• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Per core/cpu state
4  *
5  * Used to coordinate shared registers between HT threads or
6  * among events on a single PMU.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17 
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24 
25 #include "../perf_event.h"
26 
27 /*
28  * Intel PerfMon, used on Core and later.
29  */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32 	[PERF_COUNT_HW_CPU_CYCLES]		= 0x003c,
33 	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
34 	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x4f2e,
35 	[PERF_COUNT_HW_CACHE_MISSES]		= 0x412e,
36 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c4,
37 	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c5,
38 	[PERF_COUNT_HW_BUS_CYCLES]		= 0x013c,
39 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x0300, /* pseudo-encoding */
40 };
41 
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49 	INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50 	EVENT_CONSTRAINT_END
51 };
52 
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58 	INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59 	INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60 	INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61 	INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62 	INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63 	INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64 	INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65 	INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66 	INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67 	INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68 	EVENT_CONSTRAINT_END
69 };
70 
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76 	INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77 	INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78 	INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79 	INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80 	INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81 	INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84 	EVENT_CONSTRAINT_END
85 };
86 
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92 	EVENT_EXTRA_END
93 };
94 
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100 	INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101 	INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102 	INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103 	INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104 	EVENT_CONSTRAINT_END
105 };
106 
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116 	INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121 
122 	/*
123 	 * When HT is off these events can only run on the bottom 4 counters
124 	 * When HT is on, they are impacted by the HT bug and require EXCL access
125 	 */
126 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130 
131 	EVENT_CONSTRAINT_END
132 };
133 
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139 	INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140 	INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
141 	INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144 	INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145 	INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149 
150 	/*
151 	 * When HT is off these events can only run on the bottom 4 counters
152 	 * When HT is on, they are impacted by the HT bug and require EXCL access
153 	 */
154 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158 
159 	EVENT_CONSTRAINT_END
160 };
161 
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168 	EVENT_EXTRA_END
169 };
170 
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173 	EVENT_CONSTRAINT_END
174 };
175 
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181 	EVENT_CONSTRAINT_END
182 };
183 
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189 	EVENT_CONSTRAINT_END
190 };
191 
192 static struct event_constraint intel_skl_event_constraints[] = {
193 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
194 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
195 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
196 	INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
197 
198 	/*
199 	 * when HT is off, these can only run on the bottom 4 counters
200 	 */
201 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
202 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
203 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
204 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
205 	INTEL_EVENT_CONSTRAINT(0xc6, 0xf),	/* FRONTEND_RETIRED.* */
206 
207 	EVENT_CONSTRAINT_END
208 };
209 
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213 	EVENT_EXTRA_END
214 };
215 
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221 	EVENT_EXTRA_END
222 };
223 
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229 	EVENT_EXTRA_END
230 };
231 
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236 	/*
237 	 * Note the low 8 bits eventsel code is not a continuous field, containing
238 	 * some #GPing bits. These are masked out.
239 	 */
240 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241 	EVENT_EXTRA_END
242 };
243 
244 static struct event_constraint intel_icl_event_constraints[] = {
245 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
246 	FIXED_EVENT_CONSTRAINT(0x01c0, 0),	/* old INST_RETIRED.PREC_DIST */
247 	FIXED_EVENT_CONSTRAINT(0x0100, 0),	/* INST_RETIRED.PREC_DIST */
248 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
249 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
250 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
251 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
252 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
253 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
254 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
255 	INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
256 	INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
257 	INTEL_EVENT_CONSTRAINT(0x32, 0xf),	/* SW_PREFETCH_ACCESS.* */
258 	INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
259 	INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
260 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_TOTAL */
261 	INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff),  /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
262 	INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff),  /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
263 	INTEL_EVENT_CONSTRAINT(0xa3, 0xf),      /* CYCLE_ACTIVITY.* */
264 	INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
265 	INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
266 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
267 	INTEL_EVENT_CONSTRAINT(0xef, 0xf),
268 	INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
269 	EVENT_CONSTRAINT_END
270 };
271 
272 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
273 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
274 	INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
275 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
276 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
277 	EVENT_EXTRA_END
278 };
279 
280 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
281 	INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
282 	INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
283 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
284 	INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
285 	INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
286 	INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
287 	EVENT_EXTRA_END
288 };
289 
290 static struct event_constraint intel_spr_event_constraints[] = {
291 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
292 	FIXED_EVENT_CONSTRAINT(0x0100, 0),	/* INST_RETIRED.PREC_DIST */
293 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
294 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
295 	FIXED_EVENT_CONSTRAINT(0x0400, 3),	/* SLOTS */
296 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
297 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
298 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
299 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
300 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
301 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
302 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
303 	METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
304 
305 	INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
306 	INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
307 	/*
308 	 * Generally event codes < 0x90 are restricted to counters 0-3.
309 	 * The 0x2E and 0x3C are exception, which has no restriction.
310 	 */
311 	INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
312 
313 	INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
314 	INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
315 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
316 	INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
317 	INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
318 	INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
319 	INTEL_EVENT_CONSTRAINT(0xce, 0x1),
320 	INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
321 	/*
322 	 * Generally event codes >= 0x90 are likely to have no restrictions.
323 	 * The exception are defined as above.
324 	 */
325 	INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
326 
327 	EVENT_CONSTRAINT_END
328 };
329 
330 
331 EVENT_ATTR_STR(mem-loads,	mem_ld_nhm,	"event=0x0b,umask=0x10,ldlat=3");
332 EVENT_ATTR_STR(mem-loads,	mem_ld_snb,	"event=0xcd,umask=0x1,ldlat=3");
333 EVENT_ATTR_STR(mem-stores,	mem_st_snb,	"event=0xcd,umask=0x2");
334 
335 static struct attribute *nhm_mem_events_attrs[] = {
336 	EVENT_PTR(mem_ld_nhm),
337 	NULL,
338 };
339 
340 /*
341  * topdown events for Intel Core CPUs.
342  *
343  * The events are all in slots, which is a free slot in a 4 wide
344  * pipeline. Some events are already reported in slots, for cycle
345  * events we multiply by the pipeline width (4).
346  *
347  * With Hyper Threading on, topdown metrics are either summed or averaged
348  * between the threads of a core: (count_t0 + count_t1).
349  *
350  * For the average case the metric is always scaled to pipeline width,
351  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
352  */
353 
354 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
355 	"event=0x3c,umask=0x0",			/* cpu_clk_unhalted.thread */
356 	"event=0x3c,umask=0x0,any=1");		/* cpu_clk_unhalted.thread_any */
357 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
358 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
359 	"event=0xe,umask=0x1");			/* uops_issued.any */
360 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
361 	"event=0xc2,umask=0x2");		/* uops_retired.retire_slots */
362 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
363 	"event=0x9c,umask=0x1");		/* idq_uops_not_delivered_core */
364 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
365 	"event=0xd,umask=0x3,cmask=1",		/* int_misc.recovery_cycles */
366 	"event=0xd,umask=0x3,cmask=1,any=1");	/* int_misc.recovery_cycles_any */
367 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
368 	"4", "2");
369 
370 EVENT_ATTR_STR(slots,			slots,			"event=0x00,umask=0x4");
371 EVENT_ATTR_STR(topdown-retiring,	td_retiring,		"event=0x00,umask=0x80");
372 EVENT_ATTR_STR(topdown-bad-spec,	td_bad_spec,		"event=0x00,umask=0x81");
373 EVENT_ATTR_STR(topdown-fe-bound,	td_fe_bound,		"event=0x00,umask=0x82");
374 EVENT_ATTR_STR(topdown-be-bound,	td_be_bound,		"event=0x00,umask=0x83");
375 EVENT_ATTR_STR(topdown-heavy-ops,	td_heavy_ops,		"event=0x00,umask=0x84");
376 EVENT_ATTR_STR(topdown-br-mispredict,	td_br_mispredict,	"event=0x00,umask=0x85");
377 EVENT_ATTR_STR(topdown-fetch-lat,	td_fetch_lat,		"event=0x00,umask=0x86");
378 EVENT_ATTR_STR(topdown-mem-bound,	td_mem_bound,		"event=0x00,umask=0x87");
379 
380 static struct attribute *snb_events_attrs[] = {
381 	EVENT_PTR(td_slots_issued),
382 	EVENT_PTR(td_slots_retired),
383 	EVENT_PTR(td_fetch_bubbles),
384 	EVENT_PTR(td_total_slots),
385 	EVENT_PTR(td_total_slots_scale),
386 	EVENT_PTR(td_recovery_bubbles),
387 	EVENT_PTR(td_recovery_bubbles_scale),
388 	NULL,
389 };
390 
391 static struct attribute *snb_mem_events_attrs[] = {
392 	EVENT_PTR(mem_ld_snb),
393 	EVENT_PTR(mem_st_snb),
394 	NULL,
395 };
396 
397 static struct event_constraint intel_hsw_event_constraints[] = {
398 	FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
399 	FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
400 	FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
401 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
402 	INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
403 	INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
404 	/* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
405 	INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
406 	/* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
407 	INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
408 	/* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
409 	INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
410 
411 	/*
412 	 * When HT is off these events can only run on the bottom 4 counters
413 	 * When HT is on, they are impacted by the HT bug and require EXCL access
414 	 */
415 	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
416 	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
417 	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
418 	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
419 
420 	EVENT_CONSTRAINT_END
421 };
422 
423 static struct event_constraint intel_bdw_event_constraints[] = {
424 	FIXED_EVENT_CONSTRAINT(0x00c0, 0),	/* INST_RETIRED.ANY */
425 	FIXED_EVENT_CONSTRAINT(0x003c, 1),	/* CPU_CLK_UNHALTED.CORE */
426 	FIXED_EVENT_CONSTRAINT(0x0300, 2),	/* CPU_CLK_UNHALTED.REF */
427 	INTEL_UEVENT_CONSTRAINT(0x148, 0x4),	/* L1D_PEND_MISS.PENDING */
428 	INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),	/* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
429 	/*
430 	 * when HT is off, these can only run on the bottom 4 counters
431 	 */
432 	INTEL_EVENT_CONSTRAINT(0xd0, 0xf),	/* MEM_INST_RETIRED.* */
433 	INTEL_EVENT_CONSTRAINT(0xd1, 0xf),	/* MEM_LOAD_RETIRED.* */
434 	INTEL_EVENT_CONSTRAINT(0xd2, 0xf),	/* MEM_LOAD_L3_HIT_RETIRED.* */
435 	INTEL_EVENT_CONSTRAINT(0xcd, 0xf),	/* MEM_TRANS_RETIRED.* */
436 	EVENT_CONSTRAINT_END
437 };
438 
intel_pmu_event_map(int hw_event)439 static u64 intel_pmu_event_map(int hw_event)
440 {
441 	return intel_perfmon_event_map[hw_event];
442 }
443 
444 static __initconst const u64 spr_hw_cache_event_ids
445 				[PERF_COUNT_HW_CACHE_MAX]
446 				[PERF_COUNT_HW_CACHE_OP_MAX]
447 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
448 {
449  [ C(L1D ) ] = {
450 	[ C(OP_READ) ] = {
451 		[ C(RESULT_ACCESS) ] = 0x81d0,
452 		[ C(RESULT_MISS)   ] = 0xe124,
453 	},
454 	[ C(OP_WRITE) ] = {
455 		[ C(RESULT_ACCESS) ] = 0x82d0,
456 	},
457  },
458  [ C(L1I ) ] = {
459 	[ C(OP_READ) ] = {
460 		[ C(RESULT_MISS)   ] = 0xe424,
461 	},
462 	[ C(OP_WRITE) ] = {
463 		[ C(RESULT_ACCESS) ] = -1,
464 		[ C(RESULT_MISS)   ] = -1,
465 	},
466  },
467  [ C(LL  ) ] = {
468 	[ C(OP_READ) ] = {
469 		[ C(RESULT_ACCESS) ] = 0x12a,
470 		[ C(RESULT_MISS)   ] = 0x12a,
471 	},
472 	[ C(OP_WRITE) ] = {
473 		[ C(RESULT_ACCESS) ] = 0x12a,
474 		[ C(RESULT_MISS)   ] = 0x12a,
475 	},
476  },
477  [ C(DTLB) ] = {
478 	[ C(OP_READ) ] = {
479 		[ C(RESULT_ACCESS) ] = 0x81d0,
480 		[ C(RESULT_MISS)   ] = 0xe12,
481 	},
482 	[ C(OP_WRITE) ] = {
483 		[ C(RESULT_ACCESS) ] = 0x82d0,
484 		[ C(RESULT_MISS)   ] = 0xe13,
485 	},
486  },
487  [ C(ITLB) ] = {
488 	[ C(OP_READ) ] = {
489 		[ C(RESULT_ACCESS) ] = -1,
490 		[ C(RESULT_MISS)   ] = 0xe11,
491 	},
492 	[ C(OP_WRITE) ] = {
493 		[ C(RESULT_ACCESS) ] = -1,
494 		[ C(RESULT_MISS)   ] = -1,
495 	},
496 	[ C(OP_PREFETCH) ] = {
497 		[ C(RESULT_ACCESS) ] = -1,
498 		[ C(RESULT_MISS)   ] = -1,
499 	},
500  },
501  [ C(BPU ) ] = {
502 	[ C(OP_READ) ] = {
503 		[ C(RESULT_ACCESS) ] = 0x4c4,
504 		[ C(RESULT_MISS)   ] = 0x4c5,
505 	},
506 	[ C(OP_WRITE) ] = {
507 		[ C(RESULT_ACCESS) ] = -1,
508 		[ C(RESULT_MISS)   ] = -1,
509 	},
510 	[ C(OP_PREFETCH) ] = {
511 		[ C(RESULT_ACCESS) ] = -1,
512 		[ C(RESULT_MISS)   ] = -1,
513 	},
514  },
515  [ C(NODE) ] = {
516 	[ C(OP_READ) ] = {
517 		[ C(RESULT_ACCESS) ] = 0x12a,
518 		[ C(RESULT_MISS)   ] = 0x12a,
519 	},
520  },
521 };
522 
523 static __initconst const u64 spr_hw_cache_extra_regs
524 				[PERF_COUNT_HW_CACHE_MAX]
525 				[PERF_COUNT_HW_CACHE_OP_MAX]
526 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
527 {
528  [ C(LL  ) ] = {
529 	[ C(OP_READ) ] = {
530 		[ C(RESULT_ACCESS) ] = 0x10001,
531 		[ C(RESULT_MISS)   ] = 0x3fbfc00001,
532 	},
533 	[ C(OP_WRITE) ] = {
534 		[ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
535 		[ C(RESULT_MISS)   ] = 0x3f3fc00002,
536 	},
537  },
538  [ C(NODE) ] = {
539 	[ C(OP_READ) ] = {
540 		[ C(RESULT_ACCESS) ] = 0x10c000001,
541 		[ C(RESULT_MISS)   ] = 0x3fb3000001,
542 	},
543  },
544 };
545 
546 /*
547  * Notes on the events:
548  * - data reads do not include code reads (comparable to earlier tables)
549  * - data counts include speculative execution (except L1 write, dtlb, bpu)
550  * - remote node access includes remote memory, remote cache, remote mmio.
551  * - prefetches are not included in the counts.
552  * - icache miss does not include decoded icache
553  */
554 
555 #define SKL_DEMAND_DATA_RD		BIT_ULL(0)
556 #define SKL_DEMAND_RFO			BIT_ULL(1)
557 #define SKL_ANY_RESPONSE		BIT_ULL(16)
558 #define SKL_SUPPLIER_NONE		BIT_ULL(17)
559 #define SKL_L3_MISS_LOCAL_DRAM		BIT_ULL(26)
560 #define SKL_L3_MISS_REMOTE_HOP0_DRAM	BIT_ULL(27)
561 #define SKL_L3_MISS_REMOTE_HOP1_DRAM	BIT_ULL(28)
562 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM	BIT_ULL(29)
563 #define SKL_L3_MISS			(SKL_L3_MISS_LOCAL_DRAM| \
564 					 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
565 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
566 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
567 #define SKL_SPL_HIT			BIT_ULL(30)
568 #define SKL_SNOOP_NONE			BIT_ULL(31)
569 #define SKL_SNOOP_NOT_NEEDED		BIT_ULL(32)
570 #define SKL_SNOOP_MISS			BIT_ULL(33)
571 #define SKL_SNOOP_HIT_NO_FWD		BIT_ULL(34)
572 #define SKL_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
573 #define SKL_SNOOP_HITM			BIT_ULL(36)
574 #define SKL_SNOOP_NON_DRAM		BIT_ULL(37)
575 #define SKL_ANY_SNOOP			(SKL_SPL_HIT|SKL_SNOOP_NONE| \
576 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
577 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
578 					 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
579 #define SKL_DEMAND_READ			SKL_DEMAND_DATA_RD
580 #define SKL_SNOOP_DRAM			(SKL_SNOOP_NONE| \
581 					 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
582 					 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
583 					 SKL_SNOOP_HITM|SKL_SPL_HIT)
584 #define SKL_DEMAND_WRITE		SKL_DEMAND_RFO
585 #define SKL_LLC_ACCESS			SKL_ANY_RESPONSE
586 #define SKL_L3_MISS_REMOTE		(SKL_L3_MISS_REMOTE_HOP0_DRAM| \
587 					 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
588 					 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
589 
590 static __initconst const u64 skl_hw_cache_event_ids
591 				[PERF_COUNT_HW_CACHE_MAX]
592 				[PERF_COUNT_HW_CACHE_OP_MAX]
593 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
594 {
595  [ C(L1D ) ] = {
596 	[ C(OP_READ) ] = {
597 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
598 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
599 	},
600 	[ C(OP_WRITE) ] = {
601 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
602 		[ C(RESULT_MISS)   ] = 0x0,
603 	},
604 	[ C(OP_PREFETCH) ] = {
605 		[ C(RESULT_ACCESS) ] = 0x0,
606 		[ C(RESULT_MISS)   ] = 0x0,
607 	},
608  },
609  [ C(L1I ) ] = {
610 	[ C(OP_READ) ] = {
611 		[ C(RESULT_ACCESS) ] = 0x0,
612 		[ C(RESULT_MISS)   ] = 0x283,	/* ICACHE_64B.MISS */
613 	},
614 	[ C(OP_WRITE) ] = {
615 		[ C(RESULT_ACCESS) ] = -1,
616 		[ C(RESULT_MISS)   ] = -1,
617 	},
618 	[ C(OP_PREFETCH) ] = {
619 		[ C(RESULT_ACCESS) ] = 0x0,
620 		[ C(RESULT_MISS)   ] = 0x0,
621 	},
622  },
623  [ C(LL  ) ] = {
624 	[ C(OP_READ) ] = {
625 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
626 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
627 	},
628 	[ C(OP_WRITE) ] = {
629 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
630 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
631 	},
632 	[ C(OP_PREFETCH) ] = {
633 		[ C(RESULT_ACCESS) ] = 0x0,
634 		[ C(RESULT_MISS)   ] = 0x0,
635 	},
636  },
637  [ C(DTLB) ] = {
638 	[ C(OP_READ) ] = {
639 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_INST_RETIRED.ALL_LOADS */
640 		[ C(RESULT_MISS)   ] = 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
641 	},
642 	[ C(OP_WRITE) ] = {
643 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_INST_RETIRED.ALL_STORES */
644 		[ C(RESULT_MISS)   ] = 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
645 	},
646 	[ C(OP_PREFETCH) ] = {
647 		[ C(RESULT_ACCESS) ] = 0x0,
648 		[ C(RESULT_MISS)   ] = 0x0,
649 	},
650  },
651  [ C(ITLB) ] = {
652 	[ C(OP_READ) ] = {
653 		[ C(RESULT_ACCESS) ] = 0x2085,	/* ITLB_MISSES.STLB_HIT */
654 		[ C(RESULT_MISS)   ] = 0xe85,	/* ITLB_MISSES.WALK_COMPLETED */
655 	},
656 	[ C(OP_WRITE) ] = {
657 		[ C(RESULT_ACCESS) ] = -1,
658 		[ C(RESULT_MISS)   ] = -1,
659 	},
660 	[ C(OP_PREFETCH) ] = {
661 		[ C(RESULT_ACCESS) ] = -1,
662 		[ C(RESULT_MISS)   ] = -1,
663 	},
664  },
665  [ C(BPU ) ] = {
666 	[ C(OP_READ) ] = {
667 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
668 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
669 	},
670 	[ C(OP_WRITE) ] = {
671 		[ C(RESULT_ACCESS) ] = -1,
672 		[ C(RESULT_MISS)   ] = -1,
673 	},
674 	[ C(OP_PREFETCH) ] = {
675 		[ C(RESULT_ACCESS) ] = -1,
676 		[ C(RESULT_MISS)   ] = -1,
677 	},
678  },
679  [ C(NODE) ] = {
680 	[ C(OP_READ) ] = {
681 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
682 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
683 	},
684 	[ C(OP_WRITE) ] = {
685 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
686 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
687 	},
688 	[ C(OP_PREFETCH) ] = {
689 		[ C(RESULT_ACCESS) ] = 0x0,
690 		[ C(RESULT_MISS)   ] = 0x0,
691 	},
692  },
693 };
694 
695 static __initconst const u64 skl_hw_cache_extra_regs
696 				[PERF_COUNT_HW_CACHE_MAX]
697 				[PERF_COUNT_HW_CACHE_OP_MAX]
698 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
699 {
700  [ C(LL  ) ] = {
701 	[ C(OP_READ) ] = {
702 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
703 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
704 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
705 				       SKL_L3_MISS|SKL_ANY_SNOOP|
706 				       SKL_SUPPLIER_NONE,
707 	},
708 	[ C(OP_WRITE) ] = {
709 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
710 				       SKL_LLC_ACCESS|SKL_ANY_SNOOP,
711 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
712 				       SKL_L3_MISS|SKL_ANY_SNOOP|
713 				       SKL_SUPPLIER_NONE,
714 	},
715 	[ C(OP_PREFETCH) ] = {
716 		[ C(RESULT_ACCESS) ] = 0x0,
717 		[ C(RESULT_MISS)   ] = 0x0,
718 	},
719  },
720  [ C(NODE) ] = {
721 	[ C(OP_READ) ] = {
722 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
723 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
724 		[ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
725 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
726 	},
727 	[ C(OP_WRITE) ] = {
728 		[ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
729 				       SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
730 		[ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
731 				       SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
732 	},
733 	[ C(OP_PREFETCH) ] = {
734 		[ C(RESULT_ACCESS) ] = 0x0,
735 		[ C(RESULT_MISS)   ] = 0x0,
736 	},
737  },
738 };
739 
740 #define SNB_DMND_DATA_RD	(1ULL << 0)
741 #define SNB_DMND_RFO		(1ULL << 1)
742 #define SNB_DMND_IFETCH		(1ULL << 2)
743 #define SNB_DMND_WB		(1ULL << 3)
744 #define SNB_PF_DATA_RD		(1ULL << 4)
745 #define SNB_PF_RFO		(1ULL << 5)
746 #define SNB_PF_IFETCH		(1ULL << 6)
747 #define SNB_LLC_DATA_RD		(1ULL << 7)
748 #define SNB_LLC_RFO		(1ULL << 8)
749 #define SNB_LLC_IFETCH		(1ULL << 9)
750 #define SNB_BUS_LOCKS		(1ULL << 10)
751 #define SNB_STRM_ST		(1ULL << 11)
752 #define SNB_OTHER		(1ULL << 15)
753 #define SNB_RESP_ANY		(1ULL << 16)
754 #define SNB_NO_SUPP		(1ULL << 17)
755 #define SNB_LLC_HITM		(1ULL << 18)
756 #define SNB_LLC_HITE		(1ULL << 19)
757 #define SNB_LLC_HITS		(1ULL << 20)
758 #define SNB_LLC_HITF		(1ULL << 21)
759 #define SNB_LOCAL		(1ULL << 22)
760 #define SNB_REMOTE		(0xffULL << 23)
761 #define SNB_SNP_NONE		(1ULL << 31)
762 #define SNB_SNP_NOT_NEEDED	(1ULL << 32)
763 #define SNB_SNP_MISS		(1ULL << 33)
764 #define SNB_NO_FWD		(1ULL << 34)
765 #define SNB_SNP_FWD		(1ULL << 35)
766 #define SNB_HITM		(1ULL << 36)
767 #define SNB_NON_DRAM		(1ULL << 37)
768 
769 #define SNB_DMND_READ		(SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
770 #define SNB_DMND_WRITE		(SNB_DMND_RFO|SNB_LLC_RFO)
771 #define SNB_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
772 
773 #define SNB_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
774 				 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
775 				 SNB_HITM)
776 
777 #define SNB_DRAM_ANY		(SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
778 #define SNB_DRAM_REMOTE		(SNB_REMOTE|SNB_SNP_ANY)
779 
780 #define SNB_L3_ACCESS		SNB_RESP_ANY
781 #define SNB_L3_MISS		(SNB_DRAM_ANY|SNB_NON_DRAM)
782 
783 static __initconst const u64 snb_hw_cache_extra_regs
784 				[PERF_COUNT_HW_CACHE_MAX]
785 				[PERF_COUNT_HW_CACHE_OP_MAX]
786 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
787 {
788  [ C(LL  ) ] = {
789 	[ C(OP_READ) ] = {
790 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
791 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
792 	},
793 	[ C(OP_WRITE) ] = {
794 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
795 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
796 	},
797 	[ C(OP_PREFETCH) ] = {
798 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
799 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
800 	},
801  },
802  [ C(NODE) ] = {
803 	[ C(OP_READ) ] = {
804 		[ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
805 		[ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
806 	},
807 	[ C(OP_WRITE) ] = {
808 		[ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
809 		[ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
810 	},
811 	[ C(OP_PREFETCH) ] = {
812 		[ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
813 		[ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
814 	},
815  },
816 };
817 
818 static __initconst const u64 snb_hw_cache_event_ids
819 				[PERF_COUNT_HW_CACHE_MAX]
820 				[PERF_COUNT_HW_CACHE_OP_MAX]
821 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
822 {
823  [ C(L1D) ] = {
824 	[ C(OP_READ) ] = {
825 		[ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
826 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
827 	},
828 	[ C(OP_WRITE) ] = {
829 		[ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
830 		[ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
831 	},
832 	[ C(OP_PREFETCH) ] = {
833 		[ C(RESULT_ACCESS) ] = 0x0,
834 		[ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
835 	},
836  },
837  [ C(L1I ) ] = {
838 	[ C(OP_READ) ] = {
839 		[ C(RESULT_ACCESS) ] = 0x0,
840 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
841 	},
842 	[ C(OP_WRITE) ] = {
843 		[ C(RESULT_ACCESS) ] = -1,
844 		[ C(RESULT_MISS)   ] = -1,
845 	},
846 	[ C(OP_PREFETCH) ] = {
847 		[ C(RESULT_ACCESS) ] = 0x0,
848 		[ C(RESULT_MISS)   ] = 0x0,
849 	},
850  },
851  [ C(LL  ) ] = {
852 	[ C(OP_READ) ] = {
853 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
854 		[ C(RESULT_ACCESS) ] = 0x01b7,
855 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
856 		[ C(RESULT_MISS)   ] = 0x01b7,
857 	},
858 	[ C(OP_WRITE) ] = {
859 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
860 		[ C(RESULT_ACCESS) ] = 0x01b7,
861 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
862 		[ C(RESULT_MISS)   ] = 0x01b7,
863 	},
864 	[ C(OP_PREFETCH) ] = {
865 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
866 		[ C(RESULT_ACCESS) ] = 0x01b7,
867 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
868 		[ C(RESULT_MISS)   ] = 0x01b7,
869 	},
870  },
871  [ C(DTLB) ] = {
872 	[ C(OP_READ) ] = {
873 		[ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
874 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
875 	},
876 	[ C(OP_WRITE) ] = {
877 		[ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
878 		[ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
879 	},
880 	[ C(OP_PREFETCH) ] = {
881 		[ C(RESULT_ACCESS) ] = 0x0,
882 		[ C(RESULT_MISS)   ] = 0x0,
883 	},
884  },
885  [ C(ITLB) ] = {
886 	[ C(OP_READ) ] = {
887 		[ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
888 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
889 	},
890 	[ C(OP_WRITE) ] = {
891 		[ C(RESULT_ACCESS) ] = -1,
892 		[ C(RESULT_MISS)   ] = -1,
893 	},
894 	[ C(OP_PREFETCH) ] = {
895 		[ C(RESULT_ACCESS) ] = -1,
896 		[ C(RESULT_MISS)   ] = -1,
897 	},
898  },
899  [ C(BPU ) ] = {
900 	[ C(OP_READ) ] = {
901 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
902 		[ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
903 	},
904 	[ C(OP_WRITE) ] = {
905 		[ C(RESULT_ACCESS) ] = -1,
906 		[ C(RESULT_MISS)   ] = -1,
907 	},
908 	[ C(OP_PREFETCH) ] = {
909 		[ C(RESULT_ACCESS) ] = -1,
910 		[ C(RESULT_MISS)   ] = -1,
911 	},
912  },
913  [ C(NODE) ] = {
914 	[ C(OP_READ) ] = {
915 		[ C(RESULT_ACCESS) ] = 0x01b7,
916 		[ C(RESULT_MISS)   ] = 0x01b7,
917 	},
918 	[ C(OP_WRITE) ] = {
919 		[ C(RESULT_ACCESS) ] = 0x01b7,
920 		[ C(RESULT_MISS)   ] = 0x01b7,
921 	},
922 	[ C(OP_PREFETCH) ] = {
923 		[ C(RESULT_ACCESS) ] = 0x01b7,
924 		[ C(RESULT_MISS)   ] = 0x01b7,
925 	},
926  },
927 
928 };
929 
930 /*
931  * Notes on the events:
932  * - data reads do not include code reads (comparable to earlier tables)
933  * - data counts include speculative execution (except L1 write, dtlb, bpu)
934  * - remote node access includes remote memory, remote cache, remote mmio.
935  * - prefetches are not included in the counts because they are not
936  *   reliably counted.
937  */
938 
939 #define HSW_DEMAND_DATA_RD		BIT_ULL(0)
940 #define HSW_DEMAND_RFO			BIT_ULL(1)
941 #define HSW_ANY_RESPONSE		BIT_ULL(16)
942 #define HSW_SUPPLIER_NONE		BIT_ULL(17)
943 #define HSW_L3_MISS_LOCAL_DRAM		BIT_ULL(22)
944 #define HSW_L3_MISS_REMOTE_HOP0		BIT_ULL(27)
945 #define HSW_L3_MISS_REMOTE_HOP1		BIT_ULL(28)
946 #define HSW_L3_MISS_REMOTE_HOP2P	BIT_ULL(29)
947 #define HSW_L3_MISS			(HSW_L3_MISS_LOCAL_DRAM| \
948 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
949 					 HSW_L3_MISS_REMOTE_HOP2P)
950 #define HSW_SNOOP_NONE			BIT_ULL(31)
951 #define HSW_SNOOP_NOT_NEEDED		BIT_ULL(32)
952 #define HSW_SNOOP_MISS			BIT_ULL(33)
953 #define HSW_SNOOP_HIT_NO_FWD		BIT_ULL(34)
954 #define HSW_SNOOP_HIT_WITH_FWD		BIT_ULL(35)
955 #define HSW_SNOOP_HITM			BIT_ULL(36)
956 #define HSW_SNOOP_NON_DRAM		BIT_ULL(37)
957 #define HSW_ANY_SNOOP			(HSW_SNOOP_NONE| \
958 					 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
959 					 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
960 					 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
961 #define HSW_SNOOP_DRAM			(HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
962 #define HSW_DEMAND_READ			HSW_DEMAND_DATA_RD
963 #define HSW_DEMAND_WRITE		HSW_DEMAND_RFO
964 #define HSW_L3_MISS_REMOTE		(HSW_L3_MISS_REMOTE_HOP0|\
965 					 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
966 #define HSW_LLC_ACCESS			HSW_ANY_RESPONSE
967 
968 #define BDW_L3_MISS_LOCAL		BIT(26)
969 #define BDW_L3_MISS			(BDW_L3_MISS_LOCAL| \
970 					 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
971 					 HSW_L3_MISS_REMOTE_HOP2P)
972 
973 
974 static __initconst const u64 hsw_hw_cache_event_ids
975 				[PERF_COUNT_HW_CACHE_MAX]
976 				[PERF_COUNT_HW_CACHE_OP_MAX]
977 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
978 {
979  [ C(L1D ) ] = {
980 	[ C(OP_READ) ] = {
981 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
982 		[ C(RESULT_MISS)   ] = 0x151,	/* L1D.REPLACEMENT */
983 	},
984 	[ C(OP_WRITE) ] = {
985 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
986 		[ C(RESULT_MISS)   ] = 0x0,
987 	},
988 	[ C(OP_PREFETCH) ] = {
989 		[ C(RESULT_ACCESS) ] = 0x0,
990 		[ C(RESULT_MISS)   ] = 0x0,
991 	},
992  },
993  [ C(L1I ) ] = {
994 	[ C(OP_READ) ] = {
995 		[ C(RESULT_ACCESS) ] = 0x0,
996 		[ C(RESULT_MISS)   ] = 0x280,	/* ICACHE.MISSES */
997 	},
998 	[ C(OP_WRITE) ] = {
999 		[ C(RESULT_ACCESS) ] = -1,
1000 		[ C(RESULT_MISS)   ] = -1,
1001 	},
1002 	[ C(OP_PREFETCH) ] = {
1003 		[ C(RESULT_ACCESS) ] = 0x0,
1004 		[ C(RESULT_MISS)   ] = 0x0,
1005 	},
1006  },
1007  [ C(LL  ) ] = {
1008 	[ C(OP_READ) ] = {
1009 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1010 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1011 	},
1012 	[ C(OP_WRITE) ] = {
1013 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1014 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1015 	},
1016 	[ C(OP_PREFETCH) ] = {
1017 		[ C(RESULT_ACCESS) ] = 0x0,
1018 		[ C(RESULT_MISS)   ] = 0x0,
1019 	},
1020  },
1021  [ C(DTLB) ] = {
1022 	[ C(OP_READ) ] = {
1023 		[ C(RESULT_ACCESS) ] = 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1024 		[ C(RESULT_MISS)   ] = 0x108,	/* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1025 	},
1026 	[ C(OP_WRITE) ] = {
1027 		[ C(RESULT_ACCESS) ] = 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1028 		[ C(RESULT_MISS)   ] = 0x149,	/* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1029 	},
1030 	[ C(OP_PREFETCH) ] = {
1031 		[ C(RESULT_ACCESS) ] = 0x0,
1032 		[ C(RESULT_MISS)   ] = 0x0,
1033 	},
1034  },
1035  [ C(ITLB) ] = {
1036 	[ C(OP_READ) ] = {
1037 		[ C(RESULT_ACCESS) ] = 0x6085,	/* ITLB_MISSES.STLB_HIT */
1038 		[ C(RESULT_MISS)   ] = 0x185,	/* ITLB_MISSES.MISS_CAUSES_A_WALK */
1039 	},
1040 	[ C(OP_WRITE) ] = {
1041 		[ C(RESULT_ACCESS) ] = -1,
1042 		[ C(RESULT_MISS)   ] = -1,
1043 	},
1044 	[ C(OP_PREFETCH) ] = {
1045 		[ C(RESULT_ACCESS) ] = -1,
1046 		[ C(RESULT_MISS)   ] = -1,
1047 	},
1048  },
1049  [ C(BPU ) ] = {
1050 	[ C(OP_READ) ] = {
1051 		[ C(RESULT_ACCESS) ] = 0xc4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1052 		[ C(RESULT_MISS)   ] = 0xc5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1053 	},
1054 	[ C(OP_WRITE) ] = {
1055 		[ C(RESULT_ACCESS) ] = -1,
1056 		[ C(RESULT_MISS)   ] = -1,
1057 	},
1058 	[ C(OP_PREFETCH) ] = {
1059 		[ C(RESULT_ACCESS) ] = -1,
1060 		[ C(RESULT_MISS)   ] = -1,
1061 	},
1062  },
1063  [ C(NODE) ] = {
1064 	[ C(OP_READ) ] = {
1065 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1066 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1067 	},
1068 	[ C(OP_WRITE) ] = {
1069 		[ C(RESULT_ACCESS) ] = 0x1b7,	/* OFFCORE_RESPONSE */
1070 		[ C(RESULT_MISS)   ] = 0x1b7,	/* OFFCORE_RESPONSE */
1071 	},
1072 	[ C(OP_PREFETCH) ] = {
1073 		[ C(RESULT_ACCESS) ] = 0x0,
1074 		[ C(RESULT_MISS)   ] = 0x0,
1075 	},
1076  },
1077 };
1078 
1079 static __initconst const u64 hsw_hw_cache_extra_regs
1080 				[PERF_COUNT_HW_CACHE_MAX]
1081 				[PERF_COUNT_HW_CACHE_OP_MAX]
1082 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1083 {
1084  [ C(LL  ) ] = {
1085 	[ C(OP_READ) ] = {
1086 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1087 				       HSW_LLC_ACCESS,
1088 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1089 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1090 	},
1091 	[ C(OP_WRITE) ] = {
1092 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1093 				       HSW_LLC_ACCESS,
1094 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1095 				       HSW_L3_MISS|HSW_ANY_SNOOP,
1096 	},
1097 	[ C(OP_PREFETCH) ] = {
1098 		[ C(RESULT_ACCESS) ] = 0x0,
1099 		[ C(RESULT_MISS)   ] = 0x0,
1100 	},
1101  },
1102  [ C(NODE) ] = {
1103 	[ C(OP_READ) ] = {
1104 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1105 				       HSW_L3_MISS_LOCAL_DRAM|
1106 				       HSW_SNOOP_DRAM,
1107 		[ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
1108 				       HSW_L3_MISS_REMOTE|
1109 				       HSW_SNOOP_DRAM,
1110 	},
1111 	[ C(OP_WRITE) ] = {
1112 		[ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1113 				       HSW_L3_MISS_LOCAL_DRAM|
1114 				       HSW_SNOOP_DRAM,
1115 		[ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
1116 				       HSW_L3_MISS_REMOTE|
1117 				       HSW_SNOOP_DRAM,
1118 	},
1119 	[ C(OP_PREFETCH) ] = {
1120 		[ C(RESULT_ACCESS) ] = 0x0,
1121 		[ C(RESULT_MISS)   ] = 0x0,
1122 	},
1123  },
1124 };
1125 
1126 static __initconst const u64 westmere_hw_cache_event_ids
1127 				[PERF_COUNT_HW_CACHE_MAX]
1128 				[PERF_COUNT_HW_CACHE_OP_MAX]
1129 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1130 {
1131  [ C(L1D) ] = {
1132 	[ C(OP_READ) ] = {
1133 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1134 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1135 	},
1136 	[ C(OP_WRITE) ] = {
1137 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1138 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1139 	},
1140 	[ C(OP_PREFETCH) ] = {
1141 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1142 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1143 	},
1144  },
1145  [ C(L1I ) ] = {
1146 	[ C(OP_READ) ] = {
1147 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1148 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1149 	},
1150 	[ C(OP_WRITE) ] = {
1151 		[ C(RESULT_ACCESS) ] = -1,
1152 		[ C(RESULT_MISS)   ] = -1,
1153 	},
1154 	[ C(OP_PREFETCH) ] = {
1155 		[ C(RESULT_ACCESS) ] = 0x0,
1156 		[ C(RESULT_MISS)   ] = 0x0,
1157 	},
1158  },
1159  [ C(LL  ) ] = {
1160 	[ C(OP_READ) ] = {
1161 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1162 		[ C(RESULT_ACCESS) ] = 0x01b7,
1163 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1164 		[ C(RESULT_MISS)   ] = 0x01b7,
1165 	},
1166 	/*
1167 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1168 	 * on RFO.
1169 	 */
1170 	[ C(OP_WRITE) ] = {
1171 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1172 		[ C(RESULT_ACCESS) ] = 0x01b7,
1173 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1174 		[ C(RESULT_MISS)   ] = 0x01b7,
1175 	},
1176 	[ C(OP_PREFETCH) ] = {
1177 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1178 		[ C(RESULT_ACCESS) ] = 0x01b7,
1179 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1180 		[ C(RESULT_MISS)   ] = 0x01b7,
1181 	},
1182  },
1183  [ C(DTLB) ] = {
1184 	[ C(OP_READ) ] = {
1185 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1186 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1187 	},
1188 	[ C(OP_WRITE) ] = {
1189 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1190 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1191 	},
1192 	[ C(OP_PREFETCH) ] = {
1193 		[ C(RESULT_ACCESS) ] = 0x0,
1194 		[ C(RESULT_MISS)   ] = 0x0,
1195 	},
1196  },
1197  [ C(ITLB) ] = {
1198 	[ C(OP_READ) ] = {
1199 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1200 		[ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
1201 	},
1202 	[ C(OP_WRITE) ] = {
1203 		[ C(RESULT_ACCESS) ] = -1,
1204 		[ C(RESULT_MISS)   ] = -1,
1205 	},
1206 	[ C(OP_PREFETCH) ] = {
1207 		[ C(RESULT_ACCESS) ] = -1,
1208 		[ C(RESULT_MISS)   ] = -1,
1209 	},
1210  },
1211  [ C(BPU ) ] = {
1212 	[ C(OP_READ) ] = {
1213 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1214 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1215 	},
1216 	[ C(OP_WRITE) ] = {
1217 		[ C(RESULT_ACCESS) ] = -1,
1218 		[ C(RESULT_MISS)   ] = -1,
1219 	},
1220 	[ C(OP_PREFETCH) ] = {
1221 		[ C(RESULT_ACCESS) ] = -1,
1222 		[ C(RESULT_MISS)   ] = -1,
1223 	},
1224  },
1225  [ C(NODE) ] = {
1226 	[ C(OP_READ) ] = {
1227 		[ C(RESULT_ACCESS) ] = 0x01b7,
1228 		[ C(RESULT_MISS)   ] = 0x01b7,
1229 	},
1230 	[ C(OP_WRITE) ] = {
1231 		[ C(RESULT_ACCESS) ] = 0x01b7,
1232 		[ C(RESULT_MISS)   ] = 0x01b7,
1233 	},
1234 	[ C(OP_PREFETCH) ] = {
1235 		[ C(RESULT_ACCESS) ] = 0x01b7,
1236 		[ C(RESULT_MISS)   ] = 0x01b7,
1237 	},
1238  },
1239 };
1240 
1241 /*
1242  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1243  * See IA32 SDM Vol 3B 30.6.1.3
1244  */
1245 
1246 #define NHM_DMND_DATA_RD	(1 << 0)
1247 #define NHM_DMND_RFO		(1 << 1)
1248 #define NHM_DMND_IFETCH		(1 << 2)
1249 #define NHM_DMND_WB		(1 << 3)
1250 #define NHM_PF_DATA_RD		(1 << 4)
1251 #define NHM_PF_DATA_RFO		(1 << 5)
1252 #define NHM_PF_IFETCH		(1 << 6)
1253 #define NHM_OFFCORE_OTHER	(1 << 7)
1254 #define NHM_UNCORE_HIT		(1 << 8)
1255 #define NHM_OTHER_CORE_HIT_SNP	(1 << 9)
1256 #define NHM_OTHER_CORE_HITM	(1 << 10)
1257         			/* reserved */
1258 #define NHM_REMOTE_CACHE_FWD	(1 << 12)
1259 #define NHM_REMOTE_DRAM		(1 << 13)
1260 #define NHM_LOCAL_DRAM		(1 << 14)
1261 #define NHM_NON_DRAM		(1 << 15)
1262 
1263 #define NHM_LOCAL		(NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1264 #define NHM_REMOTE		(NHM_REMOTE_DRAM)
1265 
1266 #define NHM_DMND_READ		(NHM_DMND_DATA_RD)
1267 #define NHM_DMND_WRITE		(NHM_DMND_RFO|NHM_DMND_WB)
1268 #define NHM_DMND_PREFETCH	(NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1269 
1270 #define NHM_L3_HIT	(NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1271 #define NHM_L3_MISS	(NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1272 #define NHM_L3_ACCESS	(NHM_L3_HIT|NHM_L3_MISS)
1273 
1274 static __initconst const u64 nehalem_hw_cache_extra_regs
1275 				[PERF_COUNT_HW_CACHE_MAX]
1276 				[PERF_COUNT_HW_CACHE_OP_MAX]
1277 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1278 {
1279  [ C(LL  ) ] = {
1280 	[ C(OP_READ) ] = {
1281 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1282 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1283 	},
1284 	[ C(OP_WRITE) ] = {
1285 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1286 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1287 	},
1288 	[ C(OP_PREFETCH) ] = {
1289 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1290 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1291 	},
1292  },
1293  [ C(NODE) ] = {
1294 	[ C(OP_READ) ] = {
1295 		[ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1296 		[ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1297 	},
1298 	[ C(OP_WRITE) ] = {
1299 		[ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1300 		[ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1301 	},
1302 	[ C(OP_PREFETCH) ] = {
1303 		[ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1304 		[ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1305 	},
1306  },
1307 };
1308 
1309 static __initconst const u64 nehalem_hw_cache_event_ids
1310 				[PERF_COUNT_HW_CACHE_MAX]
1311 				[PERF_COUNT_HW_CACHE_OP_MAX]
1312 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1313 {
1314  [ C(L1D) ] = {
1315 	[ C(OP_READ) ] = {
1316 		[ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1317 		[ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1318 	},
1319 	[ C(OP_WRITE) ] = {
1320 		[ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1321 		[ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1322 	},
1323 	[ C(OP_PREFETCH) ] = {
1324 		[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1325 		[ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1326 	},
1327  },
1328  [ C(L1I ) ] = {
1329 	[ C(OP_READ) ] = {
1330 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1331 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1332 	},
1333 	[ C(OP_WRITE) ] = {
1334 		[ C(RESULT_ACCESS) ] = -1,
1335 		[ C(RESULT_MISS)   ] = -1,
1336 	},
1337 	[ C(OP_PREFETCH) ] = {
1338 		[ C(RESULT_ACCESS) ] = 0x0,
1339 		[ C(RESULT_MISS)   ] = 0x0,
1340 	},
1341  },
1342  [ C(LL  ) ] = {
1343 	[ C(OP_READ) ] = {
1344 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1345 		[ C(RESULT_ACCESS) ] = 0x01b7,
1346 		/* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1347 		[ C(RESULT_MISS)   ] = 0x01b7,
1348 	},
1349 	/*
1350 	 * Use RFO, not WRITEBACK, because a write miss would typically occur
1351 	 * on RFO.
1352 	 */
1353 	[ C(OP_WRITE) ] = {
1354 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1355 		[ C(RESULT_ACCESS) ] = 0x01b7,
1356 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1357 		[ C(RESULT_MISS)   ] = 0x01b7,
1358 	},
1359 	[ C(OP_PREFETCH) ] = {
1360 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1361 		[ C(RESULT_ACCESS) ] = 0x01b7,
1362 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1363 		[ C(RESULT_MISS)   ] = 0x01b7,
1364 	},
1365  },
1366  [ C(DTLB) ] = {
1367 	[ C(OP_READ) ] = {
1368 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1369 		[ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1370 	},
1371 	[ C(OP_WRITE) ] = {
1372 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1373 		[ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1374 	},
1375 	[ C(OP_PREFETCH) ] = {
1376 		[ C(RESULT_ACCESS) ] = 0x0,
1377 		[ C(RESULT_MISS)   ] = 0x0,
1378 	},
1379  },
1380  [ C(ITLB) ] = {
1381 	[ C(OP_READ) ] = {
1382 		[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1383 		[ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1384 	},
1385 	[ C(OP_WRITE) ] = {
1386 		[ C(RESULT_ACCESS) ] = -1,
1387 		[ C(RESULT_MISS)   ] = -1,
1388 	},
1389 	[ C(OP_PREFETCH) ] = {
1390 		[ C(RESULT_ACCESS) ] = -1,
1391 		[ C(RESULT_MISS)   ] = -1,
1392 	},
1393  },
1394  [ C(BPU ) ] = {
1395 	[ C(OP_READ) ] = {
1396 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1397 		[ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1398 	},
1399 	[ C(OP_WRITE) ] = {
1400 		[ C(RESULT_ACCESS) ] = -1,
1401 		[ C(RESULT_MISS)   ] = -1,
1402 	},
1403 	[ C(OP_PREFETCH) ] = {
1404 		[ C(RESULT_ACCESS) ] = -1,
1405 		[ C(RESULT_MISS)   ] = -1,
1406 	},
1407  },
1408  [ C(NODE) ] = {
1409 	[ C(OP_READ) ] = {
1410 		[ C(RESULT_ACCESS) ] = 0x01b7,
1411 		[ C(RESULT_MISS)   ] = 0x01b7,
1412 	},
1413 	[ C(OP_WRITE) ] = {
1414 		[ C(RESULT_ACCESS) ] = 0x01b7,
1415 		[ C(RESULT_MISS)   ] = 0x01b7,
1416 	},
1417 	[ C(OP_PREFETCH) ] = {
1418 		[ C(RESULT_ACCESS) ] = 0x01b7,
1419 		[ C(RESULT_MISS)   ] = 0x01b7,
1420 	},
1421  },
1422 };
1423 
1424 static __initconst const u64 core2_hw_cache_event_ids
1425 				[PERF_COUNT_HW_CACHE_MAX]
1426 				[PERF_COUNT_HW_CACHE_OP_MAX]
1427 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1428 {
1429  [ C(L1D) ] = {
1430 	[ C(OP_READ) ] = {
1431 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1432 		[ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1433 	},
1434 	[ C(OP_WRITE) ] = {
1435 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1436 		[ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1437 	},
1438 	[ C(OP_PREFETCH) ] = {
1439 		[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1440 		[ C(RESULT_MISS)   ] = 0,
1441 	},
1442  },
1443  [ C(L1I ) ] = {
1444 	[ C(OP_READ) ] = {
1445 		[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1446 		[ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1447 	},
1448 	[ C(OP_WRITE) ] = {
1449 		[ C(RESULT_ACCESS) ] = -1,
1450 		[ C(RESULT_MISS)   ] = -1,
1451 	},
1452 	[ C(OP_PREFETCH) ] = {
1453 		[ C(RESULT_ACCESS) ] = 0,
1454 		[ C(RESULT_MISS)   ] = 0,
1455 	},
1456  },
1457  [ C(LL  ) ] = {
1458 	[ C(OP_READ) ] = {
1459 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1460 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1461 	},
1462 	[ C(OP_WRITE) ] = {
1463 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1464 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1465 	},
1466 	[ C(OP_PREFETCH) ] = {
1467 		[ C(RESULT_ACCESS) ] = 0,
1468 		[ C(RESULT_MISS)   ] = 0,
1469 	},
1470  },
1471  [ C(DTLB) ] = {
1472 	[ C(OP_READ) ] = {
1473 		[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1474 		[ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1475 	},
1476 	[ C(OP_WRITE) ] = {
1477 		[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1478 		[ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1479 	},
1480 	[ C(OP_PREFETCH) ] = {
1481 		[ C(RESULT_ACCESS) ] = 0,
1482 		[ C(RESULT_MISS)   ] = 0,
1483 	},
1484  },
1485  [ C(ITLB) ] = {
1486 	[ C(OP_READ) ] = {
1487 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1488 		[ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1489 	},
1490 	[ C(OP_WRITE) ] = {
1491 		[ C(RESULT_ACCESS) ] = -1,
1492 		[ C(RESULT_MISS)   ] = -1,
1493 	},
1494 	[ C(OP_PREFETCH) ] = {
1495 		[ C(RESULT_ACCESS) ] = -1,
1496 		[ C(RESULT_MISS)   ] = -1,
1497 	},
1498  },
1499  [ C(BPU ) ] = {
1500 	[ C(OP_READ) ] = {
1501 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1502 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1503 	},
1504 	[ C(OP_WRITE) ] = {
1505 		[ C(RESULT_ACCESS) ] = -1,
1506 		[ C(RESULT_MISS)   ] = -1,
1507 	},
1508 	[ C(OP_PREFETCH) ] = {
1509 		[ C(RESULT_ACCESS) ] = -1,
1510 		[ C(RESULT_MISS)   ] = -1,
1511 	},
1512  },
1513 };
1514 
1515 static __initconst const u64 atom_hw_cache_event_ids
1516 				[PERF_COUNT_HW_CACHE_MAX]
1517 				[PERF_COUNT_HW_CACHE_OP_MAX]
1518 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1519 {
1520  [ C(L1D) ] = {
1521 	[ C(OP_READ) ] = {
1522 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1523 		[ C(RESULT_MISS)   ] = 0,
1524 	},
1525 	[ C(OP_WRITE) ] = {
1526 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1527 		[ C(RESULT_MISS)   ] = 0,
1528 	},
1529 	[ C(OP_PREFETCH) ] = {
1530 		[ C(RESULT_ACCESS) ] = 0x0,
1531 		[ C(RESULT_MISS)   ] = 0,
1532 	},
1533  },
1534  [ C(L1I ) ] = {
1535 	[ C(OP_READ) ] = {
1536 		[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1537 		[ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1538 	},
1539 	[ C(OP_WRITE) ] = {
1540 		[ C(RESULT_ACCESS) ] = -1,
1541 		[ C(RESULT_MISS)   ] = -1,
1542 	},
1543 	[ C(OP_PREFETCH) ] = {
1544 		[ C(RESULT_ACCESS) ] = 0,
1545 		[ C(RESULT_MISS)   ] = 0,
1546 	},
1547  },
1548  [ C(LL  ) ] = {
1549 	[ C(OP_READ) ] = {
1550 		[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1551 		[ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1552 	},
1553 	[ C(OP_WRITE) ] = {
1554 		[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1555 		[ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1556 	},
1557 	[ C(OP_PREFETCH) ] = {
1558 		[ C(RESULT_ACCESS) ] = 0,
1559 		[ C(RESULT_MISS)   ] = 0,
1560 	},
1561  },
1562  [ C(DTLB) ] = {
1563 	[ C(OP_READ) ] = {
1564 		[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1565 		[ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1566 	},
1567 	[ C(OP_WRITE) ] = {
1568 		[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1569 		[ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1570 	},
1571 	[ C(OP_PREFETCH) ] = {
1572 		[ C(RESULT_ACCESS) ] = 0,
1573 		[ C(RESULT_MISS)   ] = 0,
1574 	},
1575  },
1576  [ C(ITLB) ] = {
1577 	[ C(OP_READ) ] = {
1578 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1579 		[ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1580 	},
1581 	[ C(OP_WRITE) ] = {
1582 		[ C(RESULT_ACCESS) ] = -1,
1583 		[ C(RESULT_MISS)   ] = -1,
1584 	},
1585 	[ C(OP_PREFETCH) ] = {
1586 		[ C(RESULT_ACCESS) ] = -1,
1587 		[ C(RESULT_MISS)   ] = -1,
1588 	},
1589  },
1590  [ C(BPU ) ] = {
1591 	[ C(OP_READ) ] = {
1592 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1593 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1594 	},
1595 	[ C(OP_WRITE) ] = {
1596 		[ C(RESULT_ACCESS) ] = -1,
1597 		[ C(RESULT_MISS)   ] = -1,
1598 	},
1599 	[ C(OP_PREFETCH) ] = {
1600 		[ C(RESULT_ACCESS) ] = -1,
1601 		[ C(RESULT_MISS)   ] = -1,
1602 	},
1603  },
1604 };
1605 
1606 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1607 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1608 /* no_alloc_cycles.not_delivered */
1609 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1610 	       "event=0xca,umask=0x50");
1611 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1612 /* uops_retired.all */
1613 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1614 	       "event=0xc2,umask=0x10");
1615 /* uops_retired.all */
1616 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1617 	       "event=0xc2,umask=0x10");
1618 
1619 static struct attribute *slm_events_attrs[] = {
1620 	EVENT_PTR(td_total_slots_slm),
1621 	EVENT_PTR(td_total_slots_scale_slm),
1622 	EVENT_PTR(td_fetch_bubbles_slm),
1623 	EVENT_PTR(td_fetch_bubbles_scale_slm),
1624 	EVENT_PTR(td_slots_issued_slm),
1625 	EVENT_PTR(td_slots_retired_slm),
1626 	NULL
1627 };
1628 
1629 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1630 {
1631 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1632 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1633 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1634 	EVENT_EXTRA_END
1635 };
1636 
1637 #define SLM_DMND_READ		SNB_DMND_DATA_RD
1638 #define SLM_DMND_WRITE		SNB_DMND_RFO
1639 #define SLM_DMND_PREFETCH	(SNB_PF_DATA_RD|SNB_PF_RFO)
1640 
1641 #define SLM_SNP_ANY		(SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1642 #define SLM_LLC_ACCESS		SNB_RESP_ANY
1643 #define SLM_LLC_MISS		(SLM_SNP_ANY|SNB_NON_DRAM)
1644 
1645 static __initconst const u64 slm_hw_cache_extra_regs
1646 				[PERF_COUNT_HW_CACHE_MAX]
1647 				[PERF_COUNT_HW_CACHE_OP_MAX]
1648 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1649 {
1650  [ C(LL  ) ] = {
1651 	[ C(OP_READ) ] = {
1652 		[ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1653 		[ C(RESULT_MISS)   ] = 0,
1654 	},
1655 	[ C(OP_WRITE) ] = {
1656 		[ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1657 		[ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1658 	},
1659 	[ C(OP_PREFETCH) ] = {
1660 		[ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1661 		[ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1662 	},
1663  },
1664 };
1665 
1666 static __initconst const u64 slm_hw_cache_event_ids
1667 				[PERF_COUNT_HW_CACHE_MAX]
1668 				[PERF_COUNT_HW_CACHE_OP_MAX]
1669 				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
1670 {
1671  [ C(L1D) ] = {
1672 	[ C(OP_READ) ] = {
1673 		[ C(RESULT_ACCESS) ] = 0,
1674 		[ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1675 	},
1676 	[ C(OP_WRITE) ] = {
1677 		[ C(RESULT_ACCESS) ] = 0,
1678 		[ C(RESULT_MISS)   ] = 0,
1679 	},
1680 	[ C(OP_PREFETCH) ] = {
1681 		[ C(RESULT_ACCESS) ] = 0,
1682 		[ C(RESULT_MISS)   ] = 0,
1683 	},
1684  },
1685  [ C(L1I ) ] = {
1686 	[ C(OP_READ) ] = {
1687 		[ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1688 		[ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1689 	},
1690 	[ C(OP_WRITE) ] = {
1691 		[ C(RESULT_ACCESS) ] = -1,
1692 		[ C(RESULT_MISS)   ] = -1,
1693 	},
1694 	[ C(OP_PREFETCH) ] = {
1695 		[ C(RESULT_ACCESS) ] = 0,
1696 		[ C(RESULT_MISS)   ] = 0,
1697 	},
1698  },
1699  [ C(LL  ) ] = {
1700 	[ C(OP_READ) ] = {
1701 		/* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1702 		[ C(RESULT_ACCESS) ] = 0x01b7,
1703 		[ C(RESULT_MISS)   ] = 0,
1704 	},
1705 	[ C(OP_WRITE) ] = {
1706 		/* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1707 		[ C(RESULT_ACCESS) ] = 0x01b7,
1708 		/* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1709 		[ C(RESULT_MISS)   ] = 0x01b7,
1710 	},
1711 	[ C(OP_PREFETCH) ] = {
1712 		/* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1713 		[ C(RESULT_ACCESS) ] = 0x01b7,
1714 		/* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1715 		[ C(RESULT_MISS)   ] = 0x01b7,
1716 	},
1717  },
1718  [ C(DTLB) ] = {
1719 	[ C(OP_READ) ] = {
1720 		[ C(RESULT_ACCESS) ] = 0,
1721 		[ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1722 	},
1723 	[ C(OP_WRITE) ] = {
1724 		[ C(RESULT_ACCESS) ] = 0,
1725 		[ C(RESULT_MISS)   ] = 0,
1726 	},
1727 	[ C(OP_PREFETCH) ] = {
1728 		[ C(RESULT_ACCESS) ] = 0,
1729 		[ C(RESULT_MISS)   ] = 0,
1730 	},
1731  },
1732  [ C(ITLB) ] = {
1733 	[ C(OP_READ) ] = {
1734 		[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1735 		[ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1736 	},
1737 	[ C(OP_WRITE) ] = {
1738 		[ C(RESULT_ACCESS) ] = -1,
1739 		[ C(RESULT_MISS)   ] = -1,
1740 	},
1741 	[ C(OP_PREFETCH) ] = {
1742 		[ C(RESULT_ACCESS) ] = -1,
1743 		[ C(RESULT_MISS)   ] = -1,
1744 	},
1745  },
1746  [ C(BPU ) ] = {
1747 	[ C(OP_READ) ] = {
1748 		[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1749 		[ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1750 	},
1751 	[ C(OP_WRITE) ] = {
1752 		[ C(RESULT_ACCESS) ] = -1,
1753 		[ C(RESULT_MISS)   ] = -1,
1754 	},
1755 	[ C(OP_PREFETCH) ] = {
1756 		[ C(RESULT_ACCESS) ] = -1,
1757 		[ C(RESULT_MISS)   ] = -1,
1758 	},
1759  },
1760 };
1761 
1762 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1763 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1764 /* UOPS_NOT_DELIVERED.ANY */
1765 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1766 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1767 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1768 /* UOPS_RETIRED.ANY */
1769 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1770 /* UOPS_ISSUED.ANY */
1771 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1772 
1773 static struct attribute *glm_events_attrs[] = {
1774 	EVENT_PTR(td_total_slots_glm),
1775 	EVENT_PTR(td_total_slots_scale_glm),
1776 	EVENT_PTR(td_fetch_bubbles_glm),
1777 	EVENT_PTR(td_recovery_bubbles_glm),
1778 	EVENT_PTR(td_slots_issued_glm),
1779 	EVENT_PTR(td_slots_retired_glm),
1780 	NULL
1781 };
1782 
1783 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1784 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1785 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1786 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1787 	EVENT_EXTRA_END
1788 };
1789 
1790 #define GLM_DEMAND_DATA_RD		BIT_ULL(0)
1791 #define GLM_DEMAND_RFO			BIT_ULL(1)
1792 #define GLM_ANY_RESPONSE		BIT_ULL(16)
1793 #define GLM_SNP_NONE_OR_MISS		BIT_ULL(33)
1794 #define GLM_DEMAND_READ			GLM_DEMAND_DATA_RD
1795 #define GLM_DEMAND_WRITE		GLM_DEMAND_RFO
1796 #define GLM_DEMAND_PREFETCH		(SNB_PF_DATA_RD|SNB_PF_RFO)
1797 #define GLM_LLC_ACCESS			GLM_ANY_RESPONSE
1798 #define GLM_SNP_ANY			(GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1799 #define GLM_LLC_MISS			(GLM_SNP_ANY|SNB_NON_DRAM)
1800 
1801 static __initconst const u64 glm_hw_cache_event_ids
1802 				[PERF_COUNT_HW_CACHE_MAX]
1803 				[PERF_COUNT_HW_CACHE_OP_MAX]
1804 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1805 	[C(L1D)] = {
1806 		[C(OP_READ)] = {
1807 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1808 			[C(RESULT_MISS)]	= 0x0,
1809 		},
1810 		[C(OP_WRITE)] = {
1811 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1812 			[C(RESULT_MISS)]	= 0x0,
1813 		},
1814 		[C(OP_PREFETCH)] = {
1815 			[C(RESULT_ACCESS)]	= 0x0,
1816 			[C(RESULT_MISS)]	= 0x0,
1817 		},
1818 	},
1819 	[C(L1I)] = {
1820 		[C(OP_READ)] = {
1821 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1822 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1823 		},
1824 		[C(OP_WRITE)] = {
1825 			[C(RESULT_ACCESS)]	= -1,
1826 			[C(RESULT_MISS)]	= -1,
1827 		},
1828 		[C(OP_PREFETCH)] = {
1829 			[C(RESULT_ACCESS)]	= 0x0,
1830 			[C(RESULT_MISS)]	= 0x0,
1831 		},
1832 	},
1833 	[C(LL)] = {
1834 		[C(OP_READ)] = {
1835 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1836 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1837 		},
1838 		[C(OP_WRITE)] = {
1839 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1840 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1841 		},
1842 		[C(OP_PREFETCH)] = {
1843 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1844 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1845 		},
1846 	},
1847 	[C(DTLB)] = {
1848 		[C(OP_READ)] = {
1849 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1850 			[C(RESULT_MISS)]	= 0x0,
1851 		},
1852 		[C(OP_WRITE)] = {
1853 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1854 			[C(RESULT_MISS)]	= 0x0,
1855 		},
1856 		[C(OP_PREFETCH)] = {
1857 			[C(RESULT_ACCESS)]	= 0x0,
1858 			[C(RESULT_MISS)]	= 0x0,
1859 		},
1860 	},
1861 	[C(ITLB)] = {
1862 		[C(OP_READ)] = {
1863 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1864 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1865 		},
1866 		[C(OP_WRITE)] = {
1867 			[C(RESULT_ACCESS)]	= -1,
1868 			[C(RESULT_MISS)]	= -1,
1869 		},
1870 		[C(OP_PREFETCH)] = {
1871 			[C(RESULT_ACCESS)]	= -1,
1872 			[C(RESULT_MISS)]	= -1,
1873 		},
1874 	},
1875 	[C(BPU)] = {
1876 		[C(OP_READ)] = {
1877 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1878 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1879 		},
1880 		[C(OP_WRITE)] = {
1881 			[C(RESULT_ACCESS)]	= -1,
1882 			[C(RESULT_MISS)]	= -1,
1883 		},
1884 		[C(OP_PREFETCH)] = {
1885 			[C(RESULT_ACCESS)]	= -1,
1886 			[C(RESULT_MISS)]	= -1,
1887 		},
1888 	},
1889 };
1890 
1891 static __initconst const u64 glm_hw_cache_extra_regs
1892 				[PERF_COUNT_HW_CACHE_MAX]
1893 				[PERF_COUNT_HW_CACHE_OP_MAX]
1894 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1895 	[C(LL)] = {
1896 		[C(OP_READ)] = {
1897 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
1898 						  GLM_LLC_ACCESS,
1899 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
1900 						  GLM_LLC_MISS,
1901 		},
1902 		[C(OP_WRITE)] = {
1903 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
1904 						  GLM_LLC_ACCESS,
1905 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
1906 						  GLM_LLC_MISS,
1907 		},
1908 		[C(OP_PREFETCH)] = {
1909 			[C(RESULT_ACCESS)]	= GLM_DEMAND_PREFETCH|
1910 						  GLM_LLC_ACCESS,
1911 			[C(RESULT_MISS)]	= GLM_DEMAND_PREFETCH|
1912 						  GLM_LLC_MISS,
1913 		},
1914 	},
1915 };
1916 
1917 static __initconst const u64 glp_hw_cache_event_ids
1918 				[PERF_COUNT_HW_CACHE_MAX]
1919 				[PERF_COUNT_HW_CACHE_OP_MAX]
1920 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1921 	[C(L1D)] = {
1922 		[C(OP_READ)] = {
1923 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1924 			[C(RESULT_MISS)]	= 0x0,
1925 		},
1926 		[C(OP_WRITE)] = {
1927 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1928 			[C(RESULT_MISS)]	= 0x0,
1929 		},
1930 		[C(OP_PREFETCH)] = {
1931 			[C(RESULT_ACCESS)]	= 0x0,
1932 			[C(RESULT_MISS)]	= 0x0,
1933 		},
1934 	},
1935 	[C(L1I)] = {
1936 		[C(OP_READ)] = {
1937 			[C(RESULT_ACCESS)]	= 0x0380,	/* ICACHE.ACCESSES */
1938 			[C(RESULT_MISS)]	= 0x0280,	/* ICACHE.MISSES */
1939 		},
1940 		[C(OP_WRITE)] = {
1941 			[C(RESULT_ACCESS)]	= -1,
1942 			[C(RESULT_MISS)]	= -1,
1943 		},
1944 		[C(OP_PREFETCH)] = {
1945 			[C(RESULT_ACCESS)]	= 0x0,
1946 			[C(RESULT_MISS)]	= 0x0,
1947 		},
1948 	},
1949 	[C(LL)] = {
1950 		[C(OP_READ)] = {
1951 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1952 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1953 		},
1954 		[C(OP_WRITE)] = {
1955 			[C(RESULT_ACCESS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1956 			[C(RESULT_MISS)]	= 0x1b7,	/* OFFCORE_RESPONSE */
1957 		},
1958 		[C(OP_PREFETCH)] = {
1959 			[C(RESULT_ACCESS)]	= 0x0,
1960 			[C(RESULT_MISS)]	= 0x0,
1961 		},
1962 	},
1963 	[C(DTLB)] = {
1964 		[C(OP_READ)] = {
1965 			[C(RESULT_ACCESS)]	= 0x81d0,	/* MEM_UOPS_RETIRED.ALL_LOADS */
1966 			[C(RESULT_MISS)]	= 0xe08,	/* DTLB_LOAD_MISSES.WALK_COMPLETED */
1967 		},
1968 		[C(OP_WRITE)] = {
1969 			[C(RESULT_ACCESS)]	= 0x82d0,	/* MEM_UOPS_RETIRED.ALL_STORES */
1970 			[C(RESULT_MISS)]	= 0xe49,	/* DTLB_STORE_MISSES.WALK_COMPLETED */
1971 		},
1972 		[C(OP_PREFETCH)] = {
1973 			[C(RESULT_ACCESS)]	= 0x0,
1974 			[C(RESULT_MISS)]	= 0x0,
1975 		},
1976 	},
1977 	[C(ITLB)] = {
1978 		[C(OP_READ)] = {
1979 			[C(RESULT_ACCESS)]	= 0x00c0,	/* INST_RETIRED.ANY_P */
1980 			[C(RESULT_MISS)]	= 0x0481,	/* ITLB.MISS */
1981 		},
1982 		[C(OP_WRITE)] = {
1983 			[C(RESULT_ACCESS)]	= -1,
1984 			[C(RESULT_MISS)]	= -1,
1985 		},
1986 		[C(OP_PREFETCH)] = {
1987 			[C(RESULT_ACCESS)]	= -1,
1988 			[C(RESULT_MISS)]	= -1,
1989 		},
1990 	},
1991 	[C(BPU)] = {
1992 		[C(OP_READ)] = {
1993 			[C(RESULT_ACCESS)]	= 0x00c4,	/* BR_INST_RETIRED.ALL_BRANCHES */
1994 			[C(RESULT_MISS)]	= 0x00c5,	/* BR_MISP_RETIRED.ALL_BRANCHES */
1995 		},
1996 		[C(OP_WRITE)] = {
1997 			[C(RESULT_ACCESS)]	= -1,
1998 			[C(RESULT_MISS)]	= -1,
1999 		},
2000 		[C(OP_PREFETCH)] = {
2001 			[C(RESULT_ACCESS)]	= -1,
2002 			[C(RESULT_MISS)]	= -1,
2003 		},
2004 	},
2005 };
2006 
2007 static __initconst const u64 glp_hw_cache_extra_regs
2008 				[PERF_COUNT_HW_CACHE_MAX]
2009 				[PERF_COUNT_HW_CACHE_OP_MAX]
2010 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2011 	[C(LL)] = {
2012 		[C(OP_READ)] = {
2013 			[C(RESULT_ACCESS)]	= GLM_DEMAND_READ|
2014 						  GLM_LLC_ACCESS,
2015 			[C(RESULT_MISS)]	= GLM_DEMAND_READ|
2016 						  GLM_LLC_MISS,
2017 		},
2018 		[C(OP_WRITE)] = {
2019 			[C(RESULT_ACCESS)]	= GLM_DEMAND_WRITE|
2020 						  GLM_LLC_ACCESS,
2021 			[C(RESULT_MISS)]	= GLM_DEMAND_WRITE|
2022 						  GLM_LLC_MISS,
2023 		},
2024 		[C(OP_PREFETCH)] = {
2025 			[C(RESULT_ACCESS)]	= 0x0,
2026 			[C(RESULT_MISS)]	= 0x0,
2027 		},
2028 	},
2029 };
2030 
2031 #define TNT_LOCAL_DRAM			BIT_ULL(26)
2032 #define TNT_DEMAND_READ			GLM_DEMAND_DATA_RD
2033 #define TNT_DEMAND_WRITE		GLM_DEMAND_RFO
2034 #define TNT_LLC_ACCESS			GLM_ANY_RESPONSE
2035 #define TNT_SNP_ANY			(SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2036 					 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2037 #define TNT_LLC_MISS			(TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2038 
2039 static __initconst const u64 tnt_hw_cache_extra_regs
2040 				[PERF_COUNT_HW_CACHE_MAX]
2041 				[PERF_COUNT_HW_CACHE_OP_MAX]
2042 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2043 	[C(LL)] = {
2044 		[C(OP_READ)] = {
2045 			[C(RESULT_ACCESS)]	= TNT_DEMAND_READ|
2046 						  TNT_LLC_ACCESS,
2047 			[C(RESULT_MISS)]	= TNT_DEMAND_READ|
2048 						  TNT_LLC_MISS,
2049 		},
2050 		[C(OP_WRITE)] = {
2051 			[C(RESULT_ACCESS)]	= TNT_DEMAND_WRITE|
2052 						  TNT_LLC_ACCESS,
2053 			[C(RESULT_MISS)]	= TNT_DEMAND_WRITE|
2054 						  TNT_LLC_MISS,
2055 		},
2056 		[C(OP_PREFETCH)] = {
2057 			[C(RESULT_ACCESS)]	= 0x0,
2058 			[C(RESULT_MISS)]	= 0x0,
2059 		},
2060 	},
2061 };
2062 
2063 EVENT_ATTR_STR(topdown-fe-bound,       td_fe_bound_tnt,        "event=0x71,umask=0x0");
2064 EVENT_ATTR_STR(topdown-retiring,       td_retiring_tnt,        "event=0xc2,umask=0x0");
2065 EVENT_ATTR_STR(topdown-bad-spec,       td_bad_spec_tnt,        "event=0x73,umask=0x6");
2066 EVENT_ATTR_STR(topdown-be-bound,       td_be_bound_tnt,        "event=0x74,umask=0x0");
2067 
2068 static struct attribute *tnt_events_attrs[] = {
2069 	EVENT_PTR(td_fe_bound_tnt),
2070 	EVENT_PTR(td_retiring_tnt),
2071 	EVENT_PTR(td_bad_spec_tnt),
2072 	EVENT_PTR(td_be_bound_tnt),
2073 	NULL,
2074 };
2075 
2076 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2077 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2078 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2079 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2080 	EVENT_EXTRA_END
2081 };
2082 
2083 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2084 	/* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2085 	INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2086 	INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2087 	INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2088 	EVENT_EXTRA_END
2089 };
2090 
2091 #define KNL_OT_L2_HITE		BIT_ULL(19) /* Other Tile L2 Hit */
2092 #define KNL_OT_L2_HITF		BIT_ULL(20) /* Other Tile L2 Hit */
2093 #define KNL_MCDRAM_LOCAL	BIT_ULL(21)
2094 #define KNL_MCDRAM_FAR		BIT_ULL(22)
2095 #define KNL_DDR_LOCAL		BIT_ULL(23)
2096 #define KNL_DDR_FAR		BIT_ULL(24)
2097 #define KNL_DRAM_ANY		(KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2098 				    KNL_DDR_LOCAL | KNL_DDR_FAR)
2099 #define KNL_L2_READ		SLM_DMND_READ
2100 #define KNL_L2_WRITE		SLM_DMND_WRITE
2101 #define KNL_L2_PREFETCH		SLM_DMND_PREFETCH
2102 #define KNL_L2_ACCESS		SLM_LLC_ACCESS
2103 #define KNL_L2_MISS		(KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2104 				   KNL_DRAM_ANY | SNB_SNP_ANY | \
2105 						  SNB_NON_DRAM)
2106 
2107 static __initconst const u64 knl_hw_cache_extra_regs
2108 				[PERF_COUNT_HW_CACHE_MAX]
2109 				[PERF_COUNT_HW_CACHE_OP_MAX]
2110 				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2111 	[C(LL)] = {
2112 		[C(OP_READ)] = {
2113 			[C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2114 			[C(RESULT_MISS)]   = 0,
2115 		},
2116 		[C(OP_WRITE)] = {
2117 			[C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2118 			[C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
2119 		},
2120 		[C(OP_PREFETCH)] = {
2121 			[C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2122 			[C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
2123 		},
2124 	},
2125 };
2126 
2127 /*
2128  * Used from PMIs where the LBRs are already disabled.
2129  *
2130  * This function could be called consecutively. It is required to remain in
2131  * disabled state if called consecutively.
2132  *
2133  * During consecutive calls, the same disable value will be written to related
2134  * registers, so the PMU state remains unchanged.
2135  *
2136  * intel_bts events don't coexist with intel PMU's BTS events because of
2137  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2138  * disabled around intel PMU's event batching etc, only inside the PMI handler.
2139  *
2140  * Avoid PEBS_ENABLE MSR access in PMIs.
2141  * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2142  * It doesn't matter if the PEBS is enabled or not.
2143  * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2144  * access PEBS_ENABLE MSR in disable_all()/enable_all().
2145  * However, there are some cases which may change PEBS status, e.g. PMI
2146  * throttle. The PEBS_ENABLE should be updated where the status changes.
2147  */
__intel_pmu_disable_all(void)2148 static void __intel_pmu_disable_all(void)
2149 {
2150 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2151 
2152 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2153 
2154 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2155 		intel_pmu_disable_bts();
2156 }
2157 
intel_pmu_disable_all(void)2158 static void intel_pmu_disable_all(void)
2159 {
2160 	__intel_pmu_disable_all();
2161 	intel_pmu_pebs_disable_all();
2162 	intel_pmu_lbr_disable_all();
2163 }
2164 
__intel_pmu_enable_all(int added,bool pmi)2165 static void __intel_pmu_enable_all(int added, bool pmi)
2166 {
2167 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2168 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2169 
2170 	intel_pmu_lbr_enable_all(pmi);
2171 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2172 	       intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2173 
2174 	if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2175 		struct perf_event *event =
2176 			cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2177 
2178 		if (WARN_ON_ONCE(!event))
2179 			return;
2180 
2181 		intel_pmu_enable_bts(event->hw.config);
2182 	}
2183 }
2184 
intel_pmu_enable_all(int added)2185 static void intel_pmu_enable_all(int added)
2186 {
2187 	intel_pmu_pebs_enable_all();
2188 	__intel_pmu_enable_all(added, false);
2189 }
2190 
2191 /*
2192  * Workaround for:
2193  *   Intel Errata AAK100 (model 26)
2194  *   Intel Errata AAP53  (model 30)
2195  *   Intel Errata BD53   (model 44)
2196  *
2197  * The official story:
2198  *   These chips need to be 'reset' when adding counters by programming the
2199  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2200  *   in sequence on the same PMC or on different PMCs.
2201  *
2202  * In practice it appears some of these events do in fact count, and
2203  * we need to program all 4 events.
2204  */
intel_pmu_nhm_workaround(void)2205 static void intel_pmu_nhm_workaround(void)
2206 {
2207 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2208 	static const unsigned long nhm_magic[4] = {
2209 		0x4300B5,
2210 		0x4300D2,
2211 		0x4300B1,
2212 		0x4300B1
2213 	};
2214 	struct perf_event *event;
2215 	int i;
2216 
2217 	/*
2218 	 * The Errata requires below steps:
2219 	 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2220 	 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2221 	 *    the corresponding PMCx;
2222 	 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2223 	 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2224 	 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2225 	 */
2226 
2227 	/*
2228 	 * The real steps we choose are a little different from above.
2229 	 * A) To reduce MSR operations, we don't run step 1) as they
2230 	 *    are already cleared before this function is called;
2231 	 * B) Call x86_perf_event_update to save PMCx before configuring
2232 	 *    PERFEVTSELx with magic number;
2233 	 * C) With step 5), we do clear only when the PERFEVTSELx is
2234 	 *    not used currently.
2235 	 * D) Call x86_perf_event_set_period to restore PMCx;
2236 	 */
2237 
2238 	/* We always operate 4 pairs of PERF Counters */
2239 	for (i = 0; i < 4; i++) {
2240 		event = cpuc->events[i];
2241 		if (event)
2242 			x86_perf_event_update(event);
2243 	}
2244 
2245 	for (i = 0; i < 4; i++) {
2246 		wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2247 		wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2248 	}
2249 
2250 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2251 	wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2252 
2253 	for (i = 0; i < 4; i++) {
2254 		event = cpuc->events[i];
2255 
2256 		if (event) {
2257 			x86_perf_event_set_period(event);
2258 			__x86_pmu_enable_event(&event->hw,
2259 					ARCH_PERFMON_EVENTSEL_ENABLE);
2260 		} else
2261 			wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2262 	}
2263 }
2264 
intel_pmu_nhm_enable_all(int added)2265 static void intel_pmu_nhm_enable_all(int added)
2266 {
2267 	if (added)
2268 		intel_pmu_nhm_workaround();
2269 	intel_pmu_enable_all(added);
2270 }
2271 
intel_set_tfa(struct cpu_hw_events * cpuc,bool on)2272 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2273 {
2274 	u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2275 
2276 	if (cpuc->tfa_shadow != val) {
2277 		cpuc->tfa_shadow = val;
2278 		wrmsrl(MSR_TSX_FORCE_ABORT, val);
2279 	}
2280 }
2281 
intel_tfa_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)2282 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2283 {
2284 	/*
2285 	 * We're going to use PMC3, make sure TFA is set before we touch it.
2286 	 */
2287 	if (cntr == 3)
2288 		intel_set_tfa(cpuc, true);
2289 }
2290 
intel_tfa_pmu_enable_all(int added)2291 static void intel_tfa_pmu_enable_all(int added)
2292 {
2293 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2294 
2295 	/*
2296 	 * If we find PMC3 is no longer used when we enable the PMU, we can
2297 	 * clear TFA.
2298 	 */
2299 	if (!test_bit(3, cpuc->active_mask))
2300 		intel_set_tfa(cpuc, false);
2301 
2302 	intel_pmu_enable_all(added);
2303 }
2304 
intel_pmu_get_status(void)2305 static inline u64 intel_pmu_get_status(void)
2306 {
2307 	u64 status;
2308 
2309 	rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2310 
2311 	return status;
2312 }
2313 
intel_pmu_ack_status(u64 ack)2314 static inline void intel_pmu_ack_status(u64 ack)
2315 {
2316 	wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2317 }
2318 
event_is_checkpointed(struct perf_event * event)2319 static inline bool event_is_checkpointed(struct perf_event *event)
2320 {
2321 	return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2322 }
2323 
intel_set_masks(struct perf_event * event,int idx)2324 static inline void intel_set_masks(struct perf_event *event, int idx)
2325 {
2326 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2327 
2328 	if (event->attr.exclude_host)
2329 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2330 	if (event->attr.exclude_guest)
2331 		__set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2332 	if (event_is_checkpointed(event))
2333 		__set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2334 }
2335 
intel_clear_masks(struct perf_event * event,int idx)2336 static inline void intel_clear_masks(struct perf_event *event, int idx)
2337 {
2338 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2339 
2340 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2341 	__clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2342 	__clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2343 }
2344 
intel_pmu_disable_fixed(struct perf_event * event)2345 static void intel_pmu_disable_fixed(struct perf_event *event)
2346 {
2347 	struct hw_perf_event *hwc = &event->hw;
2348 	u64 ctrl_val, mask;
2349 	int idx = hwc->idx;
2350 
2351 	if (is_topdown_idx(idx)) {
2352 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2353 
2354 		/*
2355 		 * When there are other active TopDown events,
2356 		 * don't disable the fixed counter 3.
2357 		 */
2358 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2359 			return;
2360 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2361 	}
2362 
2363 	intel_clear_masks(event, idx);
2364 
2365 	mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2366 	rdmsrl(hwc->config_base, ctrl_val);
2367 	ctrl_val &= ~mask;
2368 	wrmsrl(hwc->config_base, ctrl_val);
2369 }
2370 
intel_pmu_disable_event(struct perf_event * event)2371 static void intel_pmu_disable_event(struct perf_event *event)
2372 {
2373 	struct hw_perf_event *hwc = &event->hw;
2374 	int idx = hwc->idx;
2375 
2376 	switch (idx) {
2377 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2378 		intel_clear_masks(event, idx);
2379 		x86_pmu_disable_event(event);
2380 		break;
2381 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2382 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2383 		intel_pmu_disable_fixed(event);
2384 		break;
2385 	case INTEL_PMC_IDX_FIXED_BTS:
2386 		intel_pmu_disable_bts();
2387 		intel_pmu_drain_bts_buffer();
2388 		return;
2389 	case INTEL_PMC_IDX_FIXED_VLBR:
2390 		intel_clear_masks(event, idx);
2391 		break;
2392 	default:
2393 		intel_clear_masks(event, idx);
2394 		pr_warn("Failed to disable the event with invalid index %d\n",
2395 			idx);
2396 		return;
2397 	}
2398 
2399 	/*
2400 	 * Needs to be called after x86_pmu_disable_event,
2401 	 * so we don't trigger the event without PEBS bit set.
2402 	 */
2403 	if (unlikely(event->attr.precise_ip))
2404 		intel_pmu_pebs_disable(event);
2405 }
2406 
intel_pmu_del_event(struct perf_event * event)2407 static void intel_pmu_del_event(struct perf_event *event)
2408 {
2409 	if (needs_branch_stack(event))
2410 		intel_pmu_lbr_del(event);
2411 	if (event->attr.precise_ip)
2412 		intel_pmu_pebs_del(event);
2413 }
2414 
icl_set_topdown_event_period(struct perf_event * event)2415 static int icl_set_topdown_event_period(struct perf_event *event)
2416 {
2417 	struct hw_perf_event *hwc = &event->hw;
2418 	s64 left = local64_read(&hwc->period_left);
2419 
2420 	/*
2421 	 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2422 	 * Software should start both registers, PERF_METRICS and fixed
2423 	 * counter 3, from zero.
2424 	 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2425 	 * After that, both MSRs will be cleared for each read.
2426 	 * Don't need to clear them again.
2427 	 */
2428 	if (left == x86_pmu.max_period) {
2429 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2430 		wrmsrl(MSR_PERF_METRICS, 0);
2431 		hwc->saved_slots = 0;
2432 		hwc->saved_metric = 0;
2433 	}
2434 
2435 	if ((hwc->saved_slots) && is_slots_event(event)) {
2436 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2437 		wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2438 	}
2439 
2440 	perf_event_update_userpage(event);
2441 
2442 	return 0;
2443 }
2444 
adl_set_topdown_event_period(struct perf_event * event)2445 static int adl_set_topdown_event_period(struct perf_event *event)
2446 {
2447 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2448 
2449 	if (pmu->cpu_type != hybrid_big)
2450 		return 0;
2451 
2452 	return icl_set_topdown_event_period(event);
2453 }
2454 
icl_get_metrics_event_value(u64 metric,u64 slots,int idx)2455 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2456 {
2457 	u32 val;
2458 
2459 	/*
2460 	 * The metric is reported as an 8bit integer fraction
2461 	 * summing up to 0xff.
2462 	 * slots-in-metric = (Metric / 0xff) * slots
2463 	 */
2464 	val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2465 	return  mul_u64_u32_div(slots, val, 0xff);
2466 }
2467 
icl_get_topdown_value(struct perf_event * event,u64 slots,u64 metrics)2468 static u64 icl_get_topdown_value(struct perf_event *event,
2469 				       u64 slots, u64 metrics)
2470 {
2471 	int idx = event->hw.idx;
2472 	u64 delta;
2473 
2474 	if (is_metric_idx(idx))
2475 		delta = icl_get_metrics_event_value(metrics, slots, idx);
2476 	else
2477 		delta = slots;
2478 
2479 	return delta;
2480 }
2481 
__icl_update_topdown_event(struct perf_event * event,u64 slots,u64 metrics,u64 last_slots,u64 last_metrics)2482 static void __icl_update_topdown_event(struct perf_event *event,
2483 				       u64 slots, u64 metrics,
2484 				       u64 last_slots, u64 last_metrics)
2485 {
2486 	u64 delta, last = 0;
2487 
2488 	delta = icl_get_topdown_value(event, slots, metrics);
2489 	if (last_slots)
2490 		last = icl_get_topdown_value(event, last_slots, last_metrics);
2491 
2492 	/*
2493 	 * The 8bit integer fraction of metric may be not accurate,
2494 	 * especially when the changes is very small.
2495 	 * For example, if only a few bad_spec happens, the fraction
2496 	 * may be reduced from 1 to 0. If so, the bad_spec event value
2497 	 * will be 0 which is definitely less than the last value.
2498 	 * Avoid update event->count for this case.
2499 	 */
2500 	if (delta > last) {
2501 		delta -= last;
2502 		local64_add(delta, &event->count);
2503 	}
2504 }
2505 
update_saved_topdown_regs(struct perf_event * event,u64 slots,u64 metrics,int metric_end)2506 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2507 				      u64 metrics, int metric_end)
2508 {
2509 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2510 	struct perf_event *other;
2511 	int idx;
2512 
2513 	event->hw.saved_slots = slots;
2514 	event->hw.saved_metric = metrics;
2515 
2516 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2517 		if (!is_topdown_idx(idx))
2518 			continue;
2519 		other = cpuc->events[idx];
2520 		other->hw.saved_slots = slots;
2521 		other->hw.saved_metric = metrics;
2522 	}
2523 }
2524 
2525 /*
2526  * Update all active Topdown events.
2527  *
2528  * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2529  * modify by a NMI. PMU has to be disabled before calling this function.
2530  */
2531 
intel_update_topdown_event(struct perf_event * event,int metric_end)2532 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2533 {
2534 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2535 	struct perf_event *other;
2536 	u64 slots, metrics;
2537 	bool reset = true;
2538 	int idx;
2539 
2540 	/* read Fixed counter 3 */
2541 	rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2542 	if (!slots)
2543 		return 0;
2544 
2545 	/* read PERF_METRICS */
2546 	rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2547 
2548 	for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2549 		if (!is_topdown_idx(idx))
2550 			continue;
2551 		other = cpuc->events[idx];
2552 		__icl_update_topdown_event(other, slots, metrics,
2553 					   event ? event->hw.saved_slots : 0,
2554 					   event ? event->hw.saved_metric : 0);
2555 	}
2556 
2557 	/*
2558 	 * Check and update this event, which may have been cleared
2559 	 * in active_mask e.g. x86_pmu_stop()
2560 	 */
2561 	if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2562 		__icl_update_topdown_event(event, slots, metrics,
2563 					   event->hw.saved_slots,
2564 					   event->hw.saved_metric);
2565 
2566 		/*
2567 		 * In x86_pmu_stop(), the event is cleared in active_mask first,
2568 		 * then drain the delta, which indicates context switch for
2569 		 * counting.
2570 		 * Save metric and slots for context switch.
2571 		 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2572 		 * Because the values will be restored in next schedule in.
2573 		 */
2574 		update_saved_topdown_regs(event, slots, metrics, metric_end);
2575 		reset = false;
2576 	}
2577 
2578 	if (reset) {
2579 		/* The fixed counter 3 has to be written before the PERF_METRICS. */
2580 		wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2581 		wrmsrl(MSR_PERF_METRICS, 0);
2582 		if (event)
2583 			update_saved_topdown_regs(event, 0, 0, metric_end);
2584 	}
2585 
2586 	return slots;
2587 }
2588 
icl_update_topdown_event(struct perf_event * event)2589 static u64 icl_update_topdown_event(struct perf_event *event)
2590 {
2591 	return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2592 						 x86_pmu.num_topdown_events - 1);
2593 }
2594 
adl_update_topdown_event(struct perf_event * event)2595 static u64 adl_update_topdown_event(struct perf_event *event)
2596 {
2597 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2598 
2599 	if (pmu->cpu_type != hybrid_big)
2600 		return 0;
2601 
2602 	return icl_update_topdown_event(event);
2603 }
2604 
2605 
intel_pmu_read_topdown_event(struct perf_event * event)2606 static void intel_pmu_read_topdown_event(struct perf_event *event)
2607 {
2608 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2609 
2610 	/* Only need to call update_topdown_event() once for group read. */
2611 	if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2612 	    !is_slots_event(event))
2613 		return;
2614 
2615 	perf_pmu_disable(event->pmu);
2616 	x86_pmu.update_topdown_event(event);
2617 	perf_pmu_enable(event->pmu);
2618 }
2619 
intel_pmu_read_event(struct perf_event * event)2620 static void intel_pmu_read_event(struct perf_event *event)
2621 {
2622 	if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2623 		intel_pmu_auto_reload_read(event);
2624 	else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2625 		intel_pmu_read_topdown_event(event);
2626 	else
2627 		x86_perf_event_update(event);
2628 }
2629 
intel_pmu_enable_fixed(struct perf_event * event)2630 static void intel_pmu_enable_fixed(struct perf_event *event)
2631 {
2632 	struct hw_perf_event *hwc = &event->hw;
2633 	u64 ctrl_val, mask, bits = 0;
2634 	int idx = hwc->idx;
2635 
2636 	if (is_topdown_idx(idx)) {
2637 		struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2638 		/*
2639 		 * When there are other active TopDown events,
2640 		 * don't enable the fixed counter 3 again.
2641 		 */
2642 		if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2643 			return;
2644 
2645 		idx = INTEL_PMC_IDX_FIXED_SLOTS;
2646 	}
2647 
2648 	intel_set_masks(event, idx);
2649 
2650 	/*
2651 	 * Enable IRQ generation (0x8), if not PEBS,
2652 	 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2653 	 * if requested:
2654 	 */
2655 	if (!event->attr.precise_ip)
2656 		bits |= 0x8;
2657 	if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2658 		bits |= 0x2;
2659 	if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2660 		bits |= 0x1;
2661 
2662 	/*
2663 	 * ANY bit is supported in v3 and up
2664 	 */
2665 	if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2666 		bits |= 0x4;
2667 
2668 	idx -= INTEL_PMC_IDX_FIXED;
2669 	bits <<= (idx * 4);
2670 	mask = 0xfULL << (idx * 4);
2671 
2672 	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2673 		bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2674 		mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2675 	}
2676 
2677 	rdmsrl(hwc->config_base, ctrl_val);
2678 	ctrl_val &= ~mask;
2679 	ctrl_val |= bits;
2680 	wrmsrl(hwc->config_base, ctrl_val);
2681 }
2682 
intel_pmu_enable_event(struct perf_event * event)2683 static void intel_pmu_enable_event(struct perf_event *event)
2684 {
2685 	struct hw_perf_event *hwc = &event->hw;
2686 	int idx = hwc->idx;
2687 
2688 	if (unlikely(event->attr.precise_ip))
2689 		intel_pmu_pebs_enable(event);
2690 
2691 	switch (idx) {
2692 	case 0 ... INTEL_PMC_IDX_FIXED - 1:
2693 		intel_set_masks(event, idx);
2694 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2695 		break;
2696 	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2697 	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2698 		intel_pmu_enable_fixed(event);
2699 		break;
2700 	case INTEL_PMC_IDX_FIXED_BTS:
2701 		if (!__this_cpu_read(cpu_hw_events.enabled))
2702 			return;
2703 		intel_pmu_enable_bts(hwc->config);
2704 		break;
2705 	case INTEL_PMC_IDX_FIXED_VLBR:
2706 		intel_set_masks(event, idx);
2707 		break;
2708 	default:
2709 		pr_warn("Failed to enable the event with invalid index %d\n",
2710 			idx);
2711 	}
2712 }
2713 
intel_pmu_add_event(struct perf_event * event)2714 static void intel_pmu_add_event(struct perf_event *event)
2715 {
2716 	if (event->attr.precise_ip)
2717 		intel_pmu_pebs_add(event);
2718 	if (needs_branch_stack(event))
2719 		intel_pmu_lbr_add(event);
2720 }
2721 
2722 /*
2723  * Save and restart an expired event. Called by NMI contexts,
2724  * so it has to be careful about preempting normal event ops:
2725  */
intel_pmu_save_and_restart(struct perf_event * event)2726 int intel_pmu_save_and_restart(struct perf_event *event)
2727 {
2728 	x86_perf_event_update(event);
2729 	/*
2730 	 * For a checkpointed counter always reset back to 0.  This
2731 	 * avoids a situation where the counter overflows, aborts the
2732 	 * transaction and is then set back to shortly before the
2733 	 * overflow, and overflows and aborts again.
2734 	 */
2735 	if (unlikely(event_is_checkpointed(event))) {
2736 		/* No race with NMIs because the counter should not be armed */
2737 		wrmsrl(event->hw.event_base, 0);
2738 		local64_set(&event->hw.prev_count, 0);
2739 	}
2740 	return x86_perf_event_set_period(event);
2741 }
2742 
intel_pmu_reset(void)2743 static void intel_pmu_reset(void)
2744 {
2745 	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2746 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2747 	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2748 	int num_counters = hybrid(cpuc->pmu, num_counters);
2749 	unsigned long flags;
2750 	int idx;
2751 
2752 	if (!num_counters)
2753 		return;
2754 
2755 	local_irq_save(flags);
2756 
2757 	pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2758 
2759 	for (idx = 0; idx < num_counters; idx++) {
2760 		wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2761 		wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2762 	}
2763 	for (idx = 0; idx < num_counters_fixed; idx++) {
2764 		if (fixed_counter_disabled(idx, cpuc->pmu))
2765 			continue;
2766 		wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2767 	}
2768 
2769 	if (ds)
2770 		ds->bts_index = ds->bts_buffer_base;
2771 
2772 	/* Ack all overflows and disable fixed counters */
2773 	if (x86_pmu.version >= 2) {
2774 		intel_pmu_ack_status(intel_pmu_get_status());
2775 		wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2776 	}
2777 
2778 	/* Reset LBRs and LBR freezing */
2779 	if (x86_pmu.lbr_nr) {
2780 		update_debugctlmsr(get_debugctlmsr() &
2781 			~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2782 	}
2783 
2784 	local_irq_restore(flags);
2785 }
2786 
handle_pmi_common(struct pt_regs * regs,u64 status)2787 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2788 {
2789 	struct perf_sample_data data;
2790 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2791 	struct perf_guest_info_callbacks *guest_cbs;
2792 	int bit;
2793 	int handled = 0;
2794 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2795 
2796 	inc_irq_stat(apic_perf_irqs);
2797 
2798 	/*
2799 	 * Ignore a range of extra bits in status that do not indicate
2800 	 * overflow by themselves.
2801 	 */
2802 	status &= ~(GLOBAL_STATUS_COND_CHG |
2803 		    GLOBAL_STATUS_ASIF |
2804 		    GLOBAL_STATUS_LBRS_FROZEN);
2805 	if (!status)
2806 		return 0;
2807 	/*
2808 	 * In case multiple PEBS events are sampled at the same time,
2809 	 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2810 	 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2811 	 * having their bits set in the status register. This is a sign
2812 	 * that there was at least one PEBS record pending at the time
2813 	 * of the PMU interrupt. PEBS counters must only be processed
2814 	 * via the drain_pebs() calls and not via the regular sample
2815 	 * processing loop coming after that the function, otherwise
2816 	 * phony regular samples may be generated in the sampling buffer
2817 	 * not marked with the EXACT tag. Another possibility is to have
2818 	 * one PEBS event and at least one non-PEBS event which overflows
2819 	 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2820 	 * not be set, yet the overflow status bit for the PEBS counter will
2821 	 * be on Skylake.
2822 	 *
2823 	 * To avoid this problem, we systematically ignore the PEBS-enabled
2824 	 * counters from the GLOBAL_STATUS mask and we always process PEBS
2825 	 * events via drain_pebs().
2826 	 */
2827 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2828 		status &= ~cpuc->pebs_enabled;
2829 	else
2830 		status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2831 
2832 	/*
2833 	 * PEBS overflow sets bit 62 in the global status register
2834 	 */
2835 	if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2836 		u64 pebs_enabled = cpuc->pebs_enabled;
2837 
2838 		handled++;
2839 		x86_pmu.drain_pebs(regs, &data);
2840 		status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2841 
2842 		/*
2843 		 * PMI throttle may be triggered, which stops the PEBS event.
2844 		 * Although cpuc->pebs_enabled is updated accordingly, the
2845 		 * MSR_IA32_PEBS_ENABLE is not updated. Because the
2846 		 * cpuc->enabled has been forced to 0 in PMI.
2847 		 * Update the MSR if pebs_enabled is changed.
2848 		 */
2849 		if (pebs_enabled != cpuc->pebs_enabled)
2850 			wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2851 	}
2852 
2853 	/*
2854 	 * Intel PT
2855 	 */
2856 	if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2857 		handled++;
2858 
2859 		guest_cbs = perf_get_guest_cbs();
2860 		if (unlikely(guest_cbs && guest_cbs->is_in_guest() &&
2861 			     guest_cbs->handle_intel_pt_intr))
2862 			guest_cbs->handle_intel_pt_intr();
2863 		else
2864 			intel_pt_interrupt();
2865 	}
2866 
2867 	/*
2868 	 * Intel Perf metrics
2869 	 */
2870 	if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2871 		handled++;
2872 		if (x86_pmu.update_topdown_event)
2873 			x86_pmu.update_topdown_event(NULL);
2874 	}
2875 
2876 	/*
2877 	 * Checkpointed counters can lead to 'spurious' PMIs because the
2878 	 * rollback caused by the PMI will have cleared the overflow status
2879 	 * bit. Therefore always force probe these counters.
2880 	 */
2881 	status |= cpuc->intel_cp_status;
2882 
2883 	for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2884 		struct perf_event *event = cpuc->events[bit];
2885 
2886 		handled++;
2887 
2888 		if (!test_bit(bit, cpuc->active_mask))
2889 			continue;
2890 
2891 		if (!intel_pmu_save_and_restart(event))
2892 			continue;
2893 
2894 		perf_sample_data_init(&data, 0, event->hw.last_period);
2895 
2896 		if (has_branch_stack(event))
2897 			data.br_stack = &cpuc->lbr_stack;
2898 
2899 		if (perf_event_overflow(event, &data, regs))
2900 			x86_pmu_stop(event, 0);
2901 	}
2902 
2903 	return handled;
2904 }
2905 
2906 /*
2907  * This handler is triggered by the local APIC, so the APIC IRQ handling
2908  * rules apply:
2909  */
intel_pmu_handle_irq(struct pt_regs * regs)2910 static int intel_pmu_handle_irq(struct pt_regs *regs)
2911 {
2912 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2913 	bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
2914 	bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
2915 	int loops;
2916 	u64 status;
2917 	int handled;
2918 	int pmu_enabled;
2919 
2920 	/*
2921 	 * Save the PMU state.
2922 	 * It needs to be restored when leaving the handler.
2923 	 */
2924 	pmu_enabled = cpuc->enabled;
2925 	/*
2926 	 * In general, the early ACK is only applied for old platforms.
2927 	 * For the big core starts from Haswell, the late ACK should be
2928 	 * applied.
2929 	 * For the small core after Tremont, we have to do the ACK right
2930 	 * before re-enabling counters, which is in the middle of the
2931 	 * NMI handler.
2932 	 */
2933 	if (!late_ack && !mid_ack)
2934 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2935 	intel_bts_disable_local();
2936 	cpuc->enabled = 0;
2937 	__intel_pmu_disable_all();
2938 	handled = intel_pmu_drain_bts_buffer();
2939 	handled += intel_bts_interrupt();
2940 	status = intel_pmu_get_status();
2941 	if (!status)
2942 		goto done;
2943 
2944 	loops = 0;
2945 again:
2946 	intel_pmu_lbr_read();
2947 	intel_pmu_ack_status(status);
2948 	if (++loops > 100) {
2949 		static bool warned;
2950 
2951 		if (!warned) {
2952 			WARN(1, "perfevents: irq loop stuck!\n");
2953 			perf_event_print_debug();
2954 			warned = true;
2955 		}
2956 		intel_pmu_reset();
2957 		goto done;
2958 	}
2959 
2960 	handled += handle_pmi_common(regs, status);
2961 
2962 	/*
2963 	 * Repeat if there is more work to be done:
2964 	 */
2965 	status = intel_pmu_get_status();
2966 	if (status)
2967 		goto again;
2968 
2969 done:
2970 	if (mid_ack)
2971 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2972 	/* Only restore PMU state when it's active. See x86_pmu_disable(). */
2973 	cpuc->enabled = pmu_enabled;
2974 	if (pmu_enabled)
2975 		__intel_pmu_enable_all(0, true);
2976 	intel_bts_enable_local();
2977 
2978 	/*
2979 	 * Only unmask the NMI after the overflow counters
2980 	 * have been reset. This avoids spurious NMIs on
2981 	 * Haswell CPUs.
2982 	 */
2983 	if (late_ack)
2984 		apic_write(APIC_LVTPC, APIC_DM_NMI);
2985 	return handled;
2986 }
2987 
2988 static struct event_constraint *
intel_bts_constraints(struct perf_event * event)2989 intel_bts_constraints(struct perf_event *event)
2990 {
2991 	if (unlikely(intel_pmu_has_bts(event)))
2992 		return &bts_constraint;
2993 
2994 	return NULL;
2995 }
2996 
2997 /*
2998  * Note: matches a fake event, like Fixed2.
2999  */
3000 static struct event_constraint *
intel_vlbr_constraints(struct perf_event * event)3001 intel_vlbr_constraints(struct perf_event *event)
3002 {
3003 	struct event_constraint *c = &vlbr_constraint;
3004 
3005 	if (unlikely(constraint_match(c, event->hw.config))) {
3006 		event->hw.flags |= c->flags;
3007 		return c;
3008 	}
3009 
3010 	return NULL;
3011 }
3012 
intel_alt_er(struct cpu_hw_events * cpuc,int idx,u64 config)3013 static int intel_alt_er(struct cpu_hw_events *cpuc,
3014 			int idx, u64 config)
3015 {
3016 	struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3017 	int alt_idx = idx;
3018 
3019 	if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3020 		return idx;
3021 
3022 	if (idx == EXTRA_REG_RSP_0)
3023 		alt_idx = EXTRA_REG_RSP_1;
3024 
3025 	if (idx == EXTRA_REG_RSP_1)
3026 		alt_idx = EXTRA_REG_RSP_0;
3027 
3028 	if (config & ~extra_regs[alt_idx].valid_mask)
3029 		return idx;
3030 
3031 	return alt_idx;
3032 }
3033 
intel_fixup_er(struct perf_event * event,int idx)3034 static void intel_fixup_er(struct perf_event *event, int idx)
3035 {
3036 	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3037 	event->hw.extra_reg.idx = idx;
3038 
3039 	if (idx == EXTRA_REG_RSP_0) {
3040 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3041 		event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3042 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3043 	} else if (idx == EXTRA_REG_RSP_1) {
3044 		event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3045 		event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3046 		event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3047 	}
3048 }
3049 
3050 /*
3051  * manage allocation of shared extra msr for certain events
3052  *
3053  * sharing can be:
3054  * per-cpu: to be shared between the various events on a single PMU
3055  * per-core: per-cpu + shared by HT threads
3056  */
3057 static struct event_constraint *
__intel_shared_reg_get_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,struct hw_perf_event_extra * reg)3058 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3059 				   struct perf_event *event,
3060 				   struct hw_perf_event_extra *reg)
3061 {
3062 	struct event_constraint *c = &emptyconstraint;
3063 	struct er_account *era;
3064 	unsigned long flags;
3065 	int idx = reg->idx;
3066 
3067 	/*
3068 	 * reg->alloc can be set due to existing state, so for fake cpuc we
3069 	 * need to ignore this, otherwise we might fail to allocate proper fake
3070 	 * state for this extra reg constraint. Also see the comment below.
3071 	 */
3072 	if (reg->alloc && !cpuc->is_fake)
3073 		return NULL; /* call x86_get_event_constraint() */
3074 
3075 again:
3076 	era = &cpuc->shared_regs->regs[idx];
3077 	/*
3078 	 * we use spin_lock_irqsave() to avoid lockdep issues when
3079 	 * passing a fake cpuc
3080 	 */
3081 	raw_spin_lock_irqsave(&era->lock, flags);
3082 
3083 	if (!atomic_read(&era->ref) || era->config == reg->config) {
3084 
3085 		/*
3086 		 * If its a fake cpuc -- as per validate_{group,event}() we
3087 		 * shouldn't touch event state and we can avoid doing so
3088 		 * since both will only call get_event_constraints() once
3089 		 * on each event, this avoids the need for reg->alloc.
3090 		 *
3091 		 * Not doing the ER fixup will only result in era->reg being
3092 		 * wrong, but since we won't actually try and program hardware
3093 		 * this isn't a problem either.
3094 		 */
3095 		if (!cpuc->is_fake) {
3096 			if (idx != reg->idx)
3097 				intel_fixup_er(event, idx);
3098 
3099 			/*
3100 			 * x86_schedule_events() can call get_event_constraints()
3101 			 * multiple times on events in the case of incremental
3102 			 * scheduling(). reg->alloc ensures we only do the ER
3103 			 * allocation once.
3104 			 */
3105 			reg->alloc = 1;
3106 		}
3107 
3108 		/* lock in msr value */
3109 		era->config = reg->config;
3110 		era->reg = reg->reg;
3111 
3112 		/* one more user */
3113 		atomic_inc(&era->ref);
3114 
3115 		/*
3116 		 * need to call x86_get_event_constraint()
3117 		 * to check if associated event has constraints
3118 		 */
3119 		c = NULL;
3120 	} else {
3121 		idx = intel_alt_er(cpuc, idx, reg->config);
3122 		if (idx != reg->idx) {
3123 			raw_spin_unlock_irqrestore(&era->lock, flags);
3124 			goto again;
3125 		}
3126 	}
3127 	raw_spin_unlock_irqrestore(&era->lock, flags);
3128 
3129 	return c;
3130 }
3131 
3132 static void
__intel_shared_reg_put_constraints(struct cpu_hw_events * cpuc,struct hw_perf_event_extra * reg)3133 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3134 				   struct hw_perf_event_extra *reg)
3135 {
3136 	struct er_account *era;
3137 
3138 	/*
3139 	 * Only put constraint if extra reg was actually allocated. Also takes
3140 	 * care of event which do not use an extra shared reg.
3141 	 *
3142 	 * Also, if this is a fake cpuc we shouldn't touch any event state
3143 	 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3144 	 * either since it'll be thrown out.
3145 	 */
3146 	if (!reg->alloc || cpuc->is_fake)
3147 		return;
3148 
3149 	era = &cpuc->shared_regs->regs[reg->idx];
3150 
3151 	/* one fewer user */
3152 	atomic_dec(&era->ref);
3153 
3154 	/* allocate again next time */
3155 	reg->alloc = 0;
3156 }
3157 
3158 static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3159 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3160 			      struct perf_event *event)
3161 {
3162 	struct event_constraint *c = NULL, *d;
3163 	struct hw_perf_event_extra *xreg, *breg;
3164 
3165 	xreg = &event->hw.extra_reg;
3166 	if (xreg->idx != EXTRA_REG_NONE) {
3167 		c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3168 		if (c == &emptyconstraint)
3169 			return c;
3170 	}
3171 	breg = &event->hw.branch_reg;
3172 	if (breg->idx != EXTRA_REG_NONE) {
3173 		d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3174 		if (d == &emptyconstraint) {
3175 			__intel_shared_reg_put_constraints(cpuc, xreg);
3176 			c = d;
3177 		}
3178 	}
3179 	return c;
3180 }
3181 
3182 struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3183 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3184 			  struct perf_event *event)
3185 {
3186 	struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3187 	struct event_constraint *c;
3188 
3189 	if (event_constraints) {
3190 		for_each_event_constraint(c, event_constraints) {
3191 			if (constraint_match(c, event->hw.config)) {
3192 				event->hw.flags |= c->flags;
3193 				return c;
3194 			}
3195 		}
3196 	}
3197 
3198 	return &hybrid_var(cpuc->pmu, unconstrained);
3199 }
3200 
3201 static struct event_constraint *
__intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3202 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3203 			    struct perf_event *event)
3204 {
3205 	struct event_constraint *c;
3206 
3207 	c = intel_vlbr_constraints(event);
3208 	if (c)
3209 		return c;
3210 
3211 	c = intel_bts_constraints(event);
3212 	if (c)
3213 		return c;
3214 
3215 	c = intel_shared_regs_constraints(cpuc, event);
3216 	if (c)
3217 		return c;
3218 
3219 	c = intel_pebs_constraints(event);
3220 	if (c)
3221 		return c;
3222 
3223 	return x86_get_event_constraints(cpuc, idx, event);
3224 }
3225 
3226 static void
intel_start_scheduling(struct cpu_hw_events * cpuc)3227 intel_start_scheduling(struct cpu_hw_events *cpuc)
3228 {
3229 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3230 	struct intel_excl_states *xl;
3231 	int tid = cpuc->excl_thread_id;
3232 
3233 	/*
3234 	 * nothing needed if in group validation mode
3235 	 */
3236 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3237 		return;
3238 
3239 	/*
3240 	 * no exclusion needed
3241 	 */
3242 	if (WARN_ON_ONCE(!excl_cntrs))
3243 		return;
3244 
3245 	xl = &excl_cntrs->states[tid];
3246 
3247 	xl->sched_started = true;
3248 	/*
3249 	 * lock shared state until we are done scheduling
3250 	 * in stop_event_scheduling()
3251 	 * makes scheduling appear as a transaction
3252 	 */
3253 	raw_spin_lock(&excl_cntrs->lock);
3254 }
3255 
intel_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)3256 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3257 {
3258 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3259 	struct event_constraint *c = cpuc->event_constraint[idx];
3260 	struct intel_excl_states *xl;
3261 	int tid = cpuc->excl_thread_id;
3262 
3263 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3264 		return;
3265 
3266 	if (WARN_ON_ONCE(!excl_cntrs))
3267 		return;
3268 
3269 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3270 		return;
3271 
3272 	xl = &excl_cntrs->states[tid];
3273 
3274 	lockdep_assert_held(&excl_cntrs->lock);
3275 
3276 	if (c->flags & PERF_X86_EVENT_EXCL)
3277 		xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3278 	else
3279 		xl->state[cntr] = INTEL_EXCL_SHARED;
3280 }
3281 
3282 static void
intel_stop_scheduling(struct cpu_hw_events * cpuc)3283 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3284 {
3285 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3286 	struct intel_excl_states *xl;
3287 	int tid = cpuc->excl_thread_id;
3288 
3289 	/*
3290 	 * nothing needed if in group validation mode
3291 	 */
3292 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3293 		return;
3294 	/*
3295 	 * no exclusion needed
3296 	 */
3297 	if (WARN_ON_ONCE(!excl_cntrs))
3298 		return;
3299 
3300 	xl = &excl_cntrs->states[tid];
3301 
3302 	xl->sched_started = false;
3303 	/*
3304 	 * release shared state lock (acquired in intel_start_scheduling())
3305 	 */
3306 	raw_spin_unlock(&excl_cntrs->lock);
3307 }
3308 
3309 static struct event_constraint *
dyn_constraint(struct cpu_hw_events * cpuc,struct event_constraint * c,int idx)3310 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3311 {
3312 	WARN_ON_ONCE(!cpuc->constraint_list);
3313 
3314 	if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3315 		struct event_constraint *cx;
3316 
3317 		/*
3318 		 * grab pre-allocated constraint entry
3319 		 */
3320 		cx = &cpuc->constraint_list[idx];
3321 
3322 		/*
3323 		 * initialize dynamic constraint
3324 		 * with static constraint
3325 		 */
3326 		*cx = *c;
3327 
3328 		/*
3329 		 * mark constraint as dynamic
3330 		 */
3331 		cx->flags |= PERF_X86_EVENT_DYNAMIC;
3332 		c = cx;
3333 	}
3334 
3335 	return c;
3336 }
3337 
3338 static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,int idx,struct event_constraint * c)3339 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3340 			   int idx, struct event_constraint *c)
3341 {
3342 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3343 	struct intel_excl_states *xlo;
3344 	int tid = cpuc->excl_thread_id;
3345 	int is_excl, i, w;
3346 
3347 	/*
3348 	 * validating a group does not require
3349 	 * enforcing cross-thread  exclusion
3350 	 */
3351 	if (cpuc->is_fake || !is_ht_workaround_enabled())
3352 		return c;
3353 
3354 	/*
3355 	 * no exclusion needed
3356 	 */
3357 	if (WARN_ON_ONCE(!excl_cntrs))
3358 		return c;
3359 
3360 	/*
3361 	 * because we modify the constraint, we need
3362 	 * to make a copy. Static constraints come
3363 	 * from static const tables.
3364 	 *
3365 	 * only needed when constraint has not yet
3366 	 * been cloned (marked dynamic)
3367 	 */
3368 	c = dyn_constraint(cpuc, c, idx);
3369 
3370 	/*
3371 	 * From here on, the constraint is dynamic.
3372 	 * Either it was just allocated above, or it
3373 	 * was allocated during a earlier invocation
3374 	 * of this function
3375 	 */
3376 
3377 	/*
3378 	 * state of sibling HT
3379 	 */
3380 	xlo = &excl_cntrs->states[tid ^ 1];
3381 
3382 	/*
3383 	 * event requires exclusive counter access
3384 	 * across HT threads
3385 	 */
3386 	is_excl = c->flags & PERF_X86_EVENT_EXCL;
3387 	if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3388 		event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3389 		if (!cpuc->n_excl++)
3390 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3391 	}
3392 
3393 	/*
3394 	 * Modify static constraint with current dynamic
3395 	 * state of thread
3396 	 *
3397 	 * EXCLUSIVE: sibling counter measuring exclusive event
3398 	 * SHARED   : sibling counter measuring non-exclusive event
3399 	 * UNUSED   : sibling counter unused
3400 	 */
3401 	w = c->weight;
3402 	for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3403 		/*
3404 		 * exclusive event in sibling counter
3405 		 * our corresponding counter cannot be used
3406 		 * regardless of our event
3407 		 */
3408 		if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3409 			__clear_bit(i, c->idxmsk);
3410 			w--;
3411 			continue;
3412 		}
3413 		/*
3414 		 * if measuring an exclusive event, sibling
3415 		 * measuring non-exclusive, then counter cannot
3416 		 * be used
3417 		 */
3418 		if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3419 			__clear_bit(i, c->idxmsk);
3420 			w--;
3421 			continue;
3422 		}
3423 	}
3424 
3425 	/*
3426 	 * if we return an empty mask, then switch
3427 	 * back to static empty constraint to avoid
3428 	 * the cost of freeing later on
3429 	 */
3430 	if (!w)
3431 		c = &emptyconstraint;
3432 
3433 	c->weight = w;
3434 
3435 	return c;
3436 }
3437 
3438 static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3439 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3440 			    struct perf_event *event)
3441 {
3442 	struct event_constraint *c1, *c2;
3443 
3444 	c1 = cpuc->event_constraint[idx];
3445 
3446 	/*
3447 	 * first time only
3448 	 * - static constraint: no change across incremental scheduling calls
3449 	 * - dynamic constraint: handled by intel_get_excl_constraints()
3450 	 */
3451 	c2 = __intel_get_event_constraints(cpuc, idx, event);
3452 	if (c1) {
3453 	        WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3454 		bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3455 		c1->weight = c2->weight;
3456 		c2 = c1;
3457 	}
3458 
3459 	if (cpuc->excl_cntrs)
3460 		return intel_get_excl_constraints(cpuc, event, idx, c2);
3461 
3462 	return c2;
3463 }
3464 
intel_put_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3465 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3466 		struct perf_event *event)
3467 {
3468 	struct hw_perf_event *hwc = &event->hw;
3469 	struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3470 	int tid = cpuc->excl_thread_id;
3471 	struct intel_excl_states *xl;
3472 
3473 	/*
3474 	 * nothing needed if in group validation mode
3475 	 */
3476 	if (cpuc->is_fake)
3477 		return;
3478 
3479 	if (WARN_ON_ONCE(!excl_cntrs))
3480 		return;
3481 
3482 	if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3483 		hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3484 		if (!--cpuc->n_excl)
3485 			WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3486 	}
3487 
3488 	/*
3489 	 * If event was actually assigned, then mark the counter state as
3490 	 * unused now.
3491 	 */
3492 	if (hwc->idx >= 0) {
3493 		xl = &excl_cntrs->states[tid];
3494 
3495 		/*
3496 		 * put_constraint may be called from x86_schedule_events()
3497 		 * which already has the lock held so here make locking
3498 		 * conditional.
3499 		 */
3500 		if (!xl->sched_started)
3501 			raw_spin_lock(&excl_cntrs->lock);
3502 
3503 		xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3504 
3505 		if (!xl->sched_started)
3506 			raw_spin_unlock(&excl_cntrs->lock);
3507 	}
3508 }
3509 
3510 static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3511 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3512 					struct perf_event *event)
3513 {
3514 	struct hw_perf_event_extra *reg;
3515 
3516 	reg = &event->hw.extra_reg;
3517 	if (reg->idx != EXTRA_REG_NONE)
3518 		__intel_shared_reg_put_constraints(cpuc, reg);
3519 
3520 	reg = &event->hw.branch_reg;
3521 	if (reg->idx != EXTRA_REG_NONE)
3522 		__intel_shared_reg_put_constraints(cpuc, reg);
3523 }
3524 
intel_put_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3525 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3526 					struct perf_event *event)
3527 {
3528 	intel_put_shared_regs_event_constraints(cpuc, event);
3529 
3530 	/*
3531 	 * is PMU has exclusive counter restrictions, then
3532 	 * all events are subject to and must call the
3533 	 * put_excl_constraints() routine
3534 	 */
3535 	if (cpuc->excl_cntrs)
3536 		intel_put_excl_constraints(cpuc, event);
3537 }
3538 
intel_pebs_aliases_core2(struct perf_event * event)3539 static void intel_pebs_aliases_core2(struct perf_event *event)
3540 {
3541 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3542 		/*
3543 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3544 		 * (0x003c) so that we can use it with PEBS.
3545 		 *
3546 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3547 		 * PEBS capable. However we can use INST_RETIRED.ANY_P
3548 		 * (0x00c0), which is a PEBS capable event, to get the same
3549 		 * count.
3550 		 *
3551 		 * INST_RETIRED.ANY_P counts the number of cycles that retires
3552 		 * CNTMASK instructions. By setting CNTMASK to a value (16)
3553 		 * larger than the maximum number of instructions that can be
3554 		 * retired per cycle (4) and then inverting the condition, we
3555 		 * count all cycles that retire 16 or less instructions, which
3556 		 * is every cycle.
3557 		 *
3558 		 * Thereby we gain a PEBS capable cycle counter.
3559 		 */
3560 		u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3561 
3562 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3563 		event->hw.config = alt_config;
3564 	}
3565 }
3566 
intel_pebs_aliases_snb(struct perf_event * event)3567 static void intel_pebs_aliases_snb(struct perf_event *event)
3568 {
3569 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3570 		/*
3571 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3572 		 * (0x003c) so that we can use it with PEBS.
3573 		 *
3574 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3575 		 * PEBS capable. However we can use UOPS_RETIRED.ALL
3576 		 * (0x01c2), which is a PEBS capable event, to get the same
3577 		 * count.
3578 		 *
3579 		 * UOPS_RETIRED.ALL counts the number of cycles that retires
3580 		 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3581 		 * larger than the maximum number of micro-ops that can be
3582 		 * retired per cycle (4) and then inverting the condition, we
3583 		 * count all cycles that retire 16 or less micro-ops, which
3584 		 * is every cycle.
3585 		 *
3586 		 * Thereby we gain a PEBS capable cycle counter.
3587 		 */
3588 		u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3589 
3590 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3591 		event->hw.config = alt_config;
3592 	}
3593 }
3594 
intel_pebs_aliases_precdist(struct perf_event * event)3595 static void intel_pebs_aliases_precdist(struct perf_event *event)
3596 {
3597 	if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3598 		/*
3599 		 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3600 		 * (0x003c) so that we can use it with PEBS.
3601 		 *
3602 		 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3603 		 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3604 		 * (0x01c0), which is a PEBS capable event, to get the same
3605 		 * count.
3606 		 *
3607 		 * The PREC_DIST event has special support to minimize sample
3608 		 * shadowing effects. One drawback is that it can be
3609 		 * only programmed on counter 1, but that seems like an
3610 		 * acceptable trade off.
3611 		 */
3612 		u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3613 
3614 		alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3615 		event->hw.config = alt_config;
3616 	}
3617 }
3618 
intel_pebs_aliases_ivb(struct perf_event * event)3619 static void intel_pebs_aliases_ivb(struct perf_event *event)
3620 {
3621 	if (event->attr.precise_ip < 3)
3622 		return intel_pebs_aliases_snb(event);
3623 	return intel_pebs_aliases_precdist(event);
3624 }
3625 
intel_pebs_aliases_skl(struct perf_event * event)3626 static void intel_pebs_aliases_skl(struct perf_event *event)
3627 {
3628 	if (event->attr.precise_ip < 3)
3629 		return intel_pebs_aliases_core2(event);
3630 	return intel_pebs_aliases_precdist(event);
3631 }
3632 
intel_pmu_large_pebs_flags(struct perf_event * event)3633 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3634 {
3635 	unsigned long flags = x86_pmu.large_pebs_flags;
3636 
3637 	if (event->attr.use_clockid)
3638 		flags &= ~PERF_SAMPLE_TIME;
3639 	if (!event->attr.exclude_kernel)
3640 		flags &= ~PERF_SAMPLE_REGS_USER;
3641 	if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3642 		flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3643 	return flags;
3644 }
3645 
intel_pmu_bts_config(struct perf_event * event)3646 static int intel_pmu_bts_config(struct perf_event *event)
3647 {
3648 	struct perf_event_attr *attr = &event->attr;
3649 
3650 	if (unlikely(intel_pmu_has_bts(event))) {
3651 		/* BTS is not supported by this architecture. */
3652 		if (!x86_pmu.bts_active)
3653 			return -EOPNOTSUPP;
3654 
3655 		/* BTS is currently only allowed for user-mode. */
3656 		if (!attr->exclude_kernel)
3657 			return -EOPNOTSUPP;
3658 
3659 		/* BTS is not allowed for precise events. */
3660 		if (attr->precise_ip)
3661 			return -EOPNOTSUPP;
3662 
3663 		/* disallow bts if conflicting events are present */
3664 		if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3665 			return -EBUSY;
3666 
3667 		event->destroy = hw_perf_lbr_event_destroy;
3668 	}
3669 
3670 	return 0;
3671 }
3672 
core_pmu_hw_config(struct perf_event * event)3673 static int core_pmu_hw_config(struct perf_event *event)
3674 {
3675 	int ret = x86_pmu_hw_config(event);
3676 
3677 	if (ret)
3678 		return ret;
3679 
3680 	return intel_pmu_bts_config(event);
3681 }
3682 
3683 #define INTEL_TD_METRIC_AVAILABLE_MAX	(INTEL_TD_METRIC_RETIRING + \
3684 					 ((x86_pmu.num_topdown_events - 1) << 8))
3685 
is_available_metric_event(struct perf_event * event)3686 static bool is_available_metric_event(struct perf_event *event)
3687 {
3688 	return is_metric_event(event) &&
3689 		event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3690 }
3691 
is_mem_loads_event(struct perf_event * event)3692 static inline bool is_mem_loads_event(struct perf_event *event)
3693 {
3694 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3695 }
3696 
is_mem_loads_aux_event(struct perf_event * event)3697 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3698 {
3699 	return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3700 }
3701 
require_mem_loads_aux_event(struct perf_event * event)3702 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3703 {
3704 	if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3705 		return false;
3706 
3707 	if (is_hybrid())
3708 		return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
3709 
3710 	return true;
3711 }
3712 
intel_pmu_has_cap(struct perf_event * event,int idx)3713 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3714 {
3715 	union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3716 
3717 	return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3718 }
3719 
intel_pmu_hw_config(struct perf_event * event)3720 static int intel_pmu_hw_config(struct perf_event *event)
3721 {
3722 	int ret = x86_pmu_hw_config(event);
3723 
3724 	if (ret)
3725 		return ret;
3726 
3727 	ret = intel_pmu_bts_config(event);
3728 	if (ret)
3729 		return ret;
3730 
3731 	if (event->attr.precise_ip) {
3732 		if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3733 			return -EINVAL;
3734 
3735 		if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3736 			event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3737 			if (!(event->attr.sample_type &
3738 			      ~intel_pmu_large_pebs_flags(event))) {
3739 				event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3740 				event->attach_state |= PERF_ATTACH_SCHED_CB;
3741 			}
3742 		}
3743 		if (x86_pmu.pebs_aliases)
3744 			x86_pmu.pebs_aliases(event);
3745 
3746 		if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3747 			event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3748 	}
3749 
3750 	if (needs_branch_stack(event)) {
3751 		ret = intel_pmu_setup_lbr_filter(event);
3752 		if (ret)
3753 			return ret;
3754 		event->attach_state |= PERF_ATTACH_SCHED_CB;
3755 
3756 		/*
3757 		 * BTS is set up earlier in this path, so don't account twice
3758 		 */
3759 		if (!unlikely(intel_pmu_has_bts(event))) {
3760 			/* disallow lbr if conflicting events are present */
3761 			if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3762 				return -EBUSY;
3763 
3764 			event->destroy = hw_perf_lbr_event_destroy;
3765 		}
3766 	}
3767 
3768 	if (event->attr.aux_output) {
3769 		if (!event->attr.precise_ip)
3770 			return -EINVAL;
3771 
3772 		event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3773 	}
3774 
3775 	if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3776 	    (event->attr.type == PERF_TYPE_HW_CACHE))
3777 		return 0;
3778 
3779 	/*
3780 	 * Config Topdown slots and metric events
3781 	 *
3782 	 * The slots event on Fixed Counter 3 can support sampling,
3783 	 * which will be handled normally in x86_perf_event_update().
3784 	 *
3785 	 * Metric events don't support sampling and require being paired
3786 	 * with a slots event as group leader. When the slots event
3787 	 * is used in a metrics group, it too cannot support sampling.
3788 	 */
3789 	if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3790 		if (event->attr.config1 || event->attr.config2)
3791 			return -EINVAL;
3792 
3793 		/*
3794 		 * The TopDown metrics events and slots event don't
3795 		 * support any filters.
3796 		 */
3797 		if (event->attr.config & X86_ALL_EVENT_FLAGS)
3798 			return -EINVAL;
3799 
3800 		if (is_available_metric_event(event)) {
3801 			struct perf_event *leader = event->group_leader;
3802 
3803 			/* The metric events don't support sampling. */
3804 			if (is_sampling_event(event))
3805 				return -EINVAL;
3806 
3807 			/* The metric events require a slots group leader. */
3808 			if (!is_slots_event(leader))
3809 				return -EINVAL;
3810 
3811 			/*
3812 			 * The leader/SLOTS must not be a sampling event for
3813 			 * metric use; hardware requires it starts at 0 when used
3814 			 * in conjunction with MSR_PERF_METRICS.
3815 			 */
3816 			if (is_sampling_event(leader))
3817 				return -EINVAL;
3818 
3819 			event->event_caps |= PERF_EV_CAP_SIBLING;
3820 			/*
3821 			 * Only once we have a METRICs sibling do we
3822 			 * need TopDown magic.
3823 			 */
3824 			leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3825 			event->hw.flags  |= PERF_X86_EVENT_TOPDOWN;
3826 		}
3827 	}
3828 
3829 	/*
3830 	 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3831 	 * doesn't function quite right. As a work-around it needs to always be
3832 	 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3833 	 * The actual count of this second event is irrelevant it just needs
3834 	 * to be active to make the first event function correctly.
3835 	 *
3836 	 * In a group, the auxiliary event must be in front of the load latency
3837 	 * event. The rule is to simplify the implementation of the check.
3838 	 * That's because perf cannot have a complete group at the moment.
3839 	 */
3840 	if (require_mem_loads_aux_event(event) &&
3841 	    (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3842 	    is_mem_loads_event(event)) {
3843 		struct perf_event *leader = event->group_leader;
3844 		struct perf_event *sibling = NULL;
3845 
3846 		if (!is_mem_loads_aux_event(leader)) {
3847 			for_each_sibling_event(sibling, leader) {
3848 				if (is_mem_loads_aux_event(sibling))
3849 					break;
3850 			}
3851 			if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
3852 				return -ENODATA;
3853 		}
3854 	}
3855 
3856 	if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3857 		return 0;
3858 
3859 	if (x86_pmu.version < 3)
3860 		return -EINVAL;
3861 
3862 	ret = perf_allow_cpu(&event->attr);
3863 	if (ret)
3864 		return ret;
3865 
3866 	event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3867 
3868 	return 0;
3869 }
3870 
intel_guest_get_msrs(int * nr)3871 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3872 {
3873 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3874 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3875 	u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
3876 
3877 	arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3878 	arr[0].host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3879 	arr[0].guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3880 	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3881 		arr[0].guest &= ~cpuc->pebs_enabled;
3882 	else
3883 		arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3884 	*nr = 1;
3885 
3886 	if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3887 		/*
3888 		 * If PMU counter has PEBS enabled it is not enough to
3889 		 * disable counter on a guest entry since PEBS memory
3890 		 * write can overshoot guest entry and corrupt guest
3891 		 * memory. Disabling PEBS solves the problem.
3892 		 *
3893 		 * Don't do this if the CPU already enforces it.
3894 		 */
3895 		arr[1].msr = MSR_IA32_PEBS_ENABLE;
3896 		arr[1].host = cpuc->pebs_enabled;
3897 		arr[1].guest = 0;
3898 		*nr = 2;
3899 	}
3900 
3901 	return arr;
3902 }
3903 
core_guest_get_msrs(int * nr)3904 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3905 {
3906 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3907 	struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3908 	int idx;
3909 
3910 	for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3911 		struct perf_event *event = cpuc->events[idx];
3912 
3913 		arr[idx].msr = x86_pmu_config_addr(idx);
3914 		arr[idx].host = arr[idx].guest = 0;
3915 
3916 		if (!test_bit(idx, cpuc->active_mask))
3917 			continue;
3918 
3919 		arr[idx].host = arr[idx].guest =
3920 			event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3921 
3922 		if (event->attr.exclude_host)
3923 			arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3924 		else if (event->attr.exclude_guest)
3925 			arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3926 	}
3927 
3928 	*nr = x86_pmu.num_counters;
3929 	return arr;
3930 }
3931 
core_pmu_enable_event(struct perf_event * event)3932 static void core_pmu_enable_event(struct perf_event *event)
3933 {
3934 	if (!event->attr.exclude_host)
3935 		x86_pmu_enable_event(event);
3936 }
3937 
core_pmu_enable_all(int added)3938 static void core_pmu_enable_all(int added)
3939 {
3940 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3941 	int idx;
3942 
3943 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3944 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3945 
3946 		if (!test_bit(idx, cpuc->active_mask) ||
3947 				cpuc->events[idx]->attr.exclude_host)
3948 			continue;
3949 
3950 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3951 	}
3952 }
3953 
hsw_hw_config(struct perf_event * event)3954 static int hsw_hw_config(struct perf_event *event)
3955 {
3956 	int ret = intel_pmu_hw_config(event);
3957 
3958 	if (ret)
3959 		return ret;
3960 	if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3961 		return 0;
3962 	event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3963 
3964 	/*
3965 	 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3966 	 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3967 	 * this combination.
3968 	 */
3969 	if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3970 	     ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3971 	      event->attr.precise_ip > 0))
3972 		return -EOPNOTSUPP;
3973 
3974 	if (event_is_checkpointed(event)) {
3975 		/*
3976 		 * Sampling of checkpointed events can cause situations where
3977 		 * the CPU constantly aborts because of a overflow, which is
3978 		 * then checkpointed back and ignored. Forbid checkpointing
3979 		 * for sampling.
3980 		 *
3981 		 * But still allow a long sampling period, so that perf stat
3982 		 * from KVM works.
3983 		 */
3984 		if (event->attr.sample_period > 0 &&
3985 		    event->attr.sample_period < 0x7fffffff)
3986 			return -EOPNOTSUPP;
3987 	}
3988 	return 0;
3989 }
3990 
3991 static struct event_constraint counter0_constraint =
3992 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3993 
3994 static struct event_constraint counter2_constraint =
3995 			EVENT_CONSTRAINT(0, 0x4, 0);
3996 
3997 static struct event_constraint fixed0_constraint =
3998 			FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3999 
4000 static struct event_constraint fixed0_counter0_constraint =
4001 			INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4002 
4003 static struct event_constraint *
hsw_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4004 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4005 			  struct perf_event *event)
4006 {
4007 	struct event_constraint *c;
4008 
4009 	c = intel_get_event_constraints(cpuc, idx, event);
4010 
4011 	/* Handle special quirk on in_tx_checkpointed only in counter 2 */
4012 	if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4013 		if (c->idxmsk64 & (1U << 2))
4014 			return &counter2_constraint;
4015 		return &emptyconstraint;
4016 	}
4017 
4018 	return c;
4019 }
4020 
4021 static struct event_constraint *
icl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4022 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4023 			  struct perf_event *event)
4024 {
4025 	/*
4026 	 * Fixed counter 0 has less skid.
4027 	 * Force instruction:ppp in Fixed counter 0
4028 	 */
4029 	if ((event->attr.precise_ip == 3) &&
4030 	    constraint_match(&fixed0_constraint, event->hw.config))
4031 		return &fixed0_constraint;
4032 
4033 	return hsw_get_event_constraints(cpuc, idx, event);
4034 }
4035 
4036 static struct event_constraint *
spr_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4037 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4038 			  struct perf_event *event)
4039 {
4040 	struct event_constraint *c;
4041 
4042 	c = icl_get_event_constraints(cpuc, idx, event);
4043 
4044 	/*
4045 	 * The :ppp indicates the Precise Distribution (PDist) facility, which
4046 	 * is only supported on the GP counter 0. If a :ppp event which is not
4047 	 * available on the GP counter 0, error out.
4048 	 * Exception: Instruction PDIR is only available on the fixed counter 0.
4049 	 */
4050 	if ((event->attr.precise_ip == 3) &&
4051 	    !constraint_match(&fixed0_constraint, event->hw.config)) {
4052 		if (c->idxmsk64 & BIT_ULL(0))
4053 			return &counter0_constraint;
4054 
4055 		return &emptyconstraint;
4056 	}
4057 
4058 	return c;
4059 }
4060 
4061 static struct event_constraint *
glp_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4062 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4063 			  struct perf_event *event)
4064 {
4065 	struct event_constraint *c;
4066 
4067 	/* :ppp means to do reduced skid PEBS which is PMC0 only. */
4068 	if (event->attr.precise_ip == 3)
4069 		return &counter0_constraint;
4070 
4071 	c = intel_get_event_constraints(cpuc, idx, event);
4072 
4073 	return c;
4074 }
4075 
4076 static struct event_constraint *
tnt_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4077 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4078 			  struct perf_event *event)
4079 {
4080 	struct event_constraint *c;
4081 
4082 	/*
4083 	 * :ppp means to do reduced skid PEBS,
4084 	 * which is available on PMC0 and fixed counter 0.
4085 	 */
4086 	if (event->attr.precise_ip == 3) {
4087 		/* Force instruction:ppp on PMC0 and Fixed counter 0 */
4088 		if (constraint_match(&fixed0_constraint, event->hw.config))
4089 			return &fixed0_counter0_constraint;
4090 
4091 		return &counter0_constraint;
4092 	}
4093 
4094 	c = intel_get_event_constraints(cpuc, idx, event);
4095 
4096 	return c;
4097 }
4098 
4099 static bool allow_tsx_force_abort = true;
4100 
4101 static struct event_constraint *
tfa_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4102 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4103 			  struct perf_event *event)
4104 {
4105 	struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4106 
4107 	/*
4108 	 * Without TFA we must not use PMC3.
4109 	 */
4110 	if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4111 		c = dyn_constraint(cpuc, c, idx);
4112 		c->idxmsk64 &= ~(1ULL << 3);
4113 		c->weight--;
4114 	}
4115 
4116 	return c;
4117 }
4118 
4119 static struct event_constraint *
adl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4120 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4121 			  struct perf_event *event)
4122 {
4123 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4124 
4125 	if (pmu->cpu_type == hybrid_big)
4126 		return spr_get_event_constraints(cpuc, idx, event);
4127 	else if (pmu->cpu_type == hybrid_small)
4128 		return tnt_get_event_constraints(cpuc, idx, event);
4129 
4130 	WARN_ON(1);
4131 	return &emptyconstraint;
4132 }
4133 
adl_hw_config(struct perf_event * event)4134 static int adl_hw_config(struct perf_event *event)
4135 {
4136 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4137 
4138 	if (pmu->cpu_type == hybrid_big)
4139 		return hsw_hw_config(event);
4140 	else if (pmu->cpu_type == hybrid_small)
4141 		return intel_pmu_hw_config(event);
4142 
4143 	WARN_ON(1);
4144 	return -EOPNOTSUPP;
4145 }
4146 
adl_get_hybrid_cpu_type(void)4147 static u8 adl_get_hybrid_cpu_type(void)
4148 {
4149 	return hybrid_big;
4150 }
4151 
4152 /*
4153  * Broadwell:
4154  *
4155  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4156  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4157  * the two to enforce a minimum period of 128 (the smallest value that has bits
4158  * 0-5 cleared and >= 100).
4159  *
4160  * Because of how the code in x86_perf_event_set_period() works, the truncation
4161  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4162  * to make up for the 'lost' events due to carrying the 'error' in period_left.
4163  *
4164  * Therefore the effective (average) period matches the requested period,
4165  * despite coarser hardware granularity.
4166  */
bdw_limit_period(struct perf_event * event,u64 left)4167 static u64 bdw_limit_period(struct perf_event *event, u64 left)
4168 {
4169 	if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4170 			X86_CONFIG(.event=0xc0, .umask=0x01)) {
4171 		if (left < 128)
4172 			left = 128;
4173 		left &= ~0x3fULL;
4174 	}
4175 	return left;
4176 }
4177 
nhm_limit_period(struct perf_event * event,u64 left)4178 static u64 nhm_limit_period(struct perf_event *event, u64 left)
4179 {
4180 	return max(left, 32ULL);
4181 }
4182 
spr_limit_period(struct perf_event * event,u64 left)4183 static u64 spr_limit_period(struct perf_event *event, u64 left)
4184 {
4185 	if (event->attr.precise_ip == 3)
4186 		return max(left, 128ULL);
4187 
4188 	return left;
4189 }
4190 
4191 PMU_FORMAT_ATTR(event,	"config:0-7"	);
4192 PMU_FORMAT_ATTR(umask,	"config:8-15"	);
4193 PMU_FORMAT_ATTR(edge,	"config:18"	);
4194 PMU_FORMAT_ATTR(pc,	"config:19"	);
4195 PMU_FORMAT_ATTR(any,	"config:21"	); /* v3 + */
4196 PMU_FORMAT_ATTR(inv,	"config:23"	);
4197 PMU_FORMAT_ATTR(cmask,	"config:24-31"	);
4198 PMU_FORMAT_ATTR(in_tx,  "config:32");
4199 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4200 
4201 static struct attribute *intel_arch_formats_attr[] = {
4202 	&format_attr_event.attr,
4203 	&format_attr_umask.attr,
4204 	&format_attr_edge.attr,
4205 	&format_attr_pc.attr,
4206 	&format_attr_inv.attr,
4207 	&format_attr_cmask.attr,
4208 	NULL,
4209 };
4210 
intel_event_sysfs_show(char * page,u64 config)4211 ssize_t intel_event_sysfs_show(char *page, u64 config)
4212 {
4213 	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4214 
4215 	return x86_event_sysfs_show(page, config, event);
4216 }
4217 
allocate_shared_regs(int cpu)4218 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4219 {
4220 	struct intel_shared_regs *regs;
4221 	int i;
4222 
4223 	regs = kzalloc_node(sizeof(struct intel_shared_regs),
4224 			    GFP_KERNEL, cpu_to_node(cpu));
4225 	if (regs) {
4226 		/*
4227 		 * initialize the locks to keep lockdep happy
4228 		 */
4229 		for (i = 0; i < EXTRA_REG_MAX; i++)
4230 			raw_spin_lock_init(&regs->regs[i].lock);
4231 
4232 		regs->core_id = -1;
4233 	}
4234 	return regs;
4235 }
4236 
allocate_excl_cntrs(int cpu)4237 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4238 {
4239 	struct intel_excl_cntrs *c;
4240 
4241 	c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4242 			 GFP_KERNEL, cpu_to_node(cpu));
4243 	if (c) {
4244 		raw_spin_lock_init(&c->lock);
4245 		c->core_id = -1;
4246 	}
4247 	return c;
4248 }
4249 
4250 
intel_cpuc_prepare(struct cpu_hw_events * cpuc,int cpu)4251 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4252 {
4253 	cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4254 
4255 	if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4256 		cpuc->shared_regs = allocate_shared_regs(cpu);
4257 		if (!cpuc->shared_regs)
4258 			goto err;
4259 	}
4260 
4261 	if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4262 		size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4263 
4264 		cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4265 		if (!cpuc->constraint_list)
4266 			goto err_shared_regs;
4267 	}
4268 
4269 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4270 		cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4271 		if (!cpuc->excl_cntrs)
4272 			goto err_constraint_list;
4273 
4274 		cpuc->excl_thread_id = 0;
4275 	}
4276 
4277 	return 0;
4278 
4279 err_constraint_list:
4280 	kfree(cpuc->constraint_list);
4281 	cpuc->constraint_list = NULL;
4282 
4283 err_shared_regs:
4284 	kfree(cpuc->shared_regs);
4285 	cpuc->shared_regs = NULL;
4286 
4287 err:
4288 	return -ENOMEM;
4289 }
4290 
intel_pmu_cpu_prepare(int cpu)4291 static int intel_pmu_cpu_prepare(int cpu)
4292 {
4293 	return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4294 }
4295 
flip_smm_bit(void * data)4296 static void flip_smm_bit(void *data)
4297 {
4298 	unsigned long set = *(unsigned long *)data;
4299 
4300 	if (set > 0) {
4301 		msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4302 			    DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4303 	} else {
4304 		msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4305 			      DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4306 	}
4307 }
4308 
init_hybrid_pmu(int cpu)4309 static bool init_hybrid_pmu(int cpu)
4310 {
4311 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4312 	u8 cpu_type = get_this_hybrid_cpu_type();
4313 	struct x86_hybrid_pmu *pmu = NULL;
4314 	int i;
4315 
4316 	if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
4317 		cpu_type = x86_pmu.get_hybrid_cpu_type();
4318 
4319 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4320 		if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
4321 			pmu = &x86_pmu.hybrid_pmu[i];
4322 			break;
4323 		}
4324 	}
4325 	if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4326 		cpuc->pmu = NULL;
4327 		return false;
4328 	}
4329 
4330 	/* Only check and dump the PMU information for the first CPU */
4331 	if (!cpumask_empty(&pmu->supported_cpus))
4332 		goto end;
4333 
4334 	if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4335 		return false;
4336 
4337 	pr_info("%s PMU driver: ", pmu->name);
4338 
4339 	if (pmu->intel_cap.pebs_output_pt_available)
4340 		pr_cont("PEBS-via-PT ");
4341 
4342 	pr_cont("\n");
4343 
4344 	x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4345 			     pmu->intel_ctrl);
4346 
4347 end:
4348 	cpumask_set_cpu(cpu, &pmu->supported_cpus);
4349 	cpuc->pmu = &pmu->pmu;
4350 
4351 	x86_pmu_update_cpu_context(&pmu->pmu, cpu);
4352 
4353 	return true;
4354 }
4355 
intel_pmu_cpu_starting(int cpu)4356 static void intel_pmu_cpu_starting(int cpu)
4357 {
4358 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4359 	int core_id = topology_core_id(cpu);
4360 	int i;
4361 
4362 	if (is_hybrid() && !init_hybrid_pmu(cpu))
4363 		return;
4364 
4365 	init_debug_store_on_cpu(cpu);
4366 	/*
4367 	 * Deal with CPUs that don't clear their LBRs on power-up.
4368 	 */
4369 	intel_pmu_lbr_reset();
4370 
4371 	cpuc->lbr_sel = NULL;
4372 
4373 	if (x86_pmu.flags & PMU_FL_TFA) {
4374 		WARN_ON_ONCE(cpuc->tfa_shadow);
4375 		cpuc->tfa_shadow = ~0ULL;
4376 		intel_set_tfa(cpuc, false);
4377 	}
4378 
4379 	if (x86_pmu.version > 1)
4380 		flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4381 
4382 	/*
4383 	 * Disable perf metrics if any added CPU doesn't support it.
4384 	 *
4385 	 * Turn off the check for a hybrid architecture, because the
4386 	 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4387 	 * the architecture features. The perf metrics is a model-specific
4388 	 * feature for now. The corresponding bit should always be 0 on
4389 	 * a hybrid platform, e.g., Alder Lake.
4390 	 */
4391 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4392 		union perf_capabilities perf_cap;
4393 
4394 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4395 		if (!perf_cap.perf_metrics) {
4396 			x86_pmu.intel_cap.perf_metrics = 0;
4397 			x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4398 		}
4399 	}
4400 
4401 	if (!cpuc->shared_regs)
4402 		return;
4403 
4404 	if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4405 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4406 			struct intel_shared_regs *pc;
4407 
4408 			pc = per_cpu(cpu_hw_events, i).shared_regs;
4409 			if (pc && pc->core_id == core_id) {
4410 				cpuc->kfree_on_online[0] = cpuc->shared_regs;
4411 				cpuc->shared_regs = pc;
4412 				break;
4413 			}
4414 		}
4415 		cpuc->shared_regs->core_id = core_id;
4416 		cpuc->shared_regs->refcnt++;
4417 	}
4418 
4419 	if (x86_pmu.lbr_sel_map)
4420 		cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4421 
4422 	if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4423 		for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4424 			struct cpu_hw_events *sibling;
4425 			struct intel_excl_cntrs *c;
4426 
4427 			sibling = &per_cpu(cpu_hw_events, i);
4428 			c = sibling->excl_cntrs;
4429 			if (c && c->core_id == core_id) {
4430 				cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4431 				cpuc->excl_cntrs = c;
4432 				if (!sibling->excl_thread_id)
4433 					cpuc->excl_thread_id = 1;
4434 				break;
4435 			}
4436 		}
4437 		cpuc->excl_cntrs->core_id = core_id;
4438 		cpuc->excl_cntrs->refcnt++;
4439 	}
4440 }
4441 
free_excl_cntrs(struct cpu_hw_events * cpuc)4442 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4443 {
4444 	struct intel_excl_cntrs *c;
4445 
4446 	c = cpuc->excl_cntrs;
4447 	if (c) {
4448 		if (c->core_id == -1 || --c->refcnt == 0)
4449 			kfree(c);
4450 		cpuc->excl_cntrs = NULL;
4451 	}
4452 
4453 	kfree(cpuc->constraint_list);
4454 	cpuc->constraint_list = NULL;
4455 }
4456 
intel_pmu_cpu_dying(int cpu)4457 static void intel_pmu_cpu_dying(int cpu)
4458 {
4459 	fini_debug_store_on_cpu(cpu);
4460 }
4461 
intel_cpuc_finish(struct cpu_hw_events * cpuc)4462 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4463 {
4464 	struct intel_shared_regs *pc;
4465 
4466 	pc = cpuc->shared_regs;
4467 	if (pc) {
4468 		if (pc->core_id == -1 || --pc->refcnt == 0)
4469 			kfree(pc);
4470 		cpuc->shared_regs = NULL;
4471 	}
4472 
4473 	free_excl_cntrs(cpuc);
4474 }
4475 
intel_pmu_cpu_dead(int cpu)4476 static void intel_pmu_cpu_dead(int cpu)
4477 {
4478 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4479 
4480 	intel_cpuc_finish(cpuc);
4481 
4482 	if (is_hybrid() && cpuc->pmu)
4483 		cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4484 }
4485 
intel_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)4486 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4487 				 bool sched_in)
4488 {
4489 	intel_pmu_pebs_sched_task(ctx, sched_in);
4490 	intel_pmu_lbr_sched_task(ctx, sched_in);
4491 }
4492 
intel_pmu_swap_task_ctx(struct perf_event_context * prev,struct perf_event_context * next)4493 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4494 				    struct perf_event_context *next)
4495 {
4496 	intel_pmu_lbr_swap_task_ctx(prev, next);
4497 }
4498 
intel_pmu_check_period(struct perf_event * event,u64 value)4499 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4500 {
4501 	return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4502 }
4503 
intel_pmu_aux_output_match(struct perf_event * event)4504 static int intel_pmu_aux_output_match(struct perf_event *event)
4505 {
4506 	if (!x86_pmu.intel_cap.pebs_output_pt_available)
4507 		return 0;
4508 
4509 	return is_intel_pt_event(event);
4510 }
4511 
intel_pmu_filter_match(struct perf_event * event)4512 static int intel_pmu_filter_match(struct perf_event *event)
4513 {
4514 	struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4515 	unsigned int cpu = smp_processor_id();
4516 
4517 	return cpumask_test_cpu(cpu, &pmu->supported_cpus);
4518 }
4519 
4520 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4521 
4522 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4523 
4524 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4525 
4526 static struct attribute *intel_arch3_formats_attr[] = {
4527 	&format_attr_event.attr,
4528 	&format_attr_umask.attr,
4529 	&format_attr_edge.attr,
4530 	&format_attr_pc.attr,
4531 	&format_attr_any.attr,
4532 	&format_attr_inv.attr,
4533 	&format_attr_cmask.attr,
4534 	NULL,
4535 };
4536 
4537 static struct attribute *hsw_format_attr[] = {
4538 	&format_attr_in_tx.attr,
4539 	&format_attr_in_tx_cp.attr,
4540 	&format_attr_offcore_rsp.attr,
4541 	&format_attr_ldlat.attr,
4542 	NULL
4543 };
4544 
4545 static struct attribute *nhm_format_attr[] = {
4546 	&format_attr_offcore_rsp.attr,
4547 	&format_attr_ldlat.attr,
4548 	NULL
4549 };
4550 
4551 static struct attribute *slm_format_attr[] = {
4552 	&format_attr_offcore_rsp.attr,
4553 	NULL
4554 };
4555 
4556 static struct attribute *skl_format_attr[] = {
4557 	&format_attr_frontend.attr,
4558 	NULL,
4559 };
4560 
4561 static __initconst const struct x86_pmu core_pmu = {
4562 	.name			= "core",
4563 	.handle_irq		= x86_pmu_handle_irq,
4564 	.disable_all		= x86_pmu_disable_all,
4565 	.enable_all		= core_pmu_enable_all,
4566 	.enable			= core_pmu_enable_event,
4567 	.disable		= x86_pmu_disable_event,
4568 	.hw_config		= core_pmu_hw_config,
4569 	.schedule_events	= x86_schedule_events,
4570 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4571 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4572 	.event_map		= intel_pmu_event_map,
4573 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4574 	.apic			= 1,
4575 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4576 
4577 	/*
4578 	 * Intel PMCs cannot be accessed sanely above 32-bit width,
4579 	 * so we install an artificial 1<<31 period regardless of
4580 	 * the generic event period:
4581 	 */
4582 	.max_period		= (1ULL<<31) - 1,
4583 	.get_event_constraints	= intel_get_event_constraints,
4584 	.put_event_constraints	= intel_put_event_constraints,
4585 	.event_constraints	= intel_core_event_constraints,
4586 	.guest_get_msrs		= core_guest_get_msrs,
4587 	.format_attrs		= intel_arch_formats_attr,
4588 	.events_sysfs_show	= intel_event_sysfs_show,
4589 
4590 	/*
4591 	 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4592 	 * together with PMU version 1 and thus be using core_pmu with
4593 	 * shared_regs. We need following callbacks here to allocate
4594 	 * it properly.
4595 	 */
4596 	.cpu_prepare		= intel_pmu_cpu_prepare,
4597 	.cpu_starting		= intel_pmu_cpu_starting,
4598 	.cpu_dying		= intel_pmu_cpu_dying,
4599 	.cpu_dead		= intel_pmu_cpu_dead,
4600 
4601 	.check_period		= intel_pmu_check_period,
4602 
4603 	.lbr_reset		= intel_pmu_lbr_reset_64,
4604 	.lbr_read		= intel_pmu_lbr_read_64,
4605 	.lbr_save		= intel_pmu_lbr_save,
4606 	.lbr_restore		= intel_pmu_lbr_restore,
4607 };
4608 
4609 static __initconst const struct x86_pmu intel_pmu = {
4610 	.name			= "Intel",
4611 	.handle_irq		= intel_pmu_handle_irq,
4612 	.disable_all		= intel_pmu_disable_all,
4613 	.enable_all		= intel_pmu_enable_all,
4614 	.enable			= intel_pmu_enable_event,
4615 	.disable		= intel_pmu_disable_event,
4616 	.add			= intel_pmu_add_event,
4617 	.del			= intel_pmu_del_event,
4618 	.read			= intel_pmu_read_event,
4619 	.hw_config		= intel_pmu_hw_config,
4620 	.schedule_events	= x86_schedule_events,
4621 	.eventsel		= MSR_ARCH_PERFMON_EVENTSEL0,
4622 	.perfctr		= MSR_ARCH_PERFMON_PERFCTR0,
4623 	.event_map		= intel_pmu_event_map,
4624 	.max_events		= ARRAY_SIZE(intel_perfmon_event_map),
4625 	.apic			= 1,
4626 	.large_pebs_flags	= LARGE_PEBS_FLAGS,
4627 	/*
4628 	 * Intel PMCs cannot be accessed sanely above 32 bit width,
4629 	 * so we install an artificial 1<<31 period regardless of
4630 	 * the generic event period:
4631 	 */
4632 	.max_period		= (1ULL << 31) - 1,
4633 	.get_event_constraints	= intel_get_event_constraints,
4634 	.put_event_constraints	= intel_put_event_constraints,
4635 	.pebs_aliases		= intel_pebs_aliases_core2,
4636 
4637 	.format_attrs		= intel_arch3_formats_attr,
4638 	.events_sysfs_show	= intel_event_sysfs_show,
4639 
4640 	.cpu_prepare		= intel_pmu_cpu_prepare,
4641 	.cpu_starting		= intel_pmu_cpu_starting,
4642 	.cpu_dying		= intel_pmu_cpu_dying,
4643 	.cpu_dead		= intel_pmu_cpu_dead,
4644 
4645 	.guest_get_msrs		= intel_guest_get_msrs,
4646 	.sched_task		= intel_pmu_sched_task,
4647 	.swap_task_ctx		= intel_pmu_swap_task_ctx,
4648 
4649 	.check_period		= intel_pmu_check_period,
4650 
4651 	.aux_output_match	= intel_pmu_aux_output_match,
4652 
4653 	.lbr_reset		= intel_pmu_lbr_reset_64,
4654 	.lbr_read		= intel_pmu_lbr_read_64,
4655 	.lbr_save		= intel_pmu_lbr_save,
4656 	.lbr_restore		= intel_pmu_lbr_restore,
4657 
4658 	/*
4659 	 * SMM has access to all 4 rings and while traditionally SMM code only
4660 	 * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
4661 	 *
4662 	 * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
4663 	 * between SMM or not, this results in what should be pure userspace
4664 	 * counters including SMM data.
4665 	 *
4666 	 * This is a clear privilege issue, therefore globally disable
4667 	 * counting SMM by default.
4668 	 */
4669 	.attr_freeze_on_smi	= 1,
4670 };
4671 
intel_clovertown_quirk(void)4672 static __init void intel_clovertown_quirk(void)
4673 {
4674 	/*
4675 	 * PEBS is unreliable due to:
4676 	 *
4677 	 *   AJ67  - PEBS may experience CPL leaks
4678 	 *   AJ68  - PEBS PMI may be delayed by one event
4679 	 *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4680 	 *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4681 	 *
4682 	 * AJ67 could be worked around by restricting the OS/USR flags.
4683 	 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4684 	 *
4685 	 * AJ106 could possibly be worked around by not allowing LBR
4686 	 *       usage from PEBS, including the fixup.
4687 	 * AJ68  could possibly be worked around by always programming
4688 	 *	 a pebs_event_reset[0] value and coping with the lost events.
4689 	 *
4690 	 * But taken together it might just make sense to not enable PEBS on
4691 	 * these chips.
4692 	 */
4693 	pr_warn("PEBS disabled due to CPU errata\n");
4694 	x86_pmu.pebs = 0;
4695 	x86_pmu.pebs_constraints = NULL;
4696 }
4697 
4698 static const struct x86_cpu_desc isolation_ucodes[] = {
4699 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL,		 3, 0x0000001f),
4700 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L,		 1, 0x0000001e),
4701 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G,		 1, 0x00000015),
4702 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 2, 0x00000037),
4703 	INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X,		 4, 0x0000000a),
4704 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL,		 4, 0x00000023),
4705 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G,		 1, 0x00000014),
4706 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 2, 0x00000010),
4707 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 3, 0x07000009),
4708 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 4, 0x0f000009),
4709 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D,		 5, 0x0e000002),
4710 	INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X,		 1, 0x0b000014),
4711 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 3, 0x00000021),
4712 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 4, 0x00000000),
4713 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 5, 0x00000000),
4714 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 6, 0x00000000),
4715 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		 7, 0x00000000),
4716 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X,		11, 0x00000000),
4717 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L,		 3, 0x0000007c),
4718 	INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE,		 3, 0x0000007c),
4719 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		 9, 0x0000004e),
4720 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		 9, 0x0000004e),
4721 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		10, 0x0000004e),
4722 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		11, 0x0000004e),
4723 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L,		12, 0x0000004e),
4724 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		10, 0x0000004e),
4725 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		11, 0x0000004e),
4726 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		12, 0x0000004e),
4727 	INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE,		13, 0x0000004e),
4728 	{}
4729 };
4730 
intel_check_pebs_isolation(void)4731 static void intel_check_pebs_isolation(void)
4732 {
4733 	x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4734 }
4735 
intel_pebs_isolation_quirk(void)4736 static __init void intel_pebs_isolation_quirk(void)
4737 {
4738 	WARN_ON_ONCE(x86_pmu.check_microcode);
4739 	x86_pmu.check_microcode = intel_check_pebs_isolation;
4740 	intel_check_pebs_isolation();
4741 }
4742 
4743 static const struct x86_cpu_desc pebs_ucodes[] = {
4744 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE,		7, 0x00000028),
4745 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	6, 0x00000618),
4746 	INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X,	7, 0x0000070c),
4747 	{}
4748 };
4749 
intel_snb_pebs_broken(void)4750 static bool intel_snb_pebs_broken(void)
4751 {
4752 	return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4753 }
4754 
intel_snb_check_microcode(void)4755 static void intel_snb_check_microcode(void)
4756 {
4757 	if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4758 		return;
4759 
4760 	/*
4761 	 * Serialized by the microcode lock..
4762 	 */
4763 	if (x86_pmu.pebs_broken) {
4764 		pr_info("PEBS enabled due to microcode update\n");
4765 		x86_pmu.pebs_broken = 0;
4766 	} else {
4767 		pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4768 		x86_pmu.pebs_broken = 1;
4769 	}
4770 }
4771 
is_lbr_from(unsigned long msr)4772 static bool is_lbr_from(unsigned long msr)
4773 {
4774 	unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4775 
4776 	return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4777 }
4778 
4779 /*
4780  * Under certain circumstances, access certain MSR may cause #GP.
4781  * The function tests if the input MSR can be safely accessed.
4782  */
check_msr(unsigned long msr,u64 mask)4783 static bool check_msr(unsigned long msr, u64 mask)
4784 {
4785 	u64 val_old, val_new, val_tmp;
4786 
4787 	/*
4788 	 * Disable the check for real HW, so we don't
4789 	 * mess with potentially enabled registers:
4790 	 */
4791 	if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4792 		return true;
4793 
4794 	/*
4795 	 * Read the current value, change it and read it back to see if it
4796 	 * matches, this is needed to detect certain hardware emulators
4797 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4798 	 */
4799 	if (rdmsrl_safe(msr, &val_old))
4800 		return false;
4801 
4802 	/*
4803 	 * Only change the bits which can be updated by wrmsrl.
4804 	 */
4805 	val_tmp = val_old ^ mask;
4806 
4807 	if (is_lbr_from(msr))
4808 		val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4809 
4810 	if (wrmsrl_safe(msr, val_tmp) ||
4811 	    rdmsrl_safe(msr, &val_new))
4812 		return false;
4813 
4814 	/*
4815 	 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4816 	 * should equal rdmsrl()'s even with the quirk.
4817 	 */
4818 	if (val_new != val_tmp)
4819 		return false;
4820 
4821 	if (is_lbr_from(msr))
4822 		val_old = lbr_from_signext_quirk_wr(val_old);
4823 
4824 	/* Here it's sure that the MSR can be safely accessed.
4825 	 * Restore the old value and return.
4826 	 */
4827 	wrmsrl(msr, val_old);
4828 
4829 	return true;
4830 }
4831 
intel_sandybridge_quirk(void)4832 static __init void intel_sandybridge_quirk(void)
4833 {
4834 	x86_pmu.check_microcode = intel_snb_check_microcode;
4835 	cpus_read_lock();
4836 	intel_snb_check_microcode();
4837 	cpus_read_unlock();
4838 }
4839 
4840 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4841 	{ PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4842 	{ PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4843 	{ PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4844 	{ PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4845 	{ PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4846 	{ PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4847 	{ PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4848 };
4849 
intel_arch_events_quirk(void)4850 static __init void intel_arch_events_quirk(void)
4851 {
4852 	int bit;
4853 
4854 	/* disable event that reported as not present by cpuid */
4855 	for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4856 		intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4857 		pr_warn("CPUID marked event: \'%s\' unavailable\n",
4858 			intel_arch_events_map[bit].name);
4859 	}
4860 }
4861 
intel_nehalem_quirk(void)4862 static __init void intel_nehalem_quirk(void)
4863 {
4864 	union cpuid10_ebx ebx;
4865 
4866 	ebx.full = x86_pmu.events_maskl;
4867 	if (ebx.split.no_branch_misses_retired) {
4868 		/*
4869 		 * Erratum AAJ80 detected, we work it around by using
4870 		 * the BR_MISP_EXEC.ANY event. This will over-count
4871 		 * branch-misses, but it's still much better than the
4872 		 * architectural event which is often completely bogus:
4873 		 */
4874 		intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4875 		ebx.split.no_branch_misses_retired = 0;
4876 		x86_pmu.events_maskl = ebx.full;
4877 		pr_info("CPU erratum AAJ80 worked around\n");
4878 	}
4879 }
4880 
4881 /*
4882  * enable software workaround for errata:
4883  * SNB: BJ122
4884  * IVB: BV98
4885  * HSW: HSD29
4886  *
4887  * Only needed when HT is enabled. However detecting
4888  * if HT is enabled is difficult (model specific). So instead,
4889  * we enable the workaround in the early boot, and verify if
4890  * it is needed in a later initcall phase once we have valid
4891  * topology information to check if HT is actually enabled
4892  */
intel_ht_bug(void)4893 static __init void intel_ht_bug(void)
4894 {
4895 	x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4896 
4897 	x86_pmu.start_scheduling = intel_start_scheduling;
4898 	x86_pmu.commit_scheduling = intel_commit_scheduling;
4899 	x86_pmu.stop_scheduling = intel_stop_scheduling;
4900 }
4901 
4902 EVENT_ATTR_STR(mem-loads,	mem_ld_hsw,	"event=0xcd,umask=0x1,ldlat=3");
4903 EVENT_ATTR_STR(mem-stores,	mem_st_hsw,	"event=0xd0,umask=0x82")
4904 
4905 /* Haswell special events */
4906 EVENT_ATTR_STR(tx-start,	tx_start,	"event=0xc9,umask=0x1");
4907 EVENT_ATTR_STR(tx-commit,	tx_commit,	"event=0xc9,umask=0x2");
4908 EVENT_ATTR_STR(tx-abort,	tx_abort,	"event=0xc9,umask=0x4");
4909 EVENT_ATTR_STR(tx-capacity,	tx_capacity,	"event=0x54,umask=0x2");
4910 EVENT_ATTR_STR(tx-conflict,	tx_conflict,	"event=0x54,umask=0x1");
4911 EVENT_ATTR_STR(el-start,	el_start,	"event=0xc8,umask=0x1");
4912 EVENT_ATTR_STR(el-commit,	el_commit,	"event=0xc8,umask=0x2");
4913 EVENT_ATTR_STR(el-abort,	el_abort,	"event=0xc8,umask=0x4");
4914 EVENT_ATTR_STR(el-capacity,	el_capacity,	"event=0x54,umask=0x2");
4915 EVENT_ATTR_STR(el-conflict,	el_conflict,	"event=0x54,umask=0x1");
4916 EVENT_ATTR_STR(cycles-t,	cycles_t,	"event=0x3c,in_tx=1");
4917 EVENT_ATTR_STR(cycles-ct,	cycles_ct,	"event=0x3c,in_tx=1,in_tx_cp=1");
4918 
4919 static struct attribute *hsw_events_attrs[] = {
4920 	EVENT_PTR(td_slots_issued),
4921 	EVENT_PTR(td_slots_retired),
4922 	EVENT_PTR(td_fetch_bubbles),
4923 	EVENT_PTR(td_total_slots),
4924 	EVENT_PTR(td_total_slots_scale),
4925 	EVENT_PTR(td_recovery_bubbles),
4926 	EVENT_PTR(td_recovery_bubbles_scale),
4927 	NULL
4928 };
4929 
4930 static struct attribute *hsw_mem_events_attrs[] = {
4931 	EVENT_PTR(mem_ld_hsw),
4932 	EVENT_PTR(mem_st_hsw),
4933 	NULL,
4934 };
4935 
4936 static struct attribute *hsw_tsx_events_attrs[] = {
4937 	EVENT_PTR(tx_start),
4938 	EVENT_PTR(tx_commit),
4939 	EVENT_PTR(tx_abort),
4940 	EVENT_PTR(tx_capacity),
4941 	EVENT_PTR(tx_conflict),
4942 	EVENT_PTR(el_start),
4943 	EVENT_PTR(el_commit),
4944 	EVENT_PTR(el_abort),
4945 	EVENT_PTR(el_capacity),
4946 	EVENT_PTR(el_conflict),
4947 	EVENT_PTR(cycles_t),
4948 	EVENT_PTR(cycles_ct),
4949 	NULL
4950 };
4951 
4952 EVENT_ATTR_STR(tx-capacity-read,  tx_capacity_read,  "event=0x54,umask=0x80");
4953 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4954 EVENT_ATTR_STR(el-capacity-read,  el_capacity_read,  "event=0x54,umask=0x80");
4955 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4956 
4957 static struct attribute *icl_events_attrs[] = {
4958 	EVENT_PTR(mem_ld_hsw),
4959 	EVENT_PTR(mem_st_hsw),
4960 	NULL,
4961 };
4962 
4963 static struct attribute *icl_td_events_attrs[] = {
4964 	EVENT_PTR(slots),
4965 	EVENT_PTR(td_retiring),
4966 	EVENT_PTR(td_bad_spec),
4967 	EVENT_PTR(td_fe_bound),
4968 	EVENT_PTR(td_be_bound),
4969 	NULL,
4970 };
4971 
4972 static struct attribute *icl_tsx_events_attrs[] = {
4973 	EVENT_PTR(tx_start),
4974 	EVENT_PTR(tx_abort),
4975 	EVENT_PTR(tx_commit),
4976 	EVENT_PTR(tx_capacity_read),
4977 	EVENT_PTR(tx_capacity_write),
4978 	EVENT_PTR(tx_conflict),
4979 	EVENT_PTR(el_start),
4980 	EVENT_PTR(el_abort),
4981 	EVENT_PTR(el_commit),
4982 	EVENT_PTR(el_capacity_read),
4983 	EVENT_PTR(el_capacity_write),
4984 	EVENT_PTR(el_conflict),
4985 	EVENT_PTR(cycles_t),
4986 	EVENT_PTR(cycles_ct),
4987 	NULL,
4988 };
4989 
4990 
4991 EVENT_ATTR_STR(mem-stores,	mem_st_spr,	"event=0xcd,umask=0x2");
4992 EVENT_ATTR_STR(mem-loads-aux,	mem_ld_aux,	"event=0x03,umask=0x82");
4993 
4994 static struct attribute *spr_events_attrs[] = {
4995 	EVENT_PTR(mem_ld_hsw),
4996 	EVENT_PTR(mem_st_spr),
4997 	EVENT_PTR(mem_ld_aux),
4998 	NULL,
4999 };
5000 
5001 static struct attribute *spr_td_events_attrs[] = {
5002 	EVENT_PTR(slots),
5003 	EVENT_PTR(td_retiring),
5004 	EVENT_PTR(td_bad_spec),
5005 	EVENT_PTR(td_fe_bound),
5006 	EVENT_PTR(td_be_bound),
5007 	EVENT_PTR(td_heavy_ops),
5008 	EVENT_PTR(td_br_mispredict),
5009 	EVENT_PTR(td_fetch_lat),
5010 	EVENT_PTR(td_mem_bound),
5011 	NULL,
5012 };
5013 
5014 static struct attribute *spr_tsx_events_attrs[] = {
5015 	EVENT_PTR(tx_start),
5016 	EVENT_PTR(tx_abort),
5017 	EVENT_PTR(tx_commit),
5018 	EVENT_PTR(tx_capacity_read),
5019 	EVENT_PTR(tx_capacity_write),
5020 	EVENT_PTR(tx_conflict),
5021 	EVENT_PTR(cycles_t),
5022 	EVENT_PTR(cycles_ct),
5023 	NULL,
5024 };
5025 
freeze_on_smi_show(struct device * cdev,struct device_attribute * attr,char * buf)5026 static ssize_t freeze_on_smi_show(struct device *cdev,
5027 				  struct device_attribute *attr,
5028 				  char *buf)
5029 {
5030 	return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5031 }
5032 
5033 static DEFINE_MUTEX(freeze_on_smi_mutex);
5034 
freeze_on_smi_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)5035 static ssize_t freeze_on_smi_store(struct device *cdev,
5036 				   struct device_attribute *attr,
5037 				   const char *buf, size_t count)
5038 {
5039 	unsigned long val;
5040 	ssize_t ret;
5041 
5042 	ret = kstrtoul(buf, 0, &val);
5043 	if (ret)
5044 		return ret;
5045 
5046 	if (val > 1)
5047 		return -EINVAL;
5048 
5049 	mutex_lock(&freeze_on_smi_mutex);
5050 
5051 	if (x86_pmu.attr_freeze_on_smi == val)
5052 		goto done;
5053 
5054 	x86_pmu.attr_freeze_on_smi = val;
5055 
5056 	cpus_read_lock();
5057 	on_each_cpu(flip_smm_bit, &val, 1);
5058 	cpus_read_unlock();
5059 done:
5060 	mutex_unlock(&freeze_on_smi_mutex);
5061 
5062 	return count;
5063 }
5064 
update_tfa_sched(void * ignored)5065 static void update_tfa_sched(void *ignored)
5066 {
5067 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5068 
5069 	/*
5070 	 * check if PMC3 is used
5071 	 * and if so force schedule out for all event types all contexts
5072 	 */
5073 	if (test_bit(3, cpuc->active_mask))
5074 		perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5075 }
5076 
show_sysctl_tfa(struct device * cdev,struct device_attribute * attr,char * buf)5077 static ssize_t show_sysctl_tfa(struct device *cdev,
5078 			      struct device_attribute *attr,
5079 			      char *buf)
5080 {
5081 	return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5082 }
5083 
set_sysctl_tfa(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)5084 static ssize_t set_sysctl_tfa(struct device *cdev,
5085 			      struct device_attribute *attr,
5086 			      const char *buf, size_t count)
5087 {
5088 	bool val;
5089 	ssize_t ret;
5090 
5091 	ret = kstrtobool(buf, &val);
5092 	if (ret)
5093 		return ret;
5094 
5095 	/* no change */
5096 	if (val == allow_tsx_force_abort)
5097 		return count;
5098 
5099 	allow_tsx_force_abort = val;
5100 
5101 	cpus_read_lock();
5102 	on_each_cpu(update_tfa_sched, NULL, 1);
5103 	cpus_read_unlock();
5104 
5105 	return count;
5106 }
5107 
5108 
5109 static DEVICE_ATTR_RW(freeze_on_smi);
5110 
branches_show(struct device * cdev,struct device_attribute * attr,char * buf)5111 static ssize_t branches_show(struct device *cdev,
5112 			     struct device_attribute *attr,
5113 			     char *buf)
5114 {
5115 	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5116 }
5117 
5118 static DEVICE_ATTR_RO(branches);
5119 
5120 static struct attribute *lbr_attrs[] = {
5121 	&dev_attr_branches.attr,
5122 	NULL
5123 };
5124 
5125 static char pmu_name_str[30];
5126 
pmu_name_show(struct device * cdev,struct device_attribute * attr,char * buf)5127 static ssize_t pmu_name_show(struct device *cdev,
5128 			     struct device_attribute *attr,
5129 			     char *buf)
5130 {
5131 	return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5132 }
5133 
5134 static DEVICE_ATTR_RO(pmu_name);
5135 
5136 static struct attribute *intel_pmu_caps_attrs[] = {
5137        &dev_attr_pmu_name.attr,
5138        NULL
5139 };
5140 
5141 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5142 		   show_sysctl_tfa,
5143 		   set_sysctl_tfa);
5144 
5145 static struct attribute *intel_pmu_attrs[] = {
5146 	&dev_attr_freeze_on_smi.attr,
5147 	&dev_attr_allow_tsx_force_abort.attr,
5148 	NULL,
5149 };
5150 
5151 static umode_t
tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)5152 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5153 {
5154 	return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5155 }
5156 
5157 static umode_t
pebs_is_visible(struct kobject * kobj,struct attribute * attr,int i)5158 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5159 {
5160 	return x86_pmu.pebs ? attr->mode : 0;
5161 }
5162 
5163 static umode_t
lbr_is_visible(struct kobject * kobj,struct attribute * attr,int i)5164 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5165 {
5166 	return x86_pmu.lbr_nr ? attr->mode : 0;
5167 }
5168 
5169 static umode_t
exra_is_visible(struct kobject * kobj,struct attribute * attr,int i)5170 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5171 {
5172 	return x86_pmu.version >= 2 ? attr->mode : 0;
5173 }
5174 
5175 static umode_t
default_is_visible(struct kobject * kobj,struct attribute * attr,int i)5176 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5177 {
5178 	if (attr == &dev_attr_allow_tsx_force_abort.attr)
5179 		return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5180 
5181 	return attr->mode;
5182 }
5183 
5184 static struct attribute_group group_events_td  = {
5185 	.name = "events",
5186 };
5187 
5188 static struct attribute_group group_events_mem = {
5189 	.name       = "events",
5190 	.is_visible = pebs_is_visible,
5191 };
5192 
5193 static struct attribute_group group_events_tsx = {
5194 	.name       = "events",
5195 	.is_visible = tsx_is_visible,
5196 };
5197 
5198 static struct attribute_group group_caps_gen = {
5199 	.name  = "caps",
5200 	.attrs = intel_pmu_caps_attrs,
5201 };
5202 
5203 static struct attribute_group group_caps_lbr = {
5204 	.name       = "caps",
5205 	.attrs	    = lbr_attrs,
5206 	.is_visible = lbr_is_visible,
5207 };
5208 
5209 static struct attribute_group group_format_extra = {
5210 	.name       = "format",
5211 	.is_visible = exra_is_visible,
5212 };
5213 
5214 static struct attribute_group group_format_extra_skl = {
5215 	.name       = "format",
5216 	.is_visible = exra_is_visible,
5217 };
5218 
5219 static struct attribute_group group_default = {
5220 	.attrs      = intel_pmu_attrs,
5221 	.is_visible = default_is_visible,
5222 };
5223 
5224 static const struct attribute_group *attr_update[] = {
5225 	&group_events_td,
5226 	&group_events_mem,
5227 	&group_events_tsx,
5228 	&group_caps_gen,
5229 	&group_caps_lbr,
5230 	&group_format_extra,
5231 	&group_format_extra_skl,
5232 	&group_default,
5233 	NULL,
5234 };
5235 
5236 EVENT_ATTR_STR_HYBRID(slots,                 slots_adl,        "event=0x00,umask=0x4",                       hybrid_big);
5237 EVENT_ATTR_STR_HYBRID(topdown-retiring,      td_retiring_adl,  "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5238 EVENT_ATTR_STR_HYBRID(topdown-bad-spec,      td_bad_spec_adl,  "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5239 EVENT_ATTR_STR_HYBRID(topdown-fe-bound,      td_fe_bound_adl,  "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5240 EVENT_ATTR_STR_HYBRID(topdown-be-bound,      td_be_bound_adl,  "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5241 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops,     td_heavy_ops_adl, "event=0x00,umask=0x84",                      hybrid_big);
5242 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl,    "event=0x00,umask=0x85",                      hybrid_big);
5243 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat,     td_fetch_lat_adl, "event=0x00,umask=0x86",                      hybrid_big);
5244 EVENT_ATTR_STR_HYBRID(topdown-mem-bound,     td_mem_bound_adl, "event=0x00,umask=0x87",                      hybrid_big);
5245 
5246 static struct attribute *adl_hybrid_events_attrs[] = {
5247 	EVENT_PTR(slots_adl),
5248 	EVENT_PTR(td_retiring_adl),
5249 	EVENT_PTR(td_bad_spec_adl),
5250 	EVENT_PTR(td_fe_bound_adl),
5251 	EVENT_PTR(td_be_bound_adl),
5252 	EVENT_PTR(td_heavy_ops_adl),
5253 	EVENT_PTR(td_br_mis_adl),
5254 	EVENT_PTR(td_fetch_lat_adl),
5255 	EVENT_PTR(td_mem_bound_adl),
5256 	NULL,
5257 };
5258 
5259 /* Must be in IDX order */
5260 EVENT_ATTR_STR_HYBRID(mem-loads,     mem_ld_adl,     "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5261 EVENT_ATTR_STR_HYBRID(mem-stores,    mem_st_adl,     "event=0xd0,umask=0x6;event=0xcd,umask=0x2",                 hybrid_big_small);
5262 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82",                                     hybrid_big);
5263 
5264 static struct attribute *adl_hybrid_mem_attrs[] = {
5265 	EVENT_PTR(mem_ld_adl),
5266 	EVENT_PTR(mem_st_adl),
5267 	EVENT_PTR(mem_ld_aux_adl),
5268 	NULL,
5269 };
5270 
5271 EVENT_ATTR_STR_HYBRID(tx-start,          tx_start_adl,          "event=0xc9,umask=0x1",          hybrid_big);
5272 EVENT_ATTR_STR_HYBRID(tx-commit,         tx_commit_adl,         "event=0xc9,umask=0x2",          hybrid_big);
5273 EVENT_ATTR_STR_HYBRID(tx-abort,          tx_abort_adl,          "event=0xc9,umask=0x4",          hybrid_big);
5274 EVENT_ATTR_STR_HYBRID(tx-conflict,       tx_conflict_adl,       "event=0x54,umask=0x1",          hybrid_big);
5275 EVENT_ATTR_STR_HYBRID(cycles-t,          cycles_t_adl,          "event=0x3c,in_tx=1",            hybrid_big);
5276 EVENT_ATTR_STR_HYBRID(cycles-ct,         cycles_ct_adl,         "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5277 EVENT_ATTR_STR_HYBRID(tx-capacity-read,  tx_capacity_read_adl,  "event=0x54,umask=0x80",         hybrid_big);
5278 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2",          hybrid_big);
5279 
5280 static struct attribute *adl_hybrid_tsx_attrs[] = {
5281 	EVENT_PTR(tx_start_adl),
5282 	EVENT_PTR(tx_abort_adl),
5283 	EVENT_PTR(tx_commit_adl),
5284 	EVENT_PTR(tx_capacity_read_adl),
5285 	EVENT_PTR(tx_capacity_write_adl),
5286 	EVENT_PTR(tx_conflict_adl),
5287 	EVENT_PTR(cycles_t_adl),
5288 	EVENT_PTR(cycles_ct_adl),
5289 	NULL,
5290 };
5291 
5292 FORMAT_ATTR_HYBRID(in_tx,       hybrid_big);
5293 FORMAT_ATTR_HYBRID(in_tx_cp,    hybrid_big);
5294 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5295 FORMAT_ATTR_HYBRID(ldlat,       hybrid_big_small);
5296 FORMAT_ATTR_HYBRID(frontend,    hybrid_big);
5297 
5298 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5299 	FORMAT_HYBRID_PTR(in_tx),
5300 	FORMAT_HYBRID_PTR(in_tx_cp),
5301 	FORMAT_HYBRID_PTR(offcore_rsp),
5302 	FORMAT_HYBRID_PTR(ldlat),
5303 	FORMAT_HYBRID_PTR(frontend),
5304 	NULL,
5305 };
5306 
5307 static struct attribute *adl_hybrid_extra_attr[] = {
5308 	FORMAT_HYBRID_PTR(offcore_rsp),
5309 	FORMAT_HYBRID_PTR(ldlat),
5310 	FORMAT_HYBRID_PTR(frontend),
5311 	NULL,
5312 };
5313 
is_attr_for_this_pmu(struct kobject * kobj,struct attribute * attr)5314 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5315 {
5316 	struct device *dev = kobj_to_dev(kobj);
5317 	struct x86_hybrid_pmu *pmu =
5318 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5319 	struct perf_pmu_events_hybrid_attr *pmu_attr =
5320 		container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5321 
5322 	return pmu->cpu_type & pmu_attr->pmu_type;
5323 }
5324 
hybrid_events_is_visible(struct kobject * kobj,struct attribute * attr,int i)5325 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5326 					struct attribute *attr, int i)
5327 {
5328 	return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5329 }
5330 
hybrid_find_supported_cpu(struct x86_hybrid_pmu * pmu)5331 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5332 {
5333 	int cpu = cpumask_first(&pmu->supported_cpus);
5334 
5335 	return (cpu >= nr_cpu_ids) ? -1 : cpu;
5336 }
5337 
hybrid_tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)5338 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5339 				     struct attribute *attr, int i)
5340 {
5341 	struct device *dev = kobj_to_dev(kobj);
5342 	struct x86_hybrid_pmu *pmu =
5343 		 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5344 	int cpu = hybrid_find_supported_cpu(pmu);
5345 
5346 	return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5347 }
5348 
hybrid_format_is_visible(struct kobject * kobj,struct attribute * attr,int i)5349 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5350 					struct attribute *attr, int i)
5351 {
5352 	struct device *dev = kobj_to_dev(kobj);
5353 	struct x86_hybrid_pmu *pmu =
5354 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5355 	struct perf_pmu_format_hybrid_attr *pmu_attr =
5356 		container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5357 	int cpu = hybrid_find_supported_cpu(pmu);
5358 
5359 	return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5360 }
5361 
5362 static struct attribute_group hybrid_group_events_td  = {
5363 	.name		= "events",
5364 	.is_visible	= hybrid_events_is_visible,
5365 };
5366 
5367 static struct attribute_group hybrid_group_events_mem = {
5368 	.name		= "events",
5369 	.is_visible	= hybrid_events_is_visible,
5370 };
5371 
5372 static struct attribute_group hybrid_group_events_tsx = {
5373 	.name		= "events",
5374 	.is_visible	= hybrid_tsx_is_visible,
5375 };
5376 
5377 static struct attribute_group hybrid_group_format_extra = {
5378 	.name		= "format",
5379 	.is_visible	= hybrid_format_is_visible,
5380 };
5381 
intel_hybrid_get_attr_cpus(struct device * dev,struct device_attribute * attr,char * buf)5382 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5383 					  struct device_attribute *attr,
5384 					  char *buf)
5385 {
5386 	struct x86_hybrid_pmu *pmu =
5387 		container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5388 
5389 	return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5390 }
5391 
5392 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5393 static struct attribute *intel_hybrid_cpus_attrs[] = {
5394 	&dev_attr_cpus.attr,
5395 	NULL,
5396 };
5397 
5398 static struct attribute_group hybrid_group_cpus = {
5399 	.attrs		= intel_hybrid_cpus_attrs,
5400 };
5401 
5402 static const struct attribute_group *hybrid_attr_update[] = {
5403 	&hybrid_group_events_td,
5404 	&hybrid_group_events_mem,
5405 	&hybrid_group_events_tsx,
5406 	&group_caps_gen,
5407 	&group_caps_lbr,
5408 	&hybrid_group_format_extra,
5409 	&group_default,
5410 	&hybrid_group_cpus,
5411 	NULL,
5412 };
5413 
5414 static struct attribute *empty_attrs;
5415 
intel_pmu_check_num_counters(int * num_counters,int * num_counters_fixed,u64 * intel_ctrl,u64 fixed_mask)5416 static void intel_pmu_check_num_counters(int *num_counters,
5417 					 int *num_counters_fixed,
5418 					 u64 *intel_ctrl, u64 fixed_mask)
5419 {
5420 	if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5421 		WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5422 		     *num_counters, INTEL_PMC_MAX_GENERIC);
5423 		*num_counters = INTEL_PMC_MAX_GENERIC;
5424 	}
5425 	*intel_ctrl = (1ULL << *num_counters) - 1;
5426 
5427 	if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5428 		WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5429 		     *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5430 		*num_counters_fixed = INTEL_PMC_MAX_FIXED;
5431 	}
5432 
5433 	*intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5434 }
5435 
intel_pmu_check_event_constraints(struct event_constraint * event_constraints,int num_counters,int num_counters_fixed,u64 intel_ctrl)5436 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5437 					      int num_counters,
5438 					      int num_counters_fixed,
5439 					      u64 intel_ctrl)
5440 {
5441 	struct event_constraint *c;
5442 
5443 	if (!event_constraints)
5444 		return;
5445 
5446 	/*
5447 	 * event on fixed counter2 (REF_CYCLES) only works on this
5448 	 * counter, so do not extend mask to generic counters
5449 	 */
5450 	for_each_event_constraint(c, event_constraints) {
5451 		/*
5452 		 * Don't extend the topdown slots and metrics
5453 		 * events to the generic counters.
5454 		 */
5455 		if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5456 			/*
5457 			 * Disable topdown slots and metrics events,
5458 			 * if slots event is not in CPUID.
5459 			 */
5460 			if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5461 				c->idxmsk64 = 0;
5462 			c->weight = hweight64(c->idxmsk64);
5463 			continue;
5464 		}
5465 
5466 		if (c->cmask == FIXED_EVENT_FLAGS) {
5467 			/* Disabled fixed counters which are not in CPUID */
5468 			c->idxmsk64 &= intel_ctrl;
5469 
5470 			/*
5471 			 * Don't extend the pseudo-encoding to the
5472 			 * generic counters
5473 			 */
5474 			if (!use_fixed_pseudo_encoding(c->code))
5475 				c->idxmsk64 |= (1ULL << num_counters) - 1;
5476 		}
5477 		c->idxmsk64 &=
5478 			~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5479 		c->weight = hweight64(c->idxmsk64);
5480 	}
5481 }
5482 
intel_pmu_check_extra_regs(struct extra_reg * extra_regs)5483 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5484 {
5485 	struct extra_reg *er;
5486 
5487 	/*
5488 	 * Access extra MSR may cause #GP under certain circumstances.
5489 	 * E.g. KVM doesn't support offcore event
5490 	 * Check all extra_regs here.
5491 	 */
5492 	if (!extra_regs)
5493 		return;
5494 
5495 	for (er = extra_regs; er->msr; er++) {
5496 		er->extra_msr_access = check_msr(er->msr, 0x11UL);
5497 		/* Disable LBR select mapping */
5498 		if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5499 			x86_pmu.lbr_sel_map = NULL;
5500 	}
5501 }
5502 
intel_pmu_check_hybrid_pmus(u64 fixed_mask)5503 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
5504 {
5505 	struct x86_hybrid_pmu *pmu;
5506 	int i;
5507 
5508 	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5509 		pmu = &x86_pmu.hybrid_pmu[i];
5510 
5511 		intel_pmu_check_num_counters(&pmu->num_counters,
5512 					     &pmu->num_counters_fixed,
5513 					     &pmu->intel_ctrl,
5514 					     fixed_mask);
5515 
5516 		if (pmu->intel_cap.perf_metrics) {
5517 			pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5518 			pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
5519 		}
5520 
5521 		if (pmu->intel_cap.pebs_output_pt_available)
5522 			pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
5523 
5524 		intel_pmu_check_event_constraints(pmu->event_constraints,
5525 						  pmu->num_counters,
5526 						  pmu->num_counters_fixed,
5527 						  pmu->intel_ctrl);
5528 
5529 		intel_pmu_check_extra_regs(pmu->extra_regs);
5530 	}
5531 }
5532 
intel_pmu_init(void)5533 __init int intel_pmu_init(void)
5534 {
5535 	struct attribute **extra_skl_attr = &empty_attrs;
5536 	struct attribute **extra_attr = &empty_attrs;
5537 	struct attribute **td_attr    = &empty_attrs;
5538 	struct attribute **mem_attr   = &empty_attrs;
5539 	struct attribute **tsx_attr   = &empty_attrs;
5540 	union cpuid10_edx edx;
5541 	union cpuid10_eax eax;
5542 	union cpuid10_ebx ebx;
5543 	unsigned int fixed_mask;
5544 	bool pmem = false;
5545 	int version, i;
5546 	char *name;
5547 	struct x86_hybrid_pmu *pmu;
5548 
5549 	if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5550 		switch (boot_cpu_data.x86) {
5551 		case 0x6:
5552 			return p6_pmu_init();
5553 		case 0xb:
5554 			return knc_pmu_init();
5555 		case 0xf:
5556 			return p4_pmu_init();
5557 		}
5558 		return -ENODEV;
5559 	}
5560 
5561 	/*
5562 	 * Check whether the Architectural PerfMon supports
5563 	 * Branch Misses Retired hw_event or not.
5564 	 */
5565 	cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5566 	if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5567 		return -ENODEV;
5568 
5569 	version = eax.split.version_id;
5570 	if (version < 2)
5571 		x86_pmu = core_pmu;
5572 	else
5573 		x86_pmu = intel_pmu;
5574 
5575 	x86_pmu.version			= version;
5576 	x86_pmu.num_counters		= eax.split.num_counters;
5577 	x86_pmu.cntval_bits		= eax.split.bit_width;
5578 	x86_pmu.cntval_mask		= (1ULL << eax.split.bit_width) - 1;
5579 
5580 	x86_pmu.events_maskl		= ebx.full;
5581 	x86_pmu.events_mask_len		= eax.split.mask_length;
5582 
5583 	x86_pmu.max_pebs_events		= min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
5584 
5585 	/*
5586 	 * Quirk: v2 perfmon does not report fixed-purpose events, so
5587 	 * assume at least 3 events, when not running in a hypervisor:
5588 	 */
5589 	if (version > 1 && version < 5) {
5590 		int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
5591 
5592 		x86_pmu.num_counters_fixed =
5593 			max((int)edx.split.num_counters_fixed, assume);
5594 
5595 		fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
5596 	} else if (version >= 5)
5597 		x86_pmu.num_counters_fixed = fls(fixed_mask);
5598 
5599 	if (boot_cpu_has(X86_FEATURE_PDCM)) {
5600 		u64 capabilities;
5601 
5602 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
5603 		x86_pmu.intel_cap.capabilities = capabilities;
5604 	}
5605 
5606 	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5607 		x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5608 		x86_pmu.lbr_read = intel_pmu_lbr_read_32;
5609 	}
5610 
5611 	if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
5612 		intel_pmu_arch_lbr_init();
5613 
5614 	intel_ds_init();
5615 
5616 	x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5617 
5618 	if (version >= 5) {
5619 		x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5620 		if (x86_pmu.intel_cap.anythread_deprecated)
5621 			pr_cont(" AnyThread deprecated, ");
5622 	}
5623 
5624 	/*
5625 	 * Install the hw-cache-events table:
5626 	 */
5627 	switch (boot_cpu_data.x86_model) {
5628 	case INTEL_FAM6_CORE_YONAH:
5629 		pr_cont("Core events, ");
5630 		name = "core";
5631 		break;
5632 
5633 	case INTEL_FAM6_CORE2_MEROM:
5634 		x86_add_quirk(intel_clovertown_quirk);
5635 		fallthrough;
5636 
5637 	case INTEL_FAM6_CORE2_MEROM_L:
5638 	case INTEL_FAM6_CORE2_PENRYN:
5639 	case INTEL_FAM6_CORE2_DUNNINGTON:
5640 		memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5641 		       sizeof(hw_cache_event_ids));
5642 
5643 		intel_pmu_lbr_init_core();
5644 
5645 		x86_pmu.event_constraints = intel_core2_event_constraints;
5646 		x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5647 		pr_cont("Core2 events, ");
5648 		name = "core2";
5649 		break;
5650 
5651 	case INTEL_FAM6_NEHALEM:
5652 	case INTEL_FAM6_NEHALEM_EP:
5653 	case INTEL_FAM6_NEHALEM_EX:
5654 		memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5655 		       sizeof(hw_cache_event_ids));
5656 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5657 		       sizeof(hw_cache_extra_regs));
5658 
5659 		intel_pmu_lbr_init_nhm();
5660 
5661 		x86_pmu.event_constraints = intel_nehalem_event_constraints;
5662 		x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5663 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5664 		x86_pmu.extra_regs = intel_nehalem_extra_regs;
5665 		x86_pmu.limit_period = nhm_limit_period;
5666 
5667 		mem_attr = nhm_mem_events_attrs;
5668 
5669 		/* UOPS_ISSUED.STALLED_CYCLES */
5670 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5671 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5672 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5673 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5674 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5675 
5676 		intel_pmu_pebs_data_source_nhm();
5677 		x86_add_quirk(intel_nehalem_quirk);
5678 		x86_pmu.pebs_no_tlb = 1;
5679 		extra_attr = nhm_format_attr;
5680 
5681 		pr_cont("Nehalem events, ");
5682 		name = "nehalem";
5683 		break;
5684 
5685 	case INTEL_FAM6_ATOM_BONNELL:
5686 	case INTEL_FAM6_ATOM_BONNELL_MID:
5687 	case INTEL_FAM6_ATOM_SALTWELL:
5688 	case INTEL_FAM6_ATOM_SALTWELL_MID:
5689 	case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5690 		memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5691 		       sizeof(hw_cache_event_ids));
5692 
5693 		intel_pmu_lbr_init_atom();
5694 
5695 		x86_pmu.event_constraints = intel_gen_event_constraints;
5696 		x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5697 		x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5698 		pr_cont("Atom events, ");
5699 		name = "bonnell";
5700 		break;
5701 
5702 	case INTEL_FAM6_ATOM_SILVERMONT:
5703 	case INTEL_FAM6_ATOM_SILVERMONT_D:
5704 	case INTEL_FAM6_ATOM_SILVERMONT_MID:
5705 	case INTEL_FAM6_ATOM_AIRMONT:
5706 	case INTEL_FAM6_ATOM_AIRMONT_MID:
5707 		memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5708 			sizeof(hw_cache_event_ids));
5709 		memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5710 		       sizeof(hw_cache_extra_regs));
5711 
5712 		intel_pmu_lbr_init_slm();
5713 
5714 		x86_pmu.event_constraints = intel_slm_event_constraints;
5715 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5716 		x86_pmu.extra_regs = intel_slm_extra_regs;
5717 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5718 		td_attr = slm_events_attrs;
5719 		extra_attr = slm_format_attr;
5720 		pr_cont("Silvermont events, ");
5721 		name = "silvermont";
5722 		break;
5723 
5724 	case INTEL_FAM6_ATOM_GOLDMONT:
5725 	case INTEL_FAM6_ATOM_GOLDMONT_D:
5726 		memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5727 		       sizeof(hw_cache_event_ids));
5728 		memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5729 		       sizeof(hw_cache_extra_regs));
5730 
5731 		intel_pmu_lbr_init_skl();
5732 
5733 		x86_pmu.event_constraints = intel_slm_event_constraints;
5734 		x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5735 		x86_pmu.extra_regs = intel_glm_extra_regs;
5736 		/*
5737 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5738 		 * for precise cycles.
5739 		 * :pp is identical to :ppp
5740 		 */
5741 		x86_pmu.pebs_aliases = NULL;
5742 		x86_pmu.pebs_prec_dist = true;
5743 		x86_pmu.lbr_pt_coexist = true;
5744 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5745 		td_attr = glm_events_attrs;
5746 		extra_attr = slm_format_attr;
5747 		pr_cont("Goldmont events, ");
5748 		name = "goldmont";
5749 		break;
5750 
5751 	case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5752 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5753 		       sizeof(hw_cache_event_ids));
5754 		memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5755 		       sizeof(hw_cache_extra_regs));
5756 
5757 		intel_pmu_lbr_init_skl();
5758 
5759 		x86_pmu.event_constraints = intel_slm_event_constraints;
5760 		x86_pmu.extra_regs = intel_glm_extra_regs;
5761 		/*
5762 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5763 		 * for precise cycles.
5764 		 */
5765 		x86_pmu.pebs_aliases = NULL;
5766 		x86_pmu.pebs_prec_dist = true;
5767 		x86_pmu.lbr_pt_coexist = true;
5768 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5769 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
5770 		x86_pmu.get_event_constraints = glp_get_event_constraints;
5771 		td_attr = glm_events_attrs;
5772 		/* Goldmont Plus has 4-wide pipeline */
5773 		event_attr_td_total_slots_scale_glm.event_str = "4";
5774 		extra_attr = slm_format_attr;
5775 		pr_cont("Goldmont plus events, ");
5776 		name = "goldmont_plus";
5777 		break;
5778 
5779 	case INTEL_FAM6_ATOM_TREMONT_D:
5780 	case INTEL_FAM6_ATOM_TREMONT:
5781 	case INTEL_FAM6_ATOM_TREMONT_L:
5782 		x86_pmu.late_ack = true;
5783 		memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5784 		       sizeof(hw_cache_event_ids));
5785 		memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5786 		       sizeof(hw_cache_extra_regs));
5787 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5788 
5789 		intel_pmu_lbr_init_skl();
5790 
5791 		x86_pmu.event_constraints = intel_slm_event_constraints;
5792 		x86_pmu.extra_regs = intel_tnt_extra_regs;
5793 		/*
5794 		 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5795 		 * for precise cycles.
5796 		 */
5797 		x86_pmu.pebs_aliases = NULL;
5798 		x86_pmu.pebs_prec_dist = true;
5799 		x86_pmu.lbr_pt_coexist = true;
5800 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5801 		x86_pmu.get_event_constraints = tnt_get_event_constraints;
5802 		td_attr = tnt_events_attrs;
5803 		extra_attr = slm_format_attr;
5804 		pr_cont("Tremont events, ");
5805 		name = "Tremont";
5806 		break;
5807 
5808 	case INTEL_FAM6_WESTMERE:
5809 	case INTEL_FAM6_WESTMERE_EP:
5810 	case INTEL_FAM6_WESTMERE_EX:
5811 		memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
5812 		       sizeof(hw_cache_event_ids));
5813 		memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5814 		       sizeof(hw_cache_extra_regs));
5815 
5816 		intel_pmu_lbr_init_nhm();
5817 
5818 		x86_pmu.event_constraints = intel_westmere_event_constraints;
5819 		x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5820 		x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5821 		x86_pmu.extra_regs = intel_westmere_extra_regs;
5822 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5823 
5824 		mem_attr = nhm_mem_events_attrs;
5825 
5826 		/* UOPS_ISSUED.STALLED_CYCLES */
5827 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5828 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5829 		/* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5830 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5831 			X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5832 
5833 		intel_pmu_pebs_data_source_nhm();
5834 		extra_attr = nhm_format_attr;
5835 		pr_cont("Westmere events, ");
5836 		name = "westmere";
5837 		break;
5838 
5839 	case INTEL_FAM6_SANDYBRIDGE:
5840 	case INTEL_FAM6_SANDYBRIDGE_X:
5841 		x86_add_quirk(intel_sandybridge_quirk);
5842 		x86_add_quirk(intel_ht_bug);
5843 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5844 		       sizeof(hw_cache_event_ids));
5845 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5846 		       sizeof(hw_cache_extra_regs));
5847 
5848 		intel_pmu_lbr_init_snb();
5849 
5850 		x86_pmu.event_constraints = intel_snb_event_constraints;
5851 		x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
5852 		x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
5853 		if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
5854 			x86_pmu.extra_regs = intel_snbep_extra_regs;
5855 		else
5856 			x86_pmu.extra_regs = intel_snb_extra_regs;
5857 
5858 
5859 		/* all extra regs are per-cpu when HT is on */
5860 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5861 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5862 
5863 		td_attr  = snb_events_attrs;
5864 		mem_attr = snb_mem_events_attrs;
5865 
5866 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5867 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5868 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5869 		/* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5870 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5871 			X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
5872 
5873 		extra_attr = nhm_format_attr;
5874 
5875 		pr_cont("SandyBridge events, ");
5876 		name = "sandybridge";
5877 		break;
5878 
5879 	case INTEL_FAM6_IVYBRIDGE:
5880 	case INTEL_FAM6_IVYBRIDGE_X:
5881 		x86_add_quirk(intel_ht_bug);
5882 		memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5883 		       sizeof(hw_cache_event_ids));
5884 		/* dTLB-load-misses on IVB is different than SNB */
5885 		hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
5886 
5887 		memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5888 		       sizeof(hw_cache_extra_regs));
5889 
5890 		intel_pmu_lbr_init_snb();
5891 
5892 		x86_pmu.event_constraints = intel_ivb_event_constraints;
5893 		x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
5894 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5895 		x86_pmu.pebs_prec_dist = true;
5896 		if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
5897 			x86_pmu.extra_regs = intel_snbep_extra_regs;
5898 		else
5899 			x86_pmu.extra_regs = intel_snb_extra_regs;
5900 		/* all extra regs are per-cpu when HT is on */
5901 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5902 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5903 
5904 		td_attr  = snb_events_attrs;
5905 		mem_attr = snb_mem_events_attrs;
5906 
5907 		/* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5908 		intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5909 			X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5910 
5911 		extra_attr = nhm_format_attr;
5912 
5913 		pr_cont("IvyBridge events, ");
5914 		name = "ivybridge";
5915 		break;
5916 
5917 
5918 	case INTEL_FAM6_HASWELL:
5919 	case INTEL_FAM6_HASWELL_X:
5920 	case INTEL_FAM6_HASWELL_L:
5921 	case INTEL_FAM6_HASWELL_G:
5922 		x86_add_quirk(intel_ht_bug);
5923 		x86_add_quirk(intel_pebs_isolation_quirk);
5924 		x86_pmu.late_ack = true;
5925 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5926 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5927 
5928 		intel_pmu_lbr_init_hsw();
5929 
5930 		x86_pmu.event_constraints = intel_hsw_event_constraints;
5931 		x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
5932 		x86_pmu.extra_regs = intel_snbep_extra_regs;
5933 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5934 		x86_pmu.pebs_prec_dist = true;
5935 		/* all extra regs are per-cpu when HT is on */
5936 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5937 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5938 
5939 		x86_pmu.hw_config = hsw_hw_config;
5940 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5941 		x86_pmu.lbr_double_abort = true;
5942 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5943 			hsw_format_attr : nhm_format_attr;
5944 		td_attr  = hsw_events_attrs;
5945 		mem_attr = hsw_mem_events_attrs;
5946 		tsx_attr = hsw_tsx_events_attrs;
5947 		pr_cont("Haswell events, ");
5948 		name = "haswell";
5949 		break;
5950 
5951 	case INTEL_FAM6_BROADWELL:
5952 	case INTEL_FAM6_BROADWELL_D:
5953 	case INTEL_FAM6_BROADWELL_G:
5954 	case INTEL_FAM6_BROADWELL_X:
5955 		x86_add_quirk(intel_pebs_isolation_quirk);
5956 		x86_pmu.late_ack = true;
5957 		memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5958 		memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5959 
5960 		/* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
5961 		hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
5962 									 BDW_L3_MISS|HSW_SNOOP_DRAM;
5963 		hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
5964 									  HSW_SNOOP_DRAM;
5965 		hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
5966 									     BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5967 		hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
5968 									      BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5969 
5970 		intel_pmu_lbr_init_hsw();
5971 
5972 		x86_pmu.event_constraints = intel_bdw_event_constraints;
5973 		x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
5974 		x86_pmu.extra_regs = intel_snbep_extra_regs;
5975 		x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5976 		x86_pmu.pebs_prec_dist = true;
5977 		/* all extra regs are per-cpu when HT is on */
5978 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5979 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5980 
5981 		x86_pmu.hw_config = hsw_hw_config;
5982 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
5983 		x86_pmu.limit_period = bdw_limit_period;
5984 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5985 			hsw_format_attr : nhm_format_attr;
5986 		td_attr  = hsw_events_attrs;
5987 		mem_attr = hsw_mem_events_attrs;
5988 		tsx_attr = hsw_tsx_events_attrs;
5989 		pr_cont("Broadwell events, ");
5990 		name = "broadwell";
5991 		break;
5992 
5993 	case INTEL_FAM6_XEON_PHI_KNL:
5994 	case INTEL_FAM6_XEON_PHI_KNM:
5995 		memcpy(hw_cache_event_ids,
5996 		       slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5997 		memcpy(hw_cache_extra_regs,
5998 		       knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5999 		intel_pmu_lbr_init_knl();
6000 
6001 		x86_pmu.event_constraints = intel_slm_event_constraints;
6002 		x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6003 		x86_pmu.extra_regs = intel_knl_extra_regs;
6004 
6005 		/* all extra regs are per-cpu when HT is on */
6006 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6007 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6008 		extra_attr = slm_format_attr;
6009 		pr_cont("Knights Landing/Mill events, ");
6010 		name = "knights-landing";
6011 		break;
6012 
6013 	case INTEL_FAM6_SKYLAKE_X:
6014 		pmem = true;
6015 		fallthrough;
6016 	case INTEL_FAM6_SKYLAKE_L:
6017 	case INTEL_FAM6_SKYLAKE:
6018 	case INTEL_FAM6_KABYLAKE_L:
6019 	case INTEL_FAM6_KABYLAKE:
6020 	case INTEL_FAM6_COMETLAKE_L:
6021 	case INTEL_FAM6_COMETLAKE:
6022 		x86_add_quirk(intel_pebs_isolation_quirk);
6023 		x86_pmu.late_ack = true;
6024 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6025 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6026 		intel_pmu_lbr_init_skl();
6027 
6028 		/* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6029 		event_attr_td_recovery_bubbles.event_str_noht =
6030 			"event=0xd,umask=0x1,cmask=1";
6031 		event_attr_td_recovery_bubbles.event_str_ht =
6032 			"event=0xd,umask=0x1,cmask=1,any=1";
6033 
6034 		x86_pmu.event_constraints = intel_skl_event_constraints;
6035 		x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6036 		x86_pmu.extra_regs = intel_skl_extra_regs;
6037 		x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6038 		x86_pmu.pebs_prec_dist = true;
6039 		/* all extra regs are per-cpu when HT is on */
6040 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6041 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6042 
6043 		x86_pmu.hw_config = hsw_hw_config;
6044 		x86_pmu.get_event_constraints = hsw_get_event_constraints;
6045 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6046 			hsw_format_attr : nhm_format_attr;
6047 		extra_skl_attr = skl_format_attr;
6048 		td_attr  = hsw_events_attrs;
6049 		mem_attr = hsw_mem_events_attrs;
6050 		tsx_attr = hsw_tsx_events_attrs;
6051 		intel_pmu_pebs_data_source_skl(pmem);
6052 
6053 		/*
6054 		 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6055 		 * TSX force abort hooks are not required on these systems. Only deploy
6056 		 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6057 		 */
6058 		if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6059 		   !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6060 			x86_pmu.flags |= PMU_FL_TFA;
6061 			x86_pmu.get_event_constraints = tfa_get_event_constraints;
6062 			x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6063 			x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6064 		}
6065 
6066 		pr_cont("Skylake events, ");
6067 		name = "skylake";
6068 		break;
6069 
6070 	case INTEL_FAM6_ICELAKE_X:
6071 	case INTEL_FAM6_ICELAKE_D:
6072 		pmem = true;
6073 		fallthrough;
6074 	case INTEL_FAM6_ICELAKE_L:
6075 	case INTEL_FAM6_ICELAKE:
6076 	case INTEL_FAM6_TIGERLAKE_L:
6077 	case INTEL_FAM6_TIGERLAKE:
6078 	case INTEL_FAM6_ROCKETLAKE:
6079 		x86_pmu.late_ack = true;
6080 		memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6081 		memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6082 		hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6083 		intel_pmu_lbr_init_skl();
6084 
6085 		x86_pmu.event_constraints = intel_icl_event_constraints;
6086 		x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6087 		x86_pmu.extra_regs = intel_icl_extra_regs;
6088 		x86_pmu.pebs_aliases = NULL;
6089 		x86_pmu.pebs_prec_dist = true;
6090 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6091 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6092 
6093 		x86_pmu.hw_config = hsw_hw_config;
6094 		x86_pmu.get_event_constraints = icl_get_event_constraints;
6095 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6096 			hsw_format_attr : nhm_format_attr;
6097 		extra_skl_attr = skl_format_attr;
6098 		mem_attr = icl_events_attrs;
6099 		td_attr = icl_td_events_attrs;
6100 		tsx_attr = icl_tsx_events_attrs;
6101 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6102 		x86_pmu.lbr_pt_coexist = true;
6103 		intel_pmu_pebs_data_source_skl(pmem);
6104 		x86_pmu.num_topdown_events = 4;
6105 		x86_pmu.update_topdown_event = icl_update_topdown_event;
6106 		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6107 		pr_cont("Icelake events, ");
6108 		name = "icelake";
6109 		break;
6110 
6111 	case INTEL_FAM6_SAPPHIRERAPIDS_X:
6112 	case INTEL_FAM6_EMERALDRAPIDS_X:
6113 		pmem = true;
6114 		x86_pmu.late_ack = true;
6115 		memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6116 		memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6117 
6118 		x86_pmu.event_constraints = intel_spr_event_constraints;
6119 		x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
6120 		x86_pmu.extra_regs = intel_spr_extra_regs;
6121 		x86_pmu.limit_period = spr_limit_period;
6122 		x86_pmu.pebs_aliases = NULL;
6123 		x86_pmu.pebs_prec_dist = true;
6124 		x86_pmu.pebs_block = true;
6125 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6126 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6127 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
6128 		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6129 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6130 
6131 		x86_pmu.hw_config = hsw_hw_config;
6132 		x86_pmu.get_event_constraints = spr_get_event_constraints;
6133 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6134 			hsw_format_attr : nhm_format_attr;
6135 		extra_skl_attr = skl_format_attr;
6136 		mem_attr = spr_events_attrs;
6137 		td_attr = spr_td_events_attrs;
6138 		tsx_attr = spr_tsx_events_attrs;
6139 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6140 		x86_pmu.lbr_pt_coexist = true;
6141 		intel_pmu_pebs_data_source_skl(pmem);
6142 		x86_pmu.num_topdown_events = 8;
6143 		x86_pmu.update_topdown_event = icl_update_topdown_event;
6144 		x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6145 		pr_cont("Sapphire Rapids events, ");
6146 		name = "sapphire_rapids";
6147 		break;
6148 
6149 	case INTEL_FAM6_ALDERLAKE:
6150 	case INTEL_FAM6_ALDERLAKE_L:
6151 		/*
6152 		 * Alder Lake has 2 types of CPU, core and atom.
6153 		 *
6154 		 * Initialize the common PerfMon capabilities here.
6155 		 */
6156 		x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
6157 					     sizeof(struct x86_hybrid_pmu),
6158 					     GFP_KERNEL);
6159 		if (!x86_pmu.hybrid_pmu)
6160 			return -ENOMEM;
6161 		static_branch_enable(&perf_is_hybrid);
6162 		x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
6163 
6164 		x86_pmu.pebs_aliases = NULL;
6165 		x86_pmu.pebs_prec_dist = true;
6166 		x86_pmu.pebs_block = true;
6167 		x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6168 		x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6169 		x86_pmu.flags |= PMU_FL_PEBS_ALL;
6170 		x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6171 		x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6172 		x86_pmu.lbr_pt_coexist = true;
6173 		intel_pmu_pebs_data_source_skl(false);
6174 		x86_pmu.num_topdown_events = 8;
6175 		x86_pmu.update_topdown_event = adl_update_topdown_event;
6176 		x86_pmu.set_topdown_event_period = adl_set_topdown_event_period;
6177 
6178 		x86_pmu.filter_match = intel_pmu_filter_match;
6179 		x86_pmu.get_event_constraints = adl_get_event_constraints;
6180 		x86_pmu.hw_config = adl_hw_config;
6181 		x86_pmu.limit_period = spr_limit_period;
6182 		x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6183 		/*
6184 		 * The rtm_abort_event is used to check whether to enable GPRs
6185 		 * for the RTM abort event. Atom doesn't have the RTM abort
6186 		 * event. There is no harmful to set it in the common
6187 		 * x86_pmu.rtm_abort_event.
6188 		 */
6189 		x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6190 
6191 		td_attr = adl_hybrid_events_attrs;
6192 		mem_attr = adl_hybrid_mem_attrs;
6193 		tsx_attr = adl_hybrid_tsx_attrs;
6194 		extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6195 			adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6196 
6197 		/* Initialize big core specific PerfMon capabilities.*/
6198 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6199 		pmu->name = "cpu_core";
6200 		pmu->cpu_type = hybrid_big;
6201 		pmu->late_ack = true;
6202 		if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6203 			pmu->num_counters = x86_pmu.num_counters + 2;
6204 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6205 		} else {
6206 			pmu->num_counters = x86_pmu.num_counters;
6207 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6208 		}
6209 
6210 		/*
6211 		 * Quirk: For some Alder Lake machine, when all E-cores are disabled in
6212 		 * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
6213 		 * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
6214 		 * mistakenly add extra counters for P-cores. Correct the number of
6215 		 * counters here.
6216 		 */
6217 		if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
6218 			pmu->num_counters = x86_pmu.num_counters;
6219 			pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6220 		}
6221 
6222 		pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6223 		pmu->unconstrained = (struct event_constraint)
6224 					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6225 							   0, pmu->num_counters, 0, 0);
6226 		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6227 		pmu->intel_cap.perf_metrics = 1;
6228 		pmu->intel_cap.pebs_output_pt_available = 0;
6229 
6230 		memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6231 		memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6232 		pmu->event_constraints = intel_spr_event_constraints;
6233 		pmu->pebs_constraints = intel_spr_pebs_event_constraints;
6234 		pmu->extra_regs = intel_spr_extra_regs;
6235 
6236 		/* Initialize Atom core specific PerfMon capabilities.*/
6237 		pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6238 		pmu->name = "cpu_atom";
6239 		pmu->cpu_type = hybrid_small;
6240 		pmu->mid_ack = true;
6241 		pmu->num_counters = x86_pmu.num_counters;
6242 		pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6243 		pmu->max_pebs_events = x86_pmu.max_pebs_events;
6244 		pmu->unconstrained = (struct event_constraint)
6245 					__EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6246 							   0, pmu->num_counters, 0, 0);
6247 		pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6248 		pmu->intel_cap.perf_metrics = 0;
6249 		pmu->intel_cap.pebs_output_pt_available = 1;
6250 
6251 		memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6252 		memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6253 		pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6254 		pmu->event_constraints = intel_slm_event_constraints;
6255 		pmu->pebs_constraints = intel_grt_pebs_event_constraints;
6256 		pmu->extra_regs = intel_grt_extra_regs;
6257 		pr_cont("Alderlake Hybrid events, ");
6258 		name = "alderlake_hybrid";
6259 		break;
6260 
6261 	default:
6262 		switch (x86_pmu.version) {
6263 		case 1:
6264 			x86_pmu.event_constraints = intel_v1_event_constraints;
6265 			pr_cont("generic architected perfmon v1, ");
6266 			name = "generic_arch_v1";
6267 			break;
6268 		default:
6269 			/*
6270 			 * default constraints for v2 and up
6271 			 */
6272 			x86_pmu.event_constraints = intel_gen_event_constraints;
6273 			pr_cont("generic architected perfmon, ");
6274 			name = "generic_arch_v2+";
6275 			break;
6276 		}
6277 	}
6278 
6279 	snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6280 
6281 	if (!is_hybrid()) {
6282 		group_events_td.attrs  = td_attr;
6283 		group_events_mem.attrs = mem_attr;
6284 		group_events_tsx.attrs = tsx_attr;
6285 		group_format_extra.attrs = extra_attr;
6286 		group_format_extra_skl.attrs = extra_skl_attr;
6287 
6288 		x86_pmu.attr_update = attr_update;
6289 	} else {
6290 		hybrid_group_events_td.attrs  = td_attr;
6291 		hybrid_group_events_mem.attrs = mem_attr;
6292 		hybrid_group_events_tsx.attrs = tsx_attr;
6293 		hybrid_group_format_extra.attrs = extra_attr;
6294 
6295 		x86_pmu.attr_update = hybrid_attr_update;
6296 	}
6297 
6298 	intel_pmu_check_num_counters(&x86_pmu.num_counters,
6299 				     &x86_pmu.num_counters_fixed,
6300 				     &x86_pmu.intel_ctrl,
6301 				     (u64)fixed_mask);
6302 
6303 	/* AnyThread may be deprecated on arch perfmon v5 or later */
6304 	if (x86_pmu.intel_cap.anythread_deprecated)
6305 		x86_pmu.format_attrs = intel_arch_formats_attr;
6306 
6307 	intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6308 					  x86_pmu.num_counters,
6309 					  x86_pmu.num_counters_fixed,
6310 					  x86_pmu.intel_ctrl);
6311 	/*
6312 	 * Access LBR MSR may cause #GP under certain circumstances.
6313 	 * E.g. KVM doesn't support LBR MSR
6314 	 * Check all LBT MSR here.
6315 	 * Disable LBR access if any LBR MSRs can not be accessed.
6316 	 */
6317 	if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6318 		x86_pmu.lbr_nr = 0;
6319 	for (i = 0; i < x86_pmu.lbr_nr; i++) {
6320 		if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6321 		      check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6322 			x86_pmu.lbr_nr = 0;
6323 	}
6324 
6325 	if (x86_pmu.lbr_nr)
6326 		pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6327 
6328 	intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6329 
6330 	/* Support full width counters using alternative MSR range */
6331 	if (x86_pmu.intel_cap.full_width_write) {
6332 		x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6333 		x86_pmu.perfctr = MSR_IA32_PMC0;
6334 		pr_cont("full-width counters, ");
6335 	}
6336 
6337 	if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6338 		x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6339 
6340 	if (is_hybrid())
6341 		intel_pmu_check_hybrid_pmus((u64)fixed_mask);
6342 
6343 	return 0;
6344 }
6345 
6346 /*
6347  * HT bug: phase 2 init
6348  * Called once we have valid topology information to check
6349  * whether or not HT is enabled
6350  * If HT is off, then we disable the workaround
6351  */
fixup_ht_bug(void)6352 static __init int fixup_ht_bug(void)
6353 {
6354 	int c;
6355 	/*
6356 	 * problem not present on this CPU model, nothing to do
6357 	 */
6358 	if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6359 		return 0;
6360 
6361 	if (topology_max_smt_threads() > 1) {
6362 		pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6363 		return 0;
6364 	}
6365 
6366 	cpus_read_lock();
6367 
6368 	hardlockup_detector_perf_stop();
6369 
6370 	x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6371 
6372 	x86_pmu.start_scheduling = NULL;
6373 	x86_pmu.commit_scheduling = NULL;
6374 	x86_pmu.stop_scheduling = NULL;
6375 
6376 	hardlockup_detector_perf_restart();
6377 
6378 	for_each_online_cpu(c)
6379 		free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6380 
6381 	cpus_read_unlock();
6382 	pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6383 	return 0;
6384 }
6385 subsys_initcall(fixup_ht_bug)
6386