1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch/sparc64/mm/init.c
4 *
5 * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
6 * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 */
8
9 #include <linux/extable.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/string.h>
13 #include <linux/init.h>
14 #include <linux/memblock.h>
15 #include <linux/mm.h>
16 #include <linux/hugetlb.h>
17 #include <linux/initrd.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/poison.h>
21 #include <linux/fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kprobes.h>
24 #include <linux/cache.h>
25 #include <linux/sort.h>
26 #include <linux/ioport.h>
27 #include <linux/percpu.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30 #include <linux/bootmem_info.h>
31
32 #include <asm/head.h>
33 #include <asm/page.h>
34 #include <asm/pgalloc.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53
54 #include "init_64.h"
55
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58
59 /* A bitmap, two bits for every 256MB of physical memory. These two
60 * bits determine what page size we use for kernel linear
61 * translations. They form an index into kern_linear_pte_xor[]. The
62 * value in the indexed slot is XOR'd with the TLB miss virtual
63 * address to form the resulting TTE. The mapping is:
64 *
65 * 0 ==> 4MB
66 * 1 ==> 256MB
67 * 2 ==> 2GB
68 * 3 ==> 16GB
69 *
70 * All sun4v chips support 256MB pages. Only SPARC-T4 and later
71 * support 2GB pages, and hopefully future cpus will support the 16GB
72 * pages as well. For slots 2 and 3, we encode a 256MB TTE xor there
73 * if these larger page sizes are not supported by the cpu.
74 *
75 * It would be nice to determine this from the machine description
76 * 'cpu' properties, but we need to have this table setup before the
77 * MDESC is initialized.
78 */
79
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82 * Space is allocated for this right after the trap table in
83 * arch/sparc64/kernel/head.S
84 */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88
89 static unsigned long cpu_pgsz_mask;
90
91 #define MAX_BANKS 1024
92
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97
cmp_p64(const void * a,const void * b)98 static int cmp_p64(const void *a, const void *b)
99 {
100 const struct linux_prom64_registers *x = a, *y = b;
101
102 if (x->phys_addr > y->phys_addr)
103 return 1;
104 if (x->phys_addr < y->phys_addr)
105 return -1;
106 return 0;
107 }
108
read_obp_memory(const char * property,struct linux_prom64_registers * regs,int * num_ents)109 static void __init read_obp_memory(const char *property,
110 struct linux_prom64_registers *regs,
111 int *num_ents)
112 {
113 phandle node = prom_finddevice("/memory");
114 int prop_size = prom_getproplen(node, property);
115 int ents, ret, i;
116
117 ents = prop_size / sizeof(struct linux_prom64_registers);
118 if (ents > MAX_BANKS) {
119 prom_printf("The machine has more %s property entries than "
120 "this kernel can support (%d).\n",
121 property, MAX_BANKS);
122 prom_halt();
123 }
124
125 ret = prom_getproperty(node, property, (char *) regs, prop_size);
126 if (ret == -1) {
127 prom_printf("Couldn't get %s property from /memory.\n",
128 property);
129 prom_halt();
130 }
131
132 /* Sanitize what we got from the firmware, by page aligning
133 * everything.
134 */
135 for (i = 0; i < ents; i++) {
136 unsigned long base, size;
137
138 base = regs[i].phys_addr;
139 size = regs[i].reg_size;
140
141 size &= PAGE_MASK;
142 if (base & ~PAGE_MASK) {
143 unsigned long new_base = PAGE_ALIGN(base);
144
145 size -= new_base - base;
146 if ((long) size < 0L)
147 size = 0UL;
148 base = new_base;
149 }
150 if (size == 0UL) {
151 /* If it is empty, simply get rid of it.
152 * This simplifies the logic of the other
153 * functions that process these arrays.
154 */
155 memmove(®s[i], ®s[i + 1],
156 (ents - i - 1) * sizeof(regs[0]));
157 i--;
158 ents--;
159 continue;
160 }
161 regs[i].phys_addr = base;
162 regs[i].reg_size = size;
163 }
164
165 *num_ents = ents;
166
167 sort(regs, ents, sizeof(struct linux_prom64_registers),
168 cmp_p64, NULL);
169 }
170
171 /* Kernel physical address base and size in bytes. */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188
189 int num_kernel_image_mappings;
190
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197
flush_dcache_page_impl(struct page * page)198 inline void flush_dcache_page_impl(struct page *page)
199 {
200 BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202 atomic_inc(&dcpage_flushes);
203 #endif
204
205 #ifdef DCACHE_ALIASING_POSSIBLE
206 __flush_dcache_page(page_address(page),
207 ((tlb_type == spitfire) &&
208 page_mapping_file(page) != NULL));
209 #else
210 if (page_mapping_file(page) != NULL &&
211 tlb_type == spitfire)
212 __flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215
216 #define PG_dcache_dirty PG_arch_1
217 #define PG_dcache_cpu_shift 32UL
218 #define PG_dcache_cpu_mask \
219 ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220
221 #define dcache_dirty_cpu(page) \
222 (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223
set_dcache_dirty(struct page * page,int this_cpu)224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226 unsigned long mask = this_cpu;
227 unsigned long non_cpu_bits;
228
229 non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230 mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231
232 __asm__ __volatile__("1:\n\t"
233 "ldx [%2], %%g7\n\t"
234 "and %%g7, %1, %%g1\n\t"
235 "or %%g1, %0, %%g1\n\t"
236 "casx [%2], %%g7, %%g1\n\t"
237 "cmp %%g7, %%g1\n\t"
238 "bne,pn %%xcc, 1b\n\t"
239 " nop"
240 : /* no outputs */
241 : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242 : "g1", "g7");
243 }
244
clear_dcache_dirty_cpu(struct page * page,unsigned long cpu)245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247 unsigned long mask = (1UL << PG_dcache_dirty);
248
249 __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250 "1:\n\t"
251 "ldx [%2], %%g7\n\t"
252 "srlx %%g7, %4, %%g1\n\t"
253 "and %%g1, %3, %%g1\n\t"
254 "cmp %%g1, %0\n\t"
255 "bne,pn %%icc, 2f\n\t"
256 " andn %%g7, %1, %%g1\n\t"
257 "casx [%2], %%g7, %%g1\n\t"
258 "cmp %%g7, %%g1\n\t"
259 "bne,pn %%xcc, 1b\n\t"
260 " nop\n"
261 "2:"
262 : /* no outputs */
263 : "r" (cpu), "r" (mask), "r" (&page->flags),
264 "i" (PG_dcache_cpu_mask),
265 "i" (PG_dcache_cpu_shift)
266 : "g1", "g7");
267 }
268
tsb_insert(struct tsb * ent,unsigned long tag,unsigned long pte)269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271 unsigned long tsb_addr = (unsigned long) ent;
272
273 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274 tsb_addr = __pa(tsb_addr);
275
276 __tsb_insert(tsb_addr, tag, pte);
277 }
278
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280
flush_dcache(unsigned long pfn)281 static void flush_dcache(unsigned long pfn)
282 {
283 struct page *page;
284
285 page = pfn_to_page(pfn);
286 if (page) {
287 unsigned long pg_flags;
288
289 pg_flags = page->flags;
290 if (pg_flags & (1UL << PG_dcache_dirty)) {
291 int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292 PG_dcache_cpu_mask);
293 int this_cpu = get_cpu();
294
295 /* This is just to optimize away some function calls
296 * in the SMP case.
297 */
298 if (cpu == this_cpu)
299 flush_dcache_page_impl(page);
300 else
301 smp_flush_dcache_page_impl(page, cpu);
302
303 clear_dcache_dirty_cpu(page, cpu);
304
305 put_cpu();
306 }
307 }
308 }
309
310 /* mm->context.lock must be held */
__update_mmu_tsb_insert(struct mm_struct * mm,unsigned long tsb_index,unsigned long tsb_hash_shift,unsigned long address,unsigned long tte)311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312 unsigned long tsb_hash_shift, unsigned long address,
313 unsigned long tte)
314 {
315 struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316 unsigned long tag;
317
318 if (unlikely(!tsb))
319 return;
320
321 tsb += ((address >> tsb_hash_shift) &
322 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323 tag = (address >> 22UL);
324 tsb_insert(tsb, tag, tte);
325 }
326
327 #ifdef CONFIG_HUGETLB_PAGE
hugetlbpage_init(void)328 static int __init hugetlbpage_init(void)
329 {
330 hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT);
331 hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
332 hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT);
333 hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT);
334
335 return 0;
336 }
337
338 arch_initcall(hugetlbpage_init);
339
pud_huge_patch(void)340 static void __init pud_huge_patch(void)
341 {
342 struct pud_huge_patch_entry *p;
343 unsigned long addr;
344
345 p = &__pud_huge_patch;
346 addr = p->addr;
347 *(unsigned int *)addr = p->insn;
348
349 __asm__ __volatile__("flush %0" : : "r" (addr));
350 }
351
arch_hugetlb_valid_size(unsigned long size)352 bool __init arch_hugetlb_valid_size(unsigned long size)
353 {
354 unsigned int hugepage_shift = ilog2(size);
355 unsigned short hv_pgsz_idx;
356 unsigned int hv_pgsz_mask;
357
358 switch (hugepage_shift) {
359 case HPAGE_16GB_SHIFT:
360 hv_pgsz_mask = HV_PGSZ_MASK_16GB;
361 hv_pgsz_idx = HV_PGSZ_IDX_16GB;
362 pud_huge_patch();
363 break;
364 case HPAGE_2GB_SHIFT:
365 hv_pgsz_mask = HV_PGSZ_MASK_2GB;
366 hv_pgsz_idx = HV_PGSZ_IDX_2GB;
367 break;
368 case HPAGE_256MB_SHIFT:
369 hv_pgsz_mask = HV_PGSZ_MASK_256MB;
370 hv_pgsz_idx = HV_PGSZ_IDX_256MB;
371 break;
372 case HPAGE_SHIFT:
373 hv_pgsz_mask = HV_PGSZ_MASK_4MB;
374 hv_pgsz_idx = HV_PGSZ_IDX_4MB;
375 break;
376 case HPAGE_64K_SHIFT:
377 hv_pgsz_mask = HV_PGSZ_MASK_64K;
378 hv_pgsz_idx = HV_PGSZ_IDX_64K;
379 break;
380 default:
381 hv_pgsz_mask = 0;
382 }
383
384 if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U)
385 return false;
386
387 return true;
388 }
389 #endif /* CONFIG_HUGETLB_PAGE */
390
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)391 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
392 {
393 struct mm_struct *mm;
394 unsigned long flags;
395 bool is_huge_tsb;
396 pte_t pte = *ptep;
397
398 if (tlb_type != hypervisor) {
399 unsigned long pfn = pte_pfn(pte);
400
401 if (pfn_valid(pfn))
402 flush_dcache(pfn);
403 }
404
405 mm = vma->vm_mm;
406
407 /* Don't insert a non-valid PTE into the TSB, we'll deadlock. */
408 if (!pte_accessible(mm, pte))
409 return;
410
411 spin_lock_irqsave(&mm->context.lock, flags);
412
413 is_huge_tsb = false;
414 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
415 if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
416 unsigned long hugepage_size = PAGE_SIZE;
417
418 if (is_vm_hugetlb_page(vma))
419 hugepage_size = huge_page_size(hstate_vma(vma));
420
421 if (hugepage_size >= PUD_SIZE) {
422 unsigned long mask = 0x1ffc00000UL;
423
424 /* Transfer bits [32:22] from address to resolve
425 * at 4M granularity.
426 */
427 pte_val(pte) &= ~mask;
428 pte_val(pte) |= (address & mask);
429 } else if (hugepage_size >= PMD_SIZE) {
430 /* We are fabricating 8MB pages using 4MB
431 * real hw pages.
432 */
433 pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
434 }
435
436 if (hugepage_size >= PMD_SIZE) {
437 __update_mmu_tsb_insert(mm, MM_TSB_HUGE,
438 REAL_HPAGE_SHIFT, address, pte_val(pte));
439 is_huge_tsb = true;
440 }
441 }
442 #endif
443 if (!is_huge_tsb)
444 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
445 address, pte_val(pte));
446
447 spin_unlock_irqrestore(&mm->context.lock, flags);
448 }
449
flush_dcache_page(struct page * page)450 void flush_dcache_page(struct page *page)
451 {
452 struct address_space *mapping;
453 int this_cpu;
454
455 if (tlb_type == hypervisor)
456 return;
457
458 /* Do not bother with the expensive D-cache flush if it
459 * is merely the zero page. The 'bigcore' testcase in GDB
460 * causes this case to run millions of times.
461 */
462 if (page == ZERO_PAGE(0))
463 return;
464
465 this_cpu = get_cpu();
466
467 mapping = page_mapping_file(page);
468 if (mapping && !mapping_mapped(mapping)) {
469 int dirty = test_bit(PG_dcache_dirty, &page->flags);
470 if (dirty) {
471 int dirty_cpu = dcache_dirty_cpu(page);
472
473 if (dirty_cpu == this_cpu)
474 goto out;
475 smp_flush_dcache_page_impl(page, dirty_cpu);
476 }
477 set_dcache_dirty(page, this_cpu);
478 } else {
479 /* We could delay the flush for the !page_mapping
480 * case too. But that case is for exec env/arg
481 * pages and those are %99 certainly going to get
482 * faulted into the tlb (and thus flushed) anyways.
483 */
484 flush_dcache_page_impl(page);
485 }
486
487 out:
488 put_cpu();
489 }
490 EXPORT_SYMBOL(flush_dcache_page);
491
flush_icache_range(unsigned long start,unsigned long end)492 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
493 {
494 /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
495 if (tlb_type == spitfire) {
496 unsigned long kaddr;
497
498 /* This code only runs on Spitfire cpus so this is
499 * why we can assume _PAGE_PADDR_4U.
500 */
501 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
502 unsigned long paddr, mask = _PAGE_PADDR_4U;
503
504 if (kaddr >= PAGE_OFFSET)
505 paddr = kaddr & mask;
506 else {
507 pte_t *ptep = virt_to_kpte(kaddr);
508
509 paddr = pte_val(*ptep) & mask;
510 }
511 __flush_icache_page(paddr);
512 }
513 }
514 }
515 EXPORT_SYMBOL(flush_icache_range);
516
mmu_info(struct seq_file * m)517 void mmu_info(struct seq_file *m)
518 {
519 static const char *pgsz_strings[] = {
520 "8K", "64K", "512K", "4MB", "32MB",
521 "256MB", "2GB", "16GB",
522 };
523 int i, printed;
524
525 if (tlb_type == cheetah)
526 seq_printf(m, "MMU Type\t: Cheetah\n");
527 else if (tlb_type == cheetah_plus)
528 seq_printf(m, "MMU Type\t: Cheetah+\n");
529 else if (tlb_type == spitfire)
530 seq_printf(m, "MMU Type\t: Spitfire\n");
531 else if (tlb_type == hypervisor)
532 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
533 else
534 seq_printf(m, "MMU Type\t: ???\n");
535
536 seq_printf(m, "MMU PGSZs\t: ");
537 printed = 0;
538 for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
539 if (cpu_pgsz_mask & (1UL << i)) {
540 seq_printf(m, "%s%s",
541 printed ? "," : "", pgsz_strings[i]);
542 printed++;
543 }
544 }
545 seq_putc(m, '\n');
546
547 #ifdef CONFIG_DEBUG_DCFLUSH
548 seq_printf(m, "DCPageFlushes\t: %d\n",
549 atomic_read(&dcpage_flushes));
550 #ifdef CONFIG_SMP
551 seq_printf(m, "DCPageFlushesXC\t: %d\n",
552 atomic_read(&dcpage_flushes_xcall));
553 #endif /* CONFIG_SMP */
554 #endif /* CONFIG_DEBUG_DCFLUSH */
555 }
556
557 struct linux_prom_translation prom_trans[512] __read_mostly;
558 unsigned int prom_trans_ents __read_mostly;
559
560 unsigned long kern_locked_tte_data;
561
562 /* The obp translations are saved based on 8k pagesize, since obp can
563 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
564 * HI_OBP_ADDRESS range are handled in ktlb.S.
565 */
in_obp_range(unsigned long vaddr)566 static inline int in_obp_range(unsigned long vaddr)
567 {
568 return (vaddr >= LOW_OBP_ADDRESS &&
569 vaddr < HI_OBP_ADDRESS);
570 }
571
cmp_ptrans(const void * a,const void * b)572 static int cmp_ptrans(const void *a, const void *b)
573 {
574 const struct linux_prom_translation *x = a, *y = b;
575
576 if (x->virt > y->virt)
577 return 1;
578 if (x->virt < y->virt)
579 return -1;
580 return 0;
581 }
582
583 /* Read OBP translations property into 'prom_trans[]'. */
read_obp_translations(void)584 static void __init read_obp_translations(void)
585 {
586 int n, node, ents, first, last, i;
587
588 node = prom_finddevice("/virtual-memory");
589 n = prom_getproplen(node, "translations");
590 if (unlikely(n == 0 || n == -1)) {
591 prom_printf("prom_mappings: Couldn't get size.\n");
592 prom_halt();
593 }
594 if (unlikely(n > sizeof(prom_trans))) {
595 prom_printf("prom_mappings: Size %d is too big.\n", n);
596 prom_halt();
597 }
598
599 if ((n = prom_getproperty(node, "translations",
600 (char *)&prom_trans[0],
601 sizeof(prom_trans))) == -1) {
602 prom_printf("prom_mappings: Couldn't get property.\n");
603 prom_halt();
604 }
605
606 n = n / sizeof(struct linux_prom_translation);
607
608 ents = n;
609
610 sort(prom_trans, ents, sizeof(struct linux_prom_translation),
611 cmp_ptrans, NULL);
612
613 /* Now kick out all the non-OBP entries. */
614 for (i = 0; i < ents; i++) {
615 if (in_obp_range(prom_trans[i].virt))
616 break;
617 }
618 first = i;
619 for (; i < ents; i++) {
620 if (!in_obp_range(prom_trans[i].virt))
621 break;
622 }
623 last = i;
624
625 for (i = 0; i < (last - first); i++) {
626 struct linux_prom_translation *src = &prom_trans[i + first];
627 struct linux_prom_translation *dest = &prom_trans[i];
628
629 *dest = *src;
630 }
631 for (; i < ents; i++) {
632 struct linux_prom_translation *dest = &prom_trans[i];
633 dest->virt = dest->size = dest->data = 0x0UL;
634 }
635
636 prom_trans_ents = last - first;
637
638 if (tlb_type == spitfire) {
639 /* Clear diag TTE bits. */
640 for (i = 0; i < prom_trans_ents; i++)
641 prom_trans[i].data &= ~0x0003fe0000000000UL;
642 }
643
644 /* Force execute bit on. */
645 for (i = 0; i < prom_trans_ents; i++)
646 prom_trans[i].data |= (tlb_type == hypervisor ?
647 _PAGE_EXEC_4V : _PAGE_EXEC_4U);
648 }
649
hypervisor_tlb_lock(unsigned long vaddr,unsigned long pte,unsigned long mmu)650 static void __init hypervisor_tlb_lock(unsigned long vaddr,
651 unsigned long pte,
652 unsigned long mmu)
653 {
654 unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
655
656 if (ret != 0) {
657 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
658 "errors with %lx\n", vaddr, 0, pte, mmu, ret);
659 prom_halt();
660 }
661 }
662
663 static unsigned long kern_large_tte(unsigned long paddr);
664
remap_kernel(void)665 static void __init remap_kernel(void)
666 {
667 unsigned long phys_page, tte_vaddr, tte_data;
668 int i, tlb_ent = sparc64_highest_locked_tlbent();
669
670 tte_vaddr = (unsigned long) KERNBASE;
671 phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
672 tte_data = kern_large_tte(phys_page);
673
674 kern_locked_tte_data = tte_data;
675
676 /* Now lock us into the TLBs via Hypervisor or OBP. */
677 if (tlb_type == hypervisor) {
678 for (i = 0; i < num_kernel_image_mappings; i++) {
679 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
680 hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
681 tte_vaddr += 0x400000;
682 tte_data += 0x400000;
683 }
684 } else {
685 for (i = 0; i < num_kernel_image_mappings; i++) {
686 prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
687 prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
688 tte_vaddr += 0x400000;
689 tte_data += 0x400000;
690 }
691 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
692 }
693 if (tlb_type == cheetah_plus) {
694 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
695 CTX_CHEETAH_PLUS_NUC);
696 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
697 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
698 }
699 }
700
701
inherit_prom_mappings(void)702 static void __init inherit_prom_mappings(void)
703 {
704 /* Now fixup OBP's idea about where we really are mapped. */
705 printk("Remapping the kernel... ");
706 remap_kernel();
707 printk("done.\n");
708 }
709
prom_world(int enter)710 void prom_world(int enter)
711 {
712 if (!enter)
713 set_fs(get_fs());
714
715 __asm__ __volatile__("flushw");
716 }
717
__flush_dcache_range(unsigned long start,unsigned long end)718 void __flush_dcache_range(unsigned long start, unsigned long end)
719 {
720 unsigned long va;
721
722 if (tlb_type == spitfire) {
723 int n = 0;
724
725 for (va = start; va < end; va += 32) {
726 spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
727 if (++n >= 512)
728 break;
729 }
730 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
731 start = __pa(start);
732 end = __pa(end);
733 for (va = start; va < end; va += 32)
734 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
735 "membar #Sync"
736 : /* no outputs */
737 : "r" (va),
738 "i" (ASI_DCACHE_INVALIDATE));
739 }
740 }
741 EXPORT_SYMBOL(__flush_dcache_range);
742
743 /* get_new_mmu_context() uses "cache + 1". */
744 DEFINE_SPINLOCK(ctx_alloc_lock);
745 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
746 #define MAX_CTX_NR (1UL << CTX_NR_BITS)
747 #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
748 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
749 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
750
mmu_context_wrap(void)751 static void mmu_context_wrap(void)
752 {
753 unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
754 unsigned long new_ver, new_ctx, old_ctx;
755 struct mm_struct *mm;
756 int cpu;
757
758 bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
759
760 /* Reserve kernel context */
761 set_bit(0, mmu_context_bmap);
762
763 new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
764 if (unlikely(new_ver == 0))
765 new_ver = CTX_FIRST_VERSION;
766 tlb_context_cache = new_ver;
767
768 /*
769 * Make sure that any new mm that are added into per_cpu_secondary_mm,
770 * are going to go through get_new_mmu_context() path.
771 */
772 mb();
773
774 /*
775 * Updated versions to current on those CPUs that had valid secondary
776 * contexts
777 */
778 for_each_online_cpu(cpu) {
779 /*
780 * If a new mm is stored after we took this mm from the array,
781 * it will go into get_new_mmu_context() path, because we
782 * already bumped the version in tlb_context_cache.
783 */
784 mm = per_cpu(per_cpu_secondary_mm, cpu);
785
786 if (unlikely(!mm || mm == &init_mm))
787 continue;
788
789 old_ctx = mm->context.sparc64_ctx_val;
790 if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
791 new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
792 set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
793 mm->context.sparc64_ctx_val = new_ctx;
794 }
795 }
796 }
797
798 /* Caller does TLB context flushing on local CPU if necessary.
799 * The caller also ensures that CTX_VALID(mm->context) is false.
800 *
801 * We must be careful about boundary cases so that we never
802 * let the user have CTX 0 (nucleus) or we ever use a CTX
803 * version of zero (and thus NO_CONTEXT would not be caught
804 * by version mis-match tests in mmu_context.h).
805 *
806 * Always invoked with interrupts disabled.
807 */
get_new_mmu_context(struct mm_struct * mm)808 void get_new_mmu_context(struct mm_struct *mm)
809 {
810 unsigned long ctx, new_ctx;
811 unsigned long orig_pgsz_bits;
812
813 spin_lock(&ctx_alloc_lock);
814 retry:
815 /* wrap might have happened, test again if our context became valid */
816 if (unlikely(CTX_VALID(mm->context)))
817 goto out;
818 orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
819 ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
820 new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
821 if (new_ctx >= (1 << CTX_NR_BITS)) {
822 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
823 if (new_ctx >= ctx) {
824 mmu_context_wrap();
825 goto retry;
826 }
827 }
828 if (mm->context.sparc64_ctx_val)
829 cpumask_clear(mm_cpumask(mm));
830 mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
831 new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
832 tlb_context_cache = new_ctx;
833 mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
834 out:
835 spin_unlock(&ctx_alloc_lock);
836 }
837
838 static int numa_enabled = 1;
839 static int numa_debug;
840
early_numa(char * p)841 static int __init early_numa(char *p)
842 {
843 if (!p)
844 return 0;
845
846 if (strstr(p, "off"))
847 numa_enabled = 0;
848
849 if (strstr(p, "debug"))
850 numa_debug = 1;
851
852 return 0;
853 }
854 early_param("numa", early_numa);
855
856 #define numadbg(f, a...) \
857 do { if (numa_debug) \
858 printk(KERN_INFO f, ## a); \
859 } while (0)
860
find_ramdisk(unsigned long phys_base)861 static void __init find_ramdisk(unsigned long phys_base)
862 {
863 #ifdef CONFIG_BLK_DEV_INITRD
864 if (sparc_ramdisk_image || sparc_ramdisk_image64) {
865 unsigned long ramdisk_image;
866
867 /* Older versions of the bootloader only supported a
868 * 32-bit physical address for the ramdisk image
869 * location, stored at sparc_ramdisk_image. Newer
870 * SILO versions set sparc_ramdisk_image to zero and
871 * provide a full 64-bit physical address at
872 * sparc_ramdisk_image64.
873 */
874 ramdisk_image = sparc_ramdisk_image;
875 if (!ramdisk_image)
876 ramdisk_image = sparc_ramdisk_image64;
877
878 /* Another bootloader quirk. The bootloader normalizes
879 * the physical address to KERNBASE, so we have to
880 * factor that back out and add in the lowest valid
881 * physical page address to get the true physical address.
882 */
883 ramdisk_image -= KERNBASE;
884 ramdisk_image += phys_base;
885
886 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
887 ramdisk_image, sparc_ramdisk_size);
888
889 initrd_start = ramdisk_image;
890 initrd_end = ramdisk_image + sparc_ramdisk_size;
891
892 memblock_reserve(initrd_start, sparc_ramdisk_size);
893
894 initrd_start += PAGE_OFFSET;
895 initrd_end += PAGE_OFFSET;
896 }
897 #endif
898 }
899
900 struct node_mem_mask {
901 unsigned long mask;
902 unsigned long match;
903 };
904 static struct node_mem_mask node_masks[MAX_NUMNODES];
905 static int num_node_masks;
906
907 #ifdef CONFIG_NUMA
908
909 struct mdesc_mlgroup {
910 u64 node;
911 u64 latency;
912 u64 match;
913 u64 mask;
914 };
915
916 static struct mdesc_mlgroup *mlgroups;
917 static int num_mlgroups;
918
919 int numa_cpu_lookup_table[NR_CPUS];
920 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
921
922 struct mdesc_mblock {
923 u64 base;
924 u64 size;
925 u64 offset; /* RA-to-PA */
926 };
927 static struct mdesc_mblock *mblocks;
928 static int num_mblocks;
929
addr_to_mblock(unsigned long addr)930 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
931 {
932 struct mdesc_mblock *m = NULL;
933 int i;
934
935 for (i = 0; i < num_mblocks; i++) {
936 m = &mblocks[i];
937
938 if (addr >= m->base &&
939 addr < (m->base + m->size)) {
940 break;
941 }
942 }
943
944 return m;
945 }
946
memblock_nid_range_sun4u(u64 start,u64 end,int * nid)947 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
948 {
949 int prev_nid, new_nid;
950
951 prev_nid = NUMA_NO_NODE;
952 for ( ; start < end; start += PAGE_SIZE) {
953 for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
954 struct node_mem_mask *p = &node_masks[new_nid];
955
956 if ((start & p->mask) == p->match) {
957 if (prev_nid == NUMA_NO_NODE)
958 prev_nid = new_nid;
959 break;
960 }
961 }
962
963 if (new_nid == num_node_masks) {
964 prev_nid = 0;
965 WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
966 start);
967 break;
968 }
969
970 if (prev_nid != new_nid)
971 break;
972 }
973 *nid = prev_nid;
974
975 return start > end ? end : start;
976 }
977
memblock_nid_range(u64 start,u64 end,int * nid)978 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
979 {
980 u64 ret_end, pa_start, m_mask, m_match, m_end;
981 struct mdesc_mblock *mblock;
982 int _nid, i;
983
984 if (tlb_type != hypervisor)
985 return memblock_nid_range_sun4u(start, end, nid);
986
987 mblock = addr_to_mblock(start);
988 if (!mblock) {
989 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
990 start);
991
992 _nid = 0;
993 ret_end = end;
994 goto done;
995 }
996
997 pa_start = start + mblock->offset;
998 m_match = 0;
999 m_mask = 0;
1000
1001 for (_nid = 0; _nid < num_node_masks; _nid++) {
1002 struct node_mem_mask *const m = &node_masks[_nid];
1003
1004 if ((pa_start & m->mask) == m->match) {
1005 m_match = m->match;
1006 m_mask = m->mask;
1007 break;
1008 }
1009 }
1010
1011 if (num_node_masks == _nid) {
1012 /* We could not find NUMA group, so default to 0, but lets
1013 * search for latency group, so we could calculate the correct
1014 * end address that we return
1015 */
1016 _nid = 0;
1017
1018 for (i = 0; i < num_mlgroups; i++) {
1019 struct mdesc_mlgroup *const m = &mlgroups[i];
1020
1021 if ((pa_start & m->mask) == m->match) {
1022 m_match = m->match;
1023 m_mask = m->mask;
1024 break;
1025 }
1026 }
1027
1028 if (i == num_mlgroups) {
1029 WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1030 start);
1031
1032 ret_end = end;
1033 goto done;
1034 }
1035 }
1036
1037 /*
1038 * Each latency group has match and mask, and each memory block has an
1039 * offset. An address belongs to a latency group if its address matches
1040 * the following formula: ((addr + offset) & mask) == match
1041 * It is, however, slow to check every single page if it matches a
1042 * particular latency group. As optimization we calculate end value by
1043 * using bit arithmetics.
1044 */
1045 m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1046 m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1047 ret_end = m_end > end ? end : m_end;
1048
1049 done:
1050 *nid = _nid;
1051 return ret_end;
1052 }
1053 #endif
1054
1055 /* This must be invoked after performing all of the necessary
1056 * memblock_set_node() calls for 'nid'. We need to be able to get
1057 * correct data from get_pfn_range_for_nid().
1058 */
allocate_node_data(int nid)1059 static void __init allocate_node_data(int nid)
1060 {
1061 struct pglist_data *p;
1062 unsigned long start_pfn, end_pfn;
1063 #ifdef CONFIG_NUMA
1064
1065 NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
1066 SMP_CACHE_BYTES, nid);
1067 if (!NODE_DATA(nid)) {
1068 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1069 prom_halt();
1070 }
1071
1072 NODE_DATA(nid)->node_id = nid;
1073 #endif
1074
1075 p = NODE_DATA(nid);
1076
1077 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1078 p->node_start_pfn = start_pfn;
1079 p->node_spanned_pages = end_pfn - start_pfn;
1080 }
1081
init_node_masks_nonnuma(void)1082 static void init_node_masks_nonnuma(void)
1083 {
1084 #ifdef CONFIG_NUMA
1085 int i;
1086 #endif
1087
1088 numadbg("Initializing tables for non-numa.\n");
1089
1090 node_masks[0].mask = 0;
1091 node_masks[0].match = 0;
1092 num_node_masks = 1;
1093
1094 #ifdef CONFIG_NUMA
1095 for (i = 0; i < NR_CPUS; i++)
1096 numa_cpu_lookup_table[i] = 0;
1097
1098 cpumask_setall(&numa_cpumask_lookup_table[0]);
1099 #endif
1100 }
1101
1102 #ifdef CONFIG_NUMA
1103 struct pglist_data *node_data[MAX_NUMNODES];
1104
1105 EXPORT_SYMBOL(numa_cpu_lookup_table);
1106 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1107 EXPORT_SYMBOL(node_data);
1108
scan_pio_for_cfg_handle(struct mdesc_handle * md,u64 pio,u32 cfg_handle)1109 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1110 u32 cfg_handle)
1111 {
1112 u64 arc;
1113
1114 mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1115 u64 target = mdesc_arc_target(md, arc);
1116 const u64 *val;
1117
1118 val = mdesc_get_property(md, target,
1119 "cfg-handle", NULL);
1120 if (val && *val == cfg_handle)
1121 return 0;
1122 }
1123 return -ENODEV;
1124 }
1125
scan_arcs_for_cfg_handle(struct mdesc_handle * md,u64 grp,u32 cfg_handle)1126 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1127 u32 cfg_handle)
1128 {
1129 u64 arc, candidate, best_latency = ~(u64)0;
1130
1131 candidate = MDESC_NODE_NULL;
1132 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1133 u64 target = mdesc_arc_target(md, arc);
1134 const char *name = mdesc_node_name(md, target);
1135 const u64 *val;
1136
1137 if (strcmp(name, "pio-latency-group"))
1138 continue;
1139
1140 val = mdesc_get_property(md, target, "latency", NULL);
1141 if (!val)
1142 continue;
1143
1144 if (*val < best_latency) {
1145 candidate = target;
1146 best_latency = *val;
1147 }
1148 }
1149
1150 if (candidate == MDESC_NODE_NULL)
1151 return -ENODEV;
1152
1153 return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1154 }
1155
of_node_to_nid(struct device_node * dp)1156 int of_node_to_nid(struct device_node *dp)
1157 {
1158 const struct linux_prom64_registers *regs;
1159 struct mdesc_handle *md;
1160 u32 cfg_handle;
1161 int count, nid;
1162 u64 grp;
1163
1164 /* This is the right thing to do on currently supported
1165 * SUN4U NUMA platforms as well, as the PCI controller does
1166 * not sit behind any particular memory controller.
1167 */
1168 if (!mlgroups)
1169 return -1;
1170
1171 regs = of_get_property(dp, "reg", NULL);
1172 if (!regs)
1173 return -1;
1174
1175 cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1176
1177 md = mdesc_grab();
1178
1179 count = 0;
1180 nid = NUMA_NO_NODE;
1181 mdesc_for_each_node_by_name(md, grp, "group") {
1182 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1183 nid = count;
1184 break;
1185 }
1186 count++;
1187 }
1188
1189 mdesc_release(md);
1190
1191 return nid;
1192 }
1193
add_node_ranges(void)1194 static void __init add_node_ranges(void)
1195 {
1196 phys_addr_t start, end;
1197 unsigned long prev_max;
1198 u64 i;
1199
1200 memblock_resized:
1201 prev_max = memblock.memory.max;
1202
1203 for_each_mem_range(i, &start, &end) {
1204 while (start < end) {
1205 unsigned long this_end;
1206 int nid;
1207
1208 this_end = memblock_nid_range(start, end, &nid);
1209
1210 numadbg("Setting memblock NUMA node nid[%d] "
1211 "start[%llx] end[%lx]\n",
1212 nid, start, this_end);
1213
1214 memblock_set_node(start, this_end - start,
1215 &memblock.memory, nid);
1216 if (memblock.memory.max != prev_max)
1217 goto memblock_resized;
1218 start = this_end;
1219 }
1220 }
1221 }
1222
grab_mlgroups(struct mdesc_handle * md)1223 static int __init grab_mlgroups(struct mdesc_handle *md)
1224 {
1225 unsigned long paddr;
1226 int count = 0;
1227 u64 node;
1228
1229 mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1230 count++;
1231 if (!count)
1232 return -ENOENT;
1233
1234 paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1235 SMP_CACHE_BYTES);
1236 if (!paddr)
1237 return -ENOMEM;
1238
1239 mlgroups = __va(paddr);
1240 num_mlgroups = count;
1241
1242 count = 0;
1243 mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1244 struct mdesc_mlgroup *m = &mlgroups[count++];
1245 const u64 *val;
1246
1247 m->node = node;
1248
1249 val = mdesc_get_property(md, node, "latency", NULL);
1250 m->latency = *val;
1251 val = mdesc_get_property(md, node, "address-match", NULL);
1252 m->match = *val;
1253 val = mdesc_get_property(md, node, "address-mask", NULL);
1254 m->mask = *val;
1255
1256 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1257 "match[%llx] mask[%llx]\n",
1258 count - 1, m->node, m->latency, m->match, m->mask);
1259 }
1260
1261 return 0;
1262 }
1263
grab_mblocks(struct mdesc_handle * md)1264 static int __init grab_mblocks(struct mdesc_handle *md)
1265 {
1266 unsigned long paddr;
1267 int count = 0;
1268 u64 node;
1269
1270 mdesc_for_each_node_by_name(md, node, "mblock")
1271 count++;
1272 if (!count)
1273 return -ENOENT;
1274
1275 paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1276 SMP_CACHE_BYTES);
1277 if (!paddr)
1278 return -ENOMEM;
1279
1280 mblocks = __va(paddr);
1281 num_mblocks = count;
1282
1283 count = 0;
1284 mdesc_for_each_node_by_name(md, node, "mblock") {
1285 struct mdesc_mblock *m = &mblocks[count++];
1286 const u64 *val;
1287
1288 val = mdesc_get_property(md, node, "base", NULL);
1289 m->base = *val;
1290 val = mdesc_get_property(md, node, "size", NULL);
1291 m->size = *val;
1292 val = mdesc_get_property(md, node,
1293 "address-congruence-offset", NULL);
1294
1295 /* The address-congruence-offset property is optional.
1296 * Explicity zero it be identifty this.
1297 */
1298 if (val)
1299 m->offset = *val;
1300 else
1301 m->offset = 0UL;
1302
1303 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1304 count - 1, m->base, m->size, m->offset);
1305 }
1306
1307 return 0;
1308 }
1309
numa_parse_mdesc_group_cpus(struct mdesc_handle * md,u64 grp,cpumask_t * mask)1310 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1311 u64 grp, cpumask_t *mask)
1312 {
1313 u64 arc;
1314
1315 cpumask_clear(mask);
1316
1317 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1318 u64 target = mdesc_arc_target(md, arc);
1319 const char *name = mdesc_node_name(md, target);
1320 const u64 *id;
1321
1322 if (strcmp(name, "cpu"))
1323 continue;
1324 id = mdesc_get_property(md, target, "id", NULL);
1325 if (*id < nr_cpu_ids)
1326 cpumask_set_cpu(*id, mask);
1327 }
1328 }
1329
find_mlgroup(u64 node)1330 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1331 {
1332 int i;
1333
1334 for (i = 0; i < num_mlgroups; i++) {
1335 struct mdesc_mlgroup *m = &mlgroups[i];
1336 if (m->node == node)
1337 return m;
1338 }
1339 return NULL;
1340 }
1341
__node_distance(int from,int to)1342 int __node_distance(int from, int to)
1343 {
1344 if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1345 pr_warn("Returning default NUMA distance value for %d->%d\n",
1346 from, to);
1347 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1348 }
1349 return numa_latency[from][to];
1350 }
1351 EXPORT_SYMBOL(__node_distance);
1352
find_best_numa_node_for_mlgroup(struct mdesc_mlgroup * grp)1353 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1354 {
1355 int i;
1356
1357 for (i = 0; i < MAX_NUMNODES; i++) {
1358 struct node_mem_mask *n = &node_masks[i];
1359
1360 if ((grp->mask == n->mask) && (grp->match == n->match))
1361 break;
1362 }
1363 return i;
1364 }
1365
find_numa_latencies_for_group(struct mdesc_handle * md,u64 grp,int index)1366 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1367 u64 grp, int index)
1368 {
1369 u64 arc;
1370
1371 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1372 int tnode;
1373 u64 target = mdesc_arc_target(md, arc);
1374 struct mdesc_mlgroup *m = find_mlgroup(target);
1375
1376 if (!m)
1377 continue;
1378 tnode = find_best_numa_node_for_mlgroup(m);
1379 if (tnode == MAX_NUMNODES)
1380 continue;
1381 numa_latency[index][tnode] = m->latency;
1382 }
1383 }
1384
numa_attach_mlgroup(struct mdesc_handle * md,u64 grp,int index)1385 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1386 int index)
1387 {
1388 struct mdesc_mlgroup *candidate = NULL;
1389 u64 arc, best_latency = ~(u64)0;
1390 struct node_mem_mask *n;
1391
1392 mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1393 u64 target = mdesc_arc_target(md, arc);
1394 struct mdesc_mlgroup *m = find_mlgroup(target);
1395 if (!m)
1396 continue;
1397 if (m->latency < best_latency) {
1398 candidate = m;
1399 best_latency = m->latency;
1400 }
1401 }
1402 if (!candidate)
1403 return -ENOENT;
1404
1405 if (num_node_masks != index) {
1406 printk(KERN_ERR "Inconsistent NUMA state, "
1407 "index[%d] != num_node_masks[%d]\n",
1408 index, num_node_masks);
1409 return -EINVAL;
1410 }
1411
1412 n = &node_masks[num_node_masks++];
1413
1414 n->mask = candidate->mask;
1415 n->match = candidate->match;
1416
1417 numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1418 index, n->mask, n->match, candidate->latency);
1419
1420 return 0;
1421 }
1422
numa_parse_mdesc_group(struct mdesc_handle * md,u64 grp,int index)1423 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1424 int index)
1425 {
1426 cpumask_t mask;
1427 int cpu;
1428
1429 numa_parse_mdesc_group_cpus(md, grp, &mask);
1430
1431 for_each_cpu(cpu, &mask)
1432 numa_cpu_lookup_table[cpu] = index;
1433 cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1434
1435 if (numa_debug) {
1436 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1437 for_each_cpu(cpu, &mask)
1438 printk("%d ", cpu);
1439 printk("]\n");
1440 }
1441
1442 return numa_attach_mlgroup(md, grp, index);
1443 }
1444
numa_parse_mdesc(void)1445 static int __init numa_parse_mdesc(void)
1446 {
1447 struct mdesc_handle *md = mdesc_grab();
1448 int i, j, err, count;
1449 u64 node;
1450
1451 node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1452 if (node == MDESC_NODE_NULL) {
1453 mdesc_release(md);
1454 return -ENOENT;
1455 }
1456
1457 err = grab_mblocks(md);
1458 if (err < 0)
1459 goto out;
1460
1461 err = grab_mlgroups(md);
1462 if (err < 0)
1463 goto out;
1464
1465 count = 0;
1466 mdesc_for_each_node_by_name(md, node, "group") {
1467 err = numa_parse_mdesc_group(md, node, count);
1468 if (err < 0)
1469 break;
1470 count++;
1471 }
1472
1473 count = 0;
1474 mdesc_for_each_node_by_name(md, node, "group") {
1475 find_numa_latencies_for_group(md, node, count);
1476 count++;
1477 }
1478
1479 /* Normalize numa latency matrix according to ACPI SLIT spec. */
1480 for (i = 0; i < MAX_NUMNODES; i++) {
1481 u64 self_latency = numa_latency[i][i];
1482
1483 for (j = 0; j < MAX_NUMNODES; j++) {
1484 numa_latency[i][j] =
1485 (numa_latency[i][j] * LOCAL_DISTANCE) /
1486 self_latency;
1487 }
1488 }
1489
1490 add_node_ranges();
1491
1492 for (i = 0; i < num_node_masks; i++) {
1493 allocate_node_data(i);
1494 node_set_online(i);
1495 }
1496
1497 err = 0;
1498 out:
1499 mdesc_release(md);
1500 return err;
1501 }
1502
numa_parse_jbus(void)1503 static int __init numa_parse_jbus(void)
1504 {
1505 unsigned long cpu, index;
1506
1507 /* NUMA node id is encoded in bits 36 and higher, and there is
1508 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1509 */
1510 index = 0;
1511 for_each_present_cpu(cpu) {
1512 numa_cpu_lookup_table[cpu] = index;
1513 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1514 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1515 node_masks[index].match = cpu << 36UL;
1516
1517 index++;
1518 }
1519 num_node_masks = index;
1520
1521 add_node_ranges();
1522
1523 for (index = 0; index < num_node_masks; index++) {
1524 allocate_node_data(index);
1525 node_set_online(index);
1526 }
1527
1528 return 0;
1529 }
1530
numa_parse_sun4u(void)1531 static int __init numa_parse_sun4u(void)
1532 {
1533 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1534 unsigned long ver;
1535
1536 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1537 if ((ver >> 32UL) == __JALAPENO_ID ||
1538 (ver >> 32UL) == __SERRANO_ID)
1539 return numa_parse_jbus();
1540 }
1541 return -1;
1542 }
1543
bootmem_init_numa(void)1544 static int __init bootmem_init_numa(void)
1545 {
1546 int i, j;
1547 int err = -1;
1548
1549 numadbg("bootmem_init_numa()\n");
1550
1551 /* Some sane defaults for numa latency values */
1552 for (i = 0; i < MAX_NUMNODES; i++) {
1553 for (j = 0; j < MAX_NUMNODES; j++)
1554 numa_latency[i][j] = (i == j) ?
1555 LOCAL_DISTANCE : REMOTE_DISTANCE;
1556 }
1557
1558 if (numa_enabled) {
1559 if (tlb_type == hypervisor)
1560 err = numa_parse_mdesc();
1561 else
1562 err = numa_parse_sun4u();
1563 }
1564 return err;
1565 }
1566
1567 #else
1568
bootmem_init_numa(void)1569 static int bootmem_init_numa(void)
1570 {
1571 return -1;
1572 }
1573
1574 #endif
1575
bootmem_init_nonnuma(void)1576 static void __init bootmem_init_nonnuma(void)
1577 {
1578 unsigned long top_of_ram = memblock_end_of_DRAM();
1579 unsigned long total_ram = memblock_phys_mem_size();
1580
1581 numadbg("bootmem_init_nonnuma()\n");
1582
1583 printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1584 top_of_ram, total_ram);
1585 printk(KERN_INFO "Memory hole size: %ldMB\n",
1586 (top_of_ram - total_ram) >> 20);
1587
1588 init_node_masks_nonnuma();
1589 memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1590 allocate_node_data(0);
1591 node_set_online(0);
1592 }
1593
bootmem_init(unsigned long phys_base)1594 static unsigned long __init bootmem_init(unsigned long phys_base)
1595 {
1596 unsigned long end_pfn;
1597
1598 end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1599 max_pfn = max_low_pfn = end_pfn;
1600 min_low_pfn = (phys_base >> PAGE_SHIFT);
1601
1602 if (bootmem_init_numa() < 0)
1603 bootmem_init_nonnuma();
1604
1605 /* Dump memblock with node info. */
1606 memblock_dump_all();
1607
1608 /* XXX cpu notifier XXX */
1609
1610 sparse_init();
1611
1612 return end_pfn;
1613 }
1614
1615 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1616 static int pall_ents __initdata;
1617
1618 static unsigned long max_phys_bits = 40;
1619
kern_addr_valid(unsigned long addr)1620 bool kern_addr_valid(unsigned long addr)
1621 {
1622 pgd_t *pgd;
1623 p4d_t *p4d;
1624 pud_t *pud;
1625 pmd_t *pmd;
1626 pte_t *pte;
1627
1628 if ((long)addr < 0L) {
1629 unsigned long pa = __pa(addr);
1630
1631 if ((pa >> max_phys_bits) != 0UL)
1632 return false;
1633
1634 return pfn_valid(pa >> PAGE_SHIFT);
1635 }
1636
1637 if (addr >= (unsigned long) KERNBASE &&
1638 addr < (unsigned long)&_end)
1639 return true;
1640
1641 pgd = pgd_offset_k(addr);
1642 if (pgd_none(*pgd))
1643 return false;
1644
1645 p4d = p4d_offset(pgd, addr);
1646 if (p4d_none(*p4d))
1647 return false;
1648
1649 pud = pud_offset(p4d, addr);
1650 if (pud_none(*pud))
1651 return false;
1652
1653 if (pud_large(*pud))
1654 return pfn_valid(pud_pfn(*pud));
1655
1656 pmd = pmd_offset(pud, addr);
1657 if (pmd_none(*pmd))
1658 return false;
1659
1660 if (pmd_large(*pmd))
1661 return pfn_valid(pmd_pfn(*pmd));
1662
1663 pte = pte_offset_kernel(pmd, addr);
1664 if (pte_none(*pte))
1665 return false;
1666
1667 return pfn_valid(pte_pfn(*pte));
1668 }
1669 EXPORT_SYMBOL(kern_addr_valid);
1670
kernel_map_hugepud(unsigned long vstart,unsigned long vend,pud_t * pud)1671 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1672 unsigned long vend,
1673 pud_t *pud)
1674 {
1675 const unsigned long mask16gb = (1UL << 34) - 1UL;
1676 u64 pte_val = vstart;
1677
1678 /* Each PUD is 8GB */
1679 if ((vstart & mask16gb) ||
1680 (vend - vstart <= mask16gb)) {
1681 pte_val ^= kern_linear_pte_xor[2];
1682 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1683
1684 return vstart + PUD_SIZE;
1685 }
1686
1687 pte_val ^= kern_linear_pte_xor[3];
1688 pte_val |= _PAGE_PUD_HUGE;
1689
1690 vend = vstart + mask16gb + 1UL;
1691 while (vstart < vend) {
1692 pud_val(*pud) = pte_val;
1693
1694 pte_val += PUD_SIZE;
1695 vstart += PUD_SIZE;
1696 pud++;
1697 }
1698 return vstart;
1699 }
1700
kernel_can_map_hugepud(unsigned long vstart,unsigned long vend,bool guard)1701 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1702 bool guard)
1703 {
1704 if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1705 return true;
1706
1707 return false;
1708 }
1709
kernel_map_hugepmd(unsigned long vstart,unsigned long vend,pmd_t * pmd)1710 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1711 unsigned long vend,
1712 pmd_t *pmd)
1713 {
1714 const unsigned long mask256mb = (1UL << 28) - 1UL;
1715 const unsigned long mask2gb = (1UL << 31) - 1UL;
1716 u64 pte_val = vstart;
1717
1718 /* Each PMD is 8MB */
1719 if ((vstart & mask256mb) ||
1720 (vend - vstart <= mask256mb)) {
1721 pte_val ^= kern_linear_pte_xor[0];
1722 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1723
1724 return vstart + PMD_SIZE;
1725 }
1726
1727 if ((vstart & mask2gb) ||
1728 (vend - vstart <= mask2gb)) {
1729 pte_val ^= kern_linear_pte_xor[1];
1730 pte_val |= _PAGE_PMD_HUGE;
1731 vend = vstart + mask256mb + 1UL;
1732 } else {
1733 pte_val ^= kern_linear_pte_xor[2];
1734 pte_val |= _PAGE_PMD_HUGE;
1735 vend = vstart + mask2gb + 1UL;
1736 }
1737
1738 while (vstart < vend) {
1739 pmd_val(*pmd) = pte_val;
1740
1741 pte_val += PMD_SIZE;
1742 vstart += PMD_SIZE;
1743 pmd++;
1744 }
1745
1746 return vstart;
1747 }
1748
kernel_can_map_hugepmd(unsigned long vstart,unsigned long vend,bool guard)1749 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1750 bool guard)
1751 {
1752 if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1753 return true;
1754
1755 return false;
1756 }
1757
kernel_map_range(unsigned long pstart,unsigned long pend,pgprot_t prot,bool use_huge)1758 static unsigned long __ref kernel_map_range(unsigned long pstart,
1759 unsigned long pend, pgprot_t prot,
1760 bool use_huge)
1761 {
1762 unsigned long vstart = PAGE_OFFSET + pstart;
1763 unsigned long vend = PAGE_OFFSET + pend;
1764 unsigned long alloc_bytes = 0UL;
1765
1766 if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1767 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1768 vstart, vend);
1769 prom_halt();
1770 }
1771
1772 while (vstart < vend) {
1773 unsigned long this_end, paddr = __pa(vstart);
1774 pgd_t *pgd = pgd_offset_k(vstart);
1775 p4d_t *p4d;
1776 pud_t *pud;
1777 pmd_t *pmd;
1778 pte_t *pte;
1779
1780 if (pgd_none(*pgd)) {
1781 pud_t *new;
1782
1783 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1784 PAGE_SIZE);
1785 if (!new)
1786 goto err_alloc;
1787 alloc_bytes += PAGE_SIZE;
1788 pgd_populate(&init_mm, pgd, new);
1789 }
1790
1791 p4d = p4d_offset(pgd, vstart);
1792 if (p4d_none(*p4d)) {
1793 pud_t *new;
1794
1795 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1796 PAGE_SIZE);
1797 if (!new)
1798 goto err_alloc;
1799 alloc_bytes += PAGE_SIZE;
1800 p4d_populate(&init_mm, p4d, new);
1801 }
1802
1803 pud = pud_offset(p4d, vstart);
1804 if (pud_none(*pud)) {
1805 pmd_t *new;
1806
1807 if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1808 vstart = kernel_map_hugepud(vstart, vend, pud);
1809 continue;
1810 }
1811 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1812 PAGE_SIZE);
1813 if (!new)
1814 goto err_alloc;
1815 alloc_bytes += PAGE_SIZE;
1816 pud_populate(&init_mm, pud, new);
1817 }
1818
1819 pmd = pmd_offset(pud, vstart);
1820 if (pmd_none(*pmd)) {
1821 pte_t *new;
1822
1823 if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1824 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1825 continue;
1826 }
1827 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1828 PAGE_SIZE);
1829 if (!new)
1830 goto err_alloc;
1831 alloc_bytes += PAGE_SIZE;
1832 pmd_populate_kernel(&init_mm, pmd, new);
1833 }
1834
1835 pte = pte_offset_kernel(pmd, vstart);
1836 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1837 if (this_end > vend)
1838 this_end = vend;
1839
1840 while (vstart < this_end) {
1841 pte_val(*pte) = (paddr | pgprot_val(prot));
1842
1843 vstart += PAGE_SIZE;
1844 paddr += PAGE_SIZE;
1845 pte++;
1846 }
1847 }
1848
1849 return alloc_bytes;
1850
1851 err_alloc:
1852 panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1853 __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1854 return -ENOMEM;
1855 }
1856
flush_all_kernel_tsbs(void)1857 static void __init flush_all_kernel_tsbs(void)
1858 {
1859 int i;
1860
1861 for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1862 struct tsb *ent = &swapper_tsb[i];
1863
1864 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1865 }
1866 #ifndef CONFIG_DEBUG_PAGEALLOC
1867 for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1868 struct tsb *ent = &swapper_4m_tsb[i];
1869
1870 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1871 }
1872 #endif
1873 }
1874
1875 extern unsigned int kvmap_linear_patch[1];
1876
kernel_physical_mapping_init(void)1877 static void __init kernel_physical_mapping_init(void)
1878 {
1879 unsigned long i, mem_alloced = 0UL;
1880 bool use_huge = true;
1881
1882 #ifdef CONFIG_DEBUG_PAGEALLOC
1883 use_huge = false;
1884 #endif
1885 for (i = 0; i < pall_ents; i++) {
1886 unsigned long phys_start, phys_end;
1887
1888 phys_start = pall[i].phys_addr;
1889 phys_end = phys_start + pall[i].reg_size;
1890
1891 mem_alloced += kernel_map_range(phys_start, phys_end,
1892 PAGE_KERNEL, use_huge);
1893 }
1894
1895 printk("Allocated %ld bytes for kernel page tables.\n",
1896 mem_alloced);
1897
1898 kvmap_linear_patch[0] = 0x01000000; /* nop */
1899 flushi(&kvmap_linear_patch[0]);
1900
1901 flush_all_kernel_tsbs();
1902
1903 __flush_tlb_all();
1904 }
1905
1906 #ifdef CONFIG_DEBUG_PAGEALLOC
__kernel_map_pages(struct page * page,int numpages,int enable)1907 void __kernel_map_pages(struct page *page, int numpages, int enable)
1908 {
1909 unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1910 unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1911
1912 kernel_map_range(phys_start, phys_end,
1913 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1914
1915 flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1916 PAGE_OFFSET + phys_end);
1917
1918 /* we should perform an IPI and flush all tlbs,
1919 * but that can deadlock->flush only current cpu.
1920 */
1921 __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1922 PAGE_OFFSET + phys_end);
1923 }
1924 #endif
1925
find_ecache_flush_span(unsigned long size)1926 unsigned long __init find_ecache_flush_span(unsigned long size)
1927 {
1928 int i;
1929
1930 for (i = 0; i < pavail_ents; i++) {
1931 if (pavail[i].reg_size >= size)
1932 return pavail[i].phys_addr;
1933 }
1934
1935 return ~0UL;
1936 }
1937
1938 unsigned long PAGE_OFFSET;
1939 EXPORT_SYMBOL(PAGE_OFFSET);
1940
1941 unsigned long VMALLOC_END = 0x0000010000000000UL;
1942 EXPORT_SYMBOL(VMALLOC_END);
1943
1944 unsigned long sparc64_va_hole_top = 0xfffff80000000000UL;
1945 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1946
setup_page_offset(void)1947 static void __init setup_page_offset(void)
1948 {
1949 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1950 /* Cheetah/Panther support a full 64-bit virtual
1951 * address, so we can use all that our page tables
1952 * support.
1953 */
1954 sparc64_va_hole_top = 0xfff0000000000000UL;
1955 sparc64_va_hole_bottom = 0x0010000000000000UL;
1956
1957 max_phys_bits = 42;
1958 } else if (tlb_type == hypervisor) {
1959 switch (sun4v_chip_type) {
1960 case SUN4V_CHIP_NIAGARA1:
1961 case SUN4V_CHIP_NIAGARA2:
1962 /* T1 and T2 support 48-bit virtual addresses. */
1963 sparc64_va_hole_top = 0xffff800000000000UL;
1964 sparc64_va_hole_bottom = 0x0000800000000000UL;
1965
1966 max_phys_bits = 39;
1967 break;
1968 case SUN4V_CHIP_NIAGARA3:
1969 /* T3 supports 48-bit virtual addresses. */
1970 sparc64_va_hole_top = 0xffff800000000000UL;
1971 sparc64_va_hole_bottom = 0x0000800000000000UL;
1972
1973 max_phys_bits = 43;
1974 break;
1975 case SUN4V_CHIP_NIAGARA4:
1976 case SUN4V_CHIP_NIAGARA5:
1977 case SUN4V_CHIP_SPARC64X:
1978 case SUN4V_CHIP_SPARC_M6:
1979 /* T4 and later support 52-bit virtual addresses. */
1980 sparc64_va_hole_top = 0xfff8000000000000UL;
1981 sparc64_va_hole_bottom = 0x0008000000000000UL;
1982 max_phys_bits = 47;
1983 break;
1984 case SUN4V_CHIP_SPARC_M7:
1985 case SUN4V_CHIP_SPARC_SN:
1986 /* M7 and later support 52-bit virtual addresses. */
1987 sparc64_va_hole_top = 0xfff8000000000000UL;
1988 sparc64_va_hole_bottom = 0x0008000000000000UL;
1989 max_phys_bits = 49;
1990 break;
1991 case SUN4V_CHIP_SPARC_M8:
1992 default:
1993 /* M8 and later support 54-bit virtual addresses.
1994 * However, restricting M8 and above VA bits to 53
1995 * as 4-level page table cannot support more than
1996 * 53 VA bits.
1997 */
1998 sparc64_va_hole_top = 0xfff0000000000000UL;
1999 sparc64_va_hole_bottom = 0x0010000000000000UL;
2000 max_phys_bits = 51;
2001 break;
2002 }
2003 }
2004
2005 if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2006 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2007 max_phys_bits);
2008 prom_halt();
2009 }
2010
2011 PAGE_OFFSET = sparc64_va_hole_top;
2012 VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2013 (sparc64_va_hole_bottom >> 2));
2014
2015 pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2016 PAGE_OFFSET, max_phys_bits);
2017 pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2018 VMALLOC_START, VMALLOC_END);
2019 pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2020 VMEMMAP_BASE, VMEMMAP_BASE << 1);
2021 }
2022
tsb_phys_patch(void)2023 static void __init tsb_phys_patch(void)
2024 {
2025 struct tsb_ldquad_phys_patch_entry *pquad;
2026 struct tsb_phys_patch_entry *p;
2027
2028 pquad = &__tsb_ldquad_phys_patch;
2029 while (pquad < &__tsb_ldquad_phys_patch_end) {
2030 unsigned long addr = pquad->addr;
2031
2032 if (tlb_type == hypervisor)
2033 *(unsigned int *) addr = pquad->sun4v_insn;
2034 else
2035 *(unsigned int *) addr = pquad->sun4u_insn;
2036 wmb();
2037 __asm__ __volatile__("flush %0"
2038 : /* no outputs */
2039 : "r" (addr));
2040
2041 pquad++;
2042 }
2043
2044 p = &__tsb_phys_patch;
2045 while (p < &__tsb_phys_patch_end) {
2046 unsigned long addr = p->addr;
2047
2048 *(unsigned int *) addr = p->insn;
2049 wmb();
2050 __asm__ __volatile__("flush %0"
2051 : /* no outputs */
2052 : "r" (addr));
2053
2054 p++;
2055 }
2056 }
2057
2058 /* Don't mark as init, we give this to the Hypervisor. */
2059 #ifndef CONFIG_DEBUG_PAGEALLOC
2060 #define NUM_KTSB_DESCR 2
2061 #else
2062 #define NUM_KTSB_DESCR 1
2063 #endif
2064 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2065
2066 /* The swapper TSBs are loaded with a base sequence of:
2067 *
2068 * sethi %uhi(SYMBOL), REG1
2069 * sethi %hi(SYMBOL), REG2
2070 * or REG1, %ulo(SYMBOL), REG1
2071 * or REG2, %lo(SYMBOL), REG2
2072 * sllx REG1, 32, REG1
2073 * or REG1, REG2, REG1
2074 *
2075 * When we use physical addressing for the TSB accesses, we patch the
2076 * first four instructions in the above sequence.
2077 */
2078
patch_one_ktsb_phys(unsigned int * start,unsigned int * end,unsigned long pa)2079 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2080 {
2081 unsigned long high_bits, low_bits;
2082
2083 high_bits = (pa >> 32) & 0xffffffff;
2084 low_bits = (pa >> 0) & 0xffffffff;
2085
2086 while (start < end) {
2087 unsigned int *ia = (unsigned int *)(unsigned long)*start;
2088
2089 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2090 __asm__ __volatile__("flush %0" : : "r" (ia));
2091
2092 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2093 __asm__ __volatile__("flush %0" : : "r" (ia + 1));
2094
2095 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2096 __asm__ __volatile__("flush %0" : : "r" (ia + 2));
2097
2098 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2099 __asm__ __volatile__("flush %0" : : "r" (ia + 3));
2100
2101 start++;
2102 }
2103 }
2104
ktsb_phys_patch(void)2105 static void ktsb_phys_patch(void)
2106 {
2107 extern unsigned int __swapper_tsb_phys_patch;
2108 extern unsigned int __swapper_tsb_phys_patch_end;
2109 unsigned long ktsb_pa;
2110
2111 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2112 patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2113 &__swapper_tsb_phys_patch_end, ktsb_pa);
2114 #ifndef CONFIG_DEBUG_PAGEALLOC
2115 {
2116 extern unsigned int __swapper_4m_tsb_phys_patch;
2117 extern unsigned int __swapper_4m_tsb_phys_patch_end;
2118 ktsb_pa = (kern_base +
2119 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2120 patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2121 &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2122 }
2123 #endif
2124 }
2125
sun4v_ktsb_init(void)2126 static void __init sun4v_ktsb_init(void)
2127 {
2128 unsigned long ktsb_pa;
2129
2130 /* First KTSB for PAGE_SIZE mappings. */
2131 ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2132
2133 switch (PAGE_SIZE) {
2134 case 8 * 1024:
2135 default:
2136 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2137 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2138 break;
2139
2140 case 64 * 1024:
2141 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2142 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2143 break;
2144
2145 case 512 * 1024:
2146 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2147 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2148 break;
2149
2150 case 4 * 1024 * 1024:
2151 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2152 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2153 break;
2154 }
2155
2156 ktsb_descr[0].assoc = 1;
2157 ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2158 ktsb_descr[0].ctx_idx = 0;
2159 ktsb_descr[0].tsb_base = ktsb_pa;
2160 ktsb_descr[0].resv = 0;
2161
2162 #ifndef CONFIG_DEBUG_PAGEALLOC
2163 /* Second KTSB for 4MB/256MB/2GB/16GB mappings. */
2164 ktsb_pa = (kern_base +
2165 ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2166
2167 ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2168 ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2169 HV_PGSZ_MASK_256MB |
2170 HV_PGSZ_MASK_2GB |
2171 HV_PGSZ_MASK_16GB) &
2172 cpu_pgsz_mask);
2173 ktsb_descr[1].assoc = 1;
2174 ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2175 ktsb_descr[1].ctx_idx = 0;
2176 ktsb_descr[1].tsb_base = ktsb_pa;
2177 ktsb_descr[1].resv = 0;
2178 #endif
2179 }
2180
sun4v_ktsb_register(void)2181 void sun4v_ktsb_register(void)
2182 {
2183 unsigned long pa, ret;
2184
2185 pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2186
2187 ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2188 if (ret != 0) {
2189 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2190 "errors with %lx\n", pa, ret);
2191 prom_halt();
2192 }
2193 }
2194
sun4u_linear_pte_xor_finalize(void)2195 static void __init sun4u_linear_pte_xor_finalize(void)
2196 {
2197 #ifndef CONFIG_DEBUG_PAGEALLOC
2198 /* This is where we would add Panther support for
2199 * 32MB and 256MB pages.
2200 */
2201 #endif
2202 }
2203
sun4v_linear_pte_xor_finalize(void)2204 static void __init sun4v_linear_pte_xor_finalize(void)
2205 {
2206 unsigned long pagecv_flag;
2207
2208 /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2209 * enables MCD error. Do not set bit 9 on M7 processor.
2210 */
2211 switch (sun4v_chip_type) {
2212 case SUN4V_CHIP_SPARC_M7:
2213 case SUN4V_CHIP_SPARC_M8:
2214 case SUN4V_CHIP_SPARC_SN:
2215 pagecv_flag = 0x00;
2216 break;
2217 default:
2218 pagecv_flag = _PAGE_CV_4V;
2219 break;
2220 }
2221 #ifndef CONFIG_DEBUG_PAGEALLOC
2222 if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2223 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2224 PAGE_OFFSET;
2225 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2226 _PAGE_P_4V | _PAGE_W_4V);
2227 } else {
2228 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2229 }
2230
2231 if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2232 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2233 PAGE_OFFSET;
2234 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2235 _PAGE_P_4V | _PAGE_W_4V);
2236 } else {
2237 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2238 }
2239
2240 if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2241 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2242 PAGE_OFFSET;
2243 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2244 _PAGE_P_4V | _PAGE_W_4V);
2245 } else {
2246 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2247 }
2248 #endif
2249 }
2250
2251 /* paging_init() sets up the page tables */
2252
2253 static unsigned long last_valid_pfn;
2254
2255 static void sun4u_pgprot_init(void);
2256 static void sun4v_pgprot_init(void);
2257
2258 #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
2259 #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
2260 #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2261 #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2262 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2263 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2264
2265 /* We need to exclude reserved regions. This exclusion will include
2266 * vmlinux and initrd. To be more precise the initrd size could be used to
2267 * compute a new lower limit because it is freed later during initialization.
2268 */
reduce_memory(phys_addr_t limit_ram)2269 static void __init reduce_memory(phys_addr_t limit_ram)
2270 {
2271 limit_ram += memblock_reserved_size();
2272 memblock_enforce_memory_limit(limit_ram);
2273 }
2274
paging_init(void)2275 void __init paging_init(void)
2276 {
2277 unsigned long end_pfn, shift, phys_base;
2278 unsigned long real_end, i;
2279
2280 setup_page_offset();
2281
2282 /* These build time checkes make sure that the dcache_dirty_cpu()
2283 * page->flags usage will work.
2284 *
2285 * When a page gets marked as dcache-dirty, we store the
2286 * cpu number starting at bit 32 in the page->flags. Also,
2287 * functions like clear_dcache_dirty_cpu use the cpu mask
2288 * in 13-bit signed-immediate instruction fields.
2289 */
2290
2291 /*
2292 * Page flags must not reach into upper 32 bits that are used
2293 * for the cpu number
2294 */
2295 BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2296
2297 /*
2298 * The bit fields placed in the high range must not reach below
2299 * the 32 bit boundary. Otherwise we cannot place the cpu field
2300 * at the 32 bit boundary.
2301 */
2302 BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2303 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2304
2305 BUILD_BUG_ON(NR_CPUS > 4096);
2306
2307 kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2308 kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2309
2310 /* Invalidate both kernel TSBs. */
2311 memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2312 #ifndef CONFIG_DEBUG_PAGEALLOC
2313 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2314 #endif
2315
2316 /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2317 * bit on M7 processor. This is a conflicting usage of the same
2318 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2319 * Detection error on all pages and this will lead to problems
2320 * later. Kernel does not run with MCD enabled and hence rest
2321 * of the required steps to fully configure memory corruption
2322 * detection are not taken. We need to ensure TTE.mcde is not
2323 * set on M7 processor. Compute the value of cacheability
2324 * flag for use later taking this into consideration.
2325 */
2326 switch (sun4v_chip_type) {
2327 case SUN4V_CHIP_SPARC_M7:
2328 case SUN4V_CHIP_SPARC_M8:
2329 case SUN4V_CHIP_SPARC_SN:
2330 page_cache4v_flag = _PAGE_CP_4V;
2331 break;
2332 default:
2333 page_cache4v_flag = _PAGE_CACHE_4V;
2334 break;
2335 }
2336
2337 if (tlb_type == hypervisor)
2338 sun4v_pgprot_init();
2339 else
2340 sun4u_pgprot_init();
2341
2342 if (tlb_type == cheetah_plus ||
2343 tlb_type == hypervisor) {
2344 tsb_phys_patch();
2345 ktsb_phys_patch();
2346 }
2347
2348 if (tlb_type == hypervisor)
2349 sun4v_patch_tlb_handlers();
2350
2351 /* Find available physical memory...
2352 *
2353 * Read it twice in order to work around a bug in openfirmware.
2354 * The call to grab this table itself can cause openfirmware to
2355 * allocate memory, which in turn can take away some space from
2356 * the list of available memory. Reading it twice makes sure
2357 * we really do get the final value.
2358 */
2359 read_obp_translations();
2360 read_obp_memory("reg", &pall[0], &pall_ents);
2361 read_obp_memory("available", &pavail[0], &pavail_ents);
2362 read_obp_memory("available", &pavail[0], &pavail_ents);
2363
2364 phys_base = 0xffffffffffffffffUL;
2365 for (i = 0; i < pavail_ents; i++) {
2366 phys_base = min(phys_base, pavail[i].phys_addr);
2367 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2368 }
2369
2370 memblock_reserve(kern_base, kern_size);
2371
2372 find_ramdisk(phys_base);
2373
2374 if (cmdline_memory_size)
2375 reduce_memory(cmdline_memory_size);
2376
2377 memblock_allow_resize();
2378 memblock_dump_all();
2379
2380 set_bit(0, mmu_context_bmap);
2381
2382 shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2383
2384 real_end = (unsigned long)_end;
2385 num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2386 printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2387 num_kernel_image_mappings);
2388
2389 /* Set kernel pgd to upper alias so physical page computations
2390 * work.
2391 */
2392 init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2393
2394 memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2395
2396 inherit_prom_mappings();
2397
2398 /* Ok, we can use our TLB miss and window trap handlers safely. */
2399 setup_tba();
2400
2401 __flush_tlb_all();
2402
2403 prom_build_devicetree();
2404 of_populate_present_mask();
2405 #ifndef CONFIG_SMP
2406 of_fill_in_cpu_data();
2407 #endif
2408
2409 if (tlb_type == hypervisor) {
2410 sun4v_mdesc_init();
2411 mdesc_populate_present_mask(cpu_all_mask);
2412 #ifndef CONFIG_SMP
2413 mdesc_fill_in_cpu_data(cpu_all_mask);
2414 #endif
2415 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2416
2417 sun4v_linear_pte_xor_finalize();
2418
2419 sun4v_ktsb_init();
2420 sun4v_ktsb_register();
2421 } else {
2422 unsigned long impl, ver;
2423
2424 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2425 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2426
2427 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2428 impl = ((ver >> 32) & 0xffff);
2429 if (impl == PANTHER_IMPL)
2430 cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2431 HV_PGSZ_MASK_256MB);
2432
2433 sun4u_linear_pte_xor_finalize();
2434 }
2435
2436 /* Flush the TLBs and the 4M TSB so that the updated linear
2437 * pte XOR settings are realized for all mappings.
2438 */
2439 __flush_tlb_all();
2440 #ifndef CONFIG_DEBUG_PAGEALLOC
2441 memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2442 #endif
2443 __flush_tlb_all();
2444
2445 /* Setup bootmem... */
2446 last_valid_pfn = end_pfn = bootmem_init(phys_base);
2447
2448 kernel_physical_mapping_init();
2449
2450 {
2451 unsigned long max_zone_pfns[MAX_NR_ZONES];
2452
2453 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2454
2455 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2456
2457 free_area_init(max_zone_pfns);
2458 }
2459
2460 printk("Booting Linux...\n");
2461 }
2462
page_in_phys_avail(unsigned long paddr)2463 int page_in_phys_avail(unsigned long paddr)
2464 {
2465 int i;
2466
2467 paddr &= PAGE_MASK;
2468
2469 for (i = 0; i < pavail_ents; i++) {
2470 unsigned long start, end;
2471
2472 start = pavail[i].phys_addr;
2473 end = start + pavail[i].reg_size;
2474
2475 if (paddr >= start && paddr < end)
2476 return 1;
2477 }
2478 if (paddr >= kern_base && paddr < (kern_base + kern_size))
2479 return 1;
2480 #ifdef CONFIG_BLK_DEV_INITRD
2481 if (paddr >= __pa(initrd_start) &&
2482 paddr < __pa(PAGE_ALIGN(initrd_end)))
2483 return 1;
2484 #endif
2485
2486 return 0;
2487 }
2488
register_page_bootmem_info(void)2489 static void __init register_page_bootmem_info(void)
2490 {
2491 #ifdef CONFIG_NUMA
2492 int i;
2493
2494 for_each_online_node(i)
2495 if (NODE_DATA(i)->node_spanned_pages)
2496 register_page_bootmem_info_node(NODE_DATA(i));
2497 #endif
2498 }
mem_init(void)2499 void __init mem_init(void)
2500 {
2501 high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2502
2503 memblock_free_all();
2504
2505 /*
2506 * Must be done after boot memory is put on freelist, because here we
2507 * might set fields in deferred struct pages that have not yet been
2508 * initialized, and memblock_free_all() initializes all the reserved
2509 * deferred pages for us.
2510 */
2511 register_page_bootmem_info();
2512
2513 /*
2514 * Set up the zero page, mark it reserved, so that page count
2515 * is not manipulated when freeing the page from user ptes.
2516 */
2517 mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2518 if (mem_map_zero == NULL) {
2519 prom_printf("paging_init: Cannot alloc zero page.\n");
2520 prom_halt();
2521 }
2522 mark_page_reserved(mem_map_zero);
2523
2524
2525 if (tlb_type == cheetah || tlb_type == cheetah_plus)
2526 cheetah_ecache_flush_init();
2527 }
2528
free_initmem(void)2529 void free_initmem(void)
2530 {
2531 unsigned long addr, initend;
2532 int do_free = 1;
2533
2534 /* If the physical memory maps were trimmed by kernel command
2535 * line options, don't even try freeing this initmem stuff up.
2536 * The kernel image could have been in the trimmed out region
2537 * and if so the freeing below will free invalid page structs.
2538 */
2539 if (cmdline_memory_size)
2540 do_free = 0;
2541
2542 /*
2543 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2544 */
2545 addr = PAGE_ALIGN((unsigned long)(__init_begin));
2546 initend = (unsigned long)(__init_end) & PAGE_MASK;
2547 for (; addr < initend; addr += PAGE_SIZE) {
2548 unsigned long page;
2549
2550 page = (addr +
2551 ((unsigned long) __va(kern_base)) -
2552 ((unsigned long) KERNBASE));
2553 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2554
2555 if (do_free)
2556 free_reserved_page(virt_to_page(page));
2557 }
2558 }
2559
2560 pgprot_t PAGE_KERNEL __read_mostly;
2561 EXPORT_SYMBOL(PAGE_KERNEL);
2562
2563 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2564 pgprot_t PAGE_COPY __read_mostly;
2565
2566 pgprot_t PAGE_SHARED __read_mostly;
2567 EXPORT_SYMBOL(PAGE_SHARED);
2568
2569 unsigned long pg_iobits __read_mostly;
2570
2571 unsigned long _PAGE_IE __read_mostly;
2572 EXPORT_SYMBOL(_PAGE_IE);
2573
2574 unsigned long _PAGE_E __read_mostly;
2575 EXPORT_SYMBOL(_PAGE_E);
2576
2577 unsigned long _PAGE_CACHE __read_mostly;
2578 EXPORT_SYMBOL(_PAGE_CACHE);
2579
2580 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmemmap_populate(unsigned long vstart,unsigned long vend,int node,struct vmem_altmap * altmap)2581 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2582 int node, struct vmem_altmap *altmap)
2583 {
2584 unsigned long pte_base;
2585
2586 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2587 _PAGE_CP_4U | _PAGE_CV_4U |
2588 _PAGE_P_4U | _PAGE_W_4U);
2589 if (tlb_type == hypervisor)
2590 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2591 page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2592
2593 pte_base |= _PAGE_PMD_HUGE;
2594
2595 vstart = vstart & PMD_MASK;
2596 vend = ALIGN(vend, PMD_SIZE);
2597 for (; vstart < vend; vstart += PMD_SIZE) {
2598 pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2599 unsigned long pte;
2600 p4d_t *p4d;
2601 pud_t *pud;
2602 pmd_t *pmd;
2603
2604 if (!pgd)
2605 return -ENOMEM;
2606
2607 p4d = vmemmap_p4d_populate(pgd, vstart, node);
2608 if (!p4d)
2609 return -ENOMEM;
2610
2611 pud = vmemmap_pud_populate(p4d, vstart, node);
2612 if (!pud)
2613 return -ENOMEM;
2614
2615 pmd = pmd_offset(pud, vstart);
2616 pte = pmd_val(*pmd);
2617 if (!(pte & _PAGE_VALID)) {
2618 void *block = vmemmap_alloc_block(PMD_SIZE, node);
2619
2620 if (!block)
2621 return -ENOMEM;
2622
2623 pmd_val(*pmd) = pte_base | __pa(block);
2624 }
2625 }
2626
2627 return 0;
2628 }
2629
vmemmap_free(unsigned long start,unsigned long end,struct vmem_altmap * altmap)2630 void vmemmap_free(unsigned long start, unsigned long end,
2631 struct vmem_altmap *altmap)
2632 {
2633 }
2634 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2635
prot_init_common(unsigned long page_none,unsigned long page_shared,unsigned long page_copy,unsigned long page_readonly,unsigned long page_exec_bit)2636 static void prot_init_common(unsigned long page_none,
2637 unsigned long page_shared,
2638 unsigned long page_copy,
2639 unsigned long page_readonly,
2640 unsigned long page_exec_bit)
2641 {
2642 PAGE_COPY = __pgprot(page_copy);
2643 PAGE_SHARED = __pgprot(page_shared);
2644
2645 protection_map[0x0] = __pgprot(page_none);
2646 protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2647 protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2648 protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2649 protection_map[0x4] = __pgprot(page_readonly);
2650 protection_map[0x5] = __pgprot(page_readonly);
2651 protection_map[0x6] = __pgprot(page_copy);
2652 protection_map[0x7] = __pgprot(page_copy);
2653 protection_map[0x8] = __pgprot(page_none);
2654 protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2655 protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2656 protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2657 protection_map[0xc] = __pgprot(page_readonly);
2658 protection_map[0xd] = __pgprot(page_readonly);
2659 protection_map[0xe] = __pgprot(page_shared);
2660 protection_map[0xf] = __pgprot(page_shared);
2661 }
2662
sun4u_pgprot_init(void)2663 static void __init sun4u_pgprot_init(void)
2664 {
2665 unsigned long page_none, page_shared, page_copy, page_readonly;
2666 unsigned long page_exec_bit;
2667 int i;
2668
2669 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2670 _PAGE_CACHE_4U | _PAGE_P_4U |
2671 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2672 _PAGE_EXEC_4U);
2673 PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2674 _PAGE_CACHE_4U | _PAGE_P_4U |
2675 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2676 _PAGE_EXEC_4U | _PAGE_L_4U);
2677
2678 _PAGE_IE = _PAGE_IE_4U;
2679 _PAGE_E = _PAGE_E_4U;
2680 _PAGE_CACHE = _PAGE_CACHE_4U;
2681
2682 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2683 __ACCESS_BITS_4U | _PAGE_E_4U);
2684
2685 #ifdef CONFIG_DEBUG_PAGEALLOC
2686 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2687 #else
2688 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2689 PAGE_OFFSET;
2690 #endif
2691 kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2692 _PAGE_P_4U | _PAGE_W_4U);
2693
2694 for (i = 1; i < 4; i++)
2695 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2696
2697 _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2698 _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2699 _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2700
2701
2702 page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2703 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2704 __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2705 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2706 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2707 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2708 __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2709
2710 page_exec_bit = _PAGE_EXEC_4U;
2711
2712 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2713 page_exec_bit);
2714 }
2715
sun4v_pgprot_init(void)2716 static void __init sun4v_pgprot_init(void)
2717 {
2718 unsigned long page_none, page_shared, page_copy, page_readonly;
2719 unsigned long page_exec_bit;
2720 int i;
2721
2722 PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2723 page_cache4v_flag | _PAGE_P_4V |
2724 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2725 _PAGE_EXEC_4V);
2726 PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2727
2728 _PAGE_IE = _PAGE_IE_4V;
2729 _PAGE_E = _PAGE_E_4V;
2730 _PAGE_CACHE = page_cache4v_flag;
2731
2732 #ifdef CONFIG_DEBUG_PAGEALLOC
2733 kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2734 #else
2735 kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2736 PAGE_OFFSET;
2737 #endif
2738 kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2739 _PAGE_W_4V);
2740
2741 for (i = 1; i < 4; i++)
2742 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2743
2744 pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2745 __ACCESS_BITS_4V | _PAGE_E_4V);
2746
2747 _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2748 _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2749 _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2750 _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2751
2752 page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2753 page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2754 __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2755 page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2756 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2757 page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2758 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2759
2760 page_exec_bit = _PAGE_EXEC_4V;
2761
2762 prot_init_common(page_none, page_shared, page_copy, page_readonly,
2763 page_exec_bit);
2764 }
2765
pte_sz_bits(unsigned long sz)2766 unsigned long pte_sz_bits(unsigned long sz)
2767 {
2768 if (tlb_type == hypervisor) {
2769 switch (sz) {
2770 case 8 * 1024:
2771 default:
2772 return _PAGE_SZ8K_4V;
2773 case 64 * 1024:
2774 return _PAGE_SZ64K_4V;
2775 case 512 * 1024:
2776 return _PAGE_SZ512K_4V;
2777 case 4 * 1024 * 1024:
2778 return _PAGE_SZ4MB_4V;
2779 }
2780 } else {
2781 switch (sz) {
2782 case 8 * 1024:
2783 default:
2784 return _PAGE_SZ8K_4U;
2785 case 64 * 1024:
2786 return _PAGE_SZ64K_4U;
2787 case 512 * 1024:
2788 return _PAGE_SZ512K_4U;
2789 case 4 * 1024 * 1024:
2790 return _PAGE_SZ4MB_4U;
2791 }
2792 }
2793 }
2794
mk_pte_io(unsigned long page,pgprot_t prot,int space,unsigned long page_size)2795 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2796 {
2797 pte_t pte;
2798
2799 pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
2800 pte_val(pte) |= (((unsigned long)space) << 32);
2801 pte_val(pte) |= pte_sz_bits(page_size);
2802
2803 return pte;
2804 }
2805
kern_large_tte(unsigned long paddr)2806 static unsigned long kern_large_tte(unsigned long paddr)
2807 {
2808 unsigned long val;
2809
2810 val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2811 _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2812 _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2813 if (tlb_type == hypervisor)
2814 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2815 page_cache4v_flag | _PAGE_P_4V |
2816 _PAGE_EXEC_4V | _PAGE_W_4V);
2817
2818 return val | paddr;
2819 }
2820
2821 /* If not locked, zap it. */
__flush_tlb_all(void)2822 void __flush_tlb_all(void)
2823 {
2824 unsigned long pstate;
2825 int i;
2826
2827 __asm__ __volatile__("flushw\n\t"
2828 "rdpr %%pstate, %0\n\t"
2829 "wrpr %0, %1, %%pstate"
2830 : "=r" (pstate)
2831 : "i" (PSTATE_IE));
2832 if (tlb_type == hypervisor) {
2833 sun4v_mmu_demap_all();
2834 } else if (tlb_type == spitfire) {
2835 for (i = 0; i < 64; i++) {
2836 /* Spitfire Errata #32 workaround */
2837 /* NOTE: Always runs on spitfire, so no
2838 * cheetah+ page size encodings.
2839 */
2840 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2841 "flush %%g6"
2842 : /* No outputs */
2843 : "r" (0),
2844 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2845
2846 if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2847 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2848 "membar #Sync"
2849 : /* no outputs */
2850 : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2851 spitfire_put_dtlb_data(i, 0x0UL);
2852 }
2853
2854 /* Spitfire Errata #32 workaround */
2855 /* NOTE: Always runs on spitfire, so no
2856 * cheetah+ page size encodings.
2857 */
2858 __asm__ __volatile__("stxa %0, [%1] %2\n\t"
2859 "flush %%g6"
2860 : /* No outputs */
2861 : "r" (0),
2862 "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2863
2864 if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2865 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2866 "membar #Sync"
2867 : /* no outputs */
2868 : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2869 spitfire_put_itlb_data(i, 0x0UL);
2870 }
2871 }
2872 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2873 cheetah_flush_dtlb_all();
2874 cheetah_flush_itlb_all();
2875 }
2876 __asm__ __volatile__("wrpr %0, 0, %%pstate"
2877 : : "r" (pstate));
2878 }
2879
pte_alloc_one_kernel(struct mm_struct * mm)2880 pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
2881 {
2882 struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2883 pte_t *pte = NULL;
2884
2885 if (page)
2886 pte = (pte_t *) page_address(page);
2887
2888 return pte;
2889 }
2890
pte_alloc_one(struct mm_struct * mm)2891 pgtable_t pte_alloc_one(struct mm_struct *mm)
2892 {
2893 struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2894 if (!page)
2895 return NULL;
2896 if (!pgtable_pte_page_ctor(page)) {
2897 __free_page(page);
2898 return NULL;
2899 }
2900 return (pte_t *) page_address(page);
2901 }
2902
pte_free_kernel(struct mm_struct * mm,pte_t * pte)2903 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2904 {
2905 free_page((unsigned long)pte);
2906 }
2907
__pte_free(pgtable_t pte)2908 static void __pte_free(pgtable_t pte)
2909 {
2910 struct page *page = virt_to_page(pte);
2911
2912 pgtable_pte_page_dtor(page);
2913 __free_page(page);
2914 }
2915
pte_free(struct mm_struct * mm,pgtable_t pte)2916 void pte_free(struct mm_struct *mm, pgtable_t pte)
2917 {
2918 __pte_free(pte);
2919 }
2920
pgtable_free(void * table,bool is_page)2921 void pgtable_free(void *table, bool is_page)
2922 {
2923 if (is_page)
2924 __pte_free(table);
2925 else
2926 kmem_cache_free(pgtable_cache, table);
2927 }
2928
2929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
update_mmu_cache_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd)2930 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2931 pmd_t *pmd)
2932 {
2933 unsigned long pte, flags;
2934 struct mm_struct *mm;
2935 pmd_t entry = *pmd;
2936
2937 if (!pmd_large(entry) || !pmd_young(entry))
2938 return;
2939
2940 pte = pmd_val(entry);
2941
2942 /* Don't insert a non-valid PMD into the TSB, we'll deadlock. */
2943 if (!(pte & _PAGE_VALID))
2944 return;
2945
2946 /* We are fabricating 8MB pages using 4MB real hw pages. */
2947 pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2948
2949 mm = vma->vm_mm;
2950
2951 spin_lock_irqsave(&mm->context.lock, flags);
2952
2953 if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2954 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2955 addr, pte);
2956
2957 spin_unlock_irqrestore(&mm->context.lock, flags);
2958 }
2959 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2960
2961 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
context_reload(void * __data)2962 static void context_reload(void *__data)
2963 {
2964 struct mm_struct *mm = __data;
2965
2966 if (mm == current->mm)
2967 load_secondary_context(mm);
2968 }
2969
hugetlb_setup(struct pt_regs * regs)2970 void hugetlb_setup(struct pt_regs *regs)
2971 {
2972 struct mm_struct *mm = current->mm;
2973 struct tsb_config *tp;
2974
2975 if (faulthandler_disabled() || !mm) {
2976 const struct exception_table_entry *entry;
2977
2978 entry = search_exception_tables(regs->tpc);
2979 if (entry) {
2980 regs->tpc = entry->fixup;
2981 regs->tnpc = regs->tpc + 4;
2982 return;
2983 }
2984 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2985 die_if_kernel("HugeTSB in atomic", regs);
2986 }
2987
2988 tp = &mm->context.tsb_block[MM_TSB_HUGE];
2989 if (likely(tp->tsb == NULL))
2990 tsb_grow(mm, MM_TSB_HUGE, 0);
2991
2992 tsb_context_switch(mm);
2993 smp_tsb_sync(mm);
2994
2995 /* On UltraSPARC-III+ and later, configure the second half of
2996 * the Data-TLB for huge pages.
2997 */
2998 if (tlb_type == cheetah_plus) {
2999 bool need_context_reload = false;
3000 unsigned long ctx;
3001
3002 spin_lock_irq(&ctx_alloc_lock);
3003 ctx = mm->context.sparc64_ctx_val;
3004 ctx &= ~CTX_PGSZ_MASK;
3005 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3006 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3007
3008 if (ctx != mm->context.sparc64_ctx_val) {
3009 /* When changing the page size fields, we
3010 * must perform a context flush so that no
3011 * stale entries match. This flush must
3012 * occur with the original context register
3013 * settings.
3014 */
3015 do_flush_tlb_mm(mm);
3016
3017 /* Reload the context register of all processors
3018 * also executing in this address space.
3019 */
3020 mm->context.sparc64_ctx_val = ctx;
3021 need_context_reload = true;
3022 }
3023 spin_unlock_irq(&ctx_alloc_lock);
3024
3025 if (need_context_reload)
3026 on_each_cpu(context_reload, mm, 0);
3027 }
3028 }
3029 #endif
3030
3031 static struct resource code_resource = {
3032 .name = "Kernel code",
3033 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3034 };
3035
3036 static struct resource data_resource = {
3037 .name = "Kernel data",
3038 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3039 };
3040
3041 static struct resource bss_resource = {
3042 .name = "Kernel bss",
3043 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3044 };
3045
compute_kern_paddr(void * addr)3046 static inline resource_size_t compute_kern_paddr(void *addr)
3047 {
3048 return (resource_size_t) (addr - KERNBASE + kern_base);
3049 }
3050
kernel_lds_init(void)3051 static void __init kernel_lds_init(void)
3052 {
3053 code_resource.start = compute_kern_paddr(_text);
3054 code_resource.end = compute_kern_paddr(_etext - 1);
3055 data_resource.start = compute_kern_paddr(_etext);
3056 data_resource.end = compute_kern_paddr(_edata - 1);
3057 bss_resource.start = compute_kern_paddr(__bss_start);
3058 bss_resource.end = compute_kern_paddr(_end - 1);
3059 }
3060
report_memory(void)3061 static int __init report_memory(void)
3062 {
3063 int i;
3064 struct resource *res;
3065
3066 kernel_lds_init();
3067
3068 for (i = 0; i < pavail_ents; i++) {
3069 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3070
3071 if (!res) {
3072 pr_warn("Failed to allocate source.\n");
3073 break;
3074 }
3075
3076 res->name = "System RAM";
3077 res->start = pavail[i].phys_addr;
3078 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3079 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3080
3081 if (insert_resource(&iomem_resource, res) < 0) {
3082 pr_warn("Resource insertion failed.\n");
3083 break;
3084 }
3085
3086 insert_resource(res, &code_resource);
3087 insert_resource(res, &data_resource);
3088 insert_resource(res, &bss_resource);
3089 }
3090
3091 return 0;
3092 }
3093 arch_initcall(report_memory);
3094
3095 #ifdef CONFIG_SMP
3096 #define do_flush_tlb_kernel_range smp_flush_tlb_kernel_range
3097 #else
3098 #define do_flush_tlb_kernel_range __flush_tlb_kernel_range
3099 #endif
3100
flush_tlb_kernel_range(unsigned long start,unsigned long end)3101 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3102 {
3103 if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3104 if (start < LOW_OBP_ADDRESS) {
3105 flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3106 do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3107 }
3108 if (end > HI_OBP_ADDRESS) {
3109 flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3110 do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3111 }
3112 } else {
3113 flush_tsb_kernel_range(start, end);
3114 do_flush_tlb_kernel_range(start, end);
3115 }
3116 }
3117
copy_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)3118 void copy_user_highpage(struct page *to, struct page *from,
3119 unsigned long vaddr, struct vm_area_struct *vma)
3120 {
3121 char *vfrom, *vto;
3122
3123 vfrom = kmap_atomic(from);
3124 vto = kmap_atomic(to);
3125 copy_user_page(vto, vfrom, vaddr, to);
3126 kunmap_atomic(vto);
3127 kunmap_atomic(vfrom);
3128
3129 /* If this page has ADI enabled, copy over any ADI tags
3130 * as well
3131 */
3132 if (vma->vm_flags & VM_SPARC_ADI) {
3133 unsigned long pfrom, pto, i, adi_tag;
3134
3135 pfrom = page_to_phys(from);
3136 pto = page_to_phys(to);
3137
3138 for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3139 asm volatile("ldxa [%1] %2, %0\n\t"
3140 : "=r" (adi_tag)
3141 : "r" (i), "i" (ASI_MCD_REAL));
3142 asm volatile("stxa %0, [%1] %2\n\t"
3143 :
3144 : "r" (adi_tag), "r" (pto),
3145 "i" (ASI_MCD_REAL));
3146 pto += adi_blksize();
3147 }
3148 asm volatile("membar #Sync\n\t");
3149 }
3150 }
3151 EXPORT_SYMBOL(copy_user_highpage);
3152
copy_highpage(struct page * to,struct page * from)3153 void copy_highpage(struct page *to, struct page *from)
3154 {
3155 char *vfrom, *vto;
3156
3157 vfrom = kmap_atomic(from);
3158 vto = kmap_atomic(to);
3159 copy_page(vto, vfrom);
3160 kunmap_atomic(vto);
3161 kunmap_atomic(vfrom);
3162
3163 /* If this platform is ADI enabled, copy any ADI tags
3164 * as well
3165 */
3166 if (adi_capable()) {
3167 unsigned long pfrom, pto, i, adi_tag;
3168
3169 pfrom = page_to_phys(from);
3170 pto = page_to_phys(to);
3171
3172 for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3173 asm volatile("ldxa [%1] %2, %0\n\t"
3174 : "=r" (adi_tag)
3175 : "r" (i), "i" (ASI_MCD_REAL));
3176 asm volatile("stxa %0, [%1] %2\n\t"
3177 :
3178 : "r" (adi_tag), "r" (pto),
3179 "i" (ASI_MCD_REAL));
3180 pto += adi_blksize();
3181 }
3182 asm volatile("membar #Sync\n\t");
3183 }
3184 }
3185 EXPORT_SYMBOL(copy_highpage);
3186