1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Ptrace user space interface.
4 *
5 * Copyright IBM Corp. 1999, 2010
6 * Author(s): Denis Joseph Barrow
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 */
9
10 #include "asm/ptrace.h"
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/mm.h>
15 #include <linux/smp.h>
16 #include <linux/errno.h>
17 #include <linux/ptrace.h>
18 #include <linux/user.h>
19 #include <linux/security.h>
20 #include <linux/audit.h>
21 #include <linux/signal.h>
22 #include <linux/elf.h>
23 #include <linux/regset.h>
24 #include <linux/tracehook.h>
25 #include <linux/seccomp.h>
26 #include <linux/compat.h>
27 #include <trace/syscall.h>
28 #include <asm/page.h>
29 #include <linux/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include <asm/runtime_instr.h>
33 #include <asm/facility.h>
34
35 #include "entry.h"
36
37 #ifdef CONFIG_COMPAT
38 #include "compat_ptrace.h"
39 #endif
40
update_cr_regs(struct task_struct * task)41 void update_cr_regs(struct task_struct *task)
42 {
43 struct pt_regs *regs = task_pt_regs(task);
44 struct thread_struct *thread = &task->thread;
45 struct per_regs old, new;
46 union ctlreg0 cr0_old, cr0_new;
47 union ctlreg2 cr2_old, cr2_new;
48 int cr0_changed, cr2_changed;
49
50 __ctl_store(cr0_old.val, 0, 0);
51 __ctl_store(cr2_old.val, 2, 2);
52 cr0_new = cr0_old;
53 cr2_new = cr2_old;
54 /* Take care of the enable/disable of transactional execution. */
55 if (MACHINE_HAS_TE) {
56 /* Set or clear transaction execution TXC bit 8. */
57 cr0_new.tcx = 1;
58 if (task->thread.per_flags & PER_FLAG_NO_TE)
59 cr0_new.tcx = 0;
60 /* Set or clear transaction execution TDC bits 62 and 63. */
61 cr2_new.tdc = 0;
62 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
63 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
64 cr2_new.tdc = 1;
65 else
66 cr2_new.tdc = 2;
67 }
68 }
69 /* Take care of enable/disable of guarded storage. */
70 if (MACHINE_HAS_GS) {
71 cr2_new.gse = 0;
72 if (task->thread.gs_cb)
73 cr2_new.gse = 1;
74 }
75 /* Load control register 0/2 iff changed */
76 cr0_changed = cr0_new.val != cr0_old.val;
77 cr2_changed = cr2_new.val != cr2_old.val;
78 if (cr0_changed)
79 __ctl_load(cr0_new.val, 0, 0);
80 if (cr2_changed)
81 __ctl_load(cr2_new.val, 2, 2);
82 /* Copy user specified PER registers */
83 new.control = thread->per_user.control;
84 new.start = thread->per_user.start;
85 new.end = thread->per_user.end;
86
87 /* merge TIF_SINGLE_STEP into user specified PER registers. */
88 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
89 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
90 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
91 new.control |= PER_EVENT_BRANCH;
92 else
93 new.control |= PER_EVENT_IFETCH;
94 new.control |= PER_CONTROL_SUSPENSION;
95 new.control |= PER_EVENT_TRANSACTION_END;
96 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
97 new.control |= PER_EVENT_IFETCH;
98 new.start = 0;
99 new.end = -1UL;
100 }
101
102 /* Take care of the PER enablement bit in the PSW. */
103 if (!(new.control & PER_EVENT_MASK)) {
104 regs->psw.mask &= ~PSW_MASK_PER;
105 return;
106 }
107 regs->psw.mask |= PSW_MASK_PER;
108 __ctl_store(old, 9, 11);
109 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
110 __ctl_load(new, 9, 11);
111 }
112
user_enable_single_step(struct task_struct * task)113 void user_enable_single_step(struct task_struct *task)
114 {
115 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
116 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
117 }
118
user_disable_single_step(struct task_struct * task)119 void user_disable_single_step(struct task_struct *task)
120 {
121 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
122 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
123 }
124
user_enable_block_step(struct task_struct * task)125 void user_enable_block_step(struct task_struct *task)
126 {
127 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
128 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
129 }
130
131 /*
132 * Called by kernel/ptrace.c when detaching..
133 *
134 * Clear all debugging related fields.
135 */
ptrace_disable(struct task_struct * task)136 void ptrace_disable(struct task_struct *task)
137 {
138 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
139 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
140 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
141 clear_tsk_thread_flag(task, TIF_PER_TRAP);
142 task->thread.per_flags = 0;
143 }
144
145 #define __ADDR_MASK 7
146
__peek_user_per(struct task_struct * child,addr_t addr)147 static inline unsigned long __peek_user_per(struct task_struct *child,
148 addr_t addr)
149 {
150 struct per_struct_kernel *dummy = NULL;
151
152 if (addr == (addr_t) &dummy->cr9)
153 /* Control bits of the active per set. */
154 return test_thread_flag(TIF_SINGLE_STEP) ?
155 PER_EVENT_IFETCH : child->thread.per_user.control;
156 else if (addr == (addr_t) &dummy->cr10)
157 /* Start address of the active per set. */
158 return test_thread_flag(TIF_SINGLE_STEP) ?
159 0 : child->thread.per_user.start;
160 else if (addr == (addr_t) &dummy->cr11)
161 /* End address of the active per set. */
162 return test_thread_flag(TIF_SINGLE_STEP) ?
163 -1UL : child->thread.per_user.end;
164 else if (addr == (addr_t) &dummy->bits)
165 /* Single-step bit. */
166 return test_thread_flag(TIF_SINGLE_STEP) ?
167 (1UL << (BITS_PER_LONG - 1)) : 0;
168 else if (addr == (addr_t) &dummy->starting_addr)
169 /* Start address of the user specified per set. */
170 return child->thread.per_user.start;
171 else if (addr == (addr_t) &dummy->ending_addr)
172 /* End address of the user specified per set. */
173 return child->thread.per_user.end;
174 else if (addr == (addr_t) &dummy->perc_atmid)
175 /* PER code, ATMID and AI of the last PER trap */
176 return (unsigned long)
177 child->thread.per_event.cause << (BITS_PER_LONG - 16);
178 else if (addr == (addr_t) &dummy->address)
179 /* Address of the last PER trap */
180 return child->thread.per_event.address;
181 else if (addr == (addr_t) &dummy->access_id)
182 /* Access id of the last PER trap */
183 return (unsigned long)
184 child->thread.per_event.paid << (BITS_PER_LONG - 8);
185 return 0;
186 }
187
188 /*
189 * Read the word at offset addr from the user area of a process. The
190 * trouble here is that the information is littered over different
191 * locations. The process registers are found on the kernel stack,
192 * the floating point stuff and the trace settings are stored in
193 * the task structure. In addition the different structures in
194 * struct user contain pad bytes that should be read as zeroes.
195 * Lovely...
196 */
__peek_user(struct task_struct * child,addr_t addr)197 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
198 {
199 struct user *dummy = NULL;
200 addr_t offset, tmp;
201
202 if (addr < (addr_t) &dummy->regs.acrs) {
203 /*
204 * psw and gprs are stored on the stack
205 */
206 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
207 if (addr == (addr_t) &dummy->regs.psw.mask) {
208 /* Return a clean psw mask. */
209 tmp &= PSW_MASK_USER | PSW_MASK_RI;
210 tmp |= PSW_USER_BITS;
211 }
212
213 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
214 /*
215 * access registers are stored in the thread structure
216 */
217 offset = addr - (addr_t) &dummy->regs.acrs;
218 /*
219 * Very special case: old & broken 64 bit gdb reading
220 * from acrs[15]. Result is a 64 bit value. Read the
221 * 32 bit acrs[15] value and shift it by 32. Sick...
222 */
223 if (addr == (addr_t) &dummy->regs.acrs[15])
224 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
225 else
226 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
227
228 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
229 /*
230 * orig_gpr2 is stored on the kernel stack
231 */
232 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
233
234 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
235 /*
236 * prevent reads of padding hole between
237 * orig_gpr2 and fp_regs on s390.
238 */
239 tmp = 0;
240
241 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
242 /*
243 * floating point control reg. is in the thread structure
244 */
245 tmp = child->thread.fpu.fpc;
246 tmp <<= BITS_PER_LONG - 32;
247
248 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
249 /*
250 * floating point regs. are either in child->thread.fpu
251 * or the child->thread.fpu.vxrs array
252 */
253 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
254 if (MACHINE_HAS_VX)
255 tmp = *(addr_t *)
256 ((addr_t) child->thread.fpu.vxrs + 2*offset);
257 else
258 tmp = *(addr_t *)
259 ((addr_t) child->thread.fpu.fprs + offset);
260
261 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
262 /*
263 * Handle access to the per_info structure.
264 */
265 addr -= (addr_t) &dummy->regs.per_info;
266 tmp = __peek_user_per(child, addr);
267
268 } else
269 tmp = 0;
270
271 return tmp;
272 }
273
274 static int
peek_user(struct task_struct * child,addr_t addr,addr_t data)275 peek_user(struct task_struct *child, addr_t addr, addr_t data)
276 {
277 addr_t tmp, mask;
278
279 /*
280 * Stupid gdb peeks/pokes the access registers in 64 bit with
281 * an alignment of 4. Programmers from hell...
282 */
283 mask = __ADDR_MASK;
284 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
285 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
286 mask = 3;
287 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
288 return -EIO;
289
290 tmp = __peek_user(child, addr);
291 return put_user(tmp, (addr_t __user *) data);
292 }
293
__poke_user_per(struct task_struct * child,addr_t addr,addr_t data)294 static inline void __poke_user_per(struct task_struct *child,
295 addr_t addr, addr_t data)
296 {
297 struct per_struct_kernel *dummy = NULL;
298
299 /*
300 * There are only three fields in the per_info struct that the
301 * debugger user can write to.
302 * 1) cr9: the debugger wants to set a new PER event mask
303 * 2) starting_addr: the debugger wants to set a new starting
304 * address to use with the PER event mask.
305 * 3) ending_addr: the debugger wants to set a new ending
306 * address to use with the PER event mask.
307 * The user specified PER event mask and the start and end
308 * addresses are used only if single stepping is not in effect.
309 * Writes to any other field in per_info are ignored.
310 */
311 if (addr == (addr_t) &dummy->cr9)
312 /* PER event mask of the user specified per set. */
313 child->thread.per_user.control =
314 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
315 else if (addr == (addr_t) &dummy->starting_addr)
316 /* Starting address of the user specified per set. */
317 child->thread.per_user.start = data;
318 else if (addr == (addr_t) &dummy->ending_addr)
319 /* Ending address of the user specified per set. */
320 child->thread.per_user.end = data;
321 }
322
323 /*
324 * Write a word to the user area of a process at location addr. This
325 * operation does have an additional problem compared to peek_user.
326 * Stores to the program status word and on the floating point
327 * control register needs to get checked for validity.
328 */
__poke_user(struct task_struct * child,addr_t addr,addr_t data)329 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
330 {
331 struct user *dummy = NULL;
332 addr_t offset;
333
334
335 if (addr < (addr_t) &dummy->regs.acrs) {
336 struct pt_regs *regs = task_pt_regs(child);
337 /*
338 * psw and gprs are stored on the stack
339 */
340 if (addr == (addr_t) &dummy->regs.psw.mask) {
341 unsigned long mask = PSW_MASK_USER;
342
343 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
344 if ((data ^ PSW_USER_BITS) & ~mask)
345 /* Invalid psw mask. */
346 return -EINVAL;
347 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
348 /* Invalid address-space-control bits */
349 return -EINVAL;
350 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
351 /* Invalid addressing mode bits */
352 return -EINVAL;
353 }
354
355 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
356 addr == offsetof(struct user, regs.gprs[2])) {
357 struct pt_regs *regs = task_pt_regs(child);
358
359 regs->int_code = 0x20000 | (data & 0xffff);
360 }
361 *(addr_t *)((addr_t) ®s->psw + addr) = data;
362 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
363 /*
364 * access registers are stored in the thread structure
365 */
366 offset = addr - (addr_t) &dummy->regs.acrs;
367 /*
368 * Very special case: old & broken 64 bit gdb writing
369 * to acrs[15] with a 64 bit value. Ignore the lower
370 * half of the value and write the upper 32 bit to
371 * acrs[15]. Sick...
372 */
373 if (addr == (addr_t) &dummy->regs.acrs[15])
374 child->thread.acrs[15] = (unsigned int) (data >> 32);
375 else
376 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
377
378 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
379 /*
380 * orig_gpr2 is stored on the kernel stack
381 */
382 task_pt_regs(child)->orig_gpr2 = data;
383
384 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
385 /*
386 * prevent writes of padding hole between
387 * orig_gpr2 and fp_regs on s390.
388 */
389 return 0;
390
391 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
392 /*
393 * floating point control reg. is in the thread structure
394 */
395 save_fpu_regs();
396 if ((unsigned int) data != 0 ||
397 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
398 return -EINVAL;
399 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
400
401 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
402 /*
403 * floating point regs. are either in child->thread.fpu
404 * or the child->thread.fpu.vxrs array
405 */
406 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
407 if (MACHINE_HAS_VX)
408 *(addr_t *)((addr_t)
409 child->thread.fpu.vxrs + 2*offset) = data;
410 else
411 *(addr_t *)((addr_t)
412 child->thread.fpu.fprs + offset) = data;
413
414 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
415 /*
416 * Handle access to the per_info structure.
417 */
418 addr -= (addr_t) &dummy->regs.per_info;
419 __poke_user_per(child, addr, data);
420
421 }
422
423 return 0;
424 }
425
poke_user(struct task_struct * child,addr_t addr,addr_t data)426 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
427 {
428 addr_t mask;
429
430 /*
431 * Stupid gdb peeks/pokes the access registers in 64 bit with
432 * an alignment of 4. Programmers from hell indeed...
433 */
434 mask = __ADDR_MASK;
435 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
436 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
437 mask = 3;
438 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
439 return -EIO;
440
441 return __poke_user(child, addr, data);
442 }
443
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)444 long arch_ptrace(struct task_struct *child, long request,
445 unsigned long addr, unsigned long data)
446 {
447 ptrace_area parea;
448 int copied, ret;
449
450 switch (request) {
451 case PTRACE_PEEKUSR:
452 /* read the word at location addr in the USER area. */
453 return peek_user(child, addr, data);
454
455 case PTRACE_POKEUSR:
456 /* write the word at location addr in the USER area */
457 return poke_user(child, addr, data);
458
459 case PTRACE_PEEKUSR_AREA:
460 case PTRACE_POKEUSR_AREA:
461 if (copy_from_user(&parea, (void __force __user *) addr,
462 sizeof(parea)))
463 return -EFAULT;
464 addr = parea.kernel_addr;
465 data = parea.process_addr;
466 copied = 0;
467 while (copied < parea.len) {
468 if (request == PTRACE_PEEKUSR_AREA)
469 ret = peek_user(child, addr, data);
470 else {
471 addr_t utmp;
472 if (get_user(utmp,
473 (addr_t __force __user *) data))
474 return -EFAULT;
475 ret = poke_user(child, addr, utmp);
476 }
477 if (ret)
478 return ret;
479 addr += sizeof(unsigned long);
480 data += sizeof(unsigned long);
481 copied += sizeof(unsigned long);
482 }
483 return 0;
484 case PTRACE_GET_LAST_BREAK:
485 return put_user(child->thread.last_break, (unsigned long __user *)data);
486 case PTRACE_ENABLE_TE:
487 if (!MACHINE_HAS_TE)
488 return -EIO;
489 child->thread.per_flags &= ~PER_FLAG_NO_TE;
490 return 0;
491 case PTRACE_DISABLE_TE:
492 if (!MACHINE_HAS_TE)
493 return -EIO;
494 child->thread.per_flags |= PER_FLAG_NO_TE;
495 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
496 return 0;
497 case PTRACE_TE_ABORT_RAND:
498 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
499 return -EIO;
500 switch (data) {
501 case 0UL:
502 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
503 break;
504 case 1UL:
505 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
506 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
507 break;
508 case 2UL:
509 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
510 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
511 break;
512 default:
513 return -EINVAL;
514 }
515 return 0;
516 default:
517 return ptrace_request(child, request, addr, data);
518 }
519 }
520
521 #ifdef CONFIG_COMPAT
522 /*
523 * Now the fun part starts... a 31 bit program running in the
524 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
525 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
526 * to handle, the difference to the 64 bit versions of the requests
527 * is that the access is done in multiples of 4 byte instead of
528 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
529 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
530 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
531 * is a 31 bit program too, the content of struct user can be
532 * emulated. A 31 bit program peeking into the struct user of
533 * a 64 bit program is a no-no.
534 */
535
536 /*
537 * Same as peek_user_per but for a 31 bit program.
538 */
__peek_user_per_compat(struct task_struct * child,addr_t addr)539 static inline __u32 __peek_user_per_compat(struct task_struct *child,
540 addr_t addr)
541 {
542 struct compat_per_struct_kernel *dummy32 = NULL;
543
544 if (addr == (addr_t) &dummy32->cr9)
545 /* Control bits of the active per set. */
546 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
547 PER_EVENT_IFETCH : child->thread.per_user.control;
548 else if (addr == (addr_t) &dummy32->cr10)
549 /* Start address of the active per set. */
550 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
551 0 : child->thread.per_user.start;
552 else if (addr == (addr_t) &dummy32->cr11)
553 /* End address of the active per set. */
554 return test_thread_flag(TIF_SINGLE_STEP) ?
555 PSW32_ADDR_INSN : child->thread.per_user.end;
556 else if (addr == (addr_t) &dummy32->bits)
557 /* Single-step bit. */
558 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
559 0x80000000 : 0;
560 else if (addr == (addr_t) &dummy32->starting_addr)
561 /* Start address of the user specified per set. */
562 return (__u32) child->thread.per_user.start;
563 else if (addr == (addr_t) &dummy32->ending_addr)
564 /* End address of the user specified per set. */
565 return (__u32) child->thread.per_user.end;
566 else if (addr == (addr_t) &dummy32->perc_atmid)
567 /* PER code, ATMID and AI of the last PER trap */
568 return (__u32) child->thread.per_event.cause << 16;
569 else if (addr == (addr_t) &dummy32->address)
570 /* Address of the last PER trap */
571 return (__u32) child->thread.per_event.address;
572 else if (addr == (addr_t) &dummy32->access_id)
573 /* Access id of the last PER trap */
574 return (__u32) child->thread.per_event.paid << 24;
575 return 0;
576 }
577
578 /*
579 * Same as peek_user but for a 31 bit program.
580 */
__peek_user_compat(struct task_struct * child,addr_t addr)581 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
582 {
583 struct compat_user *dummy32 = NULL;
584 addr_t offset;
585 __u32 tmp;
586
587 if (addr < (addr_t) &dummy32->regs.acrs) {
588 struct pt_regs *regs = task_pt_regs(child);
589 /*
590 * psw and gprs are stored on the stack
591 */
592 if (addr == (addr_t) &dummy32->regs.psw.mask) {
593 /* Fake a 31 bit psw mask. */
594 tmp = (__u32)(regs->psw.mask >> 32);
595 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
596 tmp |= PSW32_USER_BITS;
597 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
598 /* Fake a 31 bit psw address. */
599 tmp = (__u32) regs->psw.addr |
600 (__u32)(regs->psw.mask & PSW_MASK_BA);
601 } else {
602 /* gpr 0-15 */
603 tmp = *(__u32 *)((addr_t) ®s->psw + addr*2 + 4);
604 }
605 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
606 /*
607 * access registers are stored in the thread structure
608 */
609 offset = addr - (addr_t) &dummy32->regs.acrs;
610 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
611
612 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
613 /*
614 * orig_gpr2 is stored on the kernel stack
615 */
616 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
617
618 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
619 /*
620 * prevent reads of padding hole between
621 * orig_gpr2 and fp_regs on s390.
622 */
623 tmp = 0;
624
625 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
626 /*
627 * floating point control reg. is in the thread structure
628 */
629 tmp = child->thread.fpu.fpc;
630
631 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
632 /*
633 * floating point regs. are either in child->thread.fpu
634 * or the child->thread.fpu.vxrs array
635 */
636 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
637 if (MACHINE_HAS_VX)
638 tmp = *(__u32 *)
639 ((addr_t) child->thread.fpu.vxrs + 2*offset);
640 else
641 tmp = *(__u32 *)
642 ((addr_t) child->thread.fpu.fprs + offset);
643
644 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
645 /*
646 * Handle access to the per_info structure.
647 */
648 addr -= (addr_t) &dummy32->regs.per_info;
649 tmp = __peek_user_per_compat(child, addr);
650
651 } else
652 tmp = 0;
653
654 return tmp;
655 }
656
peek_user_compat(struct task_struct * child,addr_t addr,addr_t data)657 static int peek_user_compat(struct task_struct *child,
658 addr_t addr, addr_t data)
659 {
660 __u32 tmp;
661
662 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
663 return -EIO;
664
665 tmp = __peek_user_compat(child, addr);
666 return put_user(tmp, (__u32 __user *) data);
667 }
668
669 /*
670 * Same as poke_user_per but for a 31 bit program.
671 */
__poke_user_per_compat(struct task_struct * child,addr_t addr,__u32 data)672 static inline void __poke_user_per_compat(struct task_struct *child,
673 addr_t addr, __u32 data)
674 {
675 struct compat_per_struct_kernel *dummy32 = NULL;
676
677 if (addr == (addr_t) &dummy32->cr9)
678 /* PER event mask of the user specified per set. */
679 child->thread.per_user.control =
680 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
681 else if (addr == (addr_t) &dummy32->starting_addr)
682 /* Starting address of the user specified per set. */
683 child->thread.per_user.start = data;
684 else if (addr == (addr_t) &dummy32->ending_addr)
685 /* Ending address of the user specified per set. */
686 child->thread.per_user.end = data;
687 }
688
689 /*
690 * Same as poke_user but for a 31 bit program.
691 */
__poke_user_compat(struct task_struct * child,addr_t addr,addr_t data)692 static int __poke_user_compat(struct task_struct *child,
693 addr_t addr, addr_t data)
694 {
695 struct compat_user *dummy32 = NULL;
696 __u32 tmp = (__u32) data;
697 addr_t offset;
698
699 if (addr < (addr_t) &dummy32->regs.acrs) {
700 struct pt_regs *regs = task_pt_regs(child);
701 /*
702 * psw, gprs, acrs and orig_gpr2 are stored on the stack
703 */
704 if (addr == (addr_t) &dummy32->regs.psw.mask) {
705 __u32 mask = PSW32_MASK_USER;
706
707 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
708 /* Build a 64 bit psw mask from 31 bit mask. */
709 if ((tmp ^ PSW32_USER_BITS) & ~mask)
710 /* Invalid psw mask. */
711 return -EINVAL;
712 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
713 /* Invalid address-space-control bits */
714 return -EINVAL;
715 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
716 (regs->psw.mask & PSW_MASK_BA) |
717 (__u64)(tmp & mask) << 32;
718 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
719 /* Build a 64 bit psw address from 31 bit address. */
720 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
721 /* Transfer 31 bit amode bit to psw mask. */
722 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
723 (__u64)(tmp & PSW32_ADDR_AMODE);
724 } else {
725 if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
726 addr == offsetof(struct compat_user, regs.gprs[2])) {
727 struct pt_regs *regs = task_pt_regs(child);
728
729 regs->int_code = 0x20000 | (data & 0xffff);
730 }
731 /* gpr 0-15 */
732 *(__u32*)((addr_t) ®s->psw + addr*2 + 4) = tmp;
733 }
734 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
735 /*
736 * access registers are stored in the thread structure
737 */
738 offset = addr - (addr_t) &dummy32->regs.acrs;
739 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
740
741 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
742 /*
743 * orig_gpr2 is stored on the kernel stack
744 */
745 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
746
747 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
748 /*
749 * prevent writess of padding hole between
750 * orig_gpr2 and fp_regs on s390.
751 */
752 return 0;
753
754 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
755 /*
756 * floating point control reg. is in the thread structure
757 */
758 save_fpu_regs();
759 if (test_fp_ctl(tmp))
760 return -EINVAL;
761 child->thread.fpu.fpc = data;
762
763 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
764 /*
765 * floating point regs. are either in child->thread.fpu
766 * or the child->thread.fpu.vxrs array
767 */
768 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
769 if (MACHINE_HAS_VX)
770 *(__u32 *)((addr_t)
771 child->thread.fpu.vxrs + 2*offset) = tmp;
772 else
773 *(__u32 *)((addr_t)
774 child->thread.fpu.fprs + offset) = tmp;
775
776 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
777 /*
778 * Handle access to the per_info structure.
779 */
780 addr -= (addr_t) &dummy32->regs.per_info;
781 __poke_user_per_compat(child, addr, data);
782 }
783
784 return 0;
785 }
786
poke_user_compat(struct task_struct * child,addr_t addr,addr_t data)787 static int poke_user_compat(struct task_struct *child,
788 addr_t addr, addr_t data)
789 {
790 if (!is_compat_task() || (addr & 3) ||
791 addr > sizeof(struct compat_user) - 3)
792 return -EIO;
793
794 return __poke_user_compat(child, addr, data);
795 }
796
compat_arch_ptrace(struct task_struct * child,compat_long_t request,compat_ulong_t caddr,compat_ulong_t cdata)797 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
798 compat_ulong_t caddr, compat_ulong_t cdata)
799 {
800 unsigned long addr = caddr;
801 unsigned long data = cdata;
802 compat_ptrace_area parea;
803 int copied, ret;
804
805 switch (request) {
806 case PTRACE_PEEKUSR:
807 /* read the word at location addr in the USER area. */
808 return peek_user_compat(child, addr, data);
809
810 case PTRACE_POKEUSR:
811 /* write the word at location addr in the USER area */
812 return poke_user_compat(child, addr, data);
813
814 case PTRACE_PEEKUSR_AREA:
815 case PTRACE_POKEUSR_AREA:
816 if (copy_from_user(&parea, (void __force __user *) addr,
817 sizeof(parea)))
818 return -EFAULT;
819 addr = parea.kernel_addr;
820 data = parea.process_addr;
821 copied = 0;
822 while (copied < parea.len) {
823 if (request == PTRACE_PEEKUSR_AREA)
824 ret = peek_user_compat(child, addr, data);
825 else {
826 __u32 utmp;
827 if (get_user(utmp,
828 (__u32 __force __user *) data))
829 return -EFAULT;
830 ret = poke_user_compat(child, addr, utmp);
831 }
832 if (ret)
833 return ret;
834 addr += sizeof(unsigned int);
835 data += sizeof(unsigned int);
836 copied += sizeof(unsigned int);
837 }
838 return 0;
839 case PTRACE_GET_LAST_BREAK:
840 return put_user(child->thread.last_break, (unsigned int __user *)data);
841 }
842 return compat_ptrace_request(child, request, addr, data);
843 }
844 #endif
845
846 /*
847 * user_regset definitions.
848 */
849
s390_regs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)850 static int s390_regs_get(struct task_struct *target,
851 const struct user_regset *regset,
852 struct membuf to)
853 {
854 unsigned pos;
855 if (target == current)
856 save_access_regs(target->thread.acrs);
857
858 for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
859 membuf_store(&to, __peek_user(target, pos));
860 return 0;
861 }
862
s390_regs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)863 static int s390_regs_set(struct task_struct *target,
864 const struct user_regset *regset,
865 unsigned int pos, unsigned int count,
866 const void *kbuf, const void __user *ubuf)
867 {
868 int rc = 0;
869
870 if (target == current)
871 save_access_regs(target->thread.acrs);
872
873 if (kbuf) {
874 const unsigned long *k = kbuf;
875 while (count > 0 && !rc) {
876 rc = __poke_user(target, pos, *k++);
877 count -= sizeof(*k);
878 pos += sizeof(*k);
879 }
880 } else {
881 const unsigned long __user *u = ubuf;
882 while (count > 0 && !rc) {
883 unsigned long word;
884 rc = __get_user(word, u++);
885 if (rc)
886 break;
887 rc = __poke_user(target, pos, word);
888 count -= sizeof(*u);
889 pos += sizeof(*u);
890 }
891 }
892
893 if (rc == 0 && target == current)
894 restore_access_regs(target->thread.acrs);
895
896 return rc;
897 }
898
s390_fpregs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)899 static int s390_fpregs_get(struct task_struct *target,
900 const struct user_regset *regset,
901 struct membuf to)
902 {
903 _s390_fp_regs fp_regs;
904
905 if (target == current)
906 save_fpu_regs();
907
908 fp_regs.fpc = target->thread.fpu.fpc;
909 fpregs_store(&fp_regs, &target->thread.fpu);
910
911 return membuf_write(&to, &fp_regs, sizeof(fp_regs));
912 }
913
s390_fpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)914 static int s390_fpregs_set(struct task_struct *target,
915 const struct user_regset *regset, unsigned int pos,
916 unsigned int count, const void *kbuf,
917 const void __user *ubuf)
918 {
919 int rc = 0;
920 freg_t fprs[__NUM_FPRS];
921
922 save_fpu_regs();
923 if (MACHINE_HAS_VX)
924 convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
925 else
926 memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
927
928 /* If setting FPC, must validate it first. */
929 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
930 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
931 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
932 0, offsetof(s390_fp_regs, fprs));
933 if (rc)
934 return rc;
935 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
936 return -EINVAL;
937 target->thread.fpu.fpc = ufpc[0];
938 }
939
940 if (rc == 0 && count > 0)
941 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
942 fprs, offsetof(s390_fp_regs, fprs), -1);
943 if (rc)
944 return rc;
945
946 if (MACHINE_HAS_VX)
947 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
948 else
949 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
950
951 return rc;
952 }
953
s390_last_break_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)954 static int s390_last_break_get(struct task_struct *target,
955 const struct user_regset *regset,
956 struct membuf to)
957 {
958 return membuf_store(&to, target->thread.last_break);
959 }
960
s390_last_break_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)961 static int s390_last_break_set(struct task_struct *target,
962 const struct user_regset *regset,
963 unsigned int pos, unsigned int count,
964 const void *kbuf, const void __user *ubuf)
965 {
966 return 0;
967 }
968
s390_tdb_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)969 static int s390_tdb_get(struct task_struct *target,
970 const struct user_regset *regset,
971 struct membuf to)
972 {
973 struct pt_regs *regs = task_pt_regs(target);
974 size_t size;
975
976 if (!(regs->int_code & 0x200))
977 return -ENODATA;
978 size = sizeof(target->thread.trap_tdb.data);
979 return membuf_write(&to, target->thread.trap_tdb.data, size);
980 }
981
s390_tdb_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)982 static int s390_tdb_set(struct task_struct *target,
983 const struct user_regset *regset,
984 unsigned int pos, unsigned int count,
985 const void *kbuf, const void __user *ubuf)
986 {
987 return 0;
988 }
989
s390_vxrs_low_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)990 static int s390_vxrs_low_get(struct task_struct *target,
991 const struct user_regset *regset,
992 struct membuf to)
993 {
994 __u64 vxrs[__NUM_VXRS_LOW];
995 int i;
996
997 if (!MACHINE_HAS_VX)
998 return -ENODEV;
999 if (target == current)
1000 save_fpu_regs();
1001 for (i = 0; i < __NUM_VXRS_LOW; i++)
1002 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1003 return membuf_write(&to, vxrs, sizeof(vxrs));
1004 }
1005
s390_vxrs_low_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1006 static int s390_vxrs_low_set(struct task_struct *target,
1007 const struct user_regset *regset,
1008 unsigned int pos, unsigned int count,
1009 const void *kbuf, const void __user *ubuf)
1010 {
1011 __u64 vxrs[__NUM_VXRS_LOW];
1012 int i, rc;
1013
1014 if (!MACHINE_HAS_VX)
1015 return -ENODEV;
1016 if (target == current)
1017 save_fpu_regs();
1018
1019 for (i = 0; i < __NUM_VXRS_LOW; i++)
1020 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1021
1022 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1023 if (rc == 0)
1024 for (i = 0; i < __NUM_VXRS_LOW; i++)
1025 *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1026
1027 return rc;
1028 }
1029
s390_vxrs_high_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1030 static int s390_vxrs_high_get(struct task_struct *target,
1031 const struct user_regset *regset,
1032 struct membuf to)
1033 {
1034 if (!MACHINE_HAS_VX)
1035 return -ENODEV;
1036 if (target == current)
1037 save_fpu_regs();
1038 return membuf_write(&to, target->thread.fpu.vxrs + __NUM_VXRS_LOW,
1039 __NUM_VXRS_HIGH * sizeof(__vector128));
1040 }
1041
s390_vxrs_high_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1042 static int s390_vxrs_high_set(struct task_struct *target,
1043 const struct user_regset *regset,
1044 unsigned int pos, unsigned int count,
1045 const void *kbuf, const void __user *ubuf)
1046 {
1047 int rc;
1048
1049 if (!MACHINE_HAS_VX)
1050 return -ENODEV;
1051 if (target == current)
1052 save_fpu_regs();
1053
1054 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1055 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1056 return rc;
1057 }
1058
s390_system_call_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1059 static int s390_system_call_get(struct task_struct *target,
1060 const struct user_regset *regset,
1061 struct membuf to)
1062 {
1063 return membuf_store(&to, target->thread.system_call);
1064 }
1065
s390_system_call_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1066 static int s390_system_call_set(struct task_struct *target,
1067 const struct user_regset *regset,
1068 unsigned int pos, unsigned int count,
1069 const void *kbuf, const void __user *ubuf)
1070 {
1071 unsigned int *data = &target->thread.system_call;
1072 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1073 data, 0, sizeof(unsigned int));
1074 }
1075
s390_gs_cb_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1076 static int s390_gs_cb_get(struct task_struct *target,
1077 const struct user_regset *regset,
1078 struct membuf to)
1079 {
1080 struct gs_cb *data = target->thread.gs_cb;
1081
1082 if (!MACHINE_HAS_GS)
1083 return -ENODEV;
1084 if (!data)
1085 return -ENODATA;
1086 if (target == current)
1087 save_gs_cb(data);
1088 return membuf_write(&to, data, sizeof(struct gs_cb));
1089 }
1090
s390_gs_cb_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1091 static int s390_gs_cb_set(struct task_struct *target,
1092 const struct user_regset *regset,
1093 unsigned int pos, unsigned int count,
1094 const void *kbuf, const void __user *ubuf)
1095 {
1096 struct gs_cb gs_cb = { }, *data = NULL;
1097 int rc;
1098
1099 if (!MACHINE_HAS_GS)
1100 return -ENODEV;
1101 if (!target->thread.gs_cb) {
1102 data = kzalloc(sizeof(*data), GFP_KERNEL);
1103 if (!data)
1104 return -ENOMEM;
1105 }
1106 if (!target->thread.gs_cb)
1107 gs_cb.gsd = 25;
1108 else if (target == current)
1109 save_gs_cb(&gs_cb);
1110 else
1111 gs_cb = *target->thread.gs_cb;
1112 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1113 &gs_cb, 0, sizeof(gs_cb));
1114 if (rc) {
1115 kfree(data);
1116 return -EFAULT;
1117 }
1118 preempt_disable();
1119 if (!target->thread.gs_cb)
1120 target->thread.gs_cb = data;
1121 *target->thread.gs_cb = gs_cb;
1122 if (target == current) {
1123 __ctl_set_bit(2, 4);
1124 restore_gs_cb(target->thread.gs_cb);
1125 }
1126 preempt_enable();
1127 return rc;
1128 }
1129
s390_gs_bc_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1130 static int s390_gs_bc_get(struct task_struct *target,
1131 const struct user_regset *regset,
1132 struct membuf to)
1133 {
1134 struct gs_cb *data = target->thread.gs_bc_cb;
1135
1136 if (!MACHINE_HAS_GS)
1137 return -ENODEV;
1138 if (!data)
1139 return -ENODATA;
1140 return membuf_write(&to, data, sizeof(struct gs_cb));
1141 }
1142
s390_gs_bc_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1143 static int s390_gs_bc_set(struct task_struct *target,
1144 const struct user_regset *regset,
1145 unsigned int pos, unsigned int count,
1146 const void *kbuf, const void __user *ubuf)
1147 {
1148 struct gs_cb *data = target->thread.gs_bc_cb;
1149
1150 if (!MACHINE_HAS_GS)
1151 return -ENODEV;
1152 if (!data) {
1153 data = kzalloc(sizeof(*data), GFP_KERNEL);
1154 if (!data)
1155 return -ENOMEM;
1156 target->thread.gs_bc_cb = data;
1157 }
1158 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1159 data, 0, sizeof(struct gs_cb));
1160 }
1161
is_ri_cb_valid(struct runtime_instr_cb * cb)1162 static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1163 {
1164 return (cb->rca & 0x1f) == 0 &&
1165 (cb->roa & 0xfff) == 0 &&
1166 (cb->rla & 0xfff) == 0xfff &&
1167 cb->s == 1 &&
1168 cb->k == 1 &&
1169 cb->h == 0 &&
1170 cb->reserved1 == 0 &&
1171 cb->ps == 1 &&
1172 cb->qs == 0 &&
1173 cb->pc == 1 &&
1174 cb->qc == 0 &&
1175 cb->reserved2 == 0 &&
1176 cb->reserved3 == 0 &&
1177 cb->reserved4 == 0 &&
1178 cb->reserved5 == 0 &&
1179 cb->reserved6 == 0 &&
1180 cb->reserved7 == 0 &&
1181 cb->reserved8 == 0 &&
1182 cb->rla >= cb->roa &&
1183 cb->rca >= cb->roa &&
1184 cb->rca <= cb->rla+1 &&
1185 cb->m < 3;
1186 }
1187
s390_runtime_instr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1188 static int s390_runtime_instr_get(struct task_struct *target,
1189 const struct user_regset *regset,
1190 struct membuf to)
1191 {
1192 struct runtime_instr_cb *data = target->thread.ri_cb;
1193
1194 if (!test_facility(64))
1195 return -ENODEV;
1196 if (!data)
1197 return -ENODATA;
1198
1199 return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
1200 }
1201
s390_runtime_instr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1202 static int s390_runtime_instr_set(struct task_struct *target,
1203 const struct user_regset *regset,
1204 unsigned int pos, unsigned int count,
1205 const void *kbuf, const void __user *ubuf)
1206 {
1207 struct runtime_instr_cb ri_cb = { }, *data = NULL;
1208 int rc;
1209
1210 if (!test_facility(64))
1211 return -ENODEV;
1212
1213 if (!target->thread.ri_cb) {
1214 data = kzalloc(sizeof(*data), GFP_KERNEL);
1215 if (!data)
1216 return -ENOMEM;
1217 }
1218
1219 if (target->thread.ri_cb) {
1220 if (target == current)
1221 store_runtime_instr_cb(&ri_cb);
1222 else
1223 ri_cb = *target->thread.ri_cb;
1224 }
1225
1226 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1227 &ri_cb, 0, sizeof(struct runtime_instr_cb));
1228 if (rc) {
1229 kfree(data);
1230 return -EFAULT;
1231 }
1232
1233 if (!is_ri_cb_valid(&ri_cb)) {
1234 kfree(data);
1235 return -EINVAL;
1236 }
1237 /*
1238 * Override access key in any case, since user space should
1239 * not be able to set it, nor should it care about it.
1240 */
1241 ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1242 preempt_disable();
1243 if (!target->thread.ri_cb)
1244 target->thread.ri_cb = data;
1245 *target->thread.ri_cb = ri_cb;
1246 if (target == current)
1247 load_runtime_instr_cb(target->thread.ri_cb);
1248 preempt_enable();
1249
1250 return 0;
1251 }
1252
1253 static const struct user_regset s390_regsets[] = {
1254 {
1255 .core_note_type = NT_PRSTATUS,
1256 .n = sizeof(s390_regs) / sizeof(long),
1257 .size = sizeof(long),
1258 .align = sizeof(long),
1259 .regset_get = s390_regs_get,
1260 .set = s390_regs_set,
1261 },
1262 {
1263 .core_note_type = NT_PRFPREG,
1264 .n = sizeof(s390_fp_regs) / sizeof(long),
1265 .size = sizeof(long),
1266 .align = sizeof(long),
1267 .regset_get = s390_fpregs_get,
1268 .set = s390_fpregs_set,
1269 },
1270 {
1271 .core_note_type = NT_S390_SYSTEM_CALL,
1272 .n = 1,
1273 .size = sizeof(unsigned int),
1274 .align = sizeof(unsigned int),
1275 .regset_get = s390_system_call_get,
1276 .set = s390_system_call_set,
1277 },
1278 {
1279 .core_note_type = NT_S390_LAST_BREAK,
1280 .n = 1,
1281 .size = sizeof(long),
1282 .align = sizeof(long),
1283 .regset_get = s390_last_break_get,
1284 .set = s390_last_break_set,
1285 },
1286 {
1287 .core_note_type = NT_S390_TDB,
1288 .n = 1,
1289 .size = 256,
1290 .align = 1,
1291 .regset_get = s390_tdb_get,
1292 .set = s390_tdb_set,
1293 },
1294 {
1295 .core_note_type = NT_S390_VXRS_LOW,
1296 .n = __NUM_VXRS_LOW,
1297 .size = sizeof(__u64),
1298 .align = sizeof(__u64),
1299 .regset_get = s390_vxrs_low_get,
1300 .set = s390_vxrs_low_set,
1301 },
1302 {
1303 .core_note_type = NT_S390_VXRS_HIGH,
1304 .n = __NUM_VXRS_HIGH,
1305 .size = sizeof(__vector128),
1306 .align = sizeof(__vector128),
1307 .regset_get = s390_vxrs_high_get,
1308 .set = s390_vxrs_high_set,
1309 },
1310 {
1311 .core_note_type = NT_S390_GS_CB,
1312 .n = sizeof(struct gs_cb) / sizeof(__u64),
1313 .size = sizeof(__u64),
1314 .align = sizeof(__u64),
1315 .regset_get = s390_gs_cb_get,
1316 .set = s390_gs_cb_set,
1317 },
1318 {
1319 .core_note_type = NT_S390_GS_BC,
1320 .n = sizeof(struct gs_cb) / sizeof(__u64),
1321 .size = sizeof(__u64),
1322 .align = sizeof(__u64),
1323 .regset_get = s390_gs_bc_get,
1324 .set = s390_gs_bc_set,
1325 },
1326 {
1327 .core_note_type = NT_S390_RI_CB,
1328 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1329 .size = sizeof(__u64),
1330 .align = sizeof(__u64),
1331 .regset_get = s390_runtime_instr_get,
1332 .set = s390_runtime_instr_set,
1333 },
1334 };
1335
1336 static const struct user_regset_view user_s390_view = {
1337 .name = "s390x",
1338 .e_machine = EM_S390,
1339 .regsets = s390_regsets,
1340 .n = ARRAY_SIZE(s390_regsets)
1341 };
1342
1343 #ifdef CONFIG_COMPAT
s390_compat_regs_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1344 static int s390_compat_regs_get(struct task_struct *target,
1345 const struct user_regset *regset,
1346 struct membuf to)
1347 {
1348 unsigned n;
1349
1350 if (target == current)
1351 save_access_regs(target->thread.acrs);
1352
1353 for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1354 membuf_store(&to, __peek_user_compat(target, n));
1355 return 0;
1356 }
1357
s390_compat_regs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1358 static int s390_compat_regs_set(struct task_struct *target,
1359 const struct user_regset *regset,
1360 unsigned int pos, unsigned int count,
1361 const void *kbuf, const void __user *ubuf)
1362 {
1363 int rc = 0;
1364
1365 if (target == current)
1366 save_access_regs(target->thread.acrs);
1367
1368 if (kbuf) {
1369 const compat_ulong_t *k = kbuf;
1370 while (count > 0 && !rc) {
1371 rc = __poke_user_compat(target, pos, *k++);
1372 count -= sizeof(*k);
1373 pos += sizeof(*k);
1374 }
1375 } else {
1376 const compat_ulong_t __user *u = ubuf;
1377 while (count > 0 && !rc) {
1378 compat_ulong_t word;
1379 rc = __get_user(word, u++);
1380 if (rc)
1381 break;
1382 rc = __poke_user_compat(target, pos, word);
1383 count -= sizeof(*u);
1384 pos += sizeof(*u);
1385 }
1386 }
1387
1388 if (rc == 0 && target == current)
1389 restore_access_regs(target->thread.acrs);
1390
1391 return rc;
1392 }
1393
s390_compat_regs_high_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1394 static int s390_compat_regs_high_get(struct task_struct *target,
1395 const struct user_regset *regset,
1396 struct membuf to)
1397 {
1398 compat_ulong_t *gprs_high;
1399 int i;
1400
1401 gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1402 for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1403 membuf_store(&to, *gprs_high);
1404 return 0;
1405 }
1406
s390_compat_regs_high_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1407 static int s390_compat_regs_high_set(struct task_struct *target,
1408 const struct user_regset *regset,
1409 unsigned int pos, unsigned int count,
1410 const void *kbuf, const void __user *ubuf)
1411 {
1412 compat_ulong_t *gprs_high;
1413 int rc = 0;
1414
1415 gprs_high = (compat_ulong_t *)
1416 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1417 if (kbuf) {
1418 const compat_ulong_t *k = kbuf;
1419 while (count > 0) {
1420 *gprs_high = *k++;
1421 *gprs_high += 2;
1422 count -= sizeof(*k);
1423 }
1424 } else {
1425 const compat_ulong_t __user *u = ubuf;
1426 while (count > 0 && !rc) {
1427 unsigned long word;
1428 rc = __get_user(word, u++);
1429 if (rc)
1430 break;
1431 *gprs_high = word;
1432 *gprs_high += 2;
1433 count -= sizeof(*u);
1434 }
1435 }
1436
1437 return rc;
1438 }
1439
s390_compat_last_break_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1440 static int s390_compat_last_break_get(struct task_struct *target,
1441 const struct user_regset *regset,
1442 struct membuf to)
1443 {
1444 compat_ulong_t last_break = target->thread.last_break;
1445
1446 return membuf_store(&to, (unsigned long)last_break);
1447 }
1448
s390_compat_last_break_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1449 static int s390_compat_last_break_set(struct task_struct *target,
1450 const struct user_regset *regset,
1451 unsigned int pos, unsigned int count,
1452 const void *kbuf, const void __user *ubuf)
1453 {
1454 return 0;
1455 }
1456
1457 static const struct user_regset s390_compat_regsets[] = {
1458 {
1459 .core_note_type = NT_PRSTATUS,
1460 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1461 .size = sizeof(compat_long_t),
1462 .align = sizeof(compat_long_t),
1463 .regset_get = s390_compat_regs_get,
1464 .set = s390_compat_regs_set,
1465 },
1466 {
1467 .core_note_type = NT_PRFPREG,
1468 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1469 .size = sizeof(compat_long_t),
1470 .align = sizeof(compat_long_t),
1471 .regset_get = s390_fpregs_get,
1472 .set = s390_fpregs_set,
1473 },
1474 {
1475 .core_note_type = NT_S390_SYSTEM_CALL,
1476 .n = 1,
1477 .size = sizeof(compat_uint_t),
1478 .align = sizeof(compat_uint_t),
1479 .regset_get = s390_system_call_get,
1480 .set = s390_system_call_set,
1481 },
1482 {
1483 .core_note_type = NT_S390_LAST_BREAK,
1484 .n = 1,
1485 .size = sizeof(long),
1486 .align = sizeof(long),
1487 .regset_get = s390_compat_last_break_get,
1488 .set = s390_compat_last_break_set,
1489 },
1490 {
1491 .core_note_type = NT_S390_TDB,
1492 .n = 1,
1493 .size = 256,
1494 .align = 1,
1495 .regset_get = s390_tdb_get,
1496 .set = s390_tdb_set,
1497 },
1498 {
1499 .core_note_type = NT_S390_VXRS_LOW,
1500 .n = __NUM_VXRS_LOW,
1501 .size = sizeof(__u64),
1502 .align = sizeof(__u64),
1503 .regset_get = s390_vxrs_low_get,
1504 .set = s390_vxrs_low_set,
1505 },
1506 {
1507 .core_note_type = NT_S390_VXRS_HIGH,
1508 .n = __NUM_VXRS_HIGH,
1509 .size = sizeof(__vector128),
1510 .align = sizeof(__vector128),
1511 .regset_get = s390_vxrs_high_get,
1512 .set = s390_vxrs_high_set,
1513 },
1514 {
1515 .core_note_type = NT_S390_HIGH_GPRS,
1516 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1517 .size = sizeof(compat_long_t),
1518 .align = sizeof(compat_long_t),
1519 .regset_get = s390_compat_regs_high_get,
1520 .set = s390_compat_regs_high_set,
1521 },
1522 {
1523 .core_note_type = NT_S390_GS_CB,
1524 .n = sizeof(struct gs_cb) / sizeof(__u64),
1525 .size = sizeof(__u64),
1526 .align = sizeof(__u64),
1527 .regset_get = s390_gs_cb_get,
1528 .set = s390_gs_cb_set,
1529 },
1530 {
1531 .core_note_type = NT_S390_GS_BC,
1532 .n = sizeof(struct gs_cb) / sizeof(__u64),
1533 .size = sizeof(__u64),
1534 .align = sizeof(__u64),
1535 .regset_get = s390_gs_bc_get,
1536 .set = s390_gs_bc_set,
1537 },
1538 {
1539 .core_note_type = NT_S390_RI_CB,
1540 .n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1541 .size = sizeof(__u64),
1542 .align = sizeof(__u64),
1543 .regset_get = s390_runtime_instr_get,
1544 .set = s390_runtime_instr_set,
1545 },
1546 };
1547
1548 static const struct user_regset_view user_s390_compat_view = {
1549 .name = "s390",
1550 .e_machine = EM_S390,
1551 .regsets = s390_compat_regsets,
1552 .n = ARRAY_SIZE(s390_compat_regsets)
1553 };
1554 #endif
1555
task_user_regset_view(struct task_struct * task)1556 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1557 {
1558 #ifdef CONFIG_COMPAT
1559 if (test_tsk_thread_flag(task, TIF_31BIT))
1560 return &user_s390_compat_view;
1561 #endif
1562 return &user_s390_view;
1563 }
1564
1565 static const char *gpr_names[NUM_GPRS] = {
1566 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1567 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1568 };
1569
regs_get_register(struct pt_regs * regs,unsigned int offset)1570 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1571 {
1572 if (offset >= NUM_GPRS)
1573 return 0;
1574 return regs->gprs[offset];
1575 }
1576
regs_query_register_offset(const char * name)1577 int regs_query_register_offset(const char *name)
1578 {
1579 unsigned long offset;
1580
1581 if (!name || *name != 'r')
1582 return -EINVAL;
1583 if (kstrtoul(name + 1, 10, &offset))
1584 return -EINVAL;
1585 if (offset >= NUM_GPRS)
1586 return -EINVAL;
1587 return offset;
1588 }
1589
regs_query_register_name(unsigned int offset)1590 const char *regs_query_register_name(unsigned int offset)
1591 {
1592 if (offset >= NUM_GPRS)
1593 return NULL;
1594 return gpr_names[offset];
1595 }
1596
regs_within_kernel_stack(struct pt_regs * regs,unsigned long addr)1597 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1598 {
1599 unsigned long ksp = kernel_stack_pointer(regs);
1600
1601 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1602 }
1603
1604 /**
1605 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1606 * @regs:pt_regs which contains kernel stack pointer.
1607 * @n:stack entry number.
1608 *
1609 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1610 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1611 * this returns 0.
1612 */
regs_get_kernel_stack_nth(struct pt_regs * regs,unsigned int n)1613 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1614 {
1615 unsigned long addr;
1616
1617 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1618 if (!regs_within_kernel_stack(regs, addr))
1619 return 0;
1620 return *(unsigned long *)addr;
1621 }
1622