1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2017 - 2019 Cambridge Greys Limited
4 * Copyright (C) 2011 - 2014 Cisco Systems Inc
5 * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6 * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
7 * James Leu (jleu@mindspring.net).
8 * Copyright (C) 2001 by various other people who didn't put their name here.
9 */
10
11 #include <linux/memblock.h>
12 #include <linux/etherdevice.h>
13 #include <linux/ethtool.h>
14 #include <linux/inetdevice.h>
15 #include <linux/init.h>
16 #include <linux/list.h>
17 #include <linux/netdevice.h>
18 #include <linux/platform_device.h>
19 #include <linux/rtnetlink.h>
20 #include <linux/skbuff.h>
21 #include <linux/slab.h>
22 #include <linux/interrupt.h>
23 #include <linux/firmware.h>
24 #include <linux/fs.h>
25 #include <uapi/linux/filter.h>
26 #include <init.h>
27 #include <irq_kern.h>
28 #include <irq_user.h>
29 #include <net_kern.h>
30 #include <os.h>
31 #include "mconsole_kern.h"
32 #include "vector_user.h"
33 #include "vector_kern.h"
34
35 /*
36 * Adapted from network devices with the following major changes:
37 * All transports are static - simplifies the code significantly
38 * Multiple FDs/IRQs per device
39 * Vector IO optionally used for read/write, falling back to legacy
40 * based on configuration and/or availability
41 * Configuration is no longer positional - L2TPv3 and GRE require up to
42 * 10 parameters, passing this as positional is not fit for purpose.
43 * Only socket transports are supported
44 */
45
46
47 #define DRIVER_NAME "uml-vector"
48 struct vector_cmd_line_arg {
49 struct list_head list;
50 int unit;
51 char *arguments;
52 };
53
54 struct vector_device {
55 struct list_head list;
56 struct net_device *dev;
57 struct platform_device pdev;
58 int unit;
59 int opened;
60 };
61
62 static LIST_HEAD(vec_cmd_line);
63
64 static DEFINE_SPINLOCK(vector_devices_lock);
65 static LIST_HEAD(vector_devices);
66
67 static int driver_registered;
68
69 static void vector_eth_configure(int n, struct arglist *def);
70
71 /* Argument accessors to set variables (and/or set default values)
72 * mtu, buffer sizing, default headroom, etc
73 */
74
75 #define DEFAULT_HEADROOM 2
76 #define SAFETY_MARGIN 32
77 #define DEFAULT_VECTOR_SIZE 64
78 #define TX_SMALL_PACKET 128
79 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
80 #define MAX_ITERATIONS 64
81
82 static const struct {
83 const char string[ETH_GSTRING_LEN];
84 } ethtool_stats_keys[] = {
85 { "rx_queue_max" },
86 { "rx_queue_running_average" },
87 { "tx_queue_max" },
88 { "tx_queue_running_average" },
89 { "rx_encaps_errors" },
90 { "tx_timeout_count" },
91 { "tx_restart_queue" },
92 { "tx_kicks" },
93 { "tx_flow_control_xon" },
94 { "tx_flow_control_xoff" },
95 { "rx_csum_offload_good" },
96 { "rx_csum_offload_errors"},
97 { "sg_ok"},
98 { "sg_linearized"},
99 };
100
101 #define VECTOR_NUM_STATS ARRAY_SIZE(ethtool_stats_keys)
102
vector_reset_stats(struct vector_private * vp)103 static void vector_reset_stats(struct vector_private *vp)
104 {
105 vp->estats.rx_queue_max = 0;
106 vp->estats.rx_queue_running_average = 0;
107 vp->estats.tx_queue_max = 0;
108 vp->estats.tx_queue_running_average = 0;
109 vp->estats.rx_encaps_errors = 0;
110 vp->estats.tx_timeout_count = 0;
111 vp->estats.tx_restart_queue = 0;
112 vp->estats.tx_kicks = 0;
113 vp->estats.tx_flow_control_xon = 0;
114 vp->estats.tx_flow_control_xoff = 0;
115 vp->estats.sg_ok = 0;
116 vp->estats.sg_linearized = 0;
117 }
118
get_mtu(struct arglist * def)119 static int get_mtu(struct arglist *def)
120 {
121 char *mtu = uml_vector_fetch_arg(def, "mtu");
122 long result;
123
124 if (mtu != NULL) {
125 if (kstrtoul(mtu, 10, &result) == 0)
126 if ((result < (1 << 16) - 1) && (result >= 576))
127 return result;
128 }
129 return ETH_MAX_PACKET;
130 }
131
get_bpf_file(struct arglist * def)132 static char *get_bpf_file(struct arglist *def)
133 {
134 return uml_vector_fetch_arg(def, "bpffile");
135 }
136
get_bpf_flash(struct arglist * def)137 static bool get_bpf_flash(struct arglist *def)
138 {
139 char *allow = uml_vector_fetch_arg(def, "bpfflash");
140 long result;
141
142 if (allow != NULL) {
143 if (kstrtoul(allow, 10, &result) == 0)
144 return (allow > 0);
145 }
146 return false;
147 }
148
get_depth(struct arglist * def)149 static int get_depth(struct arglist *def)
150 {
151 char *mtu = uml_vector_fetch_arg(def, "depth");
152 long result;
153
154 if (mtu != NULL) {
155 if (kstrtoul(mtu, 10, &result) == 0)
156 return result;
157 }
158 return DEFAULT_VECTOR_SIZE;
159 }
160
get_headroom(struct arglist * def)161 static int get_headroom(struct arglist *def)
162 {
163 char *mtu = uml_vector_fetch_arg(def, "headroom");
164 long result;
165
166 if (mtu != NULL) {
167 if (kstrtoul(mtu, 10, &result) == 0)
168 return result;
169 }
170 return DEFAULT_HEADROOM;
171 }
172
get_req_size(struct arglist * def)173 static int get_req_size(struct arglist *def)
174 {
175 char *gro = uml_vector_fetch_arg(def, "gro");
176 long result;
177
178 if (gro != NULL) {
179 if (kstrtoul(gro, 10, &result) == 0) {
180 if (result > 0)
181 return 65536;
182 }
183 }
184 return get_mtu(def) + ETH_HEADER_OTHER +
185 get_headroom(def) + SAFETY_MARGIN;
186 }
187
188
get_transport_options(struct arglist * def)189 static int get_transport_options(struct arglist *def)
190 {
191 char *transport = uml_vector_fetch_arg(def, "transport");
192 char *vector = uml_vector_fetch_arg(def, "vec");
193
194 int vec_rx = VECTOR_RX;
195 int vec_tx = VECTOR_TX;
196 long parsed;
197 int result = 0;
198
199 if (transport == NULL)
200 return -EINVAL;
201
202 if (vector != NULL) {
203 if (kstrtoul(vector, 10, &parsed) == 0) {
204 if (parsed == 0) {
205 vec_rx = 0;
206 vec_tx = 0;
207 }
208 }
209 }
210
211 if (get_bpf_flash(def))
212 result = VECTOR_BPF_FLASH;
213
214 if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
215 return result;
216 if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0)
217 return (result | vec_rx | VECTOR_BPF);
218 if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
219 return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
220 return (result | vec_rx | vec_tx);
221 }
222
223
224 /* A mini-buffer for packet drop read
225 * All of our supported transports are datagram oriented and we always
226 * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
227 * than the packet size it still counts as full packet read and will
228 * clean the incoming stream to keep sigio/epoll happy
229 */
230
231 #define DROP_BUFFER_SIZE 32
232
233 static char *drop_buffer;
234
235 /* Array backed queues optimized for bulk enqueue/dequeue and
236 * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios.
237 * For more details and full design rationale see
238 * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt
239 */
240
241
242 /*
243 * Advance the mmsg queue head by n = advance. Resets the queue to
244 * maximum enqueue/dequeue-at-once capacity if possible. Called by
245 * dequeuers. Caller must hold the head_lock!
246 */
247
vector_advancehead(struct vector_queue * qi,int advance)248 static int vector_advancehead(struct vector_queue *qi, int advance)
249 {
250 int queue_depth;
251
252 qi->head =
253 (qi->head + advance)
254 % qi->max_depth;
255
256
257 spin_lock(&qi->tail_lock);
258 qi->queue_depth -= advance;
259
260 /* we are at 0, use this to
261 * reset head and tail so we can use max size vectors
262 */
263
264 if (qi->queue_depth == 0) {
265 qi->head = 0;
266 qi->tail = 0;
267 }
268 queue_depth = qi->queue_depth;
269 spin_unlock(&qi->tail_lock);
270 return queue_depth;
271 }
272
273 /* Advance the queue tail by n = advance.
274 * This is called by enqueuers which should hold the
275 * head lock already
276 */
277
vector_advancetail(struct vector_queue * qi,int advance)278 static int vector_advancetail(struct vector_queue *qi, int advance)
279 {
280 int queue_depth;
281
282 qi->tail =
283 (qi->tail + advance)
284 % qi->max_depth;
285 spin_lock(&qi->head_lock);
286 qi->queue_depth += advance;
287 queue_depth = qi->queue_depth;
288 spin_unlock(&qi->head_lock);
289 return queue_depth;
290 }
291
prep_msg(struct vector_private * vp,struct sk_buff * skb,struct iovec * iov)292 static int prep_msg(struct vector_private *vp,
293 struct sk_buff *skb,
294 struct iovec *iov)
295 {
296 int iov_index = 0;
297 int nr_frags, frag;
298 skb_frag_t *skb_frag;
299
300 nr_frags = skb_shinfo(skb)->nr_frags;
301 if (nr_frags > MAX_IOV_SIZE) {
302 if (skb_linearize(skb) != 0)
303 goto drop;
304 }
305 if (vp->header_size > 0) {
306 iov[iov_index].iov_len = vp->header_size;
307 vp->form_header(iov[iov_index].iov_base, skb, vp);
308 iov_index++;
309 }
310 iov[iov_index].iov_base = skb->data;
311 if (nr_frags > 0) {
312 iov[iov_index].iov_len = skb->len - skb->data_len;
313 vp->estats.sg_ok++;
314 } else
315 iov[iov_index].iov_len = skb->len;
316 iov_index++;
317 for (frag = 0; frag < nr_frags; frag++) {
318 skb_frag = &skb_shinfo(skb)->frags[frag];
319 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
320 iov[iov_index].iov_len = skb_frag_size(skb_frag);
321 iov_index++;
322 }
323 return iov_index;
324 drop:
325 return -1;
326 }
327 /*
328 * Generic vector enqueue with support for forming headers using transport
329 * specific callback. Allows GRE, L2TPv3, RAW and other transports
330 * to use a common enqueue procedure in vector mode
331 */
332
vector_enqueue(struct vector_queue * qi,struct sk_buff * skb)333 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
334 {
335 struct vector_private *vp = netdev_priv(qi->dev);
336 int queue_depth;
337 int packet_len;
338 struct mmsghdr *mmsg_vector = qi->mmsg_vector;
339 int iov_count;
340
341 spin_lock(&qi->tail_lock);
342 spin_lock(&qi->head_lock);
343 queue_depth = qi->queue_depth;
344 spin_unlock(&qi->head_lock);
345
346 if (skb)
347 packet_len = skb->len;
348
349 if (queue_depth < qi->max_depth) {
350
351 *(qi->skbuff_vector + qi->tail) = skb;
352 mmsg_vector += qi->tail;
353 iov_count = prep_msg(
354 vp,
355 skb,
356 mmsg_vector->msg_hdr.msg_iov
357 );
358 if (iov_count < 1)
359 goto drop;
360 mmsg_vector->msg_hdr.msg_iovlen = iov_count;
361 mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
362 mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
363 queue_depth = vector_advancetail(qi, 1);
364 } else
365 goto drop;
366 spin_unlock(&qi->tail_lock);
367 return queue_depth;
368 drop:
369 qi->dev->stats.tx_dropped++;
370 if (skb != NULL) {
371 packet_len = skb->len;
372 dev_consume_skb_any(skb);
373 netdev_completed_queue(qi->dev, 1, packet_len);
374 }
375 spin_unlock(&qi->tail_lock);
376 return queue_depth;
377 }
378
consume_vector_skbs(struct vector_queue * qi,int count)379 static int consume_vector_skbs(struct vector_queue *qi, int count)
380 {
381 struct sk_buff *skb;
382 int skb_index;
383 int bytes_compl = 0;
384
385 for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
386 skb = *(qi->skbuff_vector + skb_index);
387 /* mark as empty to ensure correct destruction if
388 * needed
389 */
390 bytes_compl += skb->len;
391 *(qi->skbuff_vector + skb_index) = NULL;
392 dev_consume_skb_any(skb);
393 }
394 qi->dev->stats.tx_bytes += bytes_compl;
395 qi->dev->stats.tx_packets += count;
396 netdev_completed_queue(qi->dev, count, bytes_compl);
397 return vector_advancehead(qi, count);
398 }
399
400 /*
401 * Generic vector deque via sendmmsg with support for forming headers
402 * using transport specific callback. Allows GRE, L2TPv3, RAW and
403 * other transports to use a common dequeue procedure in vector mode
404 */
405
406
vector_send(struct vector_queue * qi)407 static int vector_send(struct vector_queue *qi)
408 {
409 struct vector_private *vp = netdev_priv(qi->dev);
410 struct mmsghdr *send_from;
411 int result = 0, send_len, queue_depth = qi->max_depth;
412
413 if (spin_trylock(&qi->head_lock)) {
414 if (spin_trylock(&qi->tail_lock)) {
415 /* update queue_depth to current value */
416 queue_depth = qi->queue_depth;
417 spin_unlock(&qi->tail_lock);
418 while (queue_depth > 0) {
419 /* Calculate the start of the vector */
420 send_len = queue_depth;
421 send_from = qi->mmsg_vector;
422 send_from += qi->head;
423 /* Adjust vector size if wraparound */
424 if (send_len + qi->head > qi->max_depth)
425 send_len = qi->max_depth - qi->head;
426 /* Try to TX as many packets as possible */
427 if (send_len > 0) {
428 result = uml_vector_sendmmsg(
429 vp->fds->tx_fd,
430 send_from,
431 send_len,
432 0
433 );
434 vp->in_write_poll =
435 (result != send_len);
436 }
437 /* For some of the sendmmsg error scenarios
438 * we may end being unsure in the TX success
439 * for all packets. It is safer to declare
440 * them all TX-ed and blame the network.
441 */
442 if (result < 0) {
443 if (net_ratelimit())
444 netdev_err(vp->dev, "sendmmsg err=%i\n",
445 result);
446 vp->in_error = true;
447 result = send_len;
448 }
449 if (result > 0) {
450 queue_depth =
451 consume_vector_skbs(qi, result);
452 /* This is equivalent to an TX IRQ.
453 * Restart the upper layers to feed us
454 * more packets.
455 */
456 if (result > vp->estats.tx_queue_max)
457 vp->estats.tx_queue_max = result;
458 vp->estats.tx_queue_running_average =
459 (vp->estats.tx_queue_running_average + result) >> 1;
460 }
461 netif_trans_update(qi->dev);
462 netif_wake_queue(qi->dev);
463 /* if TX is busy, break out of the send loop,
464 * poll write IRQ will reschedule xmit for us
465 */
466 if (result != send_len) {
467 vp->estats.tx_restart_queue++;
468 break;
469 }
470 }
471 }
472 spin_unlock(&qi->head_lock);
473 } else {
474 tasklet_schedule(&vp->tx_poll);
475 }
476 return queue_depth;
477 }
478
479 /* Queue destructor. Deliberately stateless so we can use
480 * it in queue cleanup if initialization fails.
481 */
482
destroy_queue(struct vector_queue * qi)483 static void destroy_queue(struct vector_queue *qi)
484 {
485 int i;
486 struct iovec *iov;
487 struct vector_private *vp = netdev_priv(qi->dev);
488 struct mmsghdr *mmsg_vector;
489
490 if (qi == NULL)
491 return;
492 /* deallocate any skbuffs - we rely on any unused to be
493 * set to NULL.
494 */
495 if (qi->skbuff_vector != NULL) {
496 for (i = 0; i < qi->max_depth; i++) {
497 if (*(qi->skbuff_vector + i) != NULL)
498 dev_kfree_skb_any(*(qi->skbuff_vector + i));
499 }
500 kfree(qi->skbuff_vector);
501 }
502 /* deallocate matching IOV structures including header buffs */
503 if (qi->mmsg_vector != NULL) {
504 mmsg_vector = qi->mmsg_vector;
505 for (i = 0; i < qi->max_depth; i++) {
506 iov = mmsg_vector->msg_hdr.msg_iov;
507 if (iov != NULL) {
508 if ((vp->header_size > 0) &&
509 (iov->iov_base != NULL))
510 kfree(iov->iov_base);
511 kfree(iov);
512 }
513 mmsg_vector++;
514 }
515 kfree(qi->mmsg_vector);
516 }
517 kfree(qi);
518 }
519
520 /*
521 * Queue constructor. Create a queue with a given side.
522 */
create_queue(struct vector_private * vp,int max_size,int header_size,int num_extra_frags)523 static struct vector_queue *create_queue(
524 struct vector_private *vp,
525 int max_size,
526 int header_size,
527 int num_extra_frags)
528 {
529 struct vector_queue *result;
530 int i;
531 struct iovec *iov;
532 struct mmsghdr *mmsg_vector;
533
534 result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
535 if (result == NULL)
536 return NULL;
537 result->max_depth = max_size;
538 result->dev = vp->dev;
539 result->mmsg_vector = kmalloc(
540 (sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
541 if (result->mmsg_vector == NULL)
542 goto out_mmsg_fail;
543 result->skbuff_vector = kmalloc(
544 (sizeof(void *) * max_size), GFP_KERNEL);
545 if (result->skbuff_vector == NULL)
546 goto out_skb_fail;
547
548 /* further failures can be handled safely by destroy_queue*/
549
550 mmsg_vector = result->mmsg_vector;
551 for (i = 0; i < max_size; i++) {
552 /* Clear all pointers - we use non-NULL as marking on
553 * what to free on destruction
554 */
555 *(result->skbuff_vector + i) = NULL;
556 mmsg_vector->msg_hdr.msg_iov = NULL;
557 mmsg_vector++;
558 }
559 mmsg_vector = result->mmsg_vector;
560 result->max_iov_frags = num_extra_frags;
561 for (i = 0; i < max_size; i++) {
562 if (vp->header_size > 0)
563 iov = kmalloc_array(3 + num_extra_frags,
564 sizeof(struct iovec),
565 GFP_KERNEL
566 );
567 else
568 iov = kmalloc_array(2 + num_extra_frags,
569 sizeof(struct iovec),
570 GFP_KERNEL
571 );
572 if (iov == NULL)
573 goto out_fail;
574 mmsg_vector->msg_hdr.msg_iov = iov;
575 mmsg_vector->msg_hdr.msg_iovlen = 1;
576 mmsg_vector->msg_hdr.msg_control = NULL;
577 mmsg_vector->msg_hdr.msg_controllen = 0;
578 mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
579 mmsg_vector->msg_hdr.msg_name = NULL;
580 mmsg_vector->msg_hdr.msg_namelen = 0;
581 if (vp->header_size > 0) {
582 iov->iov_base = kmalloc(header_size, GFP_KERNEL);
583 if (iov->iov_base == NULL)
584 goto out_fail;
585 iov->iov_len = header_size;
586 mmsg_vector->msg_hdr.msg_iovlen = 2;
587 iov++;
588 }
589 iov->iov_base = NULL;
590 iov->iov_len = 0;
591 mmsg_vector++;
592 }
593 spin_lock_init(&result->head_lock);
594 spin_lock_init(&result->tail_lock);
595 result->queue_depth = 0;
596 result->head = 0;
597 result->tail = 0;
598 return result;
599 out_skb_fail:
600 kfree(result->mmsg_vector);
601 out_mmsg_fail:
602 kfree(result);
603 return NULL;
604 out_fail:
605 destroy_queue(result);
606 return NULL;
607 }
608
609 /*
610 * We do not use the RX queue as a proper wraparound queue for now
611 * This is not necessary because the consumption via netif_rx()
612 * happens in-line. While we can try using the return code of
613 * netif_rx() for flow control there are no drivers doing this today.
614 * For this RX specific use we ignore the tail/head locks and
615 * just read into a prepared queue filled with skbuffs.
616 */
617
prep_skb(struct vector_private * vp,struct user_msghdr * msg)618 static struct sk_buff *prep_skb(
619 struct vector_private *vp,
620 struct user_msghdr *msg)
621 {
622 int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
623 struct sk_buff *result;
624 int iov_index = 0, len;
625 struct iovec *iov = msg->msg_iov;
626 int err, nr_frags, frag;
627 skb_frag_t *skb_frag;
628
629 if (vp->req_size <= linear)
630 len = linear;
631 else
632 len = vp->req_size;
633 result = alloc_skb_with_frags(
634 linear,
635 len - vp->max_packet,
636 3,
637 &err,
638 GFP_ATOMIC
639 );
640 if (vp->header_size > 0)
641 iov_index++;
642 if (result == NULL) {
643 iov[iov_index].iov_base = NULL;
644 iov[iov_index].iov_len = 0;
645 goto done;
646 }
647 skb_reserve(result, vp->headroom);
648 result->dev = vp->dev;
649 skb_put(result, vp->max_packet);
650 result->data_len = len - vp->max_packet;
651 result->len += len - vp->max_packet;
652 skb_reset_mac_header(result);
653 result->ip_summed = CHECKSUM_NONE;
654 iov[iov_index].iov_base = result->data;
655 iov[iov_index].iov_len = vp->max_packet;
656 iov_index++;
657
658 nr_frags = skb_shinfo(result)->nr_frags;
659 for (frag = 0; frag < nr_frags; frag++) {
660 skb_frag = &skb_shinfo(result)->frags[frag];
661 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
662 if (iov[iov_index].iov_base != NULL)
663 iov[iov_index].iov_len = skb_frag_size(skb_frag);
664 else
665 iov[iov_index].iov_len = 0;
666 iov_index++;
667 }
668 done:
669 msg->msg_iovlen = iov_index;
670 return result;
671 }
672
673
674 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/
675
prep_queue_for_rx(struct vector_queue * qi)676 static void prep_queue_for_rx(struct vector_queue *qi)
677 {
678 struct vector_private *vp = netdev_priv(qi->dev);
679 struct mmsghdr *mmsg_vector = qi->mmsg_vector;
680 void **skbuff_vector = qi->skbuff_vector;
681 int i;
682
683 if (qi->queue_depth == 0)
684 return;
685 for (i = 0; i < qi->queue_depth; i++) {
686 /* it is OK if allocation fails - recvmmsg with NULL data in
687 * iov argument still performs an RX, just drops the packet
688 * This allows us stop faffing around with a "drop buffer"
689 */
690
691 *skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
692 skbuff_vector++;
693 mmsg_vector++;
694 }
695 qi->queue_depth = 0;
696 }
697
find_device(int n)698 static struct vector_device *find_device(int n)
699 {
700 struct vector_device *device;
701 struct list_head *ele;
702
703 spin_lock(&vector_devices_lock);
704 list_for_each(ele, &vector_devices) {
705 device = list_entry(ele, struct vector_device, list);
706 if (device->unit == n)
707 goto out;
708 }
709 device = NULL;
710 out:
711 spin_unlock(&vector_devices_lock);
712 return device;
713 }
714
vector_parse(char * str,int * index_out,char ** str_out,char ** error_out)715 static int vector_parse(char *str, int *index_out, char **str_out,
716 char **error_out)
717 {
718 int n, len, err;
719 char *start = str;
720
721 len = strlen(str);
722
723 while ((*str != ':') && (strlen(str) > 1))
724 str++;
725 if (*str != ':') {
726 *error_out = "Expected ':' after device number";
727 return -EINVAL;
728 }
729 *str = '\0';
730
731 err = kstrtouint(start, 0, &n);
732 if (err < 0) {
733 *error_out = "Bad device number";
734 return err;
735 }
736
737 str++;
738 if (find_device(n)) {
739 *error_out = "Device already configured";
740 return -EINVAL;
741 }
742
743 *index_out = n;
744 *str_out = str;
745 return 0;
746 }
747
vector_config(char * str,char ** error_out)748 static int vector_config(char *str, char **error_out)
749 {
750 int err, n;
751 char *params;
752 struct arglist *parsed;
753
754 err = vector_parse(str, &n, ¶ms, error_out);
755 if (err != 0)
756 return err;
757
758 /* This string is broken up and the pieces used by the underlying
759 * driver. We should copy it to make sure things do not go wrong
760 * later.
761 */
762
763 params = kstrdup(params, GFP_KERNEL);
764 if (params == NULL) {
765 *error_out = "vector_config failed to strdup string";
766 return -ENOMEM;
767 }
768
769 parsed = uml_parse_vector_ifspec(params);
770
771 if (parsed == NULL) {
772 *error_out = "vector_config failed to parse parameters";
773 kfree(params);
774 return -EINVAL;
775 }
776
777 vector_eth_configure(n, parsed);
778 return 0;
779 }
780
vector_id(char ** str,int * start_out,int * end_out)781 static int vector_id(char **str, int *start_out, int *end_out)
782 {
783 char *end;
784 int n;
785
786 n = simple_strtoul(*str, &end, 0);
787 if ((*end != '\0') || (end == *str))
788 return -1;
789
790 *start_out = n;
791 *end_out = n;
792 *str = end;
793 return n;
794 }
795
vector_remove(int n,char ** error_out)796 static int vector_remove(int n, char **error_out)
797 {
798 struct vector_device *vec_d;
799 struct net_device *dev;
800 struct vector_private *vp;
801
802 vec_d = find_device(n);
803 if (vec_d == NULL)
804 return -ENODEV;
805 dev = vec_d->dev;
806 vp = netdev_priv(dev);
807 if (vp->fds != NULL)
808 return -EBUSY;
809 unregister_netdev(dev);
810 platform_device_unregister(&vec_d->pdev);
811 return 0;
812 }
813
814 /*
815 * There is no shared per-transport initialization code, so
816 * we will just initialize each interface one by one and
817 * add them to a list
818 */
819
820 static struct platform_driver uml_net_driver = {
821 .driver = {
822 .name = DRIVER_NAME,
823 },
824 };
825
826
vector_device_release(struct device * dev)827 static void vector_device_release(struct device *dev)
828 {
829 struct vector_device *device = dev_get_drvdata(dev);
830 struct net_device *netdev = device->dev;
831
832 list_del(&device->list);
833 kfree(device);
834 free_netdev(netdev);
835 }
836
837 /* Bog standard recv using recvmsg - not used normally unless the user
838 * explicitly specifies not to use recvmmsg vector RX.
839 */
840
vector_legacy_rx(struct vector_private * vp)841 static int vector_legacy_rx(struct vector_private *vp)
842 {
843 int pkt_len;
844 struct user_msghdr hdr;
845 struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
846 int iovpos = 0;
847 struct sk_buff *skb;
848 int header_check;
849
850 hdr.msg_name = NULL;
851 hdr.msg_namelen = 0;
852 hdr.msg_iov = (struct iovec *) &iov;
853 hdr.msg_control = NULL;
854 hdr.msg_controllen = 0;
855 hdr.msg_flags = 0;
856
857 if (vp->header_size > 0) {
858 iov[0].iov_base = vp->header_rxbuffer;
859 iov[0].iov_len = vp->header_size;
860 }
861
862 skb = prep_skb(vp, &hdr);
863
864 if (skb == NULL) {
865 /* Read a packet into drop_buffer and don't do
866 * anything with it.
867 */
868 iov[iovpos].iov_base = drop_buffer;
869 iov[iovpos].iov_len = DROP_BUFFER_SIZE;
870 hdr.msg_iovlen = 1;
871 vp->dev->stats.rx_dropped++;
872 }
873
874 pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
875 if (pkt_len < 0) {
876 vp->in_error = true;
877 return pkt_len;
878 }
879
880 if (skb != NULL) {
881 if (pkt_len > vp->header_size) {
882 if (vp->header_size > 0) {
883 header_check = vp->verify_header(
884 vp->header_rxbuffer, skb, vp);
885 if (header_check < 0) {
886 dev_kfree_skb_irq(skb);
887 vp->dev->stats.rx_dropped++;
888 vp->estats.rx_encaps_errors++;
889 return 0;
890 }
891 if (header_check > 0) {
892 vp->estats.rx_csum_offload_good++;
893 skb->ip_summed = CHECKSUM_UNNECESSARY;
894 }
895 }
896 pskb_trim(skb, pkt_len - vp->rx_header_size);
897 skb->protocol = eth_type_trans(skb, skb->dev);
898 vp->dev->stats.rx_bytes += skb->len;
899 vp->dev->stats.rx_packets++;
900 netif_rx(skb);
901 } else {
902 dev_kfree_skb_irq(skb);
903 }
904 }
905 return pkt_len;
906 }
907
908 /*
909 * Packet at a time TX which falls back to vector TX if the
910 * underlying transport is busy.
911 */
912
913
914
writev_tx(struct vector_private * vp,struct sk_buff * skb)915 static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
916 {
917 struct iovec iov[3 + MAX_IOV_SIZE];
918 int iov_count, pkt_len = 0;
919
920 iov[0].iov_base = vp->header_txbuffer;
921 iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
922
923 if (iov_count < 1)
924 goto drop;
925
926 pkt_len = uml_vector_writev(
927 vp->fds->tx_fd,
928 (struct iovec *) &iov,
929 iov_count
930 );
931
932 if (pkt_len < 0)
933 goto drop;
934
935 netif_trans_update(vp->dev);
936 netif_wake_queue(vp->dev);
937
938 if (pkt_len > 0) {
939 vp->dev->stats.tx_bytes += skb->len;
940 vp->dev->stats.tx_packets++;
941 } else {
942 vp->dev->stats.tx_dropped++;
943 }
944 consume_skb(skb);
945 return pkt_len;
946 drop:
947 vp->dev->stats.tx_dropped++;
948 consume_skb(skb);
949 if (pkt_len < 0)
950 vp->in_error = true;
951 return pkt_len;
952 }
953
954 /*
955 * Receive as many messages as we can in one call using the special
956 * mmsg vector matched to an skb vector which we prepared earlier.
957 */
958
vector_mmsg_rx(struct vector_private * vp)959 static int vector_mmsg_rx(struct vector_private *vp)
960 {
961 int packet_count, i;
962 struct vector_queue *qi = vp->rx_queue;
963 struct sk_buff *skb;
964 struct mmsghdr *mmsg_vector = qi->mmsg_vector;
965 void **skbuff_vector = qi->skbuff_vector;
966 int header_check;
967
968 /* Refresh the vector and make sure it is with new skbs and the
969 * iovs are updated to point to them.
970 */
971
972 prep_queue_for_rx(qi);
973
974 /* Fire the Lazy Gun - get as many packets as we can in one go. */
975
976 packet_count = uml_vector_recvmmsg(
977 vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0);
978
979 if (packet_count < 0)
980 vp->in_error = true;
981
982 if (packet_count <= 0)
983 return packet_count;
984
985 /* We treat packet processing as enqueue, buffer refresh as dequeue
986 * The queue_depth tells us how many buffers have been used and how
987 * many do we need to prep the next time prep_queue_for_rx() is called.
988 */
989
990 qi->queue_depth = packet_count;
991
992 for (i = 0; i < packet_count; i++) {
993 skb = (*skbuff_vector);
994 if (mmsg_vector->msg_len > vp->header_size) {
995 if (vp->header_size > 0) {
996 header_check = vp->verify_header(
997 mmsg_vector->msg_hdr.msg_iov->iov_base,
998 skb,
999 vp
1000 );
1001 if (header_check < 0) {
1002 /* Overlay header failed to verify - discard.
1003 * We can actually keep this skb and reuse it,
1004 * but that will make the prep logic too
1005 * complex.
1006 */
1007 dev_kfree_skb_irq(skb);
1008 vp->estats.rx_encaps_errors++;
1009 continue;
1010 }
1011 if (header_check > 0) {
1012 vp->estats.rx_csum_offload_good++;
1013 skb->ip_summed = CHECKSUM_UNNECESSARY;
1014 }
1015 }
1016 pskb_trim(skb,
1017 mmsg_vector->msg_len - vp->rx_header_size);
1018 skb->protocol = eth_type_trans(skb, skb->dev);
1019 /*
1020 * We do not need to lock on updating stats here
1021 * The interrupt loop is non-reentrant.
1022 */
1023 vp->dev->stats.rx_bytes += skb->len;
1024 vp->dev->stats.rx_packets++;
1025 netif_rx(skb);
1026 } else {
1027 /* Overlay header too short to do anything - discard.
1028 * We can actually keep this skb and reuse it,
1029 * but that will make the prep logic too complex.
1030 */
1031 if (skb != NULL)
1032 dev_kfree_skb_irq(skb);
1033 }
1034 (*skbuff_vector) = NULL;
1035 /* Move to the next buffer element */
1036 mmsg_vector++;
1037 skbuff_vector++;
1038 }
1039 if (packet_count > 0) {
1040 if (vp->estats.rx_queue_max < packet_count)
1041 vp->estats.rx_queue_max = packet_count;
1042 vp->estats.rx_queue_running_average =
1043 (vp->estats.rx_queue_running_average + packet_count) >> 1;
1044 }
1045 return packet_count;
1046 }
1047
vector_rx(struct vector_private * vp)1048 static void vector_rx(struct vector_private *vp)
1049 {
1050 int err;
1051 int iter = 0;
1052
1053 if ((vp->options & VECTOR_RX) > 0)
1054 while (((err = vector_mmsg_rx(vp)) > 0) && (iter < MAX_ITERATIONS))
1055 iter++;
1056 else
1057 while (((err = vector_legacy_rx(vp)) > 0) && (iter < MAX_ITERATIONS))
1058 iter++;
1059 if ((err != 0) && net_ratelimit())
1060 netdev_err(vp->dev, "vector_rx: error(%d)\n", err);
1061 if (iter == MAX_ITERATIONS)
1062 netdev_err(vp->dev, "vector_rx: device stuck, remote end may have closed the connection\n");
1063 }
1064
vector_net_start_xmit(struct sk_buff * skb,struct net_device * dev)1065 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1066 {
1067 struct vector_private *vp = netdev_priv(dev);
1068 int queue_depth = 0;
1069
1070 if (vp->in_error) {
1071 deactivate_fd(vp->fds->rx_fd, vp->rx_irq);
1072 if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0))
1073 deactivate_fd(vp->fds->tx_fd, vp->tx_irq);
1074 return NETDEV_TX_BUSY;
1075 }
1076
1077 if ((vp->options & VECTOR_TX) == 0) {
1078 writev_tx(vp, skb);
1079 return NETDEV_TX_OK;
1080 }
1081
1082 /* We do BQL only in the vector path, no point doing it in
1083 * packet at a time mode as there is no device queue
1084 */
1085
1086 netdev_sent_queue(vp->dev, skb->len);
1087 queue_depth = vector_enqueue(vp->tx_queue, skb);
1088
1089 /* if the device queue is full, stop the upper layers and
1090 * flush it.
1091 */
1092
1093 if (queue_depth >= vp->tx_queue->max_depth - 1) {
1094 vp->estats.tx_kicks++;
1095 netif_stop_queue(dev);
1096 vector_send(vp->tx_queue);
1097 return NETDEV_TX_OK;
1098 }
1099 if (netdev_xmit_more()) {
1100 mod_timer(&vp->tl, vp->coalesce);
1101 return NETDEV_TX_OK;
1102 }
1103 if (skb->len < TX_SMALL_PACKET) {
1104 vp->estats.tx_kicks++;
1105 vector_send(vp->tx_queue);
1106 } else
1107 tasklet_schedule(&vp->tx_poll);
1108 return NETDEV_TX_OK;
1109 }
1110
vector_rx_interrupt(int irq,void * dev_id)1111 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1112 {
1113 struct net_device *dev = dev_id;
1114 struct vector_private *vp = netdev_priv(dev);
1115
1116 if (!netif_running(dev))
1117 return IRQ_NONE;
1118 vector_rx(vp);
1119 return IRQ_HANDLED;
1120
1121 }
1122
vector_tx_interrupt(int irq,void * dev_id)1123 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1124 {
1125 struct net_device *dev = dev_id;
1126 struct vector_private *vp = netdev_priv(dev);
1127
1128 if (!netif_running(dev))
1129 return IRQ_NONE;
1130 /* We need to pay attention to it only if we got
1131 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1132 * we ignore it. In the future, it may be worth
1133 * it to improve the IRQ controller a bit to make
1134 * tweaking the IRQ mask less costly
1135 */
1136
1137 if (vp->in_write_poll)
1138 tasklet_schedule(&vp->tx_poll);
1139 return IRQ_HANDLED;
1140
1141 }
1142
1143 static int irq_rr;
1144
vector_net_close(struct net_device * dev)1145 static int vector_net_close(struct net_device *dev)
1146 {
1147 struct vector_private *vp = netdev_priv(dev);
1148 unsigned long flags;
1149
1150 netif_stop_queue(dev);
1151 del_timer(&vp->tl);
1152
1153 if (vp->fds == NULL)
1154 return 0;
1155
1156 /* Disable and free all IRQS */
1157 if (vp->rx_irq > 0) {
1158 um_free_irq(vp->rx_irq, dev);
1159 vp->rx_irq = 0;
1160 }
1161 if (vp->tx_irq > 0) {
1162 um_free_irq(vp->tx_irq, dev);
1163 vp->tx_irq = 0;
1164 }
1165 tasklet_kill(&vp->tx_poll);
1166 if (vp->fds->rx_fd > 0) {
1167 if (vp->bpf)
1168 uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1169 os_close_file(vp->fds->rx_fd);
1170 vp->fds->rx_fd = -1;
1171 }
1172 if (vp->fds->tx_fd > 0) {
1173 os_close_file(vp->fds->tx_fd);
1174 vp->fds->tx_fd = -1;
1175 }
1176 if (vp->bpf != NULL)
1177 kfree(vp->bpf->filter);
1178 kfree(vp->bpf);
1179 vp->bpf = NULL;
1180 kfree(vp->fds->remote_addr);
1181 kfree(vp->transport_data);
1182 kfree(vp->header_rxbuffer);
1183 kfree(vp->header_txbuffer);
1184 if (vp->rx_queue != NULL)
1185 destroy_queue(vp->rx_queue);
1186 if (vp->tx_queue != NULL)
1187 destroy_queue(vp->tx_queue);
1188 kfree(vp->fds);
1189 vp->fds = NULL;
1190 spin_lock_irqsave(&vp->lock, flags);
1191 vp->opened = false;
1192 vp->in_error = false;
1193 spin_unlock_irqrestore(&vp->lock, flags);
1194 return 0;
1195 }
1196
1197 /* TX tasklet */
1198
vector_tx_poll(struct tasklet_struct * t)1199 static void vector_tx_poll(struct tasklet_struct *t)
1200 {
1201 struct vector_private *vp = from_tasklet(vp, t, tx_poll);
1202
1203 vp->estats.tx_kicks++;
1204 vector_send(vp->tx_queue);
1205 }
vector_reset_tx(struct work_struct * work)1206 static void vector_reset_tx(struct work_struct *work)
1207 {
1208 struct vector_private *vp =
1209 container_of(work, struct vector_private, reset_tx);
1210 netdev_reset_queue(vp->dev);
1211 netif_start_queue(vp->dev);
1212 netif_wake_queue(vp->dev);
1213 }
1214
vector_net_open(struct net_device * dev)1215 static int vector_net_open(struct net_device *dev)
1216 {
1217 struct vector_private *vp = netdev_priv(dev);
1218 unsigned long flags;
1219 int err = -EINVAL;
1220 struct vector_device *vdevice;
1221
1222 spin_lock_irqsave(&vp->lock, flags);
1223 if (vp->opened) {
1224 spin_unlock_irqrestore(&vp->lock, flags);
1225 return -ENXIO;
1226 }
1227 vp->opened = true;
1228 spin_unlock_irqrestore(&vp->lock, flags);
1229
1230 vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed));
1231
1232 vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1233
1234 if (vp->fds == NULL)
1235 goto out_close;
1236
1237 if (build_transport_data(vp) < 0)
1238 goto out_close;
1239
1240 if ((vp->options & VECTOR_RX) > 0) {
1241 vp->rx_queue = create_queue(
1242 vp,
1243 get_depth(vp->parsed),
1244 vp->rx_header_size,
1245 MAX_IOV_SIZE
1246 );
1247 vp->rx_queue->queue_depth = get_depth(vp->parsed);
1248 } else {
1249 vp->header_rxbuffer = kmalloc(
1250 vp->rx_header_size,
1251 GFP_KERNEL
1252 );
1253 if (vp->header_rxbuffer == NULL)
1254 goto out_close;
1255 }
1256 if ((vp->options & VECTOR_TX) > 0) {
1257 vp->tx_queue = create_queue(
1258 vp,
1259 get_depth(vp->parsed),
1260 vp->header_size,
1261 MAX_IOV_SIZE
1262 );
1263 } else {
1264 vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1265 if (vp->header_txbuffer == NULL)
1266 goto out_close;
1267 }
1268
1269 /* READ IRQ */
1270 err = um_request_irq(
1271 irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1272 IRQ_READ, vector_rx_interrupt,
1273 IRQF_SHARED, dev->name, dev);
1274 if (err < 0) {
1275 netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1276 err = -ENETUNREACH;
1277 goto out_close;
1278 }
1279 vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1280 dev->irq = irq_rr + VECTOR_BASE_IRQ;
1281 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1282
1283 /* WRITE IRQ - we need it only if we have vector TX */
1284 if ((vp->options & VECTOR_TX) > 0) {
1285 err = um_request_irq(
1286 irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1287 IRQ_WRITE, vector_tx_interrupt,
1288 IRQF_SHARED, dev->name, dev);
1289 if (err < 0) {
1290 netdev_err(dev,
1291 "vector_open: failed to get tx irq(%d)\n", err);
1292 err = -ENETUNREACH;
1293 goto out_close;
1294 }
1295 vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1296 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1297 }
1298
1299 if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1300 if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1301 vp->options |= VECTOR_BPF;
1302 }
1303 if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL))
1304 vp->bpf = uml_vector_default_bpf(dev->dev_addr);
1305
1306 if (vp->bpf != NULL)
1307 uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1308
1309 netif_start_queue(dev);
1310
1311 /* clear buffer - it can happen that the host side of the interface
1312 * is full when we get here. In this case, new data is never queued,
1313 * SIGIOs never arrive, and the net never works.
1314 */
1315
1316 vector_rx(vp);
1317
1318 vector_reset_stats(vp);
1319 vdevice = find_device(vp->unit);
1320 vdevice->opened = 1;
1321
1322 if ((vp->options & VECTOR_TX) != 0)
1323 add_timer(&vp->tl);
1324 return 0;
1325 out_close:
1326 vector_net_close(dev);
1327 return err;
1328 }
1329
1330
vector_net_set_multicast_list(struct net_device * dev)1331 static void vector_net_set_multicast_list(struct net_device *dev)
1332 {
1333 /* TODO: - we can do some BPF games here */
1334 return;
1335 }
1336
vector_net_tx_timeout(struct net_device * dev,unsigned int txqueue)1337 static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
1338 {
1339 struct vector_private *vp = netdev_priv(dev);
1340
1341 vp->estats.tx_timeout_count++;
1342 netif_trans_update(dev);
1343 schedule_work(&vp->reset_tx);
1344 }
1345
vector_fix_features(struct net_device * dev,netdev_features_t features)1346 static netdev_features_t vector_fix_features(struct net_device *dev,
1347 netdev_features_t features)
1348 {
1349 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1350 return features;
1351 }
1352
vector_set_features(struct net_device * dev,netdev_features_t features)1353 static int vector_set_features(struct net_device *dev,
1354 netdev_features_t features)
1355 {
1356 struct vector_private *vp = netdev_priv(dev);
1357 /* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1358 * no way to negotiate it on raw sockets, so we can change
1359 * only our side.
1360 */
1361 if (features & NETIF_F_GRO)
1362 /* All new frame buffers will be GRO-sized */
1363 vp->req_size = 65536;
1364 else
1365 /* All new frame buffers will be normal sized */
1366 vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1367 return 0;
1368 }
1369
1370 #ifdef CONFIG_NET_POLL_CONTROLLER
vector_net_poll_controller(struct net_device * dev)1371 static void vector_net_poll_controller(struct net_device *dev)
1372 {
1373 disable_irq(dev->irq);
1374 vector_rx_interrupt(dev->irq, dev);
1375 enable_irq(dev->irq);
1376 }
1377 #endif
1378
vector_net_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1379 static void vector_net_get_drvinfo(struct net_device *dev,
1380 struct ethtool_drvinfo *info)
1381 {
1382 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1383 }
1384
vector_net_load_bpf_flash(struct net_device * dev,struct ethtool_flash * efl)1385 static int vector_net_load_bpf_flash(struct net_device *dev,
1386 struct ethtool_flash *efl)
1387 {
1388 struct vector_private *vp = netdev_priv(dev);
1389 struct vector_device *vdevice;
1390 const struct firmware *fw;
1391 int result = 0;
1392
1393 if (!(vp->options & VECTOR_BPF_FLASH)) {
1394 netdev_err(dev, "loading firmware not permitted: %s\n", efl->data);
1395 return -1;
1396 }
1397
1398 spin_lock(&vp->lock);
1399
1400 if (vp->bpf != NULL) {
1401 if (vp->opened)
1402 uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1403 kfree(vp->bpf->filter);
1404 vp->bpf->filter = NULL;
1405 } else {
1406 vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC);
1407 if (vp->bpf == NULL) {
1408 netdev_err(dev, "failed to allocate memory for firmware\n");
1409 goto flash_fail;
1410 }
1411 }
1412
1413 vdevice = find_device(vp->unit);
1414
1415 if (request_firmware(&fw, efl->data, &vdevice->pdev.dev))
1416 goto flash_fail;
1417
1418 vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC);
1419 if (!vp->bpf->filter)
1420 goto free_buffer;
1421
1422 vp->bpf->len = fw->size / sizeof(struct sock_filter);
1423 release_firmware(fw);
1424
1425 if (vp->opened)
1426 result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1427
1428 spin_unlock(&vp->lock);
1429
1430 return result;
1431
1432 free_buffer:
1433 release_firmware(fw);
1434
1435 flash_fail:
1436 spin_unlock(&vp->lock);
1437 if (vp->bpf != NULL)
1438 kfree(vp->bpf->filter);
1439 kfree(vp->bpf);
1440 vp->bpf = NULL;
1441 return -1;
1442 }
1443
vector_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)1444 static void vector_get_ringparam(struct net_device *netdev,
1445 struct ethtool_ringparam *ring)
1446 {
1447 struct vector_private *vp = netdev_priv(netdev);
1448
1449 ring->rx_max_pending = vp->rx_queue->max_depth;
1450 ring->tx_max_pending = vp->tx_queue->max_depth;
1451 ring->rx_pending = vp->rx_queue->max_depth;
1452 ring->tx_pending = vp->tx_queue->max_depth;
1453 }
1454
vector_get_strings(struct net_device * dev,u32 stringset,u8 * buf)1455 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1456 {
1457 switch (stringset) {
1458 case ETH_SS_TEST:
1459 *buf = '\0';
1460 break;
1461 case ETH_SS_STATS:
1462 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys));
1463 break;
1464 default:
1465 WARN_ON(1);
1466 break;
1467 }
1468 }
1469
vector_get_sset_count(struct net_device * dev,int sset)1470 static int vector_get_sset_count(struct net_device *dev, int sset)
1471 {
1472 switch (sset) {
1473 case ETH_SS_TEST:
1474 return 0;
1475 case ETH_SS_STATS:
1476 return VECTOR_NUM_STATS;
1477 default:
1478 return -EOPNOTSUPP;
1479 }
1480 }
1481
vector_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * estats,u64 * tmp_stats)1482 static void vector_get_ethtool_stats(struct net_device *dev,
1483 struct ethtool_stats *estats,
1484 u64 *tmp_stats)
1485 {
1486 struct vector_private *vp = netdev_priv(dev);
1487
1488 memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1489 }
1490
vector_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1491 static int vector_get_coalesce(struct net_device *netdev,
1492 struct ethtool_coalesce *ec,
1493 struct kernel_ethtool_coalesce *kernel_coal,
1494 struct netlink_ext_ack *extack)
1495 {
1496 struct vector_private *vp = netdev_priv(netdev);
1497
1498 ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1499 return 0;
1500 }
1501
vector_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1502 static int vector_set_coalesce(struct net_device *netdev,
1503 struct ethtool_coalesce *ec,
1504 struct kernel_ethtool_coalesce *kernel_coal,
1505 struct netlink_ext_ack *extack)
1506 {
1507 struct vector_private *vp = netdev_priv(netdev);
1508
1509 vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1510 if (vp->coalesce == 0)
1511 vp->coalesce = 1;
1512 return 0;
1513 }
1514
1515 static const struct ethtool_ops vector_net_ethtool_ops = {
1516 .supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS,
1517 .get_drvinfo = vector_net_get_drvinfo,
1518 .get_link = ethtool_op_get_link,
1519 .get_ts_info = ethtool_op_get_ts_info,
1520 .get_ringparam = vector_get_ringparam,
1521 .get_strings = vector_get_strings,
1522 .get_sset_count = vector_get_sset_count,
1523 .get_ethtool_stats = vector_get_ethtool_stats,
1524 .get_coalesce = vector_get_coalesce,
1525 .set_coalesce = vector_set_coalesce,
1526 .flash_device = vector_net_load_bpf_flash,
1527 };
1528
1529
1530 static const struct net_device_ops vector_netdev_ops = {
1531 .ndo_open = vector_net_open,
1532 .ndo_stop = vector_net_close,
1533 .ndo_start_xmit = vector_net_start_xmit,
1534 .ndo_set_rx_mode = vector_net_set_multicast_list,
1535 .ndo_tx_timeout = vector_net_tx_timeout,
1536 .ndo_set_mac_address = eth_mac_addr,
1537 .ndo_validate_addr = eth_validate_addr,
1538 .ndo_fix_features = vector_fix_features,
1539 .ndo_set_features = vector_set_features,
1540 #ifdef CONFIG_NET_POLL_CONTROLLER
1541 .ndo_poll_controller = vector_net_poll_controller,
1542 #endif
1543 };
1544
1545
vector_timer_expire(struct timer_list * t)1546 static void vector_timer_expire(struct timer_list *t)
1547 {
1548 struct vector_private *vp = from_timer(vp, t, tl);
1549
1550 vp->estats.tx_kicks++;
1551 vector_send(vp->tx_queue);
1552 }
1553
vector_eth_configure(int n,struct arglist * def)1554 static void vector_eth_configure(
1555 int n,
1556 struct arglist *def
1557 )
1558 {
1559 struct vector_device *device;
1560 struct net_device *dev;
1561 struct vector_private *vp;
1562 int err;
1563
1564 device = kzalloc(sizeof(*device), GFP_KERNEL);
1565 if (device == NULL) {
1566 printk(KERN_ERR "eth_configure failed to allocate struct "
1567 "vector_device\n");
1568 return;
1569 }
1570 dev = alloc_etherdev(sizeof(struct vector_private));
1571 if (dev == NULL) {
1572 printk(KERN_ERR "eth_configure: failed to allocate struct "
1573 "net_device for vec%d\n", n);
1574 goto out_free_device;
1575 }
1576
1577 dev->mtu = get_mtu(def);
1578
1579 INIT_LIST_HEAD(&device->list);
1580 device->unit = n;
1581
1582 /* If this name ends up conflicting with an existing registered
1583 * netdevice, that is OK, register_netdev{,ice}() will notice this
1584 * and fail.
1585 */
1586 snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1587 uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1588 vp = netdev_priv(dev);
1589
1590 /* sysfs register */
1591 if (!driver_registered) {
1592 platform_driver_register(¨_net_driver);
1593 driver_registered = 1;
1594 }
1595 device->pdev.id = n;
1596 device->pdev.name = DRIVER_NAME;
1597 device->pdev.dev.release = vector_device_release;
1598 dev_set_drvdata(&device->pdev.dev, device);
1599 if (platform_device_register(&device->pdev))
1600 goto out_free_netdev;
1601 SET_NETDEV_DEV(dev, &device->pdev.dev);
1602
1603 device->dev = dev;
1604
1605 *vp = ((struct vector_private)
1606 {
1607 .list = LIST_HEAD_INIT(vp->list),
1608 .dev = dev,
1609 .unit = n,
1610 .options = get_transport_options(def),
1611 .rx_irq = 0,
1612 .tx_irq = 0,
1613 .parsed = def,
1614 .max_packet = get_mtu(def) + ETH_HEADER_OTHER,
1615 /* TODO - we need to calculate headroom so that ip header
1616 * is 16 byte aligned all the time
1617 */
1618 .headroom = get_headroom(def),
1619 .form_header = NULL,
1620 .verify_header = NULL,
1621 .header_rxbuffer = NULL,
1622 .header_txbuffer = NULL,
1623 .header_size = 0,
1624 .rx_header_size = 0,
1625 .rexmit_scheduled = false,
1626 .opened = false,
1627 .transport_data = NULL,
1628 .in_write_poll = false,
1629 .coalesce = 2,
1630 .req_size = get_req_size(def),
1631 .in_error = false,
1632 .bpf = NULL
1633 });
1634
1635 dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1636 tasklet_setup(&vp->tx_poll, vector_tx_poll);
1637 INIT_WORK(&vp->reset_tx, vector_reset_tx);
1638
1639 timer_setup(&vp->tl, vector_timer_expire, 0);
1640 spin_lock_init(&vp->lock);
1641
1642 /* FIXME */
1643 dev->netdev_ops = &vector_netdev_ops;
1644 dev->ethtool_ops = &vector_net_ethtool_ops;
1645 dev->watchdog_timeo = (HZ >> 1);
1646 /* primary IRQ - fixme */
1647 dev->irq = 0; /* we will adjust this once opened */
1648
1649 rtnl_lock();
1650 err = register_netdevice(dev);
1651 rtnl_unlock();
1652 if (err)
1653 goto out_undo_user_init;
1654
1655 spin_lock(&vector_devices_lock);
1656 list_add(&device->list, &vector_devices);
1657 spin_unlock(&vector_devices_lock);
1658
1659 return;
1660
1661 out_undo_user_init:
1662 return;
1663 out_free_netdev:
1664 free_netdev(dev);
1665 out_free_device:
1666 kfree(device);
1667 }
1668
1669
1670
1671
1672 /*
1673 * Invoked late in the init
1674 */
1675
vector_init(void)1676 static int __init vector_init(void)
1677 {
1678 struct list_head *ele;
1679 struct vector_cmd_line_arg *def;
1680 struct arglist *parsed;
1681
1682 list_for_each(ele, &vec_cmd_line) {
1683 def = list_entry(ele, struct vector_cmd_line_arg, list);
1684 parsed = uml_parse_vector_ifspec(def->arguments);
1685 if (parsed != NULL)
1686 vector_eth_configure(def->unit, parsed);
1687 }
1688 return 0;
1689 }
1690
1691
1692 /* Invoked at initial argument parsing, only stores
1693 * arguments until a proper vector_init is called
1694 * later
1695 */
1696
vector_setup(char * str)1697 static int __init vector_setup(char *str)
1698 {
1699 char *error;
1700 int n, err;
1701 struct vector_cmd_line_arg *new;
1702
1703 err = vector_parse(str, &n, &str, &error);
1704 if (err) {
1705 printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
1706 str, error);
1707 return 1;
1708 }
1709 new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
1710 if (!new)
1711 panic("%s: Failed to allocate %zu bytes\n", __func__,
1712 sizeof(*new));
1713 INIT_LIST_HEAD(&new->list);
1714 new->unit = n;
1715 new->arguments = str;
1716 list_add_tail(&new->list, &vec_cmd_line);
1717 return 1;
1718 }
1719
1720 __setup("vec", vector_setup);
1721 __uml_help(vector_setup,
1722 "vec[0-9]+:<option>=<value>,<option>=<value>\n"
1723 " Configure a vector io network device.\n\n"
1724 );
1725
1726 late_initcall(vector_init);
1727
1728 static struct mc_device vector_mc = {
1729 .list = LIST_HEAD_INIT(vector_mc.list),
1730 .name = "vec",
1731 .config = vector_config,
1732 .get_config = NULL,
1733 .id = vector_id,
1734 .remove = vector_remove,
1735 };
1736
1737 #ifdef CONFIG_INET
vector_inetaddr_event(struct notifier_block * this,unsigned long event,void * ptr)1738 static int vector_inetaddr_event(
1739 struct notifier_block *this,
1740 unsigned long event,
1741 void *ptr)
1742 {
1743 return NOTIFY_DONE;
1744 }
1745
1746 static struct notifier_block vector_inetaddr_notifier = {
1747 .notifier_call = vector_inetaddr_event,
1748 };
1749
inet_register(void)1750 static void inet_register(void)
1751 {
1752 register_inetaddr_notifier(&vector_inetaddr_notifier);
1753 }
1754 #else
inet_register(void)1755 static inline void inet_register(void)
1756 {
1757 }
1758 #endif
1759
vector_net_init(void)1760 static int vector_net_init(void)
1761 {
1762 mconsole_register_dev(&vector_mc);
1763 inet_register();
1764 return 0;
1765 }
1766
1767 __initcall(vector_net_init);
1768
1769
1770
1771