1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * S390 kdump implementation
4 *
5 * Copyright IBM Corp. 2011
6 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
7 */
8
9 #include <linux/crash_dump.h>
10 #include <asm/lowcore.h>
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/slab.h>
16 #include <linux/memblock.h>
17 #include <linux/elf.h>
18 #include <asm/asm-offsets.h>
19 #include <asm/os_info.h>
20 #include <asm/elf.h>
21 #include <asm/ipl.h>
22 #include <asm/sclp.h>
23
24 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
25 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
26 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
27
28 static struct memblock_region oldmem_region;
29
30 static struct memblock_type oldmem_type = {
31 .cnt = 1,
32 .max = 1,
33 .total_size = 0,
34 .regions = &oldmem_region,
35 .name = "oldmem",
36 };
37
38 struct save_area {
39 struct list_head list;
40 u64 psw[2];
41 u64 ctrs[16];
42 u64 gprs[16];
43 u32 acrs[16];
44 u64 fprs[16];
45 u32 fpc;
46 u32 prefix;
47 u32 todpreg;
48 u64 timer;
49 u64 todcmp;
50 u64 vxrs_low[16];
51 __vector128 vxrs_high[16];
52 };
53
54 static LIST_HEAD(dump_save_areas);
55
56 /*
57 * Allocate a save area
58 */
save_area_alloc(bool is_boot_cpu)59 struct save_area * __init save_area_alloc(bool is_boot_cpu)
60 {
61 struct save_area *sa;
62
63 sa = (void *) memblock_phys_alloc(sizeof(*sa), 8);
64 if (!sa)
65 panic("Failed to allocate save area\n");
66
67 if (is_boot_cpu)
68 list_add(&sa->list, &dump_save_areas);
69 else
70 list_add_tail(&sa->list, &dump_save_areas);
71 return sa;
72 }
73
74 /*
75 * Return the address of the save area for the boot CPU
76 */
save_area_boot_cpu(void)77 struct save_area * __init save_area_boot_cpu(void)
78 {
79 return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
80 }
81
82 /*
83 * Copy CPU registers into the save area
84 */
save_area_add_regs(struct save_area * sa,void * regs)85 void __init save_area_add_regs(struct save_area *sa, void *regs)
86 {
87 struct lowcore *lc;
88
89 lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
90 memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
91 memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
92 memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
93 memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
94 memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
95 memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
96 memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
97 memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
98 memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
99 memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
100 }
101
102 /*
103 * Copy vector registers into the save area
104 */
save_area_add_vxrs(struct save_area * sa,__vector128 * vxrs)105 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
106 {
107 int i;
108
109 /* Copy lower halves of vector registers 0-15 */
110 for (i = 0; i < 16; i++)
111 memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
112 /* Copy vector registers 16-31 */
113 memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
114 }
115
116 /*
117 * Return physical address for virtual address
118 */
load_real_addr(void * addr)119 static inline void *load_real_addr(void *addr)
120 {
121 unsigned long real_addr;
122
123 asm volatile(
124 " lra %0,0(%1)\n"
125 " jz 0f\n"
126 " la %0,0\n"
127 "0:"
128 : "=a" (real_addr) : "a" (addr) : "cc");
129 return (void *)real_addr;
130 }
131
132 /*
133 * Copy memory of the old, dumped system to a kernel space virtual address
134 */
copy_oldmem_kernel(void * dst,unsigned long src,size_t count)135 int copy_oldmem_kernel(void *dst, unsigned long src, size_t count)
136 {
137 unsigned long len;
138 void *ra;
139 int rc;
140
141 while (count) {
142 if (!oldmem_data.start && src < sclp.hsa_size) {
143 /* Copy from zfcp/nvme dump HSA area */
144 len = min(count, sclp.hsa_size - src);
145 rc = memcpy_hsa_kernel(dst, src, len);
146 if (rc)
147 return rc;
148 } else {
149 /* Check for swapped kdump oldmem areas */
150 if (oldmem_data.start && src - oldmem_data.start < oldmem_data.size) {
151 src -= oldmem_data.start;
152 len = min(count, oldmem_data.size - src);
153 } else if (oldmem_data.start && src < oldmem_data.size) {
154 len = min(count, oldmem_data.size - src);
155 src += oldmem_data.start;
156 } else {
157 len = count;
158 }
159 if (is_vmalloc_or_module_addr(dst)) {
160 ra = load_real_addr(dst);
161 len = min(PAGE_SIZE - offset_in_page(ra), len);
162 } else {
163 ra = dst;
164 }
165 if (memcpy_real(ra, src, len))
166 return -EFAULT;
167 }
168 dst += len;
169 src += len;
170 count -= len;
171 }
172 return 0;
173 }
174
175 /*
176 * Copy memory of the old, dumped system to a user space virtual address
177 */
copy_oldmem_user(void __user * dst,unsigned long src,size_t count)178 static int copy_oldmem_user(void __user *dst, unsigned long src, size_t count)
179 {
180 unsigned long len;
181 int rc;
182
183 while (count) {
184 if (!oldmem_data.start && src < sclp.hsa_size) {
185 /* Copy from zfcp/nvme dump HSA area */
186 len = min(count, sclp.hsa_size - src);
187 rc = memcpy_hsa_user(dst, src, len);
188 if (rc)
189 return rc;
190 } else {
191 /* Check for swapped kdump oldmem areas */
192 if (oldmem_data.start && src - oldmem_data.start < oldmem_data.size) {
193 src -= oldmem_data.start;
194 len = min(count, oldmem_data.size - src);
195 } else if (oldmem_data.start && src < oldmem_data.size) {
196 len = min(count, oldmem_data.size - src);
197 src += oldmem_data.start;
198 } else {
199 len = count;
200 }
201 rc = copy_to_user_real(dst, src, len);
202 if (rc)
203 return rc;
204 }
205 dst += len;
206 src += len;
207 count -= len;
208 }
209 return 0;
210 }
211
212 /*
213 * Copy one page from "oldmem"
214 */
copy_oldmem_page(unsigned long pfn,char * buf,size_t csize,unsigned long offset,int userbuf)215 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
216 unsigned long offset, int userbuf)
217 {
218 unsigned long src;
219 int rc;
220
221 if (!csize)
222 return 0;
223 src = pfn_to_phys(pfn) + offset;
224 if (userbuf)
225 rc = copy_oldmem_user((void __force __user *) buf, src, csize);
226 else
227 rc = copy_oldmem_kernel((void *) buf, src, csize);
228 return rc;
229 }
230
231 /*
232 * Remap "oldmem" for kdump
233 *
234 * For the kdump reserved memory this functions performs a swap operation:
235 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
236 */
remap_oldmem_pfn_range_kdump(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)237 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
238 unsigned long from, unsigned long pfn,
239 unsigned long size, pgprot_t prot)
240 {
241 unsigned long size_old;
242 int rc;
243
244 if (pfn < oldmem_data.size >> PAGE_SHIFT) {
245 size_old = min(size, oldmem_data.size - (pfn << PAGE_SHIFT));
246 rc = remap_pfn_range(vma, from,
247 pfn + (oldmem_data.start >> PAGE_SHIFT),
248 size_old, prot);
249 if (rc || size == size_old)
250 return rc;
251 size -= size_old;
252 from += size_old;
253 pfn += size_old >> PAGE_SHIFT;
254 }
255 return remap_pfn_range(vma, from, pfn, size, prot);
256 }
257
258 /*
259 * Remap "oldmem" for zfcp/nvme dump
260 *
261 * We only map available memory above HSA size. Memory below HSA size
262 * is read on demand using the copy_oldmem_page() function.
263 */
remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)264 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
265 unsigned long from,
266 unsigned long pfn,
267 unsigned long size, pgprot_t prot)
268 {
269 unsigned long hsa_end = sclp.hsa_size;
270 unsigned long size_hsa;
271
272 if (pfn < hsa_end >> PAGE_SHIFT) {
273 size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
274 if (size == size_hsa)
275 return 0;
276 size -= size_hsa;
277 from += size_hsa;
278 pfn += size_hsa >> PAGE_SHIFT;
279 }
280 return remap_pfn_range(vma, from, pfn, size, prot);
281 }
282
283 /*
284 * Remap "oldmem" for kdump or zfcp/nvme dump
285 */
remap_oldmem_pfn_range(struct vm_area_struct * vma,unsigned long from,unsigned long pfn,unsigned long size,pgprot_t prot)286 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
287 unsigned long pfn, unsigned long size, pgprot_t prot)
288 {
289 if (oldmem_data.start)
290 return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
291 else
292 return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
293 prot);
294 }
295
nt_name(Elf64_Word type)296 static const char *nt_name(Elf64_Word type)
297 {
298 const char *name = "LINUX";
299
300 if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
301 name = KEXEC_CORE_NOTE_NAME;
302 return name;
303 }
304
305 /*
306 * Initialize ELF note
307 */
nt_init_name(void * buf,Elf64_Word type,void * desc,int d_len,const char * name)308 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
309 const char *name)
310 {
311 Elf64_Nhdr *note;
312 u64 len;
313
314 note = (Elf64_Nhdr *)buf;
315 note->n_namesz = strlen(name) + 1;
316 note->n_descsz = d_len;
317 note->n_type = type;
318 len = sizeof(Elf64_Nhdr);
319
320 memcpy(buf + len, name, note->n_namesz);
321 len = roundup(len + note->n_namesz, 4);
322
323 memcpy(buf + len, desc, note->n_descsz);
324 len = roundup(len + note->n_descsz, 4);
325
326 return PTR_ADD(buf, len);
327 }
328
nt_init(void * buf,Elf64_Word type,void * desc,int d_len)329 static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
330 {
331 return nt_init_name(buf, type, desc, d_len, nt_name(type));
332 }
333
334 /*
335 * Calculate the size of ELF note
336 */
nt_size_name(int d_len,const char * name)337 static size_t nt_size_name(int d_len, const char *name)
338 {
339 size_t size;
340
341 size = sizeof(Elf64_Nhdr);
342 size += roundup(strlen(name) + 1, 4);
343 size += roundup(d_len, 4);
344
345 return size;
346 }
347
nt_size(Elf64_Word type,int d_len)348 static inline size_t nt_size(Elf64_Word type, int d_len)
349 {
350 return nt_size_name(d_len, nt_name(type));
351 }
352
353 /*
354 * Fill ELF notes for one CPU with save area registers
355 */
fill_cpu_elf_notes(void * ptr,int cpu,struct save_area * sa)356 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
357 {
358 struct elf_prstatus nt_prstatus;
359 elf_fpregset_t nt_fpregset;
360
361 /* Prepare prstatus note */
362 memset(&nt_prstatus, 0, sizeof(nt_prstatus));
363 memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
364 memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
365 memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
366 nt_prstatus.common.pr_pid = cpu;
367 /* Prepare fpregset (floating point) note */
368 memset(&nt_fpregset, 0, sizeof(nt_fpregset));
369 memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
370 memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
371 /* Create ELF notes for the CPU */
372 ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
373 ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
374 ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
375 ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
376 ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
377 ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
378 ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
379 if (MACHINE_HAS_VX) {
380 ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
381 &sa->vxrs_high, sizeof(sa->vxrs_high));
382 ptr = nt_init(ptr, NT_S390_VXRS_LOW,
383 &sa->vxrs_low, sizeof(sa->vxrs_low));
384 }
385 return ptr;
386 }
387
388 /*
389 * Calculate size of ELF notes per cpu
390 */
get_cpu_elf_notes_size(void)391 static size_t get_cpu_elf_notes_size(void)
392 {
393 struct save_area *sa = NULL;
394 size_t size;
395
396 size = nt_size(NT_PRSTATUS, sizeof(struct elf_prstatus));
397 size += nt_size(NT_PRFPREG, sizeof(elf_fpregset_t));
398 size += nt_size(NT_S390_TIMER, sizeof(sa->timer));
399 size += nt_size(NT_S390_TODCMP, sizeof(sa->todcmp));
400 size += nt_size(NT_S390_TODPREG, sizeof(sa->todpreg));
401 size += nt_size(NT_S390_CTRS, sizeof(sa->ctrs));
402 size += nt_size(NT_S390_PREFIX, sizeof(sa->prefix));
403 if (MACHINE_HAS_VX) {
404 size += nt_size(NT_S390_VXRS_HIGH, sizeof(sa->vxrs_high));
405 size += nt_size(NT_S390_VXRS_LOW, sizeof(sa->vxrs_low));
406 }
407
408 return size;
409 }
410
411 /*
412 * Initialize prpsinfo note (new kernel)
413 */
nt_prpsinfo(void * ptr)414 static void *nt_prpsinfo(void *ptr)
415 {
416 struct elf_prpsinfo prpsinfo;
417
418 memset(&prpsinfo, 0, sizeof(prpsinfo));
419 prpsinfo.pr_sname = 'R';
420 strcpy(prpsinfo.pr_fname, "vmlinux");
421 return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
422 }
423
424 /*
425 * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
426 */
get_vmcoreinfo_old(unsigned long * size)427 static void *get_vmcoreinfo_old(unsigned long *size)
428 {
429 char nt_name[11], *vmcoreinfo;
430 unsigned long addr;
431 Elf64_Nhdr note;
432
433 if (copy_oldmem_kernel(&addr, __LC_VMCORE_INFO, sizeof(addr)))
434 return NULL;
435 memset(nt_name, 0, sizeof(nt_name));
436 if (copy_oldmem_kernel(¬e, addr, sizeof(note)))
437 return NULL;
438 if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
439 sizeof(nt_name) - 1))
440 return NULL;
441 if (strcmp(nt_name, VMCOREINFO_NOTE_NAME) != 0)
442 return NULL;
443 vmcoreinfo = kzalloc(note.n_descsz, GFP_KERNEL);
444 if (!vmcoreinfo)
445 return NULL;
446 if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) {
447 kfree(vmcoreinfo);
448 return NULL;
449 }
450 *size = note.n_descsz;
451 return vmcoreinfo;
452 }
453
454 /*
455 * Initialize vmcoreinfo note (new kernel)
456 */
nt_vmcoreinfo(void * ptr)457 static void *nt_vmcoreinfo(void *ptr)
458 {
459 const char *name = VMCOREINFO_NOTE_NAME;
460 unsigned long size;
461 void *vmcoreinfo;
462
463 vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
464 if (vmcoreinfo)
465 return nt_init_name(ptr, 0, vmcoreinfo, size, name);
466
467 vmcoreinfo = get_vmcoreinfo_old(&size);
468 if (!vmcoreinfo)
469 return ptr;
470 ptr = nt_init_name(ptr, 0, vmcoreinfo, size, name);
471 kfree(vmcoreinfo);
472 return ptr;
473 }
474
nt_vmcoreinfo_size(void)475 static size_t nt_vmcoreinfo_size(void)
476 {
477 const char *name = VMCOREINFO_NOTE_NAME;
478 unsigned long size;
479 void *vmcoreinfo;
480
481 vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
482 if (vmcoreinfo)
483 return nt_size_name(size, name);
484
485 vmcoreinfo = get_vmcoreinfo_old(&size);
486 if (!vmcoreinfo)
487 return 0;
488
489 kfree(vmcoreinfo);
490 return nt_size_name(size, name);
491 }
492
493 /*
494 * Initialize final note (needed for /proc/vmcore code)
495 */
nt_final(void * ptr)496 static void *nt_final(void *ptr)
497 {
498 Elf64_Nhdr *note;
499
500 note = (Elf64_Nhdr *) ptr;
501 note->n_namesz = 0;
502 note->n_descsz = 0;
503 note->n_type = 0;
504 return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
505 }
506
507 /*
508 * Initialize ELF header (new kernel)
509 */
ehdr_init(Elf64_Ehdr * ehdr,int mem_chunk_cnt)510 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
511 {
512 memset(ehdr, 0, sizeof(*ehdr));
513 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
514 ehdr->e_ident[EI_CLASS] = ELFCLASS64;
515 ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
516 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
517 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
518 ehdr->e_type = ET_CORE;
519 ehdr->e_machine = EM_S390;
520 ehdr->e_version = EV_CURRENT;
521 ehdr->e_phoff = sizeof(Elf64_Ehdr);
522 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
523 ehdr->e_phentsize = sizeof(Elf64_Phdr);
524 ehdr->e_phnum = mem_chunk_cnt + 1;
525 return ehdr + 1;
526 }
527
528 /*
529 * Return CPU count for ELF header (new kernel)
530 */
get_cpu_cnt(void)531 static int get_cpu_cnt(void)
532 {
533 struct save_area *sa;
534 int cpus = 0;
535
536 list_for_each_entry(sa, &dump_save_areas, list)
537 if (sa->prefix != 0)
538 cpus++;
539 return cpus;
540 }
541
542 /*
543 * Return memory chunk count for ELF header (new kernel)
544 */
get_mem_chunk_cnt(void)545 static int get_mem_chunk_cnt(void)
546 {
547 int cnt = 0;
548 u64 idx;
549
550 for_each_physmem_range(idx, &oldmem_type, NULL, NULL)
551 cnt++;
552 return cnt;
553 }
554
555 /*
556 * Initialize ELF loads (new kernel)
557 */
loads_init(Elf64_Phdr * phdr,u64 loads_offset)558 static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
559 {
560 phys_addr_t start, end;
561 u64 idx;
562
563 for_each_physmem_range(idx, &oldmem_type, &start, &end) {
564 phdr->p_filesz = end - start;
565 phdr->p_type = PT_LOAD;
566 phdr->p_offset = start;
567 phdr->p_vaddr = start;
568 phdr->p_paddr = start;
569 phdr->p_memsz = end - start;
570 phdr->p_flags = PF_R | PF_W | PF_X;
571 phdr->p_align = PAGE_SIZE;
572 phdr++;
573 }
574 }
575
576 /*
577 * Initialize notes (new kernel)
578 */
notes_init(Elf64_Phdr * phdr,void * ptr,u64 notes_offset)579 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
580 {
581 struct save_area *sa;
582 void *ptr_start = ptr;
583 int cpu;
584
585 ptr = nt_prpsinfo(ptr);
586
587 cpu = 1;
588 list_for_each_entry(sa, &dump_save_areas, list)
589 if (sa->prefix != 0)
590 ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
591 ptr = nt_vmcoreinfo(ptr);
592 ptr = nt_final(ptr);
593 memset(phdr, 0, sizeof(*phdr));
594 phdr->p_type = PT_NOTE;
595 phdr->p_offset = notes_offset;
596 phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
597 phdr->p_memsz = phdr->p_filesz;
598 return ptr;
599 }
600
get_elfcorehdr_size(int mem_chunk_cnt)601 static size_t get_elfcorehdr_size(int mem_chunk_cnt)
602 {
603 size_t size;
604
605 size = sizeof(Elf64_Ehdr);
606 /* PT_NOTES */
607 size += sizeof(Elf64_Phdr);
608 /* nt_prpsinfo */
609 size += nt_size(NT_PRPSINFO, sizeof(struct elf_prpsinfo));
610 /* regsets */
611 size += get_cpu_cnt() * get_cpu_elf_notes_size();
612 /* nt_vmcoreinfo */
613 size += nt_vmcoreinfo_size();
614 /* nt_final */
615 size += sizeof(Elf64_Nhdr);
616 /* PT_LOADS */
617 size += mem_chunk_cnt * sizeof(Elf64_Phdr);
618
619 return size;
620 }
621
622 /*
623 * Create ELF core header (new kernel)
624 */
elfcorehdr_alloc(unsigned long long * addr,unsigned long long * size)625 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
626 {
627 Elf64_Phdr *phdr_notes, *phdr_loads;
628 int mem_chunk_cnt;
629 void *ptr, *hdr;
630 u32 alloc_size;
631 u64 hdr_off;
632
633 /* If we are not in kdump or zfcp/nvme dump mode return */
634 if (!oldmem_data.start && !is_ipl_type_dump())
635 return 0;
636 /* If we cannot get HSA size for zfcp/nvme dump return error */
637 if (is_ipl_type_dump() && !sclp.hsa_size)
638 return -ENODEV;
639
640 /* For kdump, exclude previous crashkernel memory */
641 if (oldmem_data.start) {
642 oldmem_region.base = oldmem_data.start;
643 oldmem_region.size = oldmem_data.size;
644 oldmem_type.total_size = oldmem_data.size;
645 }
646
647 mem_chunk_cnt = get_mem_chunk_cnt();
648
649 alloc_size = get_elfcorehdr_size(mem_chunk_cnt);
650
651 hdr = kzalloc(alloc_size, GFP_KERNEL);
652
653 /* Without elfcorehdr /proc/vmcore cannot be created. Thus creating
654 * a dump with this crash kernel will fail. Panic now to allow other
655 * dump mechanisms to take over.
656 */
657 if (!hdr)
658 panic("s390 kdump allocating elfcorehdr failed");
659
660 /* Init elf header */
661 ptr = ehdr_init(hdr, mem_chunk_cnt);
662 /* Init program headers */
663 phdr_notes = ptr;
664 ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
665 phdr_loads = ptr;
666 ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
667 /* Init notes */
668 hdr_off = PTR_DIFF(ptr, hdr);
669 ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
670 /* Init loads */
671 hdr_off = PTR_DIFF(ptr, hdr);
672 loads_init(phdr_loads, hdr_off);
673 *addr = (unsigned long long) hdr;
674 *size = (unsigned long long) hdr_off;
675 BUG_ON(elfcorehdr_size > alloc_size);
676 return 0;
677 }
678
679 /*
680 * Free ELF core header (new kernel)
681 */
elfcorehdr_free(unsigned long long addr)682 void elfcorehdr_free(unsigned long long addr)
683 {
684 kfree((void *)(unsigned long)addr);
685 }
686
687 /*
688 * Read from ELF header
689 */
elfcorehdr_read(char * buf,size_t count,u64 * ppos)690 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
691 {
692 void *src = (void *)(unsigned long)*ppos;
693
694 memcpy(buf, src, count);
695 *ppos += count;
696 return count;
697 }
698
699 /*
700 * Read from ELF notes data
701 */
elfcorehdr_read_notes(char * buf,size_t count,u64 * ppos)702 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
703 {
704 void *src = (void *)(unsigned long)*ppos;
705
706 memcpy(buf, src, count);
707 *ppos += count;
708 return count;
709 }
710