory) {
1340 nid = hot_add_drconf_scn_to_nid(scn_addr);
1341 of_node_put(memory);
1342 } else {
1343 nid = hot_add_node_scn_to_nid(scn_addr);
1344 }
1345
1346 if (nid < 0 || !node_possible(nid))
1347 nid = first_online_node;
1348
1349 return nid;
1350 }
1351
hot_add_drconf_memory_max(void)1352 static u64 hot_add_drconf_memory_max(void)
1353 {
1354 struct device_node *memory = NULL;
1355 struct device_node *dn = NULL;
1356 const __be64 *lrdr = NULL;
1357
1358 dn = of_find_node_by_path("/rtas");
1359 if (dn) {
1360 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1361 of_node_put(dn);
1362 if (lrdr)
1363 return be64_to_cpup(lrdr);
1364 }
1365
1366 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1367 if (memory) {
1368 of_node_put(memory);
1369 return drmem_lmb_memory_max();
1370 }
1371 return 0;
1372 }
1373
1374 /*
1375 * memory_hotplug_max - return max address of memory that may be added
1376 *
1377 * This is currently only used on systems that support drconfig memory
1378 * hotplug.
1379 */
memory_hotplug_max(void)1380 u64 memory_hotplug_max(void)
1381 {
1382 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1383 }
1384 #endif /* CONFIG_MEMORY_HOTPLUG */
1385
1386 /* Virtual Processor Home Node (VPHN) support */
1387 #ifdef CONFIG_PPC_SPLPAR
1388 static int topology_inited;
1389
1390 /*
1391 * Retrieve the new associativity information for a virtual processor's
1392 * home node.
1393 */
vphn_get_associativity(unsigned long cpu,__be32 * associativity)1394 static long vphn_get_associativity(unsigned long cpu,
1395 __be32 *associativity)
1396 {
1397 long rc;
1398
1399 rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1400 VPHN_FLAG_VCPU, associativity);
1401
1402 switch (rc) {
1403 case H_SUCCESS:
1404 pr_debug("VPHN hcall succeeded. Reset polling...\n");
1405 goto out;
1406
1407 case H_FUNCTION:
1408 pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1409 break;
1410 case H_HARDWARE:
1411 pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1412 "preventing VPHN. Disabling polling...\n");
1413 break;
1414 case H_PARAMETER:
1415 pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1416 "Disabling polling...\n");
1417 break;
1418 default:
1419 pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1420 , rc);
1421 break;
1422 }
1423 out:
1424 return rc;
1425 }
1426
find_and_online_cpu_nid(int cpu)1427 int find_and_online_cpu_nid(int cpu)
1428 {
1429 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1430 int new_nid;
1431
1432 /* Use associativity from first thread for all siblings */
1433 if (vphn_get_associativity(cpu, associativity))
1434 return cpu_to_node(cpu);
1435
1436 new_nid = associativity_to_nid(associativity);
1437 if (new_nid < 0 || !node_possible(new_nid))
1438 new_nid = first_online_node;
1439
1440 if (NODE_DATA(new_nid) == NULL) {
1441 #ifdef CONFIG_MEMORY_HOTPLUG
1442 /*
1443 * Need to ensure that NODE_DATA is initialized for a node from
1444 * available memory (see memblock_alloc_try_nid). If unable to
1445 * init the node, then default to nearest node that has memory
1446 * installed. Skip onlining a node if the subsystems are not
1447 * yet initialized.
1448 */
1449 if (!topology_inited || try_online_node(new_nid))
1450 new_nid = first_online_node;
1451 #else
1452 /*
1453 * Default to using the nearest node that has memory installed.
1454 * Otherwise, it would be necessary to patch the kernel MM code
1455 * to deal with more memoryless-node error conditions.
1456 */
1457 new_nid = first_online_node;
1458 #endif
1459 }
1460
1461 pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1462 cpu, new_nid);
1463 return new_nid;
1464 }
1465
cpu_to_coregroup_id(int cpu)1466 int cpu_to_coregroup_id(int cpu)
1467 {
1468 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1469 int index;
1470
1471 if (cpu < 0 || cpu > nr_cpu_ids)
1472 return -1;
1473
1474 if (!coregroup_enabled)
1475 goto out;
1476
1477 if (!firmware_has_feature(FW_FEATURE_VPHN))
1478 goto out;
1479
1480 if (vphn_get_associativity(cpu, associativity))
1481 goto out;
1482
1483 index = of_read_number(associativity, 1);
1484 if (index > primary_domain_index + 1)
1485 return of_read_number(&associativity[index - 1], 1);
1486
1487 out:
1488 return cpu_to_core_id(cpu);
1489 }
1490
topology_update_init(void)1491 static int topology_update_init(void)
1492 {
1493 topology_inited = 1;
1494 return 0;
1495 }
1496 device_initcall(topology_update_init);
1497 #endif /* CONFIG_PPC_SPLPAR */
1498