1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Per core/cpu state
4 *
5 * Used to coordinate shared registers between HT threads or
6 * among events on a single PMU.
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/stddef.h>
12 #include <linux/types.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/nmi.h>
17
18 #include <asm/cpufeature.h>
19 #include <asm/hardirq.h>
20 #include <asm/intel-family.h>
21 #include <asm/intel_pt.h>
22 #include <asm/apic.h>
23 #include <asm/cpu_device_id.h>
24
25 #include "../perf_event.h"
26
27 /*
28 * Intel PerfMon, used on Core and later.
29 */
30 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
31 {
32 [PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
33 [PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
34 [PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
35 [PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
36 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
37 [PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
38 [PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
39 [PERF_COUNT_HW_REF_CPU_CYCLES] = 0x0300, /* pseudo-encoding */
40 };
41
42 static struct event_constraint intel_core_event_constraints[] __read_mostly =
43 {
44 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
45 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
46 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
47 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
48 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
49 INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
50 EVENT_CONSTRAINT_END
51 };
52
53 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
54 {
55 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
56 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
57 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
58 INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
59 INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
60 INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
61 INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
62 INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
63 INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
64 INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
65 INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
66 INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
67 INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
68 EVENT_CONSTRAINT_END
69 };
70
71 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
72 {
73 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
74 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
75 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
76 INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
77 INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
78 INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
79 INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
80 INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
81 INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
82 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
83 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
84 EVENT_CONSTRAINT_END
85 };
86
87 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
88 {
89 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
90 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
91 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
92 EVENT_EXTRA_END
93 };
94
95 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
96 {
97 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
98 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
99 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
100 INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
101 INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
102 INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
103 INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
104 EVENT_CONSTRAINT_END
105 };
106
107 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
108 {
109 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
110 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
111 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
112 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
113 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
114 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
115 INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
116 INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
117 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
118 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
119 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
120 INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
121
122 /*
123 * When HT is off these events can only run on the bottom 4 counters
124 * When HT is on, they are impacted by the HT bug and require EXCL access
125 */
126 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
127 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
128 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
129 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
130
131 EVENT_CONSTRAINT_END
132 };
133
134 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
135 {
136 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
137 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
138 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
139 INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
140 INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMPTY */
141 INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
142 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
143 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
144 INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
145 INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
146 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
147 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
148 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
149
150 /*
151 * When HT is off these events can only run on the bottom 4 counters
152 * When HT is on, they are impacted by the HT bug and require EXCL access
153 */
154 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
155 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
156 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
157 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
158
159 EVENT_CONSTRAINT_END
160 };
161
162 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
163 {
164 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
165 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
166 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
167 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
168 EVENT_EXTRA_END
169 };
170
171 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
172 {
173 EVENT_CONSTRAINT_END
174 };
175
176 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
177 {
178 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
179 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
180 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
181 EVENT_CONSTRAINT_END
182 };
183
184 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
185 {
186 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
187 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
188 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
189 EVENT_CONSTRAINT_END
190 };
191
192 static struct event_constraint intel_skl_event_constraints[] = {
193 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
194 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
195 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
196 INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
197
198 /*
199 * when HT is off, these can only run on the bottom 4 counters
200 */
201 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
202 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
203 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
204 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
205 INTEL_EVENT_CONSTRAINT(0xc6, 0xf), /* FRONTEND_RETIRED.* */
206
207 EVENT_CONSTRAINT_END
208 };
209
210 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
211 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
212 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
213 EVENT_EXTRA_END
214 };
215
216 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
217 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
218 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
219 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
220 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
221 EVENT_EXTRA_END
222 };
223
224 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
225 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
226 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
227 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
228 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
229 EVENT_EXTRA_END
230 };
231
232 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
233 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
234 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
235 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
236 /*
237 * Note the low 8 bits eventsel code is not a continuous field, containing
238 * some #GPing bits. These are masked out.
239 */
240 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
241 EVENT_EXTRA_END
242 };
243
244 static struct event_constraint intel_icl_event_constraints[] = {
245 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
246 FIXED_EVENT_CONSTRAINT(0x01c0, 0), /* old INST_RETIRED.PREC_DIST */
247 FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
248 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
249 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
250 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
251 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
252 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
253 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
254 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
255 INTEL_EVENT_CONSTRAINT_RANGE(0x03, 0x0a, 0xf),
256 INTEL_EVENT_CONSTRAINT_RANGE(0x1f, 0x28, 0xf),
257 INTEL_EVENT_CONSTRAINT(0x32, 0xf), /* SW_PREFETCH_ACCESS.* */
258 INTEL_EVENT_CONSTRAINT_RANGE(0x48, 0x56, 0xf),
259 INTEL_EVENT_CONSTRAINT_RANGE(0x60, 0x8b, 0xf),
260 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xff), /* CYCLE_ACTIVITY.STALLS_TOTAL */
261 INTEL_UEVENT_CONSTRAINT(0x10a3, 0xff), /* CYCLE_ACTIVITY.CYCLES_MEM_ANY */
262 INTEL_UEVENT_CONSTRAINT(0x14a3, 0xff), /* CYCLE_ACTIVITY.STALLS_MEM_ANY */
263 INTEL_EVENT_CONSTRAINT(0xa3, 0xf), /* CYCLE_ACTIVITY.* */
264 INTEL_EVENT_CONSTRAINT_RANGE(0xa8, 0xb0, 0xf),
265 INTEL_EVENT_CONSTRAINT_RANGE(0xb7, 0xbd, 0xf),
266 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xe6, 0xf),
267 INTEL_EVENT_CONSTRAINT(0xef, 0xf),
268 INTEL_EVENT_CONSTRAINT_RANGE(0xf0, 0xf4, 0xf),
269 EVENT_CONSTRAINT_END
270 };
271
272 static struct extra_reg intel_icl_extra_regs[] __read_mostly = {
273 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffbfffull, RSP_0),
274 INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffffbfffull, RSP_1),
275 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
276 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
277 EVENT_EXTRA_END
278 };
279
280 static struct extra_reg intel_spr_extra_regs[] __read_mostly = {
281 INTEL_UEVENT_EXTRA_REG(0x012a, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
282 INTEL_UEVENT_EXTRA_REG(0x012b, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
283 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
284 INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff1f, FE),
285 INTEL_UEVENT_EXTRA_REG(0x40ad, MSR_PEBS_FRONTEND, 0x7, FE),
286 INTEL_UEVENT_EXTRA_REG(0x04c2, MSR_PEBS_FRONTEND, 0x8, FE),
287 EVENT_EXTRA_END
288 };
289
290 static struct event_constraint intel_spr_event_constraints[] = {
291 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
292 FIXED_EVENT_CONSTRAINT(0x0100, 0), /* INST_RETIRED.PREC_DIST */
293 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
294 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
295 FIXED_EVENT_CONSTRAINT(0x0400, 3), /* SLOTS */
296 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_RETIRING, 0),
297 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BAD_SPEC, 1),
298 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FE_BOUND, 2),
299 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BE_BOUND, 3),
300 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_HEAVY_OPS, 4),
301 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_BR_MISPREDICT, 5),
302 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_FETCH_LAT, 6),
303 METRIC_EVENT_CONSTRAINT(INTEL_TD_METRIC_MEM_BOUND, 7),
304
305 INTEL_EVENT_CONSTRAINT(0x2e, 0xff),
306 INTEL_EVENT_CONSTRAINT(0x3c, 0xff),
307 /*
308 * Generally event codes < 0x90 are restricted to counters 0-3.
309 * The 0x2E and 0x3C are exception, which has no restriction.
310 */
311 INTEL_EVENT_CONSTRAINT_RANGE(0x01, 0x8f, 0xf),
312
313 INTEL_UEVENT_CONSTRAINT(0x01a3, 0xf),
314 INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf),
315 INTEL_UEVENT_CONSTRAINT(0x08a3, 0xf),
316 INTEL_UEVENT_CONSTRAINT(0x04a4, 0x1),
317 INTEL_UEVENT_CONSTRAINT(0x08a4, 0x1),
318 INTEL_UEVENT_CONSTRAINT(0x02cd, 0x1),
319 INTEL_EVENT_CONSTRAINT(0xce, 0x1),
320 INTEL_EVENT_CONSTRAINT_RANGE(0xd0, 0xdf, 0xf),
321 /*
322 * Generally event codes >= 0x90 are likely to have no restrictions.
323 * The exception are defined as above.
324 */
325 INTEL_EVENT_CONSTRAINT_RANGE(0x90, 0xfe, 0xff),
326
327 EVENT_CONSTRAINT_END
328 };
329
330
331 EVENT_ATTR_STR(mem-loads, mem_ld_nhm, "event=0x0b,umask=0x10,ldlat=3");
332 EVENT_ATTR_STR(mem-loads, mem_ld_snb, "event=0xcd,umask=0x1,ldlat=3");
333 EVENT_ATTR_STR(mem-stores, mem_st_snb, "event=0xcd,umask=0x2");
334
335 static struct attribute *nhm_mem_events_attrs[] = {
336 EVENT_PTR(mem_ld_nhm),
337 NULL,
338 };
339
340 /*
341 * topdown events for Intel Core CPUs.
342 *
343 * The events are all in slots, which is a free slot in a 4 wide
344 * pipeline. Some events are already reported in slots, for cycle
345 * events we multiply by the pipeline width (4).
346 *
347 * With Hyper Threading on, topdown metrics are either summed or averaged
348 * between the threads of a core: (count_t0 + count_t1).
349 *
350 * For the average case the metric is always scaled to pipeline width,
351 * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
352 */
353
354 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
355 "event=0x3c,umask=0x0", /* cpu_clk_unhalted.thread */
356 "event=0x3c,umask=0x0,any=1"); /* cpu_clk_unhalted.thread_any */
357 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
358 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
359 "event=0xe,umask=0x1"); /* uops_issued.any */
360 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
361 "event=0xc2,umask=0x2"); /* uops_retired.retire_slots */
362 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
363 "event=0x9c,umask=0x1"); /* idq_uops_not_delivered_core */
364 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
365 "event=0xd,umask=0x3,cmask=1", /* int_misc.recovery_cycles */
366 "event=0xd,umask=0x3,cmask=1,any=1"); /* int_misc.recovery_cycles_any */
367 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
368 "4", "2");
369
370 EVENT_ATTR_STR(slots, slots, "event=0x00,umask=0x4");
371 EVENT_ATTR_STR(topdown-retiring, td_retiring, "event=0x00,umask=0x80");
372 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec, "event=0x00,umask=0x81");
373 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound, "event=0x00,umask=0x82");
374 EVENT_ATTR_STR(topdown-be-bound, td_be_bound, "event=0x00,umask=0x83");
375 EVENT_ATTR_STR(topdown-heavy-ops, td_heavy_ops, "event=0x00,umask=0x84");
376 EVENT_ATTR_STR(topdown-br-mispredict, td_br_mispredict, "event=0x00,umask=0x85");
377 EVENT_ATTR_STR(topdown-fetch-lat, td_fetch_lat, "event=0x00,umask=0x86");
378 EVENT_ATTR_STR(topdown-mem-bound, td_mem_bound, "event=0x00,umask=0x87");
379
380 static struct attribute *snb_events_attrs[] = {
381 EVENT_PTR(td_slots_issued),
382 EVENT_PTR(td_slots_retired),
383 EVENT_PTR(td_fetch_bubbles),
384 EVENT_PTR(td_total_slots),
385 EVENT_PTR(td_total_slots_scale),
386 EVENT_PTR(td_recovery_bubbles),
387 EVENT_PTR(td_recovery_bubbles_scale),
388 NULL,
389 };
390
391 static struct attribute *snb_mem_events_attrs[] = {
392 EVENT_PTR(mem_ld_snb),
393 EVENT_PTR(mem_st_snb),
394 NULL,
395 };
396
397 static struct event_constraint intel_hsw_event_constraints[] = {
398 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
399 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
400 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
401 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
402 INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
403 INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
404 /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
405 INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
406 /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
407 INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
408 /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
409 INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
410
411 /*
412 * When HT is off these events can only run on the bottom 4 counters
413 * When HT is on, they are impacted by the HT bug and require EXCL access
414 */
415 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
416 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
417 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
418 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
419
420 EVENT_CONSTRAINT_END
421 };
422
423 static struct event_constraint intel_bdw_event_constraints[] = {
424 FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
425 FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
426 FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
427 INTEL_UEVENT_CONSTRAINT(0x148, 0x4), /* L1D_PEND_MISS.PENDING */
428 INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
429 /*
430 * when HT is off, these can only run on the bottom 4 counters
431 */
432 INTEL_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
433 INTEL_EVENT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
434 INTEL_EVENT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
435 INTEL_EVENT_CONSTRAINT(0xcd, 0xf), /* MEM_TRANS_RETIRED.* */
436 EVENT_CONSTRAINT_END
437 };
438
intel_pmu_event_map(int hw_event)439 static u64 intel_pmu_event_map(int hw_event)
440 {
441 return intel_perfmon_event_map[hw_event];
442 }
443
444 static __initconst const u64 spr_hw_cache_event_ids
445 [PERF_COUNT_HW_CACHE_MAX]
446 [PERF_COUNT_HW_CACHE_OP_MAX]
447 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
448 {
449 [ C(L1D ) ] = {
450 [ C(OP_READ) ] = {
451 [ C(RESULT_ACCESS) ] = 0x81d0,
452 [ C(RESULT_MISS) ] = 0xe124,
453 },
454 [ C(OP_WRITE) ] = {
455 [ C(RESULT_ACCESS) ] = 0x82d0,
456 },
457 },
458 [ C(L1I ) ] = {
459 [ C(OP_READ) ] = {
460 [ C(RESULT_MISS) ] = 0xe424,
461 },
462 [ C(OP_WRITE) ] = {
463 [ C(RESULT_ACCESS) ] = -1,
464 [ C(RESULT_MISS) ] = -1,
465 },
466 },
467 [ C(LL ) ] = {
468 [ C(OP_READ) ] = {
469 [ C(RESULT_ACCESS) ] = 0x12a,
470 [ C(RESULT_MISS) ] = 0x12a,
471 },
472 [ C(OP_WRITE) ] = {
473 [ C(RESULT_ACCESS) ] = 0x12a,
474 [ C(RESULT_MISS) ] = 0x12a,
475 },
476 },
477 [ C(DTLB) ] = {
478 [ C(OP_READ) ] = {
479 [ C(RESULT_ACCESS) ] = 0x81d0,
480 [ C(RESULT_MISS) ] = 0xe12,
481 },
482 [ C(OP_WRITE) ] = {
483 [ C(RESULT_ACCESS) ] = 0x82d0,
484 [ C(RESULT_MISS) ] = 0xe13,
485 },
486 },
487 [ C(ITLB) ] = {
488 [ C(OP_READ) ] = {
489 [ C(RESULT_ACCESS) ] = -1,
490 [ C(RESULT_MISS) ] = 0xe11,
491 },
492 [ C(OP_WRITE) ] = {
493 [ C(RESULT_ACCESS) ] = -1,
494 [ C(RESULT_MISS) ] = -1,
495 },
496 [ C(OP_PREFETCH) ] = {
497 [ C(RESULT_ACCESS) ] = -1,
498 [ C(RESULT_MISS) ] = -1,
499 },
500 },
501 [ C(BPU ) ] = {
502 [ C(OP_READ) ] = {
503 [ C(RESULT_ACCESS) ] = 0x4c4,
504 [ C(RESULT_MISS) ] = 0x4c5,
505 },
506 [ C(OP_WRITE) ] = {
507 [ C(RESULT_ACCESS) ] = -1,
508 [ C(RESULT_MISS) ] = -1,
509 },
510 [ C(OP_PREFETCH) ] = {
511 [ C(RESULT_ACCESS) ] = -1,
512 [ C(RESULT_MISS) ] = -1,
513 },
514 },
515 [ C(NODE) ] = {
516 [ C(OP_READ) ] = {
517 [ C(RESULT_ACCESS) ] = 0x12a,
518 [ C(RESULT_MISS) ] = 0x12a,
519 },
520 },
521 };
522
523 static __initconst const u64 spr_hw_cache_extra_regs
524 [PERF_COUNT_HW_CACHE_MAX]
525 [PERF_COUNT_HW_CACHE_OP_MAX]
526 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
527 {
528 [ C(LL ) ] = {
529 [ C(OP_READ) ] = {
530 [ C(RESULT_ACCESS) ] = 0x10001,
531 [ C(RESULT_MISS) ] = 0x3fbfc00001,
532 },
533 [ C(OP_WRITE) ] = {
534 [ C(RESULT_ACCESS) ] = 0x3f3ffc0002,
535 [ C(RESULT_MISS) ] = 0x3f3fc00002,
536 },
537 },
538 [ C(NODE) ] = {
539 [ C(OP_READ) ] = {
540 [ C(RESULT_ACCESS) ] = 0x10c000001,
541 [ C(RESULT_MISS) ] = 0x3fb3000001,
542 },
543 },
544 };
545
546 /*
547 * Notes on the events:
548 * - data reads do not include code reads (comparable to earlier tables)
549 * - data counts include speculative execution (except L1 write, dtlb, bpu)
550 * - remote node access includes remote memory, remote cache, remote mmio.
551 * - prefetches are not included in the counts.
552 * - icache miss does not include decoded icache
553 */
554
555 #define SKL_DEMAND_DATA_RD BIT_ULL(0)
556 #define SKL_DEMAND_RFO BIT_ULL(1)
557 #define SKL_ANY_RESPONSE BIT_ULL(16)
558 #define SKL_SUPPLIER_NONE BIT_ULL(17)
559 #define SKL_L3_MISS_LOCAL_DRAM BIT_ULL(26)
560 #define SKL_L3_MISS_REMOTE_HOP0_DRAM BIT_ULL(27)
561 #define SKL_L3_MISS_REMOTE_HOP1_DRAM BIT_ULL(28)
562 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM BIT_ULL(29)
563 #define SKL_L3_MISS (SKL_L3_MISS_LOCAL_DRAM| \
564 SKL_L3_MISS_REMOTE_HOP0_DRAM| \
565 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
566 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
567 #define SKL_SPL_HIT BIT_ULL(30)
568 #define SKL_SNOOP_NONE BIT_ULL(31)
569 #define SKL_SNOOP_NOT_NEEDED BIT_ULL(32)
570 #define SKL_SNOOP_MISS BIT_ULL(33)
571 #define SKL_SNOOP_HIT_NO_FWD BIT_ULL(34)
572 #define SKL_SNOOP_HIT_WITH_FWD BIT_ULL(35)
573 #define SKL_SNOOP_HITM BIT_ULL(36)
574 #define SKL_SNOOP_NON_DRAM BIT_ULL(37)
575 #define SKL_ANY_SNOOP (SKL_SPL_HIT|SKL_SNOOP_NONE| \
576 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
577 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
578 SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
579 #define SKL_DEMAND_READ SKL_DEMAND_DATA_RD
580 #define SKL_SNOOP_DRAM (SKL_SNOOP_NONE| \
581 SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
582 SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
583 SKL_SNOOP_HITM|SKL_SPL_HIT)
584 #define SKL_DEMAND_WRITE SKL_DEMAND_RFO
585 #define SKL_LLC_ACCESS SKL_ANY_RESPONSE
586 #define SKL_L3_MISS_REMOTE (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
587 SKL_L3_MISS_REMOTE_HOP1_DRAM| \
588 SKL_L3_MISS_REMOTE_HOP2P_DRAM)
589
590 static __initconst const u64 skl_hw_cache_event_ids
591 [PERF_COUNT_HW_CACHE_MAX]
592 [PERF_COUNT_HW_CACHE_OP_MAX]
593 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
594 {
595 [ C(L1D ) ] = {
596 [ C(OP_READ) ] = {
597 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
598 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
599 },
600 [ C(OP_WRITE) ] = {
601 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
602 [ C(RESULT_MISS) ] = 0x0,
603 },
604 [ C(OP_PREFETCH) ] = {
605 [ C(RESULT_ACCESS) ] = 0x0,
606 [ C(RESULT_MISS) ] = 0x0,
607 },
608 },
609 [ C(L1I ) ] = {
610 [ C(OP_READ) ] = {
611 [ C(RESULT_ACCESS) ] = 0x0,
612 [ C(RESULT_MISS) ] = 0x283, /* ICACHE_64B.MISS */
613 },
614 [ C(OP_WRITE) ] = {
615 [ C(RESULT_ACCESS) ] = -1,
616 [ C(RESULT_MISS) ] = -1,
617 },
618 [ C(OP_PREFETCH) ] = {
619 [ C(RESULT_ACCESS) ] = 0x0,
620 [ C(RESULT_MISS) ] = 0x0,
621 },
622 },
623 [ C(LL ) ] = {
624 [ C(OP_READ) ] = {
625 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
626 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
627 },
628 [ C(OP_WRITE) ] = {
629 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
630 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
631 },
632 [ C(OP_PREFETCH) ] = {
633 [ C(RESULT_ACCESS) ] = 0x0,
634 [ C(RESULT_MISS) ] = 0x0,
635 },
636 },
637 [ C(DTLB) ] = {
638 [ C(OP_READ) ] = {
639 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_INST_RETIRED.ALL_LOADS */
640 [ C(RESULT_MISS) ] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
641 },
642 [ C(OP_WRITE) ] = {
643 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_INST_RETIRED.ALL_STORES */
644 [ C(RESULT_MISS) ] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
645 },
646 [ C(OP_PREFETCH) ] = {
647 [ C(RESULT_ACCESS) ] = 0x0,
648 [ C(RESULT_MISS) ] = 0x0,
649 },
650 },
651 [ C(ITLB) ] = {
652 [ C(OP_READ) ] = {
653 [ C(RESULT_ACCESS) ] = 0x2085, /* ITLB_MISSES.STLB_HIT */
654 [ C(RESULT_MISS) ] = 0xe85, /* ITLB_MISSES.WALK_COMPLETED */
655 },
656 [ C(OP_WRITE) ] = {
657 [ C(RESULT_ACCESS) ] = -1,
658 [ C(RESULT_MISS) ] = -1,
659 },
660 [ C(OP_PREFETCH) ] = {
661 [ C(RESULT_ACCESS) ] = -1,
662 [ C(RESULT_MISS) ] = -1,
663 },
664 },
665 [ C(BPU ) ] = {
666 [ C(OP_READ) ] = {
667 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
668 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
669 },
670 [ C(OP_WRITE) ] = {
671 [ C(RESULT_ACCESS) ] = -1,
672 [ C(RESULT_MISS) ] = -1,
673 },
674 [ C(OP_PREFETCH) ] = {
675 [ C(RESULT_ACCESS) ] = -1,
676 [ C(RESULT_MISS) ] = -1,
677 },
678 },
679 [ C(NODE) ] = {
680 [ C(OP_READ) ] = {
681 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
682 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
683 },
684 [ C(OP_WRITE) ] = {
685 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
686 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
687 },
688 [ C(OP_PREFETCH) ] = {
689 [ C(RESULT_ACCESS) ] = 0x0,
690 [ C(RESULT_MISS) ] = 0x0,
691 },
692 },
693 };
694
695 static __initconst const u64 skl_hw_cache_extra_regs
696 [PERF_COUNT_HW_CACHE_MAX]
697 [PERF_COUNT_HW_CACHE_OP_MAX]
698 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
699 {
700 [ C(LL ) ] = {
701 [ C(OP_READ) ] = {
702 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
703 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
704 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
705 SKL_L3_MISS|SKL_ANY_SNOOP|
706 SKL_SUPPLIER_NONE,
707 },
708 [ C(OP_WRITE) ] = {
709 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
710 SKL_LLC_ACCESS|SKL_ANY_SNOOP,
711 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
712 SKL_L3_MISS|SKL_ANY_SNOOP|
713 SKL_SUPPLIER_NONE,
714 },
715 [ C(OP_PREFETCH) ] = {
716 [ C(RESULT_ACCESS) ] = 0x0,
717 [ C(RESULT_MISS) ] = 0x0,
718 },
719 },
720 [ C(NODE) ] = {
721 [ C(OP_READ) ] = {
722 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
723 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
724 [ C(RESULT_MISS) ] = SKL_DEMAND_READ|
725 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
726 },
727 [ C(OP_WRITE) ] = {
728 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
729 SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
730 [ C(RESULT_MISS) ] = SKL_DEMAND_WRITE|
731 SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
732 },
733 [ C(OP_PREFETCH) ] = {
734 [ C(RESULT_ACCESS) ] = 0x0,
735 [ C(RESULT_MISS) ] = 0x0,
736 },
737 },
738 };
739
740 #define SNB_DMND_DATA_RD (1ULL << 0)
741 #define SNB_DMND_RFO (1ULL << 1)
742 #define SNB_DMND_IFETCH (1ULL << 2)
743 #define SNB_DMND_WB (1ULL << 3)
744 #define SNB_PF_DATA_RD (1ULL << 4)
745 #define SNB_PF_RFO (1ULL << 5)
746 #define SNB_PF_IFETCH (1ULL << 6)
747 #define SNB_LLC_DATA_RD (1ULL << 7)
748 #define SNB_LLC_RFO (1ULL << 8)
749 #define SNB_LLC_IFETCH (1ULL << 9)
750 #define SNB_BUS_LOCKS (1ULL << 10)
751 #define SNB_STRM_ST (1ULL << 11)
752 #define SNB_OTHER (1ULL << 15)
753 #define SNB_RESP_ANY (1ULL << 16)
754 #define SNB_NO_SUPP (1ULL << 17)
755 #define SNB_LLC_HITM (1ULL << 18)
756 #define SNB_LLC_HITE (1ULL << 19)
757 #define SNB_LLC_HITS (1ULL << 20)
758 #define SNB_LLC_HITF (1ULL << 21)
759 #define SNB_LOCAL (1ULL << 22)
760 #define SNB_REMOTE (0xffULL << 23)
761 #define SNB_SNP_NONE (1ULL << 31)
762 #define SNB_SNP_NOT_NEEDED (1ULL << 32)
763 #define SNB_SNP_MISS (1ULL << 33)
764 #define SNB_NO_FWD (1ULL << 34)
765 #define SNB_SNP_FWD (1ULL << 35)
766 #define SNB_HITM (1ULL << 36)
767 #define SNB_NON_DRAM (1ULL << 37)
768
769 #define SNB_DMND_READ (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
770 #define SNB_DMND_WRITE (SNB_DMND_RFO|SNB_LLC_RFO)
771 #define SNB_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
772
773 #define SNB_SNP_ANY (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
774 SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
775 SNB_HITM)
776
777 #define SNB_DRAM_ANY (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
778 #define SNB_DRAM_REMOTE (SNB_REMOTE|SNB_SNP_ANY)
779
780 #define SNB_L3_ACCESS SNB_RESP_ANY
781 #define SNB_L3_MISS (SNB_DRAM_ANY|SNB_NON_DRAM)
782
783 static __initconst const u64 snb_hw_cache_extra_regs
784 [PERF_COUNT_HW_CACHE_MAX]
785 [PERF_COUNT_HW_CACHE_OP_MAX]
786 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
787 {
788 [ C(LL ) ] = {
789 [ C(OP_READ) ] = {
790 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
791 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_L3_MISS,
792 },
793 [ C(OP_WRITE) ] = {
794 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
795 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_L3_MISS,
796 },
797 [ C(OP_PREFETCH) ] = {
798 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
799 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
800 },
801 },
802 [ C(NODE) ] = {
803 [ C(OP_READ) ] = {
804 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
805 [ C(RESULT_MISS) ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
806 },
807 [ C(OP_WRITE) ] = {
808 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
809 [ C(RESULT_MISS) ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
810 },
811 [ C(OP_PREFETCH) ] = {
812 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
813 [ C(RESULT_MISS) ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
814 },
815 },
816 };
817
818 static __initconst const u64 snb_hw_cache_event_ids
819 [PERF_COUNT_HW_CACHE_MAX]
820 [PERF_COUNT_HW_CACHE_OP_MAX]
821 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
822 {
823 [ C(L1D) ] = {
824 [ C(OP_READ) ] = {
825 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS */
826 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPLACEMENT */
827 },
828 [ C(OP_WRITE) ] = {
829 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES */
830 [ C(RESULT_MISS) ] = 0x0851, /* L1D.ALL_M_REPLACEMENT */
831 },
832 [ C(OP_PREFETCH) ] = {
833 [ C(RESULT_ACCESS) ] = 0x0,
834 [ C(RESULT_MISS) ] = 0x024e, /* HW_PRE_REQ.DL1_MISS */
835 },
836 },
837 [ C(L1I ) ] = {
838 [ C(OP_READ) ] = {
839 [ C(RESULT_ACCESS) ] = 0x0,
840 [ C(RESULT_MISS) ] = 0x0280, /* ICACHE.MISSES */
841 },
842 [ C(OP_WRITE) ] = {
843 [ C(RESULT_ACCESS) ] = -1,
844 [ C(RESULT_MISS) ] = -1,
845 },
846 [ C(OP_PREFETCH) ] = {
847 [ C(RESULT_ACCESS) ] = 0x0,
848 [ C(RESULT_MISS) ] = 0x0,
849 },
850 },
851 [ C(LL ) ] = {
852 [ C(OP_READ) ] = {
853 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
854 [ C(RESULT_ACCESS) ] = 0x01b7,
855 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
856 [ C(RESULT_MISS) ] = 0x01b7,
857 },
858 [ C(OP_WRITE) ] = {
859 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
860 [ C(RESULT_ACCESS) ] = 0x01b7,
861 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
862 [ C(RESULT_MISS) ] = 0x01b7,
863 },
864 [ C(OP_PREFETCH) ] = {
865 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
866 [ C(RESULT_ACCESS) ] = 0x01b7,
867 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
868 [ C(RESULT_MISS) ] = 0x01b7,
869 },
870 },
871 [ C(DTLB) ] = {
872 [ C(OP_READ) ] = {
873 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
874 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
875 },
876 [ C(OP_WRITE) ] = {
877 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
878 [ C(RESULT_MISS) ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
879 },
880 [ C(OP_PREFETCH) ] = {
881 [ C(RESULT_ACCESS) ] = 0x0,
882 [ C(RESULT_MISS) ] = 0x0,
883 },
884 },
885 [ C(ITLB) ] = {
886 [ C(OP_READ) ] = {
887 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT */
888 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK */
889 },
890 [ C(OP_WRITE) ] = {
891 [ C(RESULT_ACCESS) ] = -1,
892 [ C(RESULT_MISS) ] = -1,
893 },
894 [ C(OP_PREFETCH) ] = {
895 [ C(RESULT_ACCESS) ] = -1,
896 [ C(RESULT_MISS) ] = -1,
897 },
898 },
899 [ C(BPU ) ] = {
900 [ C(OP_READ) ] = {
901 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
902 [ C(RESULT_MISS) ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
903 },
904 [ C(OP_WRITE) ] = {
905 [ C(RESULT_ACCESS) ] = -1,
906 [ C(RESULT_MISS) ] = -1,
907 },
908 [ C(OP_PREFETCH) ] = {
909 [ C(RESULT_ACCESS) ] = -1,
910 [ C(RESULT_MISS) ] = -1,
911 },
912 },
913 [ C(NODE) ] = {
914 [ C(OP_READ) ] = {
915 [ C(RESULT_ACCESS) ] = 0x01b7,
916 [ C(RESULT_MISS) ] = 0x01b7,
917 },
918 [ C(OP_WRITE) ] = {
919 [ C(RESULT_ACCESS) ] = 0x01b7,
920 [ C(RESULT_MISS) ] = 0x01b7,
921 },
922 [ C(OP_PREFETCH) ] = {
923 [ C(RESULT_ACCESS) ] = 0x01b7,
924 [ C(RESULT_MISS) ] = 0x01b7,
925 },
926 },
927
928 };
929
930 /*
931 * Notes on the events:
932 * - data reads do not include code reads (comparable to earlier tables)
933 * - data counts include speculative execution (except L1 write, dtlb, bpu)
934 * - remote node access includes remote memory, remote cache, remote mmio.
935 * - prefetches are not included in the counts because they are not
936 * reliably counted.
937 */
938
939 #define HSW_DEMAND_DATA_RD BIT_ULL(0)
940 #define HSW_DEMAND_RFO BIT_ULL(1)
941 #define HSW_ANY_RESPONSE BIT_ULL(16)
942 #define HSW_SUPPLIER_NONE BIT_ULL(17)
943 #define HSW_L3_MISS_LOCAL_DRAM BIT_ULL(22)
944 #define HSW_L3_MISS_REMOTE_HOP0 BIT_ULL(27)
945 #define HSW_L3_MISS_REMOTE_HOP1 BIT_ULL(28)
946 #define HSW_L3_MISS_REMOTE_HOP2P BIT_ULL(29)
947 #define HSW_L3_MISS (HSW_L3_MISS_LOCAL_DRAM| \
948 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
949 HSW_L3_MISS_REMOTE_HOP2P)
950 #define HSW_SNOOP_NONE BIT_ULL(31)
951 #define HSW_SNOOP_NOT_NEEDED BIT_ULL(32)
952 #define HSW_SNOOP_MISS BIT_ULL(33)
953 #define HSW_SNOOP_HIT_NO_FWD BIT_ULL(34)
954 #define HSW_SNOOP_HIT_WITH_FWD BIT_ULL(35)
955 #define HSW_SNOOP_HITM BIT_ULL(36)
956 #define HSW_SNOOP_NON_DRAM BIT_ULL(37)
957 #define HSW_ANY_SNOOP (HSW_SNOOP_NONE| \
958 HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
959 HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
960 HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
961 #define HSW_SNOOP_DRAM (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
962 #define HSW_DEMAND_READ HSW_DEMAND_DATA_RD
963 #define HSW_DEMAND_WRITE HSW_DEMAND_RFO
964 #define HSW_L3_MISS_REMOTE (HSW_L3_MISS_REMOTE_HOP0|\
965 HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
966 #define HSW_LLC_ACCESS HSW_ANY_RESPONSE
967
968 #define BDW_L3_MISS_LOCAL BIT(26)
969 #define BDW_L3_MISS (BDW_L3_MISS_LOCAL| \
970 HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
971 HSW_L3_MISS_REMOTE_HOP2P)
972
973
974 static __initconst const u64 hsw_hw_cache_event_ids
975 [PERF_COUNT_HW_CACHE_MAX]
976 [PERF_COUNT_HW_CACHE_OP_MAX]
977 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
978 {
979 [ C(L1D ) ] = {
980 [ C(OP_READ) ] = {
981 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
982 [ C(RESULT_MISS) ] = 0x151, /* L1D.REPLACEMENT */
983 },
984 [ C(OP_WRITE) ] = {
985 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
986 [ C(RESULT_MISS) ] = 0x0,
987 },
988 [ C(OP_PREFETCH) ] = {
989 [ C(RESULT_ACCESS) ] = 0x0,
990 [ C(RESULT_MISS) ] = 0x0,
991 },
992 },
993 [ C(L1I ) ] = {
994 [ C(OP_READ) ] = {
995 [ C(RESULT_ACCESS) ] = 0x0,
996 [ C(RESULT_MISS) ] = 0x280, /* ICACHE.MISSES */
997 },
998 [ C(OP_WRITE) ] = {
999 [ C(RESULT_ACCESS) ] = -1,
1000 [ C(RESULT_MISS) ] = -1,
1001 },
1002 [ C(OP_PREFETCH) ] = {
1003 [ C(RESULT_ACCESS) ] = 0x0,
1004 [ C(RESULT_MISS) ] = 0x0,
1005 },
1006 },
1007 [ C(LL ) ] = {
1008 [ C(OP_READ) ] = {
1009 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1010 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1011 },
1012 [ C(OP_WRITE) ] = {
1013 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1014 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1015 },
1016 [ C(OP_PREFETCH) ] = {
1017 [ C(RESULT_ACCESS) ] = 0x0,
1018 [ C(RESULT_MISS) ] = 0x0,
1019 },
1020 },
1021 [ C(DTLB) ] = {
1022 [ C(OP_READ) ] = {
1023 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1024 [ C(RESULT_MISS) ] = 0x108, /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
1025 },
1026 [ C(OP_WRITE) ] = {
1027 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1028 [ C(RESULT_MISS) ] = 0x149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
1029 },
1030 [ C(OP_PREFETCH) ] = {
1031 [ C(RESULT_ACCESS) ] = 0x0,
1032 [ C(RESULT_MISS) ] = 0x0,
1033 },
1034 },
1035 [ C(ITLB) ] = {
1036 [ C(OP_READ) ] = {
1037 [ C(RESULT_ACCESS) ] = 0x6085, /* ITLB_MISSES.STLB_HIT */
1038 [ C(RESULT_MISS) ] = 0x185, /* ITLB_MISSES.MISS_CAUSES_A_WALK */
1039 },
1040 [ C(OP_WRITE) ] = {
1041 [ C(RESULT_ACCESS) ] = -1,
1042 [ C(RESULT_MISS) ] = -1,
1043 },
1044 [ C(OP_PREFETCH) ] = {
1045 [ C(RESULT_ACCESS) ] = -1,
1046 [ C(RESULT_MISS) ] = -1,
1047 },
1048 },
1049 [ C(BPU ) ] = {
1050 [ C(OP_READ) ] = {
1051 [ C(RESULT_ACCESS) ] = 0xc4, /* BR_INST_RETIRED.ALL_BRANCHES */
1052 [ C(RESULT_MISS) ] = 0xc5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1053 },
1054 [ C(OP_WRITE) ] = {
1055 [ C(RESULT_ACCESS) ] = -1,
1056 [ C(RESULT_MISS) ] = -1,
1057 },
1058 [ C(OP_PREFETCH) ] = {
1059 [ C(RESULT_ACCESS) ] = -1,
1060 [ C(RESULT_MISS) ] = -1,
1061 },
1062 },
1063 [ C(NODE) ] = {
1064 [ C(OP_READ) ] = {
1065 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1066 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1067 },
1068 [ C(OP_WRITE) ] = {
1069 [ C(RESULT_ACCESS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1070 [ C(RESULT_MISS) ] = 0x1b7, /* OFFCORE_RESPONSE */
1071 },
1072 [ C(OP_PREFETCH) ] = {
1073 [ C(RESULT_ACCESS) ] = 0x0,
1074 [ C(RESULT_MISS) ] = 0x0,
1075 },
1076 },
1077 };
1078
1079 static __initconst const u64 hsw_hw_cache_extra_regs
1080 [PERF_COUNT_HW_CACHE_MAX]
1081 [PERF_COUNT_HW_CACHE_OP_MAX]
1082 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1083 {
1084 [ C(LL ) ] = {
1085 [ C(OP_READ) ] = {
1086 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1087 HSW_LLC_ACCESS,
1088 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
1089 HSW_L3_MISS|HSW_ANY_SNOOP,
1090 },
1091 [ C(OP_WRITE) ] = {
1092 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1093 HSW_LLC_ACCESS,
1094 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
1095 HSW_L3_MISS|HSW_ANY_SNOOP,
1096 },
1097 [ C(OP_PREFETCH) ] = {
1098 [ C(RESULT_ACCESS) ] = 0x0,
1099 [ C(RESULT_MISS) ] = 0x0,
1100 },
1101 },
1102 [ C(NODE) ] = {
1103 [ C(OP_READ) ] = {
1104 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
1105 HSW_L3_MISS_LOCAL_DRAM|
1106 HSW_SNOOP_DRAM,
1107 [ C(RESULT_MISS) ] = HSW_DEMAND_READ|
1108 HSW_L3_MISS_REMOTE|
1109 HSW_SNOOP_DRAM,
1110 },
1111 [ C(OP_WRITE) ] = {
1112 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
1113 HSW_L3_MISS_LOCAL_DRAM|
1114 HSW_SNOOP_DRAM,
1115 [ C(RESULT_MISS) ] = HSW_DEMAND_WRITE|
1116 HSW_L3_MISS_REMOTE|
1117 HSW_SNOOP_DRAM,
1118 },
1119 [ C(OP_PREFETCH) ] = {
1120 [ C(RESULT_ACCESS) ] = 0x0,
1121 [ C(RESULT_MISS) ] = 0x0,
1122 },
1123 },
1124 };
1125
1126 static __initconst const u64 westmere_hw_cache_event_ids
1127 [PERF_COUNT_HW_CACHE_MAX]
1128 [PERF_COUNT_HW_CACHE_OP_MAX]
1129 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1130 {
1131 [ C(L1D) ] = {
1132 [ C(OP_READ) ] = {
1133 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1134 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1135 },
1136 [ C(OP_WRITE) ] = {
1137 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1138 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1139 },
1140 [ C(OP_PREFETCH) ] = {
1141 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1142 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1143 },
1144 },
1145 [ C(L1I ) ] = {
1146 [ C(OP_READ) ] = {
1147 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1148 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1149 },
1150 [ C(OP_WRITE) ] = {
1151 [ C(RESULT_ACCESS) ] = -1,
1152 [ C(RESULT_MISS) ] = -1,
1153 },
1154 [ C(OP_PREFETCH) ] = {
1155 [ C(RESULT_ACCESS) ] = 0x0,
1156 [ C(RESULT_MISS) ] = 0x0,
1157 },
1158 },
1159 [ C(LL ) ] = {
1160 [ C(OP_READ) ] = {
1161 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1162 [ C(RESULT_ACCESS) ] = 0x01b7,
1163 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1164 [ C(RESULT_MISS) ] = 0x01b7,
1165 },
1166 /*
1167 * Use RFO, not WRITEBACK, because a write miss would typically occur
1168 * on RFO.
1169 */
1170 [ C(OP_WRITE) ] = {
1171 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1172 [ C(RESULT_ACCESS) ] = 0x01b7,
1173 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1174 [ C(RESULT_MISS) ] = 0x01b7,
1175 },
1176 [ C(OP_PREFETCH) ] = {
1177 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1178 [ C(RESULT_ACCESS) ] = 0x01b7,
1179 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1180 [ C(RESULT_MISS) ] = 0x01b7,
1181 },
1182 },
1183 [ C(DTLB) ] = {
1184 [ C(OP_READ) ] = {
1185 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1186 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1187 },
1188 [ C(OP_WRITE) ] = {
1189 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1190 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1191 },
1192 [ C(OP_PREFETCH) ] = {
1193 [ C(RESULT_ACCESS) ] = 0x0,
1194 [ C(RESULT_MISS) ] = 0x0,
1195 },
1196 },
1197 [ C(ITLB) ] = {
1198 [ C(OP_READ) ] = {
1199 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1200 [ C(RESULT_MISS) ] = 0x0185, /* ITLB_MISSES.ANY */
1201 },
1202 [ C(OP_WRITE) ] = {
1203 [ C(RESULT_ACCESS) ] = -1,
1204 [ C(RESULT_MISS) ] = -1,
1205 },
1206 [ C(OP_PREFETCH) ] = {
1207 [ C(RESULT_ACCESS) ] = -1,
1208 [ C(RESULT_MISS) ] = -1,
1209 },
1210 },
1211 [ C(BPU ) ] = {
1212 [ C(OP_READ) ] = {
1213 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1214 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1215 },
1216 [ C(OP_WRITE) ] = {
1217 [ C(RESULT_ACCESS) ] = -1,
1218 [ C(RESULT_MISS) ] = -1,
1219 },
1220 [ C(OP_PREFETCH) ] = {
1221 [ C(RESULT_ACCESS) ] = -1,
1222 [ C(RESULT_MISS) ] = -1,
1223 },
1224 },
1225 [ C(NODE) ] = {
1226 [ C(OP_READ) ] = {
1227 [ C(RESULT_ACCESS) ] = 0x01b7,
1228 [ C(RESULT_MISS) ] = 0x01b7,
1229 },
1230 [ C(OP_WRITE) ] = {
1231 [ C(RESULT_ACCESS) ] = 0x01b7,
1232 [ C(RESULT_MISS) ] = 0x01b7,
1233 },
1234 [ C(OP_PREFETCH) ] = {
1235 [ C(RESULT_ACCESS) ] = 0x01b7,
1236 [ C(RESULT_MISS) ] = 0x01b7,
1237 },
1238 },
1239 };
1240
1241 /*
1242 * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1243 * See IA32 SDM Vol 3B 30.6.1.3
1244 */
1245
1246 #define NHM_DMND_DATA_RD (1 << 0)
1247 #define NHM_DMND_RFO (1 << 1)
1248 #define NHM_DMND_IFETCH (1 << 2)
1249 #define NHM_DMND_WB (1 << 3)
1250 #define NHM_PF_DATA_RD (1 << 4)
1251 #define NHM_PF_DATA_RFO (1 << 5)
1252 #define NHM_PF_IFETCH (1 << 6)
1253 #define NHM_OFFCORE_OTHER (1 << 7)
1254 #define NHM_UNCORE_HIT (1 << 8)
1255 #define NHM_OTHER_CORE_HIT_SNP (1 << 9)
1256 #define NHM_OTHER_CORE_HITM (1 << 10)
1257 /* reserved */
1258 #define NHM_REMOTE_CACHE_FWD (1 << 12)
1259 #define NHM_REMOTE_DRAM (1 << 13)
1260 #define NHM_LOCAL_DRAM (1 << 14)
1261 #define NHM_NON_DRAM (1 << 15)
1262
1263 #define NHM_LOCAL (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1264 #define NHM_REMOTE (NHM_REMOTE_DRAM)
1265
1266 #define NHM_DMND_READ (NHM_DMND_DATA_RD)
1267 #define NHM_DMND_WRITE (NHM_DMND_RFO|NHM_DMND_WB)
1268 #define NHM_DMND_PREFETCH (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1269
1270 #define NHM_L3_HIT (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1271 #define NHM_L3_MISS (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1272 #define NHM_L3_ACCESS (NHM_L3_HIT|NHM_L3_MISS)
1273
1274 static __initconst const u64 nehalem_hw_cache_extra_regs
1275 [PERF_COUNT_HW_CACHE_MAX]
1276 [PERF_COUNT_HW_CACHE_OP_MAX]
1277 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1278 {
1279 [ C(LL ) ] = {
1280 [ C(OP_READ) ] = {
1281 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1282 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_L3_MISS,
1283 },
1284 [ C(OP_WRITE) ] = {
1285 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1286 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_L3_MISS,
1287 },
1288 [ C(OP_PREFETCH) ] = {
1289 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1290 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1291 },
1292 },
1293 [ C(NODE) ] = {
1294 [ C(OP_READ) ] = {
1295 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1296 [ C(RESULT_MISS) ] = NHM_DMND_READ|NHM_REMOTE,
1297 },
1298 [ C(OP_WRITE) ] = {
1299 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1300 [ C(RESULT_MISS) ] = NHM_DMND_WRITE|NHM_REMOTE,
1301 },
1302 [ C(OP_PREFETCH) ] = {
1303 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1304 [ C(RESULT_MISS) ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1305 },
1306 },
1307 };
1308
1309 static __initconst const u64 nehalem_hw_cache_event_ids
1310 [PERF_COUNT_HW_CACHE_MAX]
1311 [PERF_COUNT_HW_CACHE_OP_MAX]
1312 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1313 {
1314 [ C(L1D) ] = {
1315 [ C(OP_READ) ] = {
1316 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS */
1317 [ C(RESULT_MISS) ] = 0x0151, /* L1D.REPL */
1318 },
1319 [ C(OP_WRITE) ] = {
1320 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES */
1321 [ C(RESULT_MISS) ] = 0x0251, /* L1D.M_REPL */
1322 },
1323 [ C(OP_PREFETCH) ] = {
1324 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
1325 [ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
1326 },
1327 },
1328 [ C(L1I ) ] = {
1329 [ C(OP_READ) ] = {
1330 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1331 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1332 },
1333 [ C(OP_WRITE) ] = {
1334 [ C(RESULT_ACCESS) ] = -1,
1335 [ C(RESULT_MISS) ] = -1,
1336 },
1337 [ C(OP_PREFETCH) ] = {
1338 [ C(RESULT_ACCESS) ] = 0x0,
1339 [ C(RESULT_MISS) ] = 0x0,
1340 },
1341 },
1342 [ C(LL ) ] = {
1343 [ C(OP_READ) ] = {
1344 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1345 [ C(RESULT_ACCESS) ] = 0x01b7,
1346 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1347 [ C(RESULT_MISS) ] = 0x01b7,
1348 },
1349 /*
1350 * Use RFO, not WRITEBACK, because a write miss would typically occur
1351 * on RFO.
1352 */
1353 [ C(OP_WRITE) ] = {
1354 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1355 [ C(RESULT_ACCESS) ] = 0x01b7,
1356 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1357 [ C(RESULT_MISS) ] = 0x01b7,
1358 },
1359 [ C(OP_PREFETCH) ] = {
1360 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1361 [ C(RESULT_ACCESS) ] = 0x01b7,
1362 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1363 [ C(RESULT_MISS) ] = 0x01b7,
1364 },
1365 },
1366 [ C(DTLB) ] = {
1367 [ C(OP_READ) ] = {
1368 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1369 [ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
1370 },
1371 [ C(OP_WRITE) ] = {
1372 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1373 [ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
1374 },
1375 [ C(OP_PREFETCH) ] = {
1376 [ C(RESULT_ACCESS) ] = 0x0,
1377 [ C(RESULT_MISS) ] = 0x0,
1378 },
1379 },
1380 [ C(ITLB) ] = {
1381 [ C(OP_READ) ] = {
1382 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
1383 [ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
1384 },
1385 [ C(OP_WRITE) ] = {
1386 [ C(RESULT_ACCESS) ] = -1,
1387 [ C(RESULT_MISS) ] = -1,
1388 },
1389 [ C(OP_PREFETCH) ] = {
1390 [ C(RESULT_ACCESS) ] = -1,
1391 [ C(RESULT_MISS) ] = -1,
1392 },
1393 },
1394 [ C(BPU ) ] = {
1395 [ C(OP_READ) ] = {
1396 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1397 [ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
1398 },
1399 [ C(OP_WRITE) ] = {
1400 [ C(RESULT_ACCESS) ] = -1,
1401 [ C(RESULT_MISS) ] = -1,
1402 },
1403 [ C(OP_PREFETCH) ] = {
1404 [ C(RESULT_ACCESS) ] = -1,
1405 [ C(RESULT_MISS) ] = -1,
1406 },
1407 },
1408 [ C(NODE) ] = {
1409 [ C(OP_READ) ] = {
1410 [ C(RESULT_ACCESS) ] = 0x01b7,
1411 [ C(RESULT_MISS) ] = 0x01b7,
1412 },
1413 [ C(OP_WRITE) ] = {
1414 [ C(RESULT_ACCESS) ] = 0x01b7,
1415 [ C(RESULT_MISS) ] = 0x01b7,
1416 },
1417 [ C(OP_PREFETCH) ] = {
1418 [ C(RESULT_ACCESS) ] = 0x01b7,
1419 [ C(RESULT_MISS) ] = 0x01b7,
1420 },
1421 },
1422 };
1423
1424 static __initconst const u64 core2_hw_cache_event_ids
1425 [PERF_COUNT_HW_CACHE_MAX]
1426 [PERF_COUNT_HW_CACHE_OP_MAX]
1427 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1428 {
1429 [ C(L1D) ] = {
1430 [ C(OP_READ) ] = {
1431 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
1432 [ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
1433 },
1434 [ C(OP_WRITE) ] = {
1435 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
1436 [ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
1437 },
1438 [ C(OP_PREFETCH) ] = {
1439 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
1440 [ C(RESULT_MISS) ] = 0,
1441 },
1442 },
1443 [ C(L1I ) ] = {
1444 [ C(OP_READ) ] = {
1445 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
1446 [ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
1447 },
1448 [ C(OP_WRITE) ] = {
1449 [ C(RESULT_ACCESS) ] = -1,
1450 [ C(RESULT_MISS) ] = -1,
1451 },
1452 [ C(OP_PREFETCH) ] = {
1453 [ C(RESULT_ACCESS) ] = 0,
1454 [ C(RESULT_MISS) ] = 0,
1455 },
1456 },
1457 [ C(LL ) ] = {
1458 [ C(OP_READ) ] = {
1459 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1460 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1461 },
1462 [ C(OP_WRITE) ] = {
1463 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1464 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1465 },
1466 [ C(OP_PREFETCH) ] = {
1467 [ C(RESULT_ACCESS) ] = 0,
1468 [ C(RESULT_MISS) ] = 0,
1469 },
1470 },
1471 [ C(DTLB) ] = {
1472 [ C(OP_READ) ] = {
1473 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
1474 [ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
1475 },
1476 [ C(OP_WRITE) ] = {
1477 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
1478 [ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
1479 },
1480 [ C(OP_PREFETCH) ] = {
1481 [ C(RESULT_ACCESS) ] = 0,
1482 [ C(RESULT_MISS) ] = 0,
1483 },
1484 },
1485 [ C(ITLB) ] = {
1486 [ C(OP_READ) ] = {
1487 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1488 [ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
1489 },
1490 [ C(OP_WRITE) ] = {
1491 [ C(RESULT_ACCESS) ] = -1,
1492 [ C(RESULT_MISS) ] = -1,
1493 },
1494 [ C(OP_PREFETCH) ] = {
1495 [ C(RESULT_ACCESS) ] = -1,
1496 [ C(RESULT_MISS) ] = -1,
1497 },
1498 },
1499 [ C(BPU ) ] = {
1500 [ C(OP_READ) ] = {
1501 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1502 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1503 },
1504 [ C(OP_WRITE) ] = {
1505 [ C(RESULT_ACCESS) ] = -1,
1506 [ C(RESULT_MISS) ] = -1,
1507 },
1508 [ C(OP_PREFETCH) ] = {
1509 [ C(RESULT_ACCESS) ] = -1,
1510 [ C(RESULT_MISS) ] = -1,
1511 },
1512 },
1513 };
1514
1515 static __initconst const u64 atom_hw_cache_event_ids
1516 [PERF_COUNT_HW_CACHE_MAX]
1517 [PERF_COUNT_HW_CACHE_OP_MAX]
1518 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1519 {
1520 [ C(L1D) ] = {
1521 [ C(OP_READ) ] = {
1522 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
1523 [ C(RESULT_MISS) ] = 0,
1524 },
1525 [ C(OP_WRITE) ] = {
1526 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
1527 [ C(RESULT_MISS) ] = 0,
1528 },
1529 [ C(OP_PREFETCH) ] = {
1530 [ C(RESULT_ACCESS) ] = 0x0,
1531 [ C(RESULT_MISS) ] = 0,
1532 },
1533 },
1534 [ C(L1I ) ] = {
1535 [ C(OP_READ) ] = {
1536 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
1537 [ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
1538 },
1539 [ C(OP_WRITE) ] = {
1540 [ C(RESULT_ACCESS) ] = -1,
1541 [ C(RESULT_MISS) ] = -1,
1542 },
1543 [ C(OP_PREFETCH) ] = {
1544 [ C(RESULT_ACCESS) ] = 0,
1545 [ C(RESULT_MISS) ] = 0,
1546 },
1547 },
1548 [ C(LL ) ] = {
1549 [ C(OP_READ) ] = {
1550 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
1551 [ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
1552 },
1553 [ C(OP_WRITE) ] = {
1554 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
1555 [ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
1556 },
1557 [ C(OP_PREFETCH) ] = {
1558 [ C(RESULT_ACCESS) ] = 0,
1559 [ C(RESULT_MISS) ] = 0,
1560 },
1561 },
1562 [ C(DTLB) ] = {
1563 [ C(OP_READ) ] = {
1564 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
1565 [ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
1566 },
1567 [ C(OP_WRITE) ] = {
1568 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
1569 [ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
1570 },
1571 [ C(OP_PREFETCH) ] = {
1572 [ C(RESULT_ACCESS) ] = 0,
1573 [ C(RESULT_MISS) ] = 0,
1574 },
1575 },
1576 [ C(ITLB) ] = {
1577 [ C(OP_READ) ] = {
1578 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1579 [ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
1580 },
1581 [ C(OP_WRITE) ] = {
1582 [ C(RESULT_ACCESS) ] = -1,
1583 [ C(RESULT_MISS) ] = -1,
1584 },
1585 [ C(OP_PREFETCH) ] = {
1586 [ C(RESULT_ACCESS) ] = -1,
1587 [ C(RESULT_MISS) ] = -1,
1588 },
1589 },
1590 [ C(BPU ) ] = {
1591 [ C(OP_READ) ] = {
1592 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1593 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1594 },
1595 [ C(OP_WRITE) ] = {
1596 [ C(RESULT_ACCESS) ] = -1,
1597 [ C(RESULT_MISS) ] = -1,
1598 },
1599 [ C(OP_PREFETCH) ] = {
1600 [ C(RESULT_ACCESS) ] = -1,
1601 [ C(RESULT_MISS) ] = -1,
1602 },
1603 },
1604 };
1605
1606 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1607 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1608 /* no_alloc_cycles.not_delivered */
1609 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1610 "event=0xca,umask=0x50");
1611 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1612 /* uops_retired.all */
1613 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1614 "event=0xc2,umask=0x10");
1615 /* uops_retired.all */
1616 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1617 "event=0xc2,umask=0x10");
1618
1619 static struct attribute *slm_events_attrs[] = {
1620 EVENT_PTR(td_total_slots_slm),
1621 EVENT_PTR(td_total_slots_scale_slm),
1622 EVENT_PTR(td_fetch_bubbles_slm),
1623 EVENT_PTR(td_fetch_bubbles_scale_slm),
1624 EVENT_PTR(td_slots_issued_slm),
1625 EVENT_PTR(td_slots_retired_slm),
1626 NULL
1627 };
1628
1629 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1630 {
1631 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1632 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1633 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1634 EVENT_EXTRA_END
1635 };
1636
1637 #define SLM_DMND_READ SNB_DMND_DATA_RD
1638 #define SLM_DMND_WRITE SNB_DMND_RFO
1639 #define SLM_DMND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1640
1641 #define SLM_SNP_ANY (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1642 #define SLM_LLC_ACCESS SNB_RESP_ANY
1643 #define SLM_LLC_MISS (SLM_SNP_ANY|SNB_NON_DRAM)
1644
1645 static __initconst const u64 slm_hw_cache_extra_regs
1646 [PERF_COUNT_HW_CACHE_MAX]
1647 [PERF_COUNT_HW_CACHE_OP_MAX]
1648 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1649 {
1650 [ C(LL ) ] = {
1651 [ C(OP_READ) ] = {
1652 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1653 [ C(RESULT_MISS) ] = 0,
1654 },
1655 [ C(OP_WRITE) ] = {
1656 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1657 [ C(RESULT_MISS) ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1658 },
1659 [ C(OP_PREFETCH) ] = {
1660 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1661 [ C(RESULT_MISS) ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1662 },
1663 },
1664 };
1665
1666 static __initconst const u64 slm_hw_cache_event_ids
1667 [PERF_COUNT_HW_CACHE_MAX]
1668 [PERF_COUNT_HW_CACHE_OP_MAX]
1669 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1670 {
1671 [ C(L1D) ] = {
1672 [ C(OP_READ) ] = {
1673 [ C(RESULT_ACCESS) ] = 0,
1674 [ C(RESULT_MISS) ] = 0x0104, /* LD_DCU_MISS */
1675 },
1676 [ C(OP_WRITE) ] = {
1677 [ C(RESULT_ACCESS) ] = 0,
1678 [ C(RESULT_MISS) ] = 0,
1679 },
1680 [ C(OP_PREFETCH) ] = {
1681 [ C(RESULT_ACCESS) ] = 0,
1682 [ C(RESULT_MISS) ] = 0,
1683 },
1684 },
1685 [ C(L1I ) ] = {
1686 [ C(OP_READ) ] = {
1687 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1688 [ C(RESULT_MISS) ] = 0x0280, /* ICACGE.MISSES */
1689 },
1690 [ C(OP_WRITE) ] = {
1691 [ C(RESULT_ACCESS) ] = -1,
1692 [ C(RESULT_MISS) ] = -1,
1693 },
1694 [ C(OP_PREFETCH) ] = {
1695 [ C(RESULT_ACCESS) ] = 0,
1696 [ C(RESULT_MISS) ] = 0,
1697 },
1698 },
1699 [ C(LL ) ] = {
1700 [ C(OP_READ) ] = {
1701 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1702 [ C(RESULT_ACCESS) ] = 0x01b7,
1703 [ C(RESULT_MISS) ] = 0,
1704 },
1705 [ C(OP_WRITE) ] = {
1706 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1707 [ C(RESULT_ACCESS) ] = 0x01b7,
1708 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1709 [ C(RESULT_MISS) ] = 0x01b7,
1710 },
1711 [ C(OP_PREFETCH) ] = {
1712 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1713 [ C(RESULT_ACCESS) ] = 0x01b7,
1714 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1715 [ C(RESULT_MISS) ] = 0x01b7,
1716 },
1717 },
1718 [ C(DTLB) ] = {
1719 [ C(OP_READ) ] = {
1720 [ C(RESULT_ACCESS) ] = 0,
1721 [ C(RESULT_MISS) ] = 0x0804, /* LD_DTLB_MISS */
1722 },
1723 [ C(OP_WRITE) ] = {
1724 [ C(RESULT_ACCESS) ] = 0,
1725 [ C(RESULT_MISS) ] = 0,
1726 },
1727 [ C(OP_PREFETCH) ] = {
1728 [ C(RESULT_ACCESS) ] = 0,
1729 [ C(RESULT_MISS) ] = 0,
1730 },
1731 },
1732 [ C(ITLB) ] = {
1733 [ C(OP_READ) ] = {
1734 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1735 [ C(RESULT_MISS) ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1736 },
1737 [ C(OP_WRITE) ] = {
1738 [ C(RESULT_ACCESS) ] = -1,
1739 [ C(RESULT_MISS) ] = -1,
1740 },
1741 [ C(OP_PREFETCH) ] = {
1742 [ C(RESULT_ACCESS) ] = -1,
1743 [ C(RESULT_MISS) ] = -1,
1744 },
1745 },
1746 [ C(BPU ) ] = {
1747 [ C(OP_READ) ] = {
1748 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1749 [ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1750 },
1751 [ C(OP_WRITE) ] = {
1752 [ C(RESULT_ACCESS) ] = -1,
1753 [ C(RESULT_MISS) ] = -1,
1754 },
1755 [ C(OP_PREFETCH) ] = {
1756 [ C(RESULT_ACCESS) ] = -1,
1757 [ C(RESULT_MISS) ] = -1,
1758 },
1759 },
1760 };
1761
1762 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1763 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1764 /* UOPS_NOT_DELIVERED.ANY */
1765 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1766 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1767 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1768 /* UOPS_RETIRED.ANY */
1769 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1770 /* UOPS_ISSUED.ANY */
1771 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1772
1773 static struct attribute *glm_events_attrs[] = {
1774 EVENT_PTR(td_total_slots_glm),
1775 EVENT_PTR(td_total_slots_scale_glm),
1776 EVENT_PTR(td_fetch_bubbles_glm),
1777 EVENT_PTR(td_recovery_bubbles_glm),
1778 EVENT_PTR(td_slots_issued_glm),
1779 EVENT_PTR(td_slots_retired_glm),
1780 NULL
1781 };
1782
1783 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1784 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1785 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1786 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1787 EVENT_EXTRA_END
1788 };
1789
1790 #define GLM_DEMAND_DATA_RD BIT_ULL(0)
1791 #define GLM_DEMAND_RFO BIT_ULL(1)
1792 #define GLM_ANY_RESPONSE BIT_ULL(16)
1793 #define GLM_SNP_NONE_OR_MISS BIT_ULL(33)
1794 #define GLM_DEMAND_READ GLM_DEMAND_DATA_RD
1795 #define GLM_DEMAND_WRITE GLM_DEMAND_RFO
1796 #define GLM_DEMAND_PREFETCH (SNB_PF_DATA_RD|SNB_PF_RFO)
1797 #define GLM_LLC_ACCESS GLM_ANY_RESPONSE
1798 #define GLM_SNP_ANY (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1799 #define GLM_LLC_MISS (GLM_SNP_ANY|SNB_NON_DRAM)
1800
1801 static __initconst const u64 glm_hw_cache_event_ids
1802 [PERF_COUNT_HW_CACHE_MAX]
1803 [PERF_COUNT_HW_CACHE_OP_MAX]
1804 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1805 [C(L1D)] = {
1806 [C(OP_READ)] = {
1807 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1808 [C(RESULT_MISS)] = 0x0,
1809 },
1810 [C(OP_WRITE)] = {
1811 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1812 [C(RESULT_MISS)] = 0x0,
1813 },
1814 [C(OP_PREFETCH)] = {
1815 [C(RESULT_ACCESS)] = 0x0,
1816 [C(RESULT_MISS)] = 0x0,
1817 },
1818 },
1819 [C(L1I)] = {
1820 [C(OP_READ)] = {
1821 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1822 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1823 },
1824 [C(OP_WRITE)] = {
1825 [C(RESULT_ACCESS)] = -1,
1826 [C(RESULT_MISS)] = -1,
1827 },
1828 [C(OP_PREFETCH)] = {
1829 [C(RESULT_ACCESS)] = 0x0,
1830 [C(RESULT_MISS)] = 0x0,
1831 },
1832 },
1833 [C(LL)] = {
1834 [C(OP_READ)] = {
1835 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1836 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1837 },
1838 [C(OP_WRITE)] = {
1839 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1840 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1841 },
1842 [C(OP_PREFETCH)] = {
1843 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1844 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1845 },
1846 },
1847 [C(DTLB)] = {
1848 [C(OP_READ)] = {
1849 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1850 [C(RESULT_MISS)] = 0x0,
1851 },
1852 [C(OP_WRITE)] = {
1853 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1854 [C(RESULT_MISS)] = 0x0,
1855 },
1856 [C(OP_PREFETCH)] = {
1857 [C(RESULT_ACCESS)] = 0x0,
1858 [C(RESULT_MISS)] = 0x0,
1859 },
1860 },
1861 [C(ITLB)] = {
1862 [C(OP_READ)] = {
1863 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1864 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1865 },
1866 [C(OP_WRITE)] = {
1867 [C(RESULT_ACCESS)] = -1,
1868 [C(RESULT_MISS)] = -1,
1869 },
1870 [C(OP_PREFETCH)] = {
1871 [C(RESULT_ACCESS)] = -1,
1872 [C(RESULT_MISS)] = -1,
1873 },
1874 },
1875 [C(BPU)] = {
1876 [C(OP_READ)] = {
1877 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1878 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1879 },
1880 [C(OP_WRITE)] = {
1881 [C(RESULT_ACCESS)] = -1,
1882 [C(RESULT_MISS)] = -1,
1883 },
1884 [C(OP_PREFETCH)] = {
1885 [C(RESULT_ACCESS)] = -1,
1886 [C(RESULT_MISS)] = -1,
1887 },
1888 },
1889 };
1890
1891 static __initconst const u64 glm_hw_cache_extra_regs
1892 [PERF_COUNT_HW_CACHE_MAX]
1893 [PERF_COUNT_HW_CACHE_OP_MAX]
1894 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1895 [C(LL)] = {
1896 [C(OP_READ)] = {
1897 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
1898 GLM_LLC_ACCESS,
1899 [C(RESULT_MISS)] = GLM_DEMAND_READ|
1900 GLM_LLC_MISS,
1901 },
1902 [C(OP_WRITE)] = {
1903 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
1904 GLM_LLC_ACCESS,
1905 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
1906 GLM_LLC_MISS,
1907 },
1908 [C(OP_PREFETCH)] = {
1909 [C(RESULT_ACCESS)] = GLM_DEMAND_PREFETCH|
1910 GLM_LLC_ACCESS,
1911 [C(RESULT_MISS)] = GLM_DEMAND_PREFETCH|
1912 GLM_LLC_MISS,
1913 },
1914 },
1915 };
1916
1917 static __initconst const u64 glp_hw_cache_event_ids
1918 [PERF_COUNT_HW_CACHE_MAX]
1919 [PERF_COUNT_HW_CACHE_OP_MAX]
1920 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1921 [C(L1D)] = {
1922 [C(OP_READ)] = {
1923 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1924 [C(RESULT_MISS)] = 0x0,
1925 },
1926 [C(OP_WRITE)] = {
1927 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1928 [C(RESULT_MISS)] = 0x0,
1929 },
1930 [C(OP_PREFETCH)] = {
1931 [C(RESULT_ACCESS)] = 0x0,
1932 [C(RESULT_MISS)] = 0x0,
1933 },
1934 },
1935 [C(L1I)] = {
1936 [C(OP_READ)] = {
1937 [C(RESULT_ACCESS)] = 0x0380, /* ICACHE.ACCESSES */
1938 [C(RESULT_MISS)] = 0x0280, /* ICACHE.MISSES */
1939 },
1940 [C(OP_WRITE)] = {
1941 [C(RESULT_ACCESS)] = -1,
1942 [C(RESULT_MISS)] = -1,
1943 },
1944 [C(OP_PREFETCH)] = {
1945 [C(RESULT_ACCESS)] = 0x0,
1946 [C(RESULT_MISS)] = 0x0,
1947 },
1948 },
1949 [C(LL)] = {
1950 [C(OP_READ)] = {
1951 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1952 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1953 },
1954 [C(OP_WRITE)] = {
1955 [C(RESULT_ACCESS)] = 0x1b7, /* OFFCORE_RESPONSE */
1956 [C(RESULT_MISS)] = 0x1b7, /* OFFCORE_RESPONSE */
1957 },
1958 [C(OP_PREFETCH)] = {
1959 [C(RESULT_ACCESS)] = 0x0,
1960 [C(RESULT_MISS)] = 0x0,
1961 },
1962 },
1963 [C(DTLB)] = {
1964 [C(OP_READ)] = {
1965 [C(RESULT_ACCESS)] = 0x81d0, /* MEM_UOPS_RETIRED.ALL_LOADS */
1966 [C(RESULT_MISS)] = 0xe08, /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1967 },
1968 [C(OP_WRITE)] = {
1969 [C(RESULT_ACCESS)] = 0x82d0, /* MEM_UOPS_RETIRED.ALL_STORES */
1970 [C(RESULT_MISS)] = 0xe49, /* DTLB_STORE_MISSES.WALK_COMPLETED */
1971 },
1972 [C(OP_PREFETCH)] = {
1973 [C(RESULT_ACCESS)] = 0x0,
1974 [C(RESULT_MISS)] = 0x0,
1975 },
1976 },
1977 [C(ITLB)] = {
1978 [C(OP_READ)] = {
1979 [C(RESULT_ACCESS)] = 0x00c0, /* INST_RETIRED.ANY_P */
1980 [C(RESULT_MISS)] = 0x0481, /* ITLB.MISS */
1981 },
1982 [C(OP_WRITE)] = {
1983 [C(RESULT_ACCESS)] = -1,
1984 [C(RESULT_MISS)] = -1,
1985 },
1986 [C(OP_PREFETCH)] = {
1987 [C(RESULT_ACCESS)] = -1,
1988 [C(RESULT_MISS)] = -1,
1989 },
1990 },
1991 [C(BPU)] = {
1992 [C(OP_READ)] = {
1993 [C(RESULT_ACCESS)] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1994 [C(RESULT_MISS)] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
1995 },
1996 [C(OP_WRITE)] = {
1997 [C(RESULT_ACCESS)] = -1,
1998 [C(RESULT_MISS)] = -1,
1999 },
2000 [C(OP_PREFETCH)] = {
2001 [C(RESULT_ACCESS)] = -1,
2002 [C(RESULT_MISS)] = -1,
2003 },
2004 },
2005 };
2006
2007 static __initconst const u64 glp_hw_cache_extra_regs
2008 [PERF_COUNT_HW_CACHE_MAX]
2009 [PERF_COUNT_HW_CACHE_OP_MAX]
2010 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2011 [C(LL)] = {
2012 [C(OP_READ)] = {
2013 [C(RESULT_ACCESS)] = GLM_DEMAND_READ|
2014 GLM_LLC_ACCESS,
2015 [C(RESULT_MISS)] = GLM_DEMAND_READ|
2016 GLM_LLC_MISS,
2017 },
2018 [C(OP_WRITE)] = {
2019 [C(RESULT_ACCESS)] = GLM_DEMAND_WRITE|
2020 GLM_LLC_ACCESS,
2021 [C(RESULT_MISS)] = GLM_DEMAND_WRITE|
2022 GLM_LLC_MISS,
2023 },
2024 [C(OP_PREFETCH)] = {
2025 [C(RESULT_ACCESS)] = 0x0,
2026 [C(RESULT_MISS)] = 0x0,
2027 },
2028 },
2029 };
2030
2031 #define TNT_LOCAL_DRAM BIT_ULL(26)
2032 #define TNT_DEMAND_READ GLM_DEMAND_DATA_RD
2033 #define TNT_DEMAND_WRITE GLM_DEMAND_RFO
2034 #define TNT_LLC_ACCESS GLM_ANY_RESPONSE
2035 #define TNT_SNP_ANY (SNB_SNP_NOT_NEEDED|SNB_SNP_MISS| \
2036 SNB_NO_FWD|SNB_SNP_FWD|SNB_HITM)
2037 #define TNT_LLC_MISS (TNT_SNP_ANY|SNB_NON_DRAM|TNT_LOCAL_DRAM)
2038
2039 static __initconst const u64 tnt_hw_cache_extra_regs
2040 [PERF_COUNT_HW_CACHE_MAX]
2041 [PERF_COUNT_HW_CACHE_OP_MAX]
2042 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2043 [C(LL)] = {
2044 [C(OP_READ)] = {
2045 [C(RESULT_ACCESS)] = TNT_DEMAND_READ|
2046 TNT_LLC_ACCESS,
2047 [C(RESULT_MISS)] = TNT_DEMAND_READ|
2048 TNT_LLC_MISS,
2049 },
2050 [C(OP_WRITE)] = {
2051 [C(RESULT_ACCESS)] = TNT_DEMAND_WRITE|
2052 TNT_LLC_ACCESS,
2053 [C(RESULT_MISS)] = TNT_DEMAND_WRITE|
2054 TNT_LLC_MISS,
2055 },
2056 [C(OP_PREFETCH)] = {
2057 [C(RESULT_ACCESS)] = 0x0,
2058 [C(RESULT_MISS)] = 0x0,
2059 },
2060 },
2061 };
2062
2063 EVENT_ATTR_STR(topdown-fe-bound, td_fe_bound_tnt, "event=0x71,umask=0x0");
2064 EVENT_ATTR_STR(topdown-retiring, td_retiring_tnt, "event=0xc2,umask=0x0");
2065 EVENT_ATTR_STR(topdown-bad-spec, td_bad_spec_tnt, "event=0x73,umask=0x6");
2066 EVENT_ATTR_STR(topdown-be-bound, td_be_bound_tnt, "event=0x74,umask=0x0");
2067
2068 static struct attribute *tnt_events_attrs[] = {
2069 EVENT_PTR(td_fe_bound_tnt),
2070 EVENT_PTR(td_retiring_tnt),
2071 EVENT_PTR(td_bad_spec_tnt),
2072 EVENT_PTR(td_be_bound_tnt),
2073 NULL,
2074 };
2075
2076 static struct extra_reg intel_tnt_extra_regs[] __read_mostly = {
2077 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2078 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x800ff0ffffff9fffull, RSP_0),
2079 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0xff0ffffff9fffull, RSP_1),
2080 EVENT_EXTRA_END
2081 };
2082
2083 static struct extra_reg intel_grt_extra_regs[] __read_mostly = {
2084 /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
2085 INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffffffffull, RSP_0),
2086 INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x3fffffffffull, RSP_1),
2087 INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x5d0),
2088 EVENT_EXTRA_END
2089 };
2090
2091 #define KNL_OT_L2_HITE BIT_ULL(19) /* Other Tile L2 Hit */
2092 #define KNL_OT_L2_HITF BIT_ULL(20) /* Other Tile L2 Hit */
2093 #define KNL_MCDRAM_LOCAL BIT_ULL(21)
2094 #define KNL_MCDRAM_FAR BIT_ULL(22)
2095 #define KNL_DDR_LOCAL BIT_ULL(23)
2096 #define KNL_DDR_FAR BIT_ULL(24)
2097 #define KNL_DRAM_ANY (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
2098 KNL_DDR_LOCAL | KNL_DDR_FAR)
2099 #define KNL_L2_READ SLM_DMND_READ
2100 #define KNL_L2_WRITE SLM_DMND_WRITE
2101 #define KNL_L2_PREFETCH SLM_DMND_PREFETCH
2102 #define KNL_L2_ACCESS SLM_LLC_ACCESS
2103 #define KNL_L2_MISS (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
2104 KNL_DRAM_ANY | SNB_SNP_ANY | \
2105 SNB_NON_DRAM)
2106
2107 static __initconst const u64 knl_hw_cache_extra_regs
2108 [PERF_COUNT_HW_CACHE_MAX]
2109 [PERF_COUNT_HW_CACHE_OP_MAX]
2110 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
2111 [C(LL)] = {
2112 [C(OP_READ)] = {
2113 [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
2114 [C(RESULT_MISS)] = 0,
2115 },
2116 [C(OP_WRITE)] = {
2117 [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
2118 [C(RESULT_MISS)] = KNL_L2_WRITE | KNL_L2_MISS,
2119 },
2120 [C(OP_PREFETCH)] = {
2121 [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
2122 [C(RESULT_MISS)] = KNL_L2_PREFETCH | KNL_L2_MISS,
2123 },
2124 },
2125 };
2126
2127 /*
2128 * Used from PMIs where the LBRs are already disabled.
2129 *
2130 * This function could be called consecutively. It is required to remain in
2131 * disabled state if called consecutively.
2132 *
2133 * During consecutive calls, the same disable value will be written to related
2134 * registers, so the PMU state remains unchanged.
2135 *
2136 * intel_bts events don't coexist with intel PMU's BTS events because of
2137 * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
2138 * disabled around intel PMU's event batching etc, only inside the PMI handler.
2139 *
2140 * Avoid PEBS_ENABLE MSR access in PMIs.
2141 * The GLOBAL_CTRL has been disabled. All the counters do not count anymore.
2142 * It doesn't matter if the PEBS is enabled or not.
2143 * Usually, the PEBS status are not changed in PMIs. It's unnecessary to
2144 * access PEBS_ENABLE MSR in disable_all()/enable_all().
2145 * However, there are some cases which may change PEBS status, e.g. PMI
2146 * throttle. The PEBS_ENABLE should be updated where the status changes.
2147 */
__intel_pmu_disable_all(void)2148 static void __intel_pmu_disable_all(void)
2149 {
2150 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2151
2152 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2153
2154 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
2155 intel_pmu_disable_bts();
2156 }
2157
intel_pmu_disable_all(void)2158 static void intel_pmu_disable_all(void)
2159 {
2160 __intel_pmu_disable_all();
2161 intel_pmu_pebs_disable_all();
2162 intel_pmu_lbr_disable_all();
2163 }
2164
__intel_pmu_enable_all(int added,bool pmi)2165 static void __intel_pmu_enable_all(int added, bool pmi)
2166 {
2167 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2168 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2169
2170 intel_pmu_lbr_enable_all(pmi);
2171 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
2172 intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
2173
2174 if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
2175 struct perf_event *event =
2176 cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
2177
2178 if (WARN_ON_ONCE(!event))
2179 return;
2180
2181 intel_pmu_enable_bts(event->hw.config);
2182 }
2183 }
2184
intel_pmu_enable_all(int added)2185 static void intel_pmu_enable_all(int added)
2186 {
2187 intel_pmu_pebs_enable_all();
2188 __intel_pmu_enable_all(added, false);
2189 }
2190
2191 /*
2192 * Workaround for:
2193 * Intel Errata AAK100 (model 26)
2194 * Intel Errata AAP53 (model 30)
2195 * Intel Errata BD53 (model 44)
2196 *
2197 * The official story:
2198 * These chips need to be 'reset' when adding counters by programming the
2199 * magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
2200 * in sequence on the same PMC or on different PMCs.
2201 *
2202 * In practice it appears some of these events do in fact count, and
2203 * we need to program all 4 events.
2204 */
intel_pmu_nhm_workaround(void)2205 static void intel_pmu_nhm_workaround(void)
2206 {
2207 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2208 static const unsigned long nhm_magic[4] = {
2209 0x4300B5,
2210 0x4300D2,
2211 0x4300B1,
2212 0x4300B1
2213 };
2214 struct perf_event *event;
2215 int i;
2216
2217 /*
2218 * The Errata requires below steps:
2219 * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
2220 * 2) Configure 4 PERFEVTSELx with the magic events and clear
2221 * the corresponding PMCx;
2222 * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
2223 * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
2224 * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
2225 */
2226
2227 /*
2228 * The real steps we choose are a little different from above.
2229 * A) To reduce MSR operations, we don't run step 1) as they
2230 * are already cleared before this function is called;
2231 * B) Call x86_perf_event_update to save PMCx before configuring
2232 * PERFEVTSELx with magic number;
2233 * C) With step 5), we do clear only when the PERFEVTSELx is
2234 * not used currently.
2235 * D) Call x86_perf_event_set_period to restore PMCx;
2236 */
2237
2238 /* We always operate 4 pairs of PERF Counters */
2239 for (i = 0; i < 4; i++) {
2240 event = cpuc->events[i];
2241 if (event)
2242 x86_perf_event_update(event);
2243 }
2244
2245 for (i = 0; i < 4; i++) {
2246 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
2247 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
2248 }
2249
2250 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
2251 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
2252
2253 for (i = 0; i < 4; i++) {
2254 event = cpuc->events[i];
2255
2256 if (event) {
2257 x86_perf_event_set_period(event);
2258 __x86_pmu_enable_event(&event->hw,
2259 ARCH_PERFMON_EVENTSEL_ENABLE);
2260 } else
2261 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
2262 }
2263 }
2264
intel_pmu_nhm_enable_all(int added)2265 static void intel_pmu_nhm_enable_all(int added)
2266 {
2267 if (added)
2268 intel_pmu_nhm_workaround();
2269 intel_pmu_enable_all(added);
2270 }
2271
intel_set_tfa(struct cpu_hw_events * cpuc,bool on)2272 static void intel_set_tfa(struct cpu_hw_events *cpuc, bool on)
2273 {
2274 u64 val = on ? MSR_TFA_RTM_FORCE_ABORT : 0;
2275
2276 if (cpuc->tfa_shadow != val) {
2277 cpuc->tfa_shadow = val;
2278 wrmsrl(MSR_TSX_FORCE_ABORT, val);
2279 }
2280 }
2281
intel_tfa_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)2282 static void intel_tfa_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2283 {
2284 /*
2285 * We're going to use PMC3, make sure TFA is set before we touch it.
2286 */
2287 if (cntr == 3)
2288 intel_set_tfa(cpuc, true);
2289 }
2290
intel_tfa_pmu_enable_all(int added)2291 static void intel_tfa_pmu_enable_all(int added)
2292 {
2293 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2294
2295 /*
2296 * If we find PMC3 is no longer used when we enable the PMU, we can
2297 * clear TFA.
2298 */
2299 if (!test_bit(3, cpuc->active_mask))
2300 intel_set_tfa(cpuc, false);
2301
2302 intel_pmu_enable_all(added);
2303 }
2304
intel_pmu_get_status(void)2305 static inline u64 intel_pmu_get_status(void)
2306 {
2307 u64 status;
2308
2309 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2310
2311 return status;
2312 }
2313
intel_pmu_ack_status(u64 ack)2314 static inline void intel_pmu_ack_status(u64 ack)
2315 {
2316 wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2317 }
2318
event_is_checkpointed(struct perf_event * event)2319 static inline bool event_is_checkpointed(struct perf_event *event)
2320 {
2321 return unlikely(event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2322 }
2323
intel_set_masks(struct perf_event * event,int idx)2324 static inline void intel_set_masks(struct perf_event *event, int idx)
2325 {
2326 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2327
2328 if (event->attr.exclude_host)
2329 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2330 if (event->attr.exclude_guest)
2331 __set_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2332 if (event_is_checkpointed(event))
2333 __set_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2334 }
2335
intel_clear_masks(struct perf_event * event,int idx)2336 static inline void intel_clear_masks(struct perf_event *event, int idx)
2337 {
2338 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2339
2340 __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_guest_mask);
2341 __clear_bit(idx, (unsigned long *)&cpuc->intel_ctrl_host_mask);
2342 __clear_bit(idx, (unsigned long *)&cpuc->intel_cp_status);
2343 }
2344
intel_pmu_disable_fixed(struct perf_event * event)2345 static void intel_pmu_disable_fixed(struct perf_event *event)
2346 {
2347 struct hw_perf_event *hwc = &event->hw;
2348 u64 ctrl_val, mask;
2349 int idx = hwc->idx;
2350
2351 if (is_topdown_idx(idx)) {
2352 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2353
2354 /*
2355 * When there are other active TopDown events,
2356 * don't disable the fixed counter 3.
2357 */
2358 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2359 return;
2360 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2361 }
2362
2363 intel_clear_masks(event, idx);
2364
2365 mask = 0xfULL << ((idx - INTEL_PMC_IDX_FIXED) * 4);
2366 rdmsrl(hwc->config_base, ctrl_val);
2367 ctrl_val &= ~mask;
2368 wrmsrl(hwc->config_base, ctrl_val);
2369 }
2370
intel_pmu_disable_event(struct perf_event * event)2371 static void intel_pmu_disable_event(struct perf_event *event)
2372 {
2373 struct hw_perf_event *hwc = &event->hw;
2374 int idx = hwc->idx;
2375
2376 switch (idx) {
2377 case 0 ... INTEL_PMC_IDX_FIXED - 1:
2378 intel_clear_masks(event, idx);
2379 x86_pmu_disable_event(event);
2380 break;
2381 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2382 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2383 intel_pmu_disable_fixed(event);
2384 break;
2385 case INTEL_PMC_IDX_FIXED_BTS:
2386 intel_pmu_disable_bts();
2387 intel_pmu_drain_bts_buffer();
2388 return;
2389 case INTEL_PMC_IDX_FIXED_VLBR:
2390 intel_clear_masks(event, idx);
2391 break;
2392 default:
2393 intel_clear_masks(event, idx);
2394 pr_warn("Failed to disable the event with invalid index %d\n",
2395 idx);
2396 return;
2397 }
2398
2399 /*
2400 * Needs to be called after x86_pmu_disable_event,
2401 * so we don't trigger the event without PEBS bit set.
2402 */
2403 if (unlikely(event->attr.precise_ip))
2404 intel_pmu_pebs_disable(event);
2405 }
2406
intel_pmu_del_event(struct perf_event * event)2407 static void intel_pmu_del_event(struct perf_event *event)
2408 {
2409 if (needs_branch_stack(event))
2410 intel_pmu_lbr_del(event);
2411 if (event->attr.precise_ip)
2412 intel_pmu_pebs_del(event);
2413 }
2414
icl_set_topdown_event_period(struct perf_event * event)2415 static int icl_set_topdown_event_period(struct perf_event *event)
2416 {
2417 struct hw_perf_event *hwc = &event->hw;
2418 s64 left = local64_read(&hwc->period_left);
2419
2420 /*
2421 * The values in PERF_METRICS MSR are derived from fixed counter 3.
2422 * Software should start both registers, PERF_METRICS and fixed
2423 * counter 3, from zero.
2424 * Clear PERF_METRICS and Fixed counter 3 in initialization.
2425 * After that, both MSRs will be cleared for each read.
2426 * Don't need to clear them again.
2427 */
2428 if (left == x86_pmu.max_period) {
2429 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2430 wrmsrl(MSR_PERF_METRICS, 0);
2431 hwc->saved_slots = 0;
2432 hwc->saved_metric = 0;
2433 }
2434
2435 if ((hwc->saved_slots) && is_slots_event(event)) {
2436 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, hwc->saved_slots);
2437 wrmsrl(MSR_PERF_METRICS, hwc->saved_metric);
2438 }
2439
2440 perf_event_update_userpage(event);
2441
2442 return 0;
2443 }
2444
adl_set_topdown_event_period(struct perf_event * event)2445 static int adl_set_topdown_event_period(struct perf_event *event)
2446 {
2447 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2448
2449 if (pmu->cpu_type != hybrid_big)
2450 return 0;
2451
2452 return icl_set_topdown_event_period(event);
2453 }
2454
icl_get_metrics_event_value(u64 metric,u64 slots,int idx)2455 static inline u64 icl_get_metrics_event_value(u64 metric, u64 slots, int idx)
2456 {
2457 u32 val;
2458
2459 /*
2460 * The metric is reported as an 8bit integer fraction
2461 * summing up to 0xff.
2462 * slots-in-metric = (Metric / 0xff) * slots
2463 */
2464 val = (metric >> ((idx - INTEL_PMC_IDX_METRIC_BASE) * 8)) & 0xff;
2465 return mul_u64_u32_div(slots, val, 0xff);
2466 }
2467
icl_get_topdown_value(struct perf_event * event,u64 slots,u64 metrics)2468 static u64 icl_get_topdown_value(struct perf_event *event,
2469 u64 slots, u64 metrics)
2470 {
2471 int idx = event->hw.idx;
2472 u64 delta;
2473
2474 if (is_metric_idx(idx))
2475 delta = icl_get_metrics_event_value(metrics, slots, idx);
2476 else
2477 delta = slots;
2478
2479 return delta;
2480 }
2481
__icl_update_topdown_event(struct perf_event * event,u64 slots,u64 metrics,u64 last_slots,u64 last_metrics)2482 static void __icl_update_topdown_event(struct perf_event *event,
2483 u64 slots, u64 metrics,
2484 u64 last_slots, u64 last_metrics)
2485 {
2486 u64 delta, last = 0;
2487
2488 delta = icl_get_topdown_value(event, slots, metrics);
2489 if (last_slots)
2490 last = icl_get_topdown_value(event, last_slots, last_metrics);
2491
2492 /*
2493 * The 8bit integer fraction of metric may be not accurate,
2494 * especially when the changes is very small.
2495 * For example, if only a few bad_spec happens, the fraction
2496 * may be reduced from 1 to 0. If so, the bad_spec event value
2497 * will be 0 which is definitely less than the last value.
2498 * Avoid update event->count for this case.
2499 */
2500 if (delta > last) {
2501 delta -= last;
2502 local64_add(delta, &event->count);
2503 }
2504 }
2505
update_saved_topdown_regs(struct perf_event * event,u64 slots,u64 metrics,int metric_end)2506 static void update_saved_topdown_regs(struct perf_event *event, u64 slots,
2507 u64 metrics, int metric_end)
2508 {
2509 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2510 struct perf_event *other;
2511 int idx;
2512
2513 event->hw.saved_slots = slots;
2514 event->hw.saved_metric = metrics;
2515
2516 for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2517 if (!is_topdown_idx(idx))
2518 continue;
2519 other = cpuc->events[idx];
2520 other->hw.saved_slots = slots;
2521 other->hw.saved_metric = metrics;
2522 }
2523 }
2524
2525 /*
2526 * Update all active Topdown events.
2527 *
2528 * The PERF_METRICS and Fixed counter 3 are read separately. The values may be
2529 * modify by a NMI. PMU has to be disabled before calling this function.
2530 */
2531
intel_update_topdown_event(struct perf_event * event,int metric_end)2532 static u64 intel_update_topdown_event(struct perf_event *event, int metric_end)
2533 {
2534 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2535 struct perf_event *other;
2536 u64 slots, metrics;
2537 bool reset = true;
2538 int idx;
2539
2540 /* read Fixed counter 3 */
2541 rdpmcl((3 | INTEL_PMC_FIXED_RDPMC_BASE), slots);
2542 if (!slots)
2543 return 0;
2544
2545 /* read PERF_METRICS */
2546 rdpmcl(INTEL_PMC_FIXED_RDPMC_METRICS, metrics);
2547
2548 for_each_set_bit(idx, cpuc->active_mask, metric_end + 1) {
2549 if (!is_topdown_idx(idx))
2550 continue;
2551 other = cpuc->events[idx];
2552 __icl_update_topdown_event(other, slots, metrics,
2553 event ? event->hw.saved_slots : 0,
2554 event ? event->hw.saved_metric : 0);
2555 }
2556
2557 /*
2558 * Check and update this event, which may have been cleared
2559 * in active_mask e.g. x86_pmu_stop()
2560 */
2561 if (event && !test_bit(event->hw.idx, cpuc->active_mask)) {
2562 __icl_update_topdown_event(event, slots, metrics,
2563 event->hw.saved_slots,
2564 event->hw.saved_metric);
2565
2566 /*
2567 * In x86_pmu_stop(), the event is cleared in active_mask first,
2568 * then drain the delta, which indicates context switch for
2569 * counting.
2570 * Save metric and slots for context switch.
2571 * Don't need to reset the PERF_METRICS and Fixed counter 3.
2572 * Because the values will be restored in next schedule in.
2573 */
2574 update_saved_topdown_regs(event, slots, metrics, metric_end);
2575 reset = false;
2576 }
2577
2578 if (reset) {
2579 /* The fixed counter 3 has to be written before the PERF_METRICS. */
2580 wrmsrl(MSR_CORE_PERF_FIXED_CTR3, 0);
2581 wrmsrl(MSR_PERF_METRICS, 0);
2582 if (event)
2583 update_saved_topdown_regs(event, 0, 0, metric_end);
2584 }
2585
2586 return slots;
2587 }
2588
icl_update_topdown_event(struct perf_event * event)2589 static u64 icl_update_topdown_event(struct perf_event *event)
2590 {
2591 return intel_update_topdown_event(event, INTEL_PMC_IDX_METRIC_BASE +
2592 x86_pmu.num_topdown_events - 1);
2593 }
2594
adl_update_topdown_event(struct perf_event * event)2595 static u64 adl_update_topdown_event(struct perf_event *event)
2596 {
2597 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
2598
2599 if (pmu->cpu_type != hybrid_big)
2600 return 0;
2601
2602 return icl_update_topdown_event(event);
2603 }
2604
2605
intel_pmu_read_topdown_event(struct perf_event * event)2606 static void intel_pmu_read_topdown_event(struct perf_event *event)
2607 {
2608 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2609
2610 /* Only need to call update_topdown_event() once for group read. */
2611 if ((cpuc->txn_flags & PERF_PMU_TXN_READ) &&
2612 !is_slots_event(event))
2613 return;
2614
2615 perf_pmu_disable(event->pmu);
2616 x86_pmu.update_topdown_event(event);
2617 perf_pmu_enable(event->pmu);
2618 }
2619
intel_pmu_read_event(struct perf_event * event)2620 static void intel_pmu_read_event(struct perf_event *event)
2621 {
2622 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2623 intel_pmu_auto_reload_read(event);
2624 else if (is_topdown_count(event) && x86_pmu.update_topdown_event)
2625 intel_pmu_read_topdown_event(event);
2626 else
2627 x86_perf_event_update(event);
2628 }
2629
intel_pmu_enable_fixed(struct perf_event * event)2630 static void intel_pmu_enable_fixed(struct perf_event *event)
2631 {
2632 struct hw_perf_event *hwc = &event->hw;
2633 u64 ctrl_val, mask, bits = 0;
2634 int idx = hwc->idx;
2635
2636 if (is_topdown_idx(idx)) {
2637 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2638 /*
2639 * When there are other active TopDown events,
2640 * don't enable the fixed counter 3 again.
2641 */
2642 if (*(u64 *)cpuc->active_mask & INTEL_PMC_OTHER_TOPDOWN_BITS(idx))
2643 return;
2644
2645 idx = INTEL_PMC_IDX_FIXED_SLOTS;
2646 }
2647
2648 intel_set_masks(event, idx);
2649
2650 /*
2651 * Enable IRQ generation (0x8), if not PEBS,
2652 * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2653 * if requested:
2654 */
2655 if (!event->attr.precise_ip)
2656 bits |= 0x8;
2657 if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2658 bits |= 0x2;
2659 if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2660 bits |= 0x1;
2661
2662 /*
2663 * ANY bit is supported in v3 and up
2664 */
2665 if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2666 bits |= 0x4;
2667
2668 idx -= INTEL_PMC_IDX_FIXED;
2669 bits <<= (idx * 4);
2670 mask = 0xfULL << (idx * 4);
2671
2672 if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip) {
2673 bits |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2674 mask |= ICL_FIXED_0_ADAPTIVE << (idx * 4);
2675 }
2676
2677 rdmsrl(hwc->config_base, ctrl_val);
2678 ctrl_val &= ~mask;
2679 ctrl_val |= bits;
2680 wrmsrl(hwc->config_base, ctrl_val);
2681 }
2682
intel_pmu_enable_event(struct perf_event * event)2683 static void intel_pmu_enable_event(struct perf_event *event)
2684 {
2685 struct hw_perf_event *hwc = &event->hw;
2686 int idx = hwc->idx;
2687
2688 if (unlikely(event->attr.precise_ip))
2689 intel_pmu_pebs_enable(event);
2690
2691 switch (idx) {
2692 case 0 ... INTEL_PMC_IDX_FIXED - 1:
2693 intel_set_masks(event, idx);
2694 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2695 break;
2696 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS - 1:
2697 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
2698 intel_pmu_enable_fixed(event);
2699 break;
2700 case INTEL_PMC_IDX_FIXED_BTS:
2701 if (!__this_cpu_read(cpu_hw_events.enabled))
2702 return;
2703 intel_pmu_enable_bts(hwc->config);
2704 break;
2705 case INTEL_PMC_IDX_FIXED_VLBR:
2706 intel_set_masks(event, idx);
2707 break;
2708 default:
2709 pr_warn("Failed to enable the event with invalid index %d\n",
2710 idx);
2711 }
2712 }
2713
intel_pmu_add_event(struct perf_event * event)2714 static void intel_pmu_add_event(struct perf_event *event)
2715 {
2716 if (event->attr.precise_ip)
2717 intel_pmu_pebs_add(event);
2718 if (needs_branch_stack(event))
2719 intel_pmu_lbr_add(event);
2720 }
2721
2722 /*
2723 * Save and restart an expired event. Called by NMI contexts,
2724 * so it has to be careful about preempting normal event ops:
2725 */
intel_pmu_save_and_restart(struct perf_event * event)2726 int intel_pmu_save_and_restart(struct perf_event *event)
2727 {
2728 x86_perf_event_update(event);
2729 /*
2730 * For a checkpointed counter always reset back to 0. This
2731 * avoids a situation where the counter overflows, aborts the
2732 * transaction and is then set back to shortly before the
2733 * overflow, and overflows and aborts again.
2734 */
2735 if (unlikely(event_is_checkpointed(event))) {
2736 /* No race with NMIs because the counter should not be armed */
2737 wrmsrl(event->hw.event_base, 0);
2738 local64_set(&event->hw.prev_count, 0);
2739 }
2740 return x86_perf_event_set_period(event);
2741 }
2742
intel_pmu_reset(void)2743 static void intel_pmu_reset(void)
2744 {
2745 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2746 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2747 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2748 int num_counters = hybrid(cpuc->pmu, num_counters);
2749 unsigned long flags;
2750 int idx;
2751
2752 if (!num_counters)
2753 return;
2754
2755 local_irq_save(flags);
2756
2757 pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2758
2759 for (idx = 0; idx < num_counters; idx++) {
2760 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2761 wrmsrl_safe(x86_pmu_event_addr(idx), 0ull);
2762 }
2763 for (idx = 0; idx < num_counters_fixed; idx++) {
2764 if (fixed_counter_disabled(idx, cpuc->pmu))
2765 continue;
2766 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2767 }
2768
2769 if (ds)
2770 ds->bts_index = ds->bts_buffer_base;
2771
2772 /* Ack all overflows and disable fixed counters */
2773 if (x86_pmu.version >= 2) {
2774 intel_pmu_ack_status(intel_pmu_get_status());
2775 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2776 }
2777
2778 /* Reset LBRs and LBR freezing */
2779 if (x86_pmu.lbr_nr) {
2780 update_debugctlmsr(get_debugctlmsr() &
2781 ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2782 }
2783
2784 local_irq_restore(flags);
2785 }
2786
handle_pmi_common(struct pt_regs * regs,u64 status)2787 static int handle_pmi_common(struct pt_regs *regs, u64 status)
2788 {
2789 struct perf_sample_data data;
2790 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2791 struct perf_guest_info_callbacks *guest_cbs;
2792 int bit;
2793 int handled = 0;
2794 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
2795
2796 inc_irq_stat(apic_perf_irqs);
2797
2798 /*
2799 * Ignore a range of extra bits in status that do not indicate
2800 * overflow by themselves.
2801 */
2802 status &= ~(GLOBAL_STATUS_COND_CHG |
2803 GLOBAL_STATUS_ASIF |
2804 GLOBAL_STATUS_LBRS_FROZEN);
2805 if (!status)
2806 return 0;
2807 /*
2808 * In case multiple PEBS events are sampled at the same time,
2809 * it is possible to have GLOBAL_STATUS bit 62 set indicating
2810 * PEBS buffer overflow and also seeing at most 3 PEBS counters
2811 * having their bits set in the status register. This is a sign
2812 * that there was at least one PEBS record pending at the time
2813 * of the PMU interrupt. PEBS counters must only be processed
2814 * via the drain_pebs() calls and not via the regular sample
2815 * processing loop coming after that the function, otherwise
2816 * phony regular samples may be generated in the sampling buffer
2817 * not marked with the EXACT tag. Another possibility is to have
2818 * one PEBS event and at least one non-PEBS event which overflows
2819 * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2820 * not be set, yet the overflow status bit for the PEBS counter will
2821 * be on Skylake.
2822 *
2823 * To avoid this problem, we systematically ignore the PEBS-enabled
2824 * counters from the GLOBAL_STATUS mask and we always process PEBS
2825 * events via drain_pebs().
2826 */
2827 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2828 status &= ~cpuc->pebs_enabled;
2829 else
2830 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2831
2832 /*
2833 * PEBS overflow sets bit 62 in the global status register
2834 */
2835 if (__test_and_clear_bit(GLOBAL_STATUS_BUFFER_OVF_BIT, (unsigned long *)&status)) {
2836 u64 pebs_enabled = cpuc->pebs_enabled;
2837
2838 handled++;
2839 x86_pmu.drain_pebs(regs, &data);
2840 status &= intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2841
2842 /*
2843 * PMI throttle may be triggered, which stops the PEBS event.
2844 * Although cpuc->pebs_enabled is updated accordingly, the
2845 * MSR_IA32_PEBS_ENABLE is not updated. Because the
2846 * cpuc->enabled has been forced to 0 in PMI.
2847 * Update the MSR if pebs_enabled is changed.
2848 */
2849 if (pebs_enabled != cpuc->pebs_enabled)
2850 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
2851 }
2852
2853 /*
2854 * Intel PT
2855 */
2856 if (__test_and_clear_bit(GLOBAL_STATUS_TRACE_TOPAPMI_BIT, (unsigned long *)&status)) {
2857 handled++;
2858
2859 guest_cbs = perf_get_guest_cbs();
2860 if (unlikely(guest_cbs && guest_cbs->is_in_guest() &&
2861 guest_cbs->handle_intel_pt_intr))
2862 guest_cbs->handle_intel_pt_intr();
2863 else
2864 intel_pt_interrupt();
2865 }
2866
2867 /*
2868 * Intel Perf metrics
2869 */
2870 if (__test_and_clear_bit(GLOBAL_STATUS_PERF_METRICS_OVF_BIT, (unsigned long *)&status)) {
2871 handled++;
2872 if (x86_pmu.update_topdown_event)
2873 x86_pmu.update_topdown_event(NULL);
2874 }
2875
2876 /*
2877 * Checkpointed counters can lead to 'spurious' PMIs because the
2878 * rollback caused by the PMI will have cleared the overflow status
2879 * bit. Therefore always force probe these counters.
2880 */
2881 status |= cpuc->intel_cp_status;
2882
2883 for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2884 struct perf_event *event = cpuc->events[bit];
2885
2886 handled++;
2887
2888 if (!test_bit(bit, cpuc->active_mask))
2889 continue;
2890
2891 if (!intel_pmu_save_and_restart(event))
2892 continue;
2893
2894 perf_sample_data_init(&data, 0, event->hw.last_period);
2895
2896 if (has_branch_stack(event))
2897 data.br_stack = &cpuc->lbr_stack;
2898
2899 if (perf_event_overflow(event, &data, regs))
2900 x86_pmu_stop(event, 0);
2901 }
2902
2903 return handled;
2904 }
2905
2906 /*
2907 * This handler is triggered by the local APIC, so the APIC IRQ handling
2908 * rules apply:
2909 */
intel_pmu_handle_irq(struct pt_regs * regs)2910 static int intel_pmu_handle_irq(struct pt_regs *regs)
2911 {
2912 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2913 bool late_ack = hybrid_bit(cpuc->pmu, late_ack);
2914 bool mid_ack = hybrid_bit(cpuc->pmu, mid_ack);
2915 int loops;
2916 u64 status;
2917 int handled;
2918 int pmu_enabled;
2919
2920 /*
2921 * Save the PMU state.
2922 * It needs to be restored when leaving the handler.
2923 */
2924 pmu_enabled = cpuc->enabled;
2925 /*
2926 * In general, the early ACK is only applied for old platforms.
2927 * For the big core starts from Haswell, the late ACK should be
2928 * applied.
2929 * For the small core after Tremont, we have to do the ACK right
2930 * before re-enabling counters, which is in the middle of the
2931 * NMI handler.
2932 */
2933 if (!late_ack && !mid_ack)
2934 apic_write(APIC_LVTPC, APIC_DM_NMI);
2935 intel_bts_disable_local();
2936 cpuc->enabled = 0;
2937 __intel_pmu_disable_all();
2938 handled = intel_pmu_drain_bts_buffer();
2939 handled += intel_bts_interrupt();
2940 status = intel_pmu_get_status();
2941 if (!status)
2942 goto done;
2943
2944 loops = 0;
2945 again:
2946 intel_pmu_lbr_read();
2947 intel_pmu_ack_status(status);
2948 if (++loops > 100) {
2949 static bool warned;
2950
2951 if (!warned) {
2952 WARN(1, "perfevents: irq loop stuck!\n");
2953 perf_event_print_debug();
2954 warned = true;
2955 }
2956 intel_pmu_reset();
2957 goto done;
2958 }
2959
2960 handled += handle_pmi_common(regs, status);
2961
2962 /*
2963 * Repeat if there is more work to be done:
2964 */
2965 status = intel_pmu_get_status();
2966 if (status)
2967 goto again;
2968
2969 done:
2970 if (mid_ack)
2971 apic_write(APIC_LVTPC, APIC_DM_NMI);
2972 /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2973 cpuc->enabled = pmu_enabled;
2974 if (pmu_enabled)
2975 __intel_pmu_enable_all(0, true);
2976 intel_bts_enable_local();
2977
2978 /*
2979 * Only unmask the NMI after the overflow counters
2980 * have been reset. This avoids spurious NMIs on
2981 * Haswell CPUs.
2982 */
2983 if (late_ack)
2984 apic_write(APIC_LVTPC, APIC_DM_NMI);
2985 return handled;
2986 }
2987
2988 static struct event_constraint *
intel_bts_constraints(struct perf_event * event)2989 intel_bts_constraints(struct perf_event *event)
2990 {
2991 if (unlikely(intel_pmu_has_bts(event)))
2992 return &bts_constraint;
2993
2994 return NULL;
2995 }
2996
2997 /*
2998 * Note: matches a fake event, like Fixed2.
2999 */
3000 static struct event_constraint *
intel_vlbr_constraints(struct perf_event * event)3001 intel_vlbr_constraints(struct perf_event *event)
3002 {
3003 struct event_constraint *c = &vlbr_constraint;
3004
3005 if (unlikely(constraint_match(c, event->hw.config))) {
3006 event->hw.flags |= c->flags;
3007 return c;
3008 }
3009
3010 return NULL;
3011 }
3012
intel_alt_er(struct cpu_hw_events * cpuc,int idx,u64 config)3013 static int intel_alt_er(struct cpu_hw_events *cpuc,
3014 int idx, u64 config)
3015 {
3016 struct extra_reg *extra_regs = hybrid(cpuc->pmu, extra_regs);
3017 int alt_idx = idx;
3018
3019 if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
3020 return idx;
3021
3022 if (idx == EXTRA_REG_RSP_0)
3023 alt_idx = EXTRA_REG_RSP_1;
3024
3025 if (idx == EXTRA_REG_RSP_1)
3026 alt_idx = EXTRA_REG_RSP_0;
3027
3028 if (config & ~extra_regs[alt_idx].valid_mask)
3029 return idx;
3030
3031 return alt_idx;
3032 }
3033
intel_fixup_er(struct perf_event * event,int idx)3034 static void intel_fixup_er(struct perf_event *event, int idx)
3035 {
3036 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
3037 event->hw.extra_reg.idx = idx;
3038
3039 if (idx == EXTRA_REG_RSP_0) {
3040 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3041 event->hw.config |= extra_regs[EXTRA_REG_RSP_0].event;
3042 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
3043 } else if (idx == EXTRA_REG_RSP_1) {
3044 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
3045 event->hw.config |= extra_regs[EXTRA_REG_RSP_1].event;
3046 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
3047 }
3048 }
3049
3050 /*
3051 * manage allocation of shared extra msr for certain events
3052 *
3053 * sharing can be:
3054 * per-cpu: to be shared between the various events on a single PMU
3055 * per-core: per-cpu + shared by HT threads
3056 */
3057 static struct event_constraint *
__intel_shared_reg_get_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,struct hw_perf_event_extra * reg)3058 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
3059 struct perf_event *event,
3060 struct hw_perf_event_extra *reg)
3061 {
3062 struct event_constraint *c = &emptyconstraint;
3063 struct er_account *era;
3064 unsigned long flags;
3065 int idx = reg->idx;
3066
3067 /*
3068 * reg->alloc can be set due to existing state, so for fake cpuc we
3069 * need to ignore this, otherwise we might fail to allocate proper fake
3070 * state for this extra reg constraint. Also see the comment below.
3071 */
3072 if (reg->alloc && !cpuc->is_fake)
3073 return NULL; /* call x86_get_event_constraint() */
3074
3075 again:
3076 era = &cpuc->shared_regs->regs[idx];
3077 /*
3078 * we use spin_lock_irqsave() to avoid lockdep issues when
3079 * passing a fake cpuc
3080 */
3081 raw_spin_lock_irqsave(&era->lock, flags);
3082
3083 if (!atomic_read(&era->ref) || era->config == reg->config) {
3084
3085 /*
3086 * If its a fake cpuc -- as per validate_{group,event}() we
3087 * shouldn't touch event state and we can avoid doing so
3088 * since both will only call get_event_constraints() once
3089 * on each event, this avoids the need for reg->alloc.
3090 *
3091 * Not doing the ER fixup will only result in era->reg being
3092 * wrong, but since we won't actually try and program hardware
3093 * this isn't a problem either.
3094 */
3095 if (!cpuc->is_fake) {
3096 if (idx != reg->idx)
3097 intel_fixup_er(event, idx);
3098
3099 /*
3100 * x86_schedule_events() can call get_event_constraints()
3101 * multiple times on events in the case of incremental
3102 * scheduling(). reg->alloc ensures we only do the ER
3103 * allocation once.
3104 */
3105 reg->alloc = 1;
3106 }
3107
3108 /* lock in msr value */
3109 era->config = reg->config;
3110 era->reg = reg->reg;
3111
3112 /* one more user */
3113 atomic_inc(&era->ref);
3114
3115 /*
3116 * need to call x86_get_event_constraint()
3117 * to check if associated event has constraints
3118 */
3119 c = NULL;
3120 } else {
3121 idx = intel_alt_er(cpuc, idx, reg->config);
3122 if (idx != reg->idx) {
3123 raw_spin_unlock_irqrestore(&era->lock, flags);
3124 goto again;
3125 }
3126 }
3127 raw_spin_unlock_irqrestore(&era->lock, flags);
3128
3129 return c;
3130 }
3131
3132 static void
__intel_shared_reg_put_constraints(struct cpu_hw_events * cpuc,struct hw_perf_event_extra * reg)3133 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
3134 struct hw_perf_event_extra *reg)
3135 {
3136 struct er_account *era;
3137
3138 /*
3139 * Only put constraint if extra reg was actually allocated. Also takes
3140 * care of event which do not use an extra shared reg.
3141 *
3142 * Also, if this is a fake cpuc we shouldn't touch any event state
3143 * (reg->alloc) and we don't care about leaving inconsistent cpuc state
3144 * either since it'll be thrown out.
3145 */
3146 if (!reg->alloc || cpuc->is_fake)
3147 return;
3148
3149 era = &cpuc->shared_regs->regs[reg->idx];
3150
3151 /* one fewer user */
3152 atomic_dec(&era->ref);
3153
3154 /* allocate again next time */
3155 reg->alloc = 0;
3156 }
3157
3158 static struct event_constraint *
intel_shared_regs_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3159 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
3160 struct perf_event *event)
3161 {
3162 struct event_constraint *c = NULL, *d;
3163 struct hw_perf_event_extra *xreg, *breg;
3164
3165 xreg = &event->hw.extra_reg;
3166 if (xreg->idx != EXTRA_REG_NONE) {
3167 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
3168 if (c == &emptyconstraint)
3169 return c;
3170 }
3171 breg = &event->hw.branch_reg;
3172 if (breg->idx != EXTRA_REG_NONE) {
3173 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
3174 if (d == &emptyconstraint) {
3175 __intel_shared_reg_put_constraints(cpuc, xreg);
3176 c = d;
3177 }
3178 }
3179 return c;
3180 }
3181
3182 struct event_constraint *
x86_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3183 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3184 struct perf_event *event)
3185 {
3186 struct event_constraint *event_constraints = hybrid(cpuc->pmu, event_constraints);
3187 struct event_constraint *c;
3188
3189 if (event_constraints) {
3190 for_each_event_constraint(c, event_constraints) {
3191 if (constraint_match(c, event->hw.config)) {
3192 event->hw.flags |= c->flags;
3193 return c;
3194 }
3195 }
3196 }
3197
3198 return &hybrid_var(cpuc->pmu, unconstrained);
3199 }
3200
3201 static struct event_constraint *
__intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3202 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3203 struct perf_event *event)
3204 {
3205 struct event_constraint *c;
3206
3207 c = intel_vlbr_constraints(event);
3208 if (c)
3209 return c;
3210
3211 c = intel_bts_constraints(event);
3212 if (c)
3213 return c;
3214
3215 c = intel_shared_regs_constraints(cpuc, event);
3216 if (c)
3217 return c;
3218
3219 c = intel_pebs_constraints(event);
3220 if (c)
3221 return c;
3222
3223 return x86_get_event_constraints(cpuc, idx, event);
3224 }
3225
3226 static void
intel_start_scheduling(struct cpu_hw_events * cpuc)3227 intel_start_scheduling(struct cpu_hw_events *cpuc)
3228 {
3229 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3230 struct intel_excl_states *xl;
3231 int tid = cpuc->excl_thread_id;
3232
3233 /*
3234 * nothing needed if in group validation mode
3235 */
3236 if (cpuc->is_fake || !is_ht_workaround_enabled())
3237 return;
3238
3239 /*
3240 * no exclusion needed
3241 */
3242 if (WARN_ON_ONCE(!excl_cntrs))
3243 return;
3244
3245 xl = &excl_cntrs->states[tid];
3246
3247 xl->sched_started = true;
3248 /*
3249 * lock shared state until we are done scheduling
3250 * in stop_event_scheduling()
3251 * makes scheduling appear as a transaction
3252 */
3253 raw_spin_lock(&excl_cntrs->lock);
3254 }
3255
intel_commit_scheduling(struct cpu_hw_events * cpuc,int idx,int cntr)3256 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
3257 {
3258 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3259 struct event_constraint *c = cpuc->event_constraint[idx];
3260 struct intel_excl_states *xl;
3261 int tid = cpuc->excl_thread_id;
3262
3263 if (cpuc->is_fake || !is_ht_workaround_enabled())
3264 return;
3265
3266 if (WARN_ON_ONCE(!excl_cntrs))
3267 return;
3268
3269 if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
3270 return;
3271
3272 xl = &excl_cntrs->states[tid];
3273
3274 lockdep_assert_held(&excl_cntrs->lock);
3275
3276 if (c->flags & PERF_X86_EVENT_EXCL)
3277 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
3278 else
3279 xl->state[cntr] = INTEL_EXCL_SHARED;
3280 }
3281
3282 static void
intel_stop_scheduling(struct cpu_hw_events * cpuc)3283 intel_stop_scheduling(struct cpu_hw_events *cpuc)
3284 {
3285 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3286 struct intel_excl_states *xl;
3287 int tid = cpuc->excl_thread_id;
3288
3289 /*
3290 * nothing needed if in group validation mode
3291 */
3292 if (cpuc->is_fake || !is_ht_workaround_enabled())
3293 return;
3294 /*
3295 * no exclusion needed
3296 */
3297 if (WARN_ON_ONCE(!excl_cntrs))
3298 return;
3299
3300 xl = &excl_cntrs->states[tid];
3301
3302 xl->sched_started = false;
3303 /*
3304 * release shared state lock (acquired in intel_start_scheduling())
3305 */
3306 raw_spin_unlock(&excl_cntrs->lock);
3307 }
3308
3309 static struct event_constraint *
dyn_constraint(struct cpu_hw_events * cpuc,struct event_constraint * c,int idx)3310 dyn_constraint(struct cpu_hw_events *cpuc, struct event_constraint *c, int idx)
3311 {
3312 WARN_ON_ONCE(!cpuc->constraint_list);
3313
3314 if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
3315 struct event_constraint *cx;
3316
3317 /*
3318 * grab pre-allocated constraint entry
3319 */
3320 cx = &cpuc->constraint_list[idx];
3321
3322 /*
3323 * initialize dynamic constraint
3324 * with static constraint
3325 */
3326 *cx = *c;
3327
3328 /*
3329 * mark constraint as dynamic
3330 */
3331 cx->flags |= PERF_X86_EVENT_DYNAMIC;
3332 c = cx;
3333 }
3334
3335 return c;
3336 }
3337
3338 static struct event_constraint *
intel_get_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event,int idx,struct event_constraint * c)3339 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
3340 int idx, struct event_constraint *c)
3341 {
3342 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3343 struct intel_excl_states *xlo;
3344 int tid = cpuc->excl_thread_id;
3345 int is_excl, i, w;
3346
3347 /*
3348 * validating a group does not require
3349 * enforcing cross-thread exclusion
3350 */
3351 if (cpuc->is_fake || !is_ht_workaround_enabled())
3352 return c;
3353
3354 /*
3355 * no exclusion needed
3356 */
3357 if (WARN_ON_ONCE(!excl_cntrs))
3358 return c;
3359
3360 /*
3361 * because we modify the constraint, we need
3362 * to make a copy. Static constraints come
3363 * from static const tables.
3364 *
3365 * only needed when constraint has not yet
3366 * been cloned (marked dynamic)
3367 */
3368 c = dyn_constraint(cpuc, c, idx);
3369
3370 /*
3371 * From here on, the constraint is dynamic.
3372 * Either it was just allocated above, or it
3373 * was allocated during a earlier invocation
3374 * of this function
3375 */
3376
3377 /*
3378 * state of sibling HT
3379 */
3380 xlo = &excl_cntrs->states[tid ^ 1];
3381
3382 /*
3383 * event requires exclusive counter access
3384 * across HT threads
3385 */
3386 is_excl = c->flags & PERF_X86_EVENT_EXCL;
3387 if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
3388 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
3389 if (!cpuc->n_excl++)
3390 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
3391 }
3392
3393 /*
3394 * Modify static constraint with current dynamic
3395 * state of thread
3396 *
3397 * EXCLUSIVE: sibling counter measuring exclusive event
3398 * SHARED : sibling counter measuring non-exclusive event
3399 * UNUSED : sibling counter unused
3400 */
3401 w = c->weight;
3402 for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
3403 /*
3404 * exclusive event in sibling counter
3405 * our corresponding counter cannot be used
3406 * regardless of our event
3407 */
3408 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE) {
3409 __clear_bit(i, c->idxmsk);
3410 w--;
3411 continue;
3412 }
3413 /*
3414 * if measuring an exclusive event, sibling
3415 * measuring non-exclusive, then counter cannot
3416 * be used
3417 */
3418 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED) {
3419 __clear_bit(i, c->idxmsk);
3420 w--;
3421 continue;
3422 }
3423 }
3424
3425 /*
3426 * if we return an empty mask, then switch
3427 * back to static empty constraint to avoid
3428 * the cost of freeing later on
3429 */
3430 if (!w)
3431 c = &emptyconstraint;
3432
3433 c->weight = w;
3434
3435 return c;
3436 }
3437
3438 static struct event_constraint *
intel_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)3439 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3440 struct perf_event *event)
3441 {
3442 struct event_constraint *c1, *c2;
3443
3444 c1 = cpuc->event_constraint[idx];
3445
3446 /*
3447 * first time only
3448 * - static constraint: no change across incremental scheduling calls
3449 * - dynamic constraint: handled by intel_get_excl_constraints()
3450 */
3451 c2 = __intel_get_event_constraints(cpuc, idx, event);
3452 if (c1) {
3453 WARN_ON_ONCE(!(c1->flags & PERF_X86_EVENT_DYNAMIC));
3454 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
3455 c1->weight = c2->weight;
3456 c2 = c1;
3457 }
3458
3459 if (cpuc->excl_cntrs)
3460 return intel_get_excl_constraints(cpuc, event, idx, c2);
3461
3462 return c2;
3463 }
3464
intel_put_excl_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3465 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
3466 struct perf_event *event)
3467 {
3468 struct hw_perf_event *hwc = &event->hw;
3469 struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
3470 int tid = cpuc->excl_thread_id;
3471 struct intel_excl_states *xl;
3472
3473 /*
3474 * nothing needed if in group validation mode
3475 */
3476 if (cpuc->is_fake)
3477 return;
3478
3479 if (WARN_ON_ONCE(!excl_cntrs))
3480 return;
3481
3482 if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
3483 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
3484 if (!--cpuc->n_excl)
3485 WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
3486 }
3487
3488 /*
3489 * If event was actually assigned, then mark the counter state as
3490 * unused now.
3491 */
3492 if (hwc->idx >= 0) {
3493 xl = &excl_cntrs->states[tid];
3494
3495 /*
3496 * put_constraint may be called from x86_schedule_events()
3497 * which already has the lock held so here make locking
3498 * conditional.
3499 */
3500 if (!xl->sched_started)
3501 raw_spin_lock(&excl_cntrs->lock);
3502
3503 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
3504
3505 if (!xl->sched_started)
3506 raw_spin_unlock(&excl_cntrs->lock);
3507 }
3508 }
3509
3510 static void
intel_put_shared_regs_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3511 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
3512 struct perf_event *event)
3513 {
3514 struct hw_perf_event_extra *reg;
3515
3516 reg = &event->hw.extra_reg;
3517 if (reg->idx != EXTRA_REG_NONE)
3518 __intel_shared_reg_put_constraints(cpuc, reg);
3519
3520 reg = &event->hw.branch_reg;
3521 if (reg->idx != EXTRA_REG_NONE)
3522 __intel_shared_reg_put_constraints(cpuc, reg);
3523 }
3524
intel_put_event_constraints(struct cpu_hw_events * cpuc,struct perf_event * event)3525 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
3526 struct perf_event *event)
3527 {
3528 intel_put_shared_regs_event_constraints(cpuc, event);
3529
3530 /*
3531 * is PMU has exclusive counter restrictions, then
3532 * all events are subject to and must call the
3533 * put_excl_constraints() routine
3534 */
3535 if (cpuc->excl_cntrs)
3536 intel_put_excl_constraints(cpuc, event);
3537 }
3538
intel_pebs_aliases_core2(struct perf_event * event)3539 static void intel_pebs_aliases_core2(struct perf_event *event)
3540 {
3541 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3542 /*
3543 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3544 * (0x003c) so that we can use it with PEBS.
3545 *
3546 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3547 * PEBS capable. However we can use INST_RETIRED.ANY_P
3548 * (0x00c0), which is a PEBS capable event, to get the same
3549 * count.
3550 *
3551 * INST_RETIRED.ANY_P counts the number of cycles that retires
3552 * CNTMASK instructions. By setting CNTMASK to a value (16)
3553 * larger than the maximum number of instructions that can be
3554 * retired per cycle (4) and then inverting the condition, we
3555 * count all cycles that retire 16 or less instructions, which
3556 * is every cycle.
3557 *
3558 * Thereby we gain a PEBS capable cycle counter.
3559 */
3560 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
3561
3562 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3563 event->hw.config = alt_config;
3564 }
3565 }
3566
intel_pebs_aliases_snb(struct perf_event * event)3567 static void intel_pebs_aliases_snb(struct perf_event *event)
3568 {
3569 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3570 /*
3571 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3572 * (0x003c) so that we can use it with PEBS.
3573 *
3574 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3575 * PEBS capable. However we can use UOPS_RETIRED.ALL
3576 * (0x01c2), which is a PEBS capable event, to get the same
3577 * count.
3578 *
3579 * UOPS_RETIRED.ALL counts the number of cycles that retires
3580 * CNTMASK micro-ops. By setting CNTMASK to a value (16)
3581 * larger than the maximum number of micro-ops that can be
3582 * retired per cycle (4) and then inverting the condition, we
3583 * count all cycles that retire 16 or less micro-ops, which
3584 * is every cycle.
3585 *
3586 * Thereby we gain a PEBS capable cycle counter.
3587 */
3588 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
3589
3590 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3591 event->hw.config = alt_config;
3592 }
3593 }
3594
intel_pebs_aliases_precdist(struct perf_event * event)3595 static void intel_pebs_aliases_precdist(struct perf_event *event)
3596 {
3597 if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
3598 /*
3599 * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
3600 * (0x003c) so that we can use it with PEBS.
3601 *
3602 * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
3603 * PEBS capable. However we can use INST_RETIRED.PREC_DIST
3604 * (0x01c0), which is a PEBS capable event, to get the same
3605 * count.
3606 *
3607 * The PREC_DIST event has special support to minimize sample
3608 * shadowing effects. One drawback is that it can be
3609 * only programmed on counter 1, but that seems like an
3610 * acceptable trade off.
3611 */
3612 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
3613
3614 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
3615 event->hw.config = alt_config;
3616 }
3617 }
3618
intel_pebs_aliases_ivb(struct perf_event * event)3619 static void intel_pebs_aliases_ivb(struct perf_event *event)
3620 {
3621 if (event->attr.precise_ip < 3)
3622 return intel_pebs_aliases_snb(event);
3623 return intel_pebs_aliases_precdist(event);
3624 }
3625
intel_pebs_aliases_skl(struct perf_event * event)3626 static void intel_pebs_aliases_skl(struct perf_event *event)
3627 {
3628 if (event->attr.precise_ip < 3)
3629 return intel_pebs_aliases_core2(event);
3630 return intel_pebs_aliases_precdist(event);
3631 }
3632
intel_pmu_large_pebs_flags(struct perf_event * event)3633 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
3634 {
3635 unsigned long flags = x86_pmu.large_pebs_flags;
3636
3637 if (event->attr.use_clockid)
3638 flags &= ~PERF_SAMPLE_TIME;
3639 if (!event->attr.exclude_kernel)
3640 flags &= ~PERF_SAMPLE_REGS_USER;
3641 if (event->attr.sample_regs_user & ~PEBS_GP_REGS)
3642 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
3643 return flags;
3644 }
3645
intel_pmu_bts_config(struct perf_event * event)3646 static int intel_pmu_bts_config(struct perf_event *event)
3647 {
3648 struct perf_event_attr *attr = &event->attr;
3649
3650 if (unlikely(intel_pmu_has_bts(event))) {
3651 /* BTS is not supported by this architecture. */
3652 if (!x86_pmu.bts_active)
3653 return -EOPNOTSUPP;
3654
3655 /* BTS is currently only allowed for user-mode. */
3656 if (!attr->exclude_kernel)
3657 return -EOPNOTSUPP;
3658
3659 /* BTS is not allowed for precise events. */
3660 if (attr->precise_ip)
3661 return -EOPNOTSUPP;
3662
3663 /* disallow bts if conflicting events are present */
3664 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3665 return -EBUSY;
3666
3667 event->destroy = hw_perf_lbr_event_destroy;
3668 }
3669
3670 return 0;
3671 }
3672
core_pmu_hw_config(struct perf_event * event)3673 static int core_pmu_hw_config(struct perf_event *event)
3674 {
3675 int ret = x86_pmu_hw_config(event);
3676
3677 if (ret)
3678 return ret;
3679
3680 return intel_pmu_bts_config(event);
3681 }
3682
3683 #define INTEL_TD_METRIC_AVAILABLE_MAX (INTEL_TD_METRIC_RETIRING + \
3684 ((x86_pmu.num_topdown_events - 1) << 8))
3685
is_available_metric_event(struct perf_event * event)3686 static bool is_available_metric_event(struct perf_event *event)
3687 {
3688 return is_metric_event(event) &&
3689 event->attr.config <= INTEL_TD_METRIC_AVAILABLE_MAX;
3690 }
3691
is_mem_loads_event(struct perf_event * event)3692 static inline bool is_mem_loads_event(struct perf_event *event)
3693 {
3694 return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0xcd, .umask=0x01);
3695 }
3696
is_mem_loads_aux_event(struct perf_event * event)3697 static inline bool is_mem_loads_aux_event(struct perf_event *event)
3698 {
3699 return (event->attr.config & INTEL_ARCH_EVENT_MASK) == X86_CONFIG(.event=0x03, .umask=0x82);
3700 }
3701
require_mem_loads_aux_event(struct perf_event * event)3702 static inline bool require_mem_loads_aux_event(struct perf_event *event)
3703 {
3704 if (!(x86_pmu.flags & PMU_FL_MEM_LOADS_AUX))
3705 return false;
3706
3707 if (is_hybrid())
3708 return hybrid_pmu(event->pmu)->cpu_type == hybrid_big;
3709
3710 return true;
3711 }
3712
intel_pmu_has_cap(struct perf_event * event,int idx)3713 static inline bool intel_pmu_has_cap(struct perf_event *event, int idx)
3714 {
3715 union perf_capabilities *intel_cap = &hybrid(event->pmu, intel_cap);
3716
3717 return test_bit(idx, (unsigned long *)&intel_cap->capabilities);
3718 }
3719
intel_pmu_hw_config(struct perf_event * event)3720 static int intel_pmu_hw_config(struct perf_event *event)
3721 {
3722 int ret = x86_pmu_hw_config(event);
3723
3724 if (ret)
3725 return ret;
3726
3727 ret = intel_pmu_bts_config(event);
3728 if (ret)
3729 return ret;
3730
3731 if (event->attr.precise_ip) {
3732 if ((event->attr.config & INTEL_ARCH_EVENT_MASK) == INTEL_FIXED_VLBR_EVENT)
3733 return -EINVAL;
3734
3735 if (!(event->attr.freq || (event->attr.wakeup_events && !event->attr.watermark))) {
3736 event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
3737 if (!(event->attr.sample_type &
3738 ~intel_pmu_large_pebs_flags(event))) {
3739 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3740 event->attach_state |= PERF_ATTACH_SCHED_CB;
3741 }
3742 }
3743 if (x86_pmu.pebs_aliases)
3744 x86_pmu.pebs_aliases(event);
3745
3746 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3747 event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3748 }
3749
3750 if (needs_branch_stack(event)) {
3751 ret = intel_pmu_setup_lbr_filter(event);
3752 if (ret)
3753 return ret;
3754 event->attach_state |= PERF_ATTACH_SCHED_CB;
3755
3756 /*
3757 * BTS is set up earlier in this path, so don't account twice
3758 */
3759 if (!unlikely(intel_pmu_has_bts(event))) {
3760 /* disallow lbr if conflicting events are present */
3761 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3762 return -EBUSY;
3763
3764 event->destroy = hw_perf_lbr_event_destroy;
3765 }
3766 }
3767
3768 if (event->attr.aux_output) {
3769 if (!event->attr.precise_ip)
3770 return -EINVAL;
3771
3772 event->hw.flags |= PERF_X86_EVENT_PEBS_VIA_PT;
3773 }
3774
3775 if ((event->attr.type == PERF_TYPE_HARDWARE) ||
3776 (event->attr.type == PERF_TYPE_HW_CACHE))
3777 return 0;
3778
3779 /*
3780 * Config Topdown slots and metric events
3781 *
3782 * The slots event on Fixed Counter 3 can support sampling,
3783 * which will be handled normally in x86_perf_event_update().
3784 *
3785 * Metric events don't support sampling and require being paired
3786 * with a slots event as group leader. When the slots event
3787 * is used in a metrics group, it too cannot support sampling.
3788 */
3789 if (intel_pmu_has_cap(event, PERF_CAP_METRICS_IDX) && is_topdown_event(event)) {
3790 if (event->attr.config1 || event->attr.config2)
3791 return -EINVAL;
3792
3793 /*
3794 * The TopDown metrics events and slots event don't
3795 * support any filters.
3796 */
3797 if (event->attr.config & X86_ALL_EVENT_FLAGS)
3798 return -EINVAL;
3799
3800 if (is_available_metric_event(event)) {
3801 struct perf_event *leader = event->group_leader;
3802
3803 /* The metric events don't support sampling. */
3804 if (is_sampling_event(event))
3805 return -EINVAL;
3806
3807 /* The metric events require a slots group leader. */
3808 if (!is_slots_event(leader))
3809 return -EINVAL;
3810
3811 /*
3812 * The leader/SLOTS must not be a sampling event for
3813 * metric use; hardware requires it starts at 0 when used
3814 * in conjunction with MSR_PERF_METRICS.
3815 */
3816 if (is_sampling_event(leader))
3817 return -EINVAL;
3818
3819 event->event_caps |= PERF_EV_CAP_SIBLING;
3820 /*
3821 * Only once we have a METRICs sibling do we
3822 * need TopDown magic.
3823 */
3824 leader->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3825 event->hw.flags |= PERF_X86_EVENT_TOPDOWN;
3826 }
3827 }
3828
3829 /*
3830 * The load latency event X86_CONFIG(.event=0xcd, .umask=0x01) on SPR
3831 * doesn't function quite right. As a work-around it needs to always be
3832 * co-scheduled with a auxiliary event X86_CONFIG(.event=0x03, .umask=0x82).
3833 * The actual count of this second event is irrelevant it just needs
3834 * to be active to make the first event function correctly.
3835 *
3836 * In a group, the auxiliary event must be in front of the load latency
3837 * event. The rule is to simplify the implementation of the check.
3838 * That's because perf cannot have a complete group at the moment.
3839 */
3840 if (require_mem_loads_aux_event(event) &&
3841 (event->attr.sample_type & PERF_SAMPLE_DATA_SRC) &&
3842 is_mem_loads_event(event)) {
3843 struct perf_event *leader = event->group_leader;
3844 struct perf_event *sibling = NULL;
3845
3846 if (!is_mem_loads_aux_event(leader)) {
3847 for_each_sibling_event(sibling, leader) {
3848 if (is_mem_loads_aux_event(sibling))
3849 break;
3850 }
3851 if (list_entry_is_head(sibling, &leader->sibling_list, sibling_list))
3852 return -ENODATA;
3853 }
3854 }
3855
3856 if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3857 return 0;
3858
3859 if (x86_pmu.version < 3)
3860 return -EINVAL;
3861
3862 ret = perf_allow_cpu(&event->attr);
3863 if (ret)
3864 return ret;
3865
3866 event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3867
3868 return 0;
3869 }
3870
intel_guest_get_msrs(int * nr)3871 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3872 {
3873 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3874 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3875 u64 intel_ctrl = hybrid(cpuc->pmu, intel_ctrl);
3876
3877 arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3878 arr[0].host = intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3879 arr[0].guest = intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3880 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
3881 arr[0].guest &= ~cpuc->pebs_enabled;
3882 else
3883 arr[0].guest &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
3884 *nr = 1;
3885
3886 if (x86_pmu.pebs && x86_pmu.pebs_no_isolation) {
3887 /*
3888 * If PMU counter has PEBS enabled it is not enough to
3889 * disable counter on a guest entry since PEBS memory
3890 * write can overshoot guest entry and corrupt guest
3891 * memory. Disabling PEBS solves the problem.
3892 *
3893 * Don't do this if the CPU already enforces it.
3894 */
3895 arr[1].msr = MSR_IA32_PEBS_ENABLE;
3896 arr[1].host = cpuc->pebs_enabled;
3897 arr[1].guest = 0;
3898 *nr = 2;
3899 }
3900
3901 return arr;
3902 }
3903
core_guest_get_msrs(int * nr)3904 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3905 {
3906 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3907 struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3908 int idx;
3909
3910 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3911 struct perf_event *event = cpuc->events[idx];
3912
3913 arr[idx].msr = x86_pmu_config_addr(idx);
3914 arr[idx].host = arr[idx].guest = 0;
3915
3916 if (!test_bit(idx, cpuc->active_mask))
3917 continue;
3918
3919 arr[idx].host = arr[idx].guest =
3920 event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3921
3922 if (event->attr.exclude_host)
3923 arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3924 else if (event->attr.exclude_guest)
3925 arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3926 }
3927
3928 *nr = x86_pmu.num_counters;
3929 return arr;
3930 }
3931
core_pmu_enable_event(struct perf_event * event)3932 static void core_pmu_enable_event(struct perf_event *event)
3933 {
3934 if (!event->attr.exclude_host)
3935 x86_pmu_enable_event(event);
3936 }
3937
core_pmu_enable_all(int added)3938 static void core_pmu_enable_all(int added)
3939 {
3940 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3941 int idx;
3942
3943 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3944 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3945
3946 if (!test_bit(idx, cpuc->active_mask) ||
3947 cpuc->events[idx]->attr.exclude_host)
3948 continue;
3949
3950 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3951 }
3952 }
3953
hsw_hw_config(struct perf_event * event)3954 static int hsw_hw_config(struct perf_event *event)
3955 {
3956 int ret = intel_pmu_hw_config(event);
3957
3958 if (ret)
3959 return ret;
3960 if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3961 return 0;
3962 event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3963
3964 /*
3965 * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3966 * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3967 * this combination.
3968 */
3969 if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3970 ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3971 event->attr.precise_ip > 0))
3972 return -EOPNOTSUPP;
3973
3974 if (event_is_checkpointed(event)) {
3975 /*
3976 * Sampling of checkpointed events can cause situations where
3977 * the CPU constantly aborts because of a overflow, which is
3978 * then checkpointed back and ignored. Forbid checkpointing
3979 * for sampling.
3980 *
3981 * But still allow a long sampling period, so that perf stat
3982 * from KVM works.
3983 */
3984 if (event->attr.sample_period > 0 &&
3985 event->attr.sample_period < 0x7fffffff)
3986 return -EOPNOTSUPP;
3987 }
3988 return 0;
3989 }
3990
3991 static struct event_constraint counter0_constraint =
3992 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3993
3994 static struct event_constraint counter2_constraint =
3995 EVENT_CONSTRAINT(0, 0x4, 0);
3996
3997 static struct event_constraint fixed0_constraint =
3998 FIXED_EVENT_CONSTRAINT(0x00c0, 0);
3999
4000 static struct event_constraint fixed0_counter0_constraint =
4001 INTEL_ALL_EVENT_CONSTRAINT(0, 0x100000001ULL);
4002
4003 static struct event_constraint *
hsw_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4004 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4005 struct perf_event *event)
4006 {
4007 struct event_constraint *c;
4008
4009 c = intel_get_event_constraints(cpuc, idx, event);
4010
4011 /* Handle special quirk on in_tx_checkpointed only in counter 2 */
4012 if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
4013 if (c->idxmsk64 & (1U << 2))
4014 return &counter2_constraint;
4015 return &emptyconstraint;
4016 }
4017
4018 return c;
4019 }
4020
4021 static struct event_constraint *
icl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4022 icl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4023 struct perf_event *event)
4024 {
4025 /*
4026 * Fixed counter 0 has less skid.
4027 * Force instruction:ppp in Fixed counter 0
4028 */
4029 if ((event->attr.precise_ip == 3) &&
4030 constraint_match(&fixed0_constraint, event->hw.config))
4031 return &fixed0_constraint;
4032
4033 return hsw_get_event_constraints(cpuc, idx, event);
4034 }
4035
4036 static struct event_constraint *
spr_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4037 spr_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4038 struct perf_event *event)
4039 {
4040 struct event_constraint *c;
4041
4042 c = icl_get_event_constraints(cpuc, idx, event);
4043
4044 /*
4045 * The :ppp indicates the Precise Distribution (PDist) facility, which
4046 * is only supported on the GP counter 0. If a :ppp event which is not
4047 * available on the GP counter 0, error out.
4048 * Exception: Instruction PDIR is only available on the fixed counter 0.
4049 */
4050 if ((event->attr.precise_ip == 3) &&
4051 !constraint_match(&fixed0_constraint, event->hw.config)) {
4052 if (c->idxmsk64 & BIT_ULL(0))
4053 return &counter0_constraint;
4054
4055 return &emptyconstraint;
4056 }
4057
4058 return c;
4059 }
4060
4061 static struct event_constraint *
glp_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4062 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4063 struct perf_event *event)
4064 {
4065 struct event_constraint *c;
4066
4067 /* :ppp means to do reduced skid PEBS which is PMC0 only. */
4068 if (event->attr.precise_ip == 3)
4069 return &counter0_constraint;
4070
4071 c = intel_get_event_constraints(cpuc, idx, event);
4072
4073 return c;
4074 }
4075
4076 static struct event_constraint *
tnt_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4077 tnt_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4078 struct perf_event *event)
4079 {
4080 struct event_constraint *c;
4081
4082 /*
4083 * :ppp means to do reduced skid PEBS,
4084 * which is available on PMC0 and fixed counter 0.
4085 */
4086 if (event->attr.precise_ip == 3) {
4087 /* Force instruction:ppp on PMC0 and Fixed counter 0 */
4088 if (constraint_match(&fixed0_constraint, event->hw.config))
4089 return &fixed0_counter0_constraint;
4090
4091 return &counter0_constraint;
4092 }
4093
4094 c = intel_get_event_constraints(cpuc, idx, event);
4095
4096 return c;
4097 }
4098
4099 static bool allow_tsx_force_abort = true;
4100
4101 static struct event_constraint *
tfa_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4102 tfa_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4103 struct perf_event *event)
4104 {
4105 struct event_constraint *c = hsw_get_event_constraints(cpuc, idx, event);
4106
4107 /*
4108 * Without TFA we must not use PMC3.
4109 */
4110 if (!allow_tsx_force_abort && test_bit(3, c->idxmsk)) {
4111 c = dyn_constraint(cpuc, c, idx);
4112 c->idxmsk64 &= ~(1ULL << 3);
4113 c->weight--;
4114 }
4115
4116 return c;
4117 }
4118
4119 static struct event_constraint *
adl_get_event_constraints(struct cpu_hw_events * cpuc,int idx,struct perf_event * event)4120 adl_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
4121 struct perf_event *event)
4122 {
4123 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4124
4125 if (pmu->cpu_type == hybrid_big)
4126 return spr_get_event_constraints(cpuc, idx, event);
4127 else if (pmu->cpu_type == hybrid_small)
4128 return tnt_get_event_constraints(cpuc, idx, event);
4129
4130 WARN_ON(1);
4131 return &emptyconstraint;
4132 }
4133
adl_hw_config(struct perf_event * event)4134 static int adl_hw_config(struct perf_event *event)
4135 {
4136 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4137
4138 if (pmu->cpu_type == hybrid_big)
4139 return hsw_hw_config(event);
4140 else if (pmu->cpu_type == hybrid_small)
4141 return intel_pmu_hw_config(event);
4142
4143 WARN_ON(1);
4144 return -EOPNOTSUPP;
4145 }
4146
adl_get_hybrid_cpu_type(void)4147 static u8 adl_get_hybrid_cpu_type(void)
4148 {
4149 return hybrid_big;
4150 }
4151
4152 /*
4153 * Broadwell:
4154 *
4155 * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
4156 * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
4157 * the two to enforce a minimum period of 128 (the smallest value that has bits
4158 * 0-5 cleared and >= 100).
4159 *
4160 * Because of how the code in x86_perf_event_set_period() works, the truncation
4161 * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
4162 * to make up for the 'lost' events due to carrying the 'error' in period_left.
4163 *
4164 * Therefore the effective (average) period matches the requested period,
4165 * despite coarser hardware granularity.
4166 */
bdw_limit_period(struct perf_event * event,u64 left)4167 static u64 bdw_limit_period(struct perf_event *event, u64 left)
4168 {
4169 if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
4170 X86_CONFIG(.event=0xc0, .umask=0x01)) {
4171 if (left < 128)
4172 left = 128;
4173 left &= ~0x3fULL;
4174 }
4175 return left;
4176 }
4177
nhm_limit_period(struct perf_event * event,u64 left)4178 static u64 nhm_limit_period(struct perf_event *event, u64 left)
4179 {
4180 return max(left, 32ULL);
4181 }
4182
spr_limit_period(struct perf_event * event,u64 left)4183 static u64 spr_limit_period(struct perf_event *event, u64 left)
4184 {
4185 if (event->attr.precise_ip == 3)
4186 return max(left, 128ULL);
4187
4188 return left;
4189 }
4190
4191 PMU_FORMAT_ATTR(event, "config:0-7" );
4192 PMU_FORMAT_ATTR(umask, "config:8-15" );
4193 PMU_FORMAT_ATTR(edge, "config:18" );
4194 PMU_FORMAT_ATTR(pc, "config:19" );
4195 PMU_FORMAT_ATTR(any, "config:21" ); /* v3 + */
4196 PMU_FORMAT_ATTR(inv, "config:23" );
4197 PMU_FORMAT_ATTR(cmask, "config:24-31" );
4198 PMU_FORMAT_ATTR(in_tx, "config:32");
4199 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
4200
4201 static struct attribute *intel_arch_formats_attr[] = {
4202 &format_attr_event.attr,
4203 &format_attr_umask.attr,
4204 &format_attr_edge.attr,
4205 &format_attr_pc.attr,
4206 &format_attr_inv.attr,
4207 &format_attr_cmask.attr,
4208 NULL,
4209 };
4210
intel_event_sysfs_show(char * page,u64 config)4211 ssize_t intel_event_sysfs_show(char *page, u64 config)
4212 {
4213 u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
4214
4215 return x86_event_sysfs_show(page, config, event);
4216 }
4217
allocate_shared_regs(int cpu)4218 static struct intel_shared_regs *allocate_shared_regs(int cpu)
4219 {
4220 struct intel_shared_regs *regs;
4221 int i;
4222
4223 regs = kzalloc_node(sizeof(struct intel_shared_regs),
4224 GFP_KERNEL, cpu_to_node(cpu));
4225 if (regs) {
4226 /*
4227 * initialize the locks to keep lockdep happy
4228 */
4229 for (i = 0; i < EXTRA_REG_MAX; i++)
4230 raw_spin_lock_init(®s->regs[i].lock);
4231
4232 regs->core_id = -1;
4233 }
4234 return regs;
4235 }
4236
allocate_excl_cntrs(int cpu)4237 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
4238 {
4239 struct intel_excl_cntrs *c;
4240
4241 c = kzalloc_node(sizeof(struct intel_excl_cntrs),
4242 GFP_KERNEL, cpu_to_node(cpu));
4243 if (c) {
4244 raw_spin_lock_init(&c->lock);
4245 c->core_id = -1;
4246 }
4247 return c;
4248 }
4249
4250
intel_cpuc_prepare(struct cpu_hw_events * cpuc,int cpu)4251 int intel_cpuc_prepare(struct cpu_hw_events *cpuc, int cpu)
4252 {
4253 cpuc->pebs_record_size = x86_pmu.pebs_record_size;
4254
4255 if (is_hybrid() || x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
4256 cpuc->shared_regs = allocate_shared_regs(cpu);
4257 if (!cpuc->shared_regs)
4258 goto err;
4259 }
4260
4261 if (x86_pmu.flags & (PMU_FL_EXCL_CNTRS | PMU_FL_TFA)) {
4262 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
4263
4264 cpuc->constraint_list = kzalloc_node(sz, GFP_KERNEL, cpu_to_node(cpu));
4265 if (!cpuc->constraint_list)
4266 goto err_shared_regs;
4267 }
4268
4269 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4270 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
4271 if (!cpuc->excl_cntrs)
4272 goto err_constraint_list;
4273
4274 cpuc->excl_thread_id = 0;
4275 }
4276
4277 return 0;
4278
4279 err_constraint_list:
4280 kfree(cpuc->constraint_list);
4281 cpuc->constraint_list = NULL;
4282
4283 err_shared_regs:
4284 kfree(cpuc->shared_regs);
4285 cpuc->shared_regs = NULL;
4286
4287 err:
4288 return -ENOMEM;
4289 }
4290
intel_pmu_cpu_prepare(int cpu)4291 static int intel_pmu_cpu_prepare(int cpu)
4292 {
4293 return intel_cpuc_prepare(&per_cpu(cpu_hw_events, cpu), cpu);
4294 }
4295
flip_smm_bit(void * data)4296 static void flip_smm_bit(void *data)
4297 {
4298 unsigned long set = *(unsigned long *)data;
4299
4300 if (set > 0) {
4301 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
4302 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4303 } else {
4304 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
4305 DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
4306 }
4307 }
4308
init_hybrid_pmu(int cpu)4309 static bool init_hybrid_pmu(int cpu)
4310 {
4311 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4312 u8 cpu_type = get_this_hybrid_cpu_type();
4313 struct x86_hybrid_pmu *pmu = NULL;
4314 int i;
4315
4316 if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
4317 cpu_type = x86_pmu.get_hybrid_cpu_type();
4318
4319 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
4320 if (x86_pmu.hybrid_pmu[i].cpu_type == cpu_type) {
4321 pmu = &x86_pmu.hybrid_pmu[i];
4322 break;
4323 }
4324 }
4325 if (WARN_ON_ONCE(!pmu || (pmu->pmu.type == -1))) {
4326 cpuc->pmu = NULL;
4327 return false;
4328 }
4329
4330 /* Only check and dump the PMU information for the first CPU */
4331 if (!cpumask_empty(&pmu->supported_cpus))
4332 goto end;
4333
4334 if (!check_hw_exists(&pmu->pmu, pmu->num_counters, pmu->num_counters_fixed))
4335 return false;
4336
4337 pr_info("%s PMU driver: ", pmu->name);
4338
4339 if (pmu->intel_cap.pebs_output_pt_available)
4340 pr_cont("PEBS-via-PT ");
4341
4342 pr_cont("\n");
4343
4344 x86_pmu_show_pmu_cap(pmu->num_counters, pmu->num_counters_fixed,
4345 pmu->intel_ctrl);
4346
4347 end:
4348 cpumask_set_cpu(cpu, &pmu->supported_cpus);
4349 cpuc->pmu = &pmu->pmu;
4350
4351 x86_pmu_update_cpu_context(&pmu->pmu, cpu);
4352
4353 return true;
4354 }
4355
intel_pmu_cpu_starting(int cpu)4356 static void intel_pmu_cpu_starting(int cpu)
4357 {
4358 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4359 int core_id = topology_core_id(cpu);
4360 int i;
4361
4362 if (is_hybrid() && !init_hybrid_pmu(cpu))
4363 return;
4364
4365 init_debug_store_on_cpu(cpu);
4366 /*
4367 * Deal with CPUs that don't clear their LBRs on power-up.
4368 */
4369 intel_pmu_lbr_reset();
4370
4371 cpuc->lbr_sel = NULL;
4372
4373 if (x86_pmu.flags & PMU_FL_TFA) {
4374 WARN_ON_ONCE(cpuc->tfa_shadow);
4375 cpuc->tfa_shadow = ~0ULL;
4376 intel_set_tfa(cpuc, false);
4377 }
4378
4379 if (x86_pmu.version > 1)
4380 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
4381
4382 /*
4383 * Disable perf metrics if any added CPU doesn't support it.
4384 *
4385 * Turn off the check for a hybrid architecture, because the
4386 * architecture MSR, MSR_IA32_PERF_CAPABILITIES, only indicate
4387 * the architecture features. The perf metrics is a model-specific
4388 * feature for now. The corresponding bit should always be 0 on
4389 * a hybrid platform, e.g., Alder Lake.
4390 */
4391 if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics) {
4392 union perf_capabilities perf_cap;
4393
4394 rdmsrl(MSR_IA32_PERF_CAPABILITIES, perf_cap.capabilities);
4395 if (!perf_cap.perf_metrics) {
4396 x86_pmu.intel_cap.perf_metrics = 0;
4397 x86_pmu.intel_ctrl &= ~(1ULL << GLOBAL_CTRL_EN_PERF_METRICS);
4398 }
4399 }
4400
4401 if (!cpuc->shared_regs)
4402 return;
4403
4404 if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
4405 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4406 struct intel_shared_regs *pc;
4407
4408 pc = per_cpu(cpu_hw_events, i).shared_regs;
4409 if (pc && pc->core_id == core_id) {
4410 cpuc->kfree_on_online[0] = cpuc->shared_regs;
4411 cpuc->shared_regs = pc;
4412 break;
4413 }
4414 }
4415 cpuc->shared_regs->core_id = core_id;
4416 cpuc->shared_regs->refcnt++;
4417 }
4418
4419 if (x86_pmu.lbr_sel_map)
4420 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
4421
4422 if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
4423 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
4424 struct cpu_hw_events *sibling;
4425 struct intel_excl_cntrs *c;
4426
4427 sibling = &per_cpu(cpu_hw_events, i);
4428 c = sibling->excl_cntrs;
4429 if (c && c->core_id == core_id) {
4430 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
4431 cpuc->excl_cntrs = c;
4432 if (!sibling->excl_thread_id)
4433 cpuc->excl_thread_id = 1;
4434 break;
4435 }
4436 }
4437 cpuc->excl_cntrs->core_id = core_id;
4438 cpuc->excl_cntrs->refcnt++;
4439 }
4440 }
4441
free_excl_cntrs(struct cpu_hw_events * cpuc)4442 static void free_excl_cntrs(struct cpu_hw_events *cpuc)
4443 {
4444 struct intel_excl_cntrs *c;
4445
4446 c = cpuc->excl_cntrs;
4447 if (c) {
4448 if (c->core_id == -1 || --c->refcnt == 0)
4449 kfree(c);
4450 cpuc->excl_cntrs = NULL;
4451 }
4452
4453 kfree(cpuc->constraint_list);
4454 cpuc->constraint_list = NULL;
4455 }
4456
intel_pmu_cpu_dying(int cpu)4457 static void intel_pmu_cpu_dying(int cpu)
4458 {
4459 fini_debug_store_on_cpu(cpu);
4460 }
4461
intel_cpuc_finish(struct cpu_hw_events * cpuc)4462 void intel_cpuc_finish(struct cpu_hw_events *cpuc)
4463 {
4464 struct intel_shared_regs *pc;
4465
4466 pc = cpuc->shared_regs;
4467 if (pc) {
4468 if (pc->core_id == -1 || --pc->refcnt == 0)
4469 kfree(pc);
4470 cpuc->shared_regs = NULL;
4471 }
4472
4473 free_excl_cntrs(cpuc);
4474 }
4475
intel_pmu_cpu_dead(int cpu)4476 static void intel_pmu_cpu_dead(int cpu)
4477 {
4478 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
4479
4480 intel_cpuc_finish(cpuc);
4481
4482 if (is_hybrid() && cpuc->pmu)
4483 cpumask_clear_cpu(cpu, &hybrid_pmu(cpuc->pmu)->supported_cpus);
4484 }
4485
intel_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)4486 static void intel_pmu_sched_task(struct perf_event_context *ctx,
4487 bool sched_in)
4488 {
4489 intel_pmu_pebs_sched_task(ctx, sched_in);
4490 intel_pmu_lbr_sched_task(ctx, sched_in);
4491 }
4492
intel_pmu_swap_task_ctx(struct perf_event_context * prev,struct perf_event_context * next)4493 static void intel_pmu_swap_task_ctx(struct perf_event_context *prev,
4494 struct perf_event_context *next)
4495 {
4496 intel_pmu_lbr_swap_task_ctx(prev, next);
4497 }
4498
intel_pmu_check_period(struct perf_event * event,u64 value)4499 static int intel_pmu_check_period(struct perf_event *event, u64 value)
4500 {
4501 return intel_pmu_has_bts_period(event, value) ? -EINVAL : 0;
4502 }
4503
intel_pmu_aux_output_match(struct perf_event * event)4504 static int intel_pmu_aux_output_match(struct perf_event *event)
4505 {
4506 if (!x86_pmu.intel_cap.pebs_output_pt_available)
4507 return 0;
4508
4509 return is_intel_pt_event(event);
4510 }
4511
intel_pmu_filter_match(struct perf_event * event)4512 static int intel_pmu_filter_match(struct perf_event *event)
4513 {
4514 struct x86_hybrid_pmu *pmu = hybrid_pmu(event->pmu);
4515 unsigned int cpu = smp_processor_id();
4516
4517 return cpumask_test_cpu(cpu, &pmu->supported_cpus);
4518 }
4519
4520 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
4521
4522 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
4523
4524 PMU_FORMAT_ATTR(frontend, "config1:0-23");
4525
4526 static struct attribute *intel_arch3_formats_attr[] = {
4527 &format_attr_event.attr,
4528 &format_attr_umask.attr,
4529 &format_attr_edge.attr,
4530 &format_attr_pc.attr,
4531 &format_attr_any.attr,
4532 &format_attr_inv.attr,
4533 &format_attr_cmask.attr,
4534 NULL,
4535 };
4536
4537 static struct attribute *hsw_format_attr[] = {
4538 &format_attr_in_tx.attr,
4539 &format_attr_in_tx_cp.attr,
4540 &format_attr_offcore_rsp.attr,
4541 &format_attr_ldlat.attr,
4542 NULL
4543 };
4544
4545 static struct attribute *nhm_format_attr[] = {
4546 &format_attr_offcore_rsp.attr,
4547 &format_attr_ldlat.attr,
4548 NULL
4549 };
4550
4551 static struct attribute *slm_format_attr[] = {
4552 &format_attr_offcore_rsp.attr,
4553 NULL
4554 };
4555
4556 static struct attribute *skl_format_attr[] = {
4557 &format_attr_frontend.attr,
4558 NULL,
4559 };
4560
4561 static __initconst const struct x86_pmu core_pmu = {
4562 .name = "core",
4563 .handle_irq = x86_pmu_handle_irq,
4564 .disable_all = x86_pmu_disable_all,
4565 .enable_all = core_pmu_enable_all,
4566 .enable = core_pmu_enable_event,
4567 .disable = x86_pmu_disable_event,
4568 .hw_config = core_pmu_hw_config,
4569 .schedule_events = x86_schedule_events,
4570 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
4571 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
4572 .event_map = intel_pmu_event_map,
4573 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
4574 .apic = 1,
4575 .large_pebs_flags = LARGE_PEBS_FLAGS,
4576
4577 /*
4578 * Intel PMCs cannot be accessed sanely above 32-bit width,
4579 * so we install an artificial 1<<31 period regardless of
4580 * the generic event period:
4581 */
4582 .max_period = (1ULL<<31) - 1,
4583 .get_event_constraints = intel_get_event_constraints,
4584 .put_event_constraints = intel_put_event_constraints,
4585 .event_constraints = intel_core_event_constraints,
4586 .guest_get_msrs = core_guest_get_msrs,
4587 .format_attrs = intel_arch_formats_attr,
4588 .events_sysfs_show = intel_event_sysfs_show,
4589
4590 /*
4591 * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
4592 * together with PMU version 1 and thus be using core_pmu with
4593 * shared_regs. We need following callbacks here to allocate
4594 * it properly.
4595 */
4596 .cpu_prepare = intel_pmu_cpu_prepare,
4597 .cpu_starting = intel_pmu_cpu_starting,
4598 .cpu_dying = intel_pmu_cpu_dying,
4599 .cpu_dead = intel_pmu_cpu_dead,
4600
4601 .check_period = intel_pmu_check_period,
4602
4603 .lbr_reset = intel_pmu_lbr_reset_64,
4604 .lbr_read = intel_pmu_lbr_read_64,
4605 .lbr_save = intel_pmu_lbr_save,
4606 .lbr_restore = intel_pmu_lbr_restore,
4607 };
4608
4609 static __initconst const struct x86_pmu intel_pmu = {
4610 .name = "Intel",
4611 .handle_irq = intel_pmu_handle_irq,
4612 .disable_all = intel_pmu_disable_all,
4613 .enable_all = intel_pmu_enable_all,
4614 .enable = intel_pmu_enable_event,
4615 .disable = intel_pmu_disable_event,
4616 .add = intel_pmu_add_event,
4617 .del = intel_pmu_del_event,
4618 .read = intel_pmu_read_event,
4619 .hw_config = intel_pmu_hw_config,
4620 .schedule_events = x86_schedule_events,
4621 .eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
4622 .perfctr = MSR_ARCH_PERFMON_PERFCTR0,
4623 .event_map = intel_pmu_event_map,
4624 .max_events = ARRAY_SIZE(intel_perfmon_event_map),
4625 .apic = 1,
4626 .large_pebs_flags = LARGE_PEBS_FLAGS,
4627 /*
4628 * Intel PMCs cannot be accessed sanely above 32 bit width,
4629 * so we install an artificial 1<<31 period regardless of
4630 * the generic event period:
4631 */
4632 .max_period = (1ULL << 31) - 1,
4633 .get_event_constraints = intel_get_event_constraints,
4634 .put_event_constraints = intel_put_event_constraints,
4635 .pebs_aliases = intel_pebs_aliases_core2,
4636
4637 .format_attrs = intel_arch3_formats_attr,
4638 .events_sysfs_show = intel_event_sysfs_show,
4639
4640 .cpu_prepare = intel_pmu_cpu_prepare,
4641 .cpu_starting = intel_pmu_cpu_starting,
4642 .cpu_dying = intel_pmu_cpu_dying,
4643 .cpu_dead = intel_pmu_cpu_dead,
4644
4645 .guest_get_msrs = intel_guest_get_msrs,
4646 .sched_task = intel_pmu_sched_task,
4647 .swap_task_ctx = intel_pmu_swap_task_ctx,
4648
4649 .check_period = intel_pmu_check_period,
4650
4651 .aux_output_match = intel_pmu_aux_output_match,
4652
4653 .lbr_reset = intel_pmu_lbr_reset_64,
4654 .lbr_read = intel_pmu_lbr_read_64,
4655 .lbr_save = intel_pmu_lbr_save,
4656 .lbr_restore = intel_pmu_lbr_restore,
4657
4658 /*
4659 * SMM has access to all 4 rings and while traditionally SMM code only
4660 * ran in CPL0, 2021-era firmware is starting to make use of CPL3 in SMM.
4661 *
4662 * Since the EVENTSEL.{USR,OS} CPL filtering makes no distinction
4663 * between SMM or not, this results in what should be pure userspace
4664 * counters including SMM data.
4665 *
4666 * This is a clear privilege issue, therefore globally disable
4667 * counting SMM by default.
4668 */
4669 .attr_freeze_on_smi = 1,
4670 };
4671
intel_clovertown_quirk(void)4672 static __init void intel_clovertown_quirk(void)
4673 {
4674 /*
4675 * PEBS is unreliable due to:
4676 *
4677 * AJ67 - PEBS may experience CPL leaks
4678 * AJ68 - PEBS PMI may be delayed by one event
4679 * AJ69 - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
4680 * AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
4681 *
4682 * AJ67 could be worked around by restricting the OS/USR flags.
4683 * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
4684 *
4685 * AJ106 could possibly be worked around by not allowing LBR
4686 * usage from PEBS, including the fixup.
4687 * AJ68 could possibly be worked around by always programming
4688 * a pebs_event_reset[0] value and coping with the lost events.
4689 *
4690 * But taken together it might just make sense to not enable PEBS on
4691 * these chips.
4692 */
4693 pr_warn("PEBS disabled due to CPU errata\n");
4694 x86_pmu.pebs = 0;
4695 x86_pmu.pebs_constraints = NULL;
4696 }
4697
4698 static const struct x86_cpu_desc isolation_ucodes[] = {
4699 INTEL_CPU_DESC(INTEL_FAM6_HASWELL, 3, 0x0000001f),
4700 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_L, 1, 0x0000001e),
4701 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_G, 1, 0x00000015),
4702 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 2, 0x00000037),
4703 INTEL_CPU_DESC(INTEL_FAM6_HASWELL_X, 4, 0x0000000a),
4704 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL, 4, 0x00000023),
4705 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_G, 1, 0x00000014),
4706 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 2, 0x00000010),
4707 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 3, 0x07000009),
4708 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 4, 0x0f000009),
4709 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_D, 5, 0x0e000002),
4710 INTEL_CPU_DESC(INTEL_FAM6_BROADWELL_X, 1, 0x0b000014),
4711 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 3, 0x00000021),
4712 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 4, 0x00000000),
4713 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 5, 0x00000000),
4714 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 6, 0x00000000),
4715 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 7, 0x00000000),
4716 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_X, 11, 0x00000000),
4717 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE_L, 3, 0x0000007c),
4718 INTEL_CPU_DESC(INTEL_FAM6_SKYLAKE, 3, 0x0000007c),
4719 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 9, 0x0000004e),
4720 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 9, 0x0000004e),
4721 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 10, 0x0000004e),
4722 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 11, 0x0000004e),
4723 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE_L, 12, 0x0000004e),
4724 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 10, 0x0000004e),
4725 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 11, 0x0000004e),
4726 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 12, 0x0000004e),
4727 INTEL_CPU_DESC(INTEL_FAM6_KABYLAKE, 13, 0x0000004e),
4728 {}
4729 };
4730
intel_check_pebs_isolation(void)4731 static void intel_check_pebs_isolation(void)
4732 {
4733 x86_pmu.pebs_no_isolation = !x86_cpu_has_min_microcode_rev(isolation_ucodes);
4734 }
4735
intel_pebs_isolation_quirk(void)4736 static __init void intel_pebs_isolation_quirk(void)
4737 {
4738 WARN_ON_ONCE(x86_pmu.check_microcode);
4739 x86_pmu.check_microcode = intel_check_pebs_isolation;
4740 intel_check_pebs_isolation();
4741 }
4742
4743 static const struct x86_cpu_desc pebs_ucodes[] = {
4744 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE, 7, 0x00000028),
4745 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 6, 0x00000618),
4746 INTEL_CPU_DESC(INTEL_FAM6_SANDYBRIDGE_X, 7, 0x0000070c),
4747 {}
4748 };
4749
intel_snb_pebs_broken(void)4750 static bool intel_snb_pebs_broken(void)
4751 {
4752 return !x86_cpu_has_min_microcode_rev(pebs_ucodes);
4753 }
4754
intel_snb_check_microcode(void)4755 static void intel_snb_check_microcode(void)
4756 {
4757 if (intel_snb_pebs_broken() == x86_pmu.pebs_broken)
4758 return;
4759
4760 /*
4761 * Serialized by the microcode lock..
4762 */
4763 if (x86_pmu.pebs_broken) {
4764 pr_info("PEBS enabled due to microcode update\n");
4765 x86_pmu.pebs_broken = 0;
4766 } else {
4767 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
4768 x86_pmu.pebs_broken = 1;
4769 }
4770 }
4771
is_lbr_from(unsigned long msr)4772 static bool is_lbr_from(unsigned long msr)
4773 {
4774 unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
4775
4776 return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
4777 }
4778
4779 /*
4780 * Under certain circumstances, access certain MSR may cause #GP.
4781 * The function tests if the input MSR can be safely accessed.
4782 */
check_msr(unsigned long msr,u64 mask)4783 static bool check_msr(unsigned long msr, u64 mask)
4784 {
4785 u64 val_old, val_new, val_tmp;
4786
4787 /*
4788 * Disable the check for real HW, so we don't
4789 * mess with potentially enabled registers:
4790 */
4791 if (!boot_cpu_has(X86_FEATURE_HYPERVISOR))
4792 return true;
4793
4794 /*
4795 * Read the current value, change it and read it back to see if it
4796 * matches, this is needed to detect certain hardware emulators
4797 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4798 */
4799 if (rdmsrl_safe(msr, &val_old))
4800 return false;
4801
4802 /*
4803 * Only change the bits which can be updated by wrmsrl.
4804 */
4805 val_tmp = val_old ^ mask;
4806
4807 if (is_lbr_from(msr))
4808 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
4809
4810 if (wrmsrl_safe(msr, val_tmp) ||
4811 rdmsrl_safe(msr, &val_new))
4812 return false;
4813
4814 /*
4815 * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
4816 * should equal rdmsrl()'s even with the quirk.
4817 */
4818 if (val_new != val_tmp)
4819 return false;
4820
4821 if (is_lbr_from(msr))
4822 val_old = lbr_from_signext_quirk_wr(val_old);
4823
4824 /* Here it's sure that the MSR can be safely accessed.
4825 * Restore the old value and return.
4826 */
4827 wrmsrl(msr, val_old);
4828
4829 return true;
4830 }
4831
intel_sandybridge_quirk(void)4832 static __init void intel_sandybridge_quirk(void)
4833 {
4834 x86_pmu.check_microcode = intel_snb_check_microcode;
4835 cpus_read_lock();
4836 intel_snb_check_microcode();
4837 cpus_read_unlock();
4838 }
4839
4840 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
4841 { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
4842 { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
4843 { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
4844 { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
4845 { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
4846 { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
4847 { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
4848 };
4849
intel_arch_events_quirk(void)4850 static __init void intel_arch_events_quirk(void)
4851 {
4852 int bit;
4853
4854 /* disable event that reported as not present by cpuid */
4855 for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
4856 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
4857 pr_warn("CPUID marked event: \'%s\' unavailable\n",
4858 intel_arch_events_map[bit].name);
4859 }
4860 }
4861
intel_nehalem_quirk(void)4862 static __init void intel_nehalem_quirk(void)
4863 {
4864 union cpuid10_ebx ebx;
4865
4866 ebx.full = x86_pmu.events_maskl;
4867 if (ebx.split.no_branch_misses_retired) {
4868 /*
4869 * Erratum AAJ80 detected, we work it around by using
4870 * the BR_MISP_EXEC.ANY event. This will over-count
4871 * branch-misses, but it's still much better than the
4872 * architectural event which is often completely bogus:
4873 */
4874 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
4875 ebx.split.no_branch_misses_retired = 0;
4876 x86_pmu.events_maskl = ebx.full;
4877 pr_info("CPU erratum AAJ80 worked around\n");
4878 }
4879 }
4880
4881 /*
4882 * enable software workaround for errata:
4883 * SNB: BJ122
4884 * IVB: BV98
4885 * HSW: HSD29
4886 *
4887 * Only needed when HT is enabled. However detecting
4888 * if HT is enabled is difficult (model specific). So instead,
4889 * we enable the workaround in the early boot, and verify if
4890 * it is needed in a later initcall phase once we have valid
4891 * topology information to check if HT is actually enabled
4892 */
intel_ht_bug(void)4893 static __init void intel_ht_bug(void)
4894 {
4895 x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
4896
4897 x86_pmu.start_scheduling = intel_start_scheduling;
4898 x86_pmu.commit_scheduling = intel_commit_scheduling;
4899 x86_pmu.stop_scheduling = intel_stop_scheduling;
4900 }
4901
4902 EVENT_ATTR_STR(mem-loads, mem_ld_hsw, "event=0xcd,umask=0x1,ldlat=3");
4903 EVENT_ATTR_STR(mem-stores, mem_st_hsw, "event=0xd0,umask=0x82")
4904
4905 /* Haswell special events */
4906 EVENT_ATTR_STR(tx-start, tx_start, "event=0xc9,umask=0x1");
4907 EVENT_ATTR_STR(tx-commit, tx_commit, "event=0xc9,umask=0x2");
4908 EVENT_ATTR_STR(tx-abort, tx_abort, "event=0xc9,umask=0x4");
4909 EVENT_ATTR_STR(tx-capacity, tx_capacity, "event=0x54,umask=0x2");
4910 EVENT_ATTR_STR(tx-conflict, tx_conflict, "event=0x54,umask=0x1");
4911 EVENT_ATTR_STR(el-start, el_start, "event=0xc8,umask=0x1");
4912 EVENT_ATTR_STR(el-commit, el_commit, "event=0xc8,umask=0x2");
4913 EVENT_ATTR_STR(el-abort, el_abort, "event=0xc8,umask=0x4");
4914 EVENT_ATTR_STR(el-capacity, el_capacity, "event=0x54,umask=0x2");
4915 EVENT_ATTR_STR(el-conflict, el_conflict, "event=0x54,umask=0x1");
4916 EVENT_ATTR_STR(cycles-t, cycles_t, "event=0x3c,in_tx=1");
4917 EVENT_ATTR_STR(cycles-ct, cycles_ct, "event=0x3c,in_tx=1,in_tx_cp=1");
4918
4919 static struct attribute *hsw_events_attrs[] = {
4920 EVENT_PTR(td_slots_issued),
4921 EVENT_PTR(td_slots_retired),
4922 EVENT_PTR(td_fetch_bubbles),
4923 EVENT_PTR(td_total_slots),
4924 EVENT_PTR(td_total_slots_scale),
4925 EVENT_PTR(td_recovery_bubbles),
4926 EVENT_PTR(td_recovery_bubbles_scale),
4927 NULL
4928 };
4929
4930 static struct attribute *hsw_mem_events_attrs[] = {
4931 EVENT_PTR(mem_ld_hsw),
4932 EVENT_PTR(mem_st_hsw),
4933 NULL,
4934 };
4935
4936 static struct attribute *hsw_tsx_events_attrs[] = {
4937 EVENT_PTR(tx_start),
4938 EVENT_PTR(tx_commit),
4939 EVENT_PTR(tx_abort),
4940 EVENT_PTR(tx_capacity),
4941 EVENT_PTR(tx_conflict),
4942 EVENT_PTR(el_start),
4943 EVENT_PTR(el_commit),
4944 EVENT_PTR(el_abort),
4945 EVENT_PTR(el_capacity),
4946 EVENT_PTR(el_conflict),
4947 EVENT_PTR(cycles_t),
4948 EVENT_PTR(cycles_ct),
4949 NULL
4950 };
4951
4952 EVENT_ATTR_STR(tx-capacity-read, tx_capacity_read, "event=0x54,umask=0x80");
4953 EVENT_ATTR_STR(tx-capacity-write, tx_capacity_write, "event=0x54,umask=0x2");
4954 EVENT_ATTR_STR(el-capacity-read, el_capacity_read, "event=0x54,umask=0x80");
4955 EVENT_ATTR_STR(el-capacity-write, el_capacity_write, "event=0x54,umask=0x2");
4956
4957 static struct attribute *icl_events_attrs[] = {
4958 EVENT_PTR(mem_ld_hsw),
4959 EVENT_PTR(mem_st_hsw),
4960 NULL,
4961 };
4962
4963 static struct attribute *icl_td_events_attrs[] = {
4964 EVENT_PTR(slots),
4965 EVENT_PTR(td_retiring),
4966 EVENT_PTR(td_bad_spec),
4967 EVENT_PTR(td_fe_bound),
4968 EVENT_PTR(td_be_bound),
4969 NULL,
4970 };
4971
4972 static struct attribute *icl_tsx_events_attrs[] = {
4973 EVENT_PTR(tx_start),
4974 EVENT_PTR(tx_abort),
4975 EVENT_PTR(tx_commit),
4976 EVENT_PTR(tx_capacity_read),
4977 EVENT_PTR(tx_capacity_write),
4978 EVENT_PTR(tx_conflict),
4979 EVENT_PTR(el_start),
4980 EVENT_PTR(el_abort),
4981 EVENT_PTR(el_commit),
4982 EVENT_PTR(el_capacity_read),
4983 EVENT_PTR(el_capacity_write),
4984 EVENT_PTR(el_conflict),
4985 EVENT_PTR(cycles_t),
4986 EVENT_PTR(cycles_ct),
4987 NULL,
4988 };
4989
4990
4991 EVENT_ATTR_STR(mem-stores, mem_st_spr, "event=0xcd,umask=0x2");
4992 EVENT_ATTR_STR(mem-loads-aux, mem_ld_aux, "event=0x03,umask=0x82");
4993
4994 static struct attribute *spr_events_attrs[] = {
4995 EVENT_PTR(mem_ld_hsw),
4996 EVENT_PTR(mem_st_spr),
4997 EVENT_PTR(mem_ld_aux),
4998 NULL,
4999 };
5000
5001 static struct attribute *spr_td_events_attrs[] = {
5002 EVENT_PTR(slots),
5003 EVENT_PTR(td_retiring),
5004 EVENT_PTR(td_bad_spec),
5005 EVENT_PTR(td_fe_bound),
5006 EVENT_PTR(td_be_bound),
5007 EVENT_PTR(td_heavy_ops),
5008 EVENT_PTR(td_br_mispredict),
5009 EVENT_PTR(td_fetch_lat),
5010 EVENT_PTR(td_mem_bound),
5011 NULL,
5012 };
5013
5014 static struct attribute *spr_tsx_events_attrs[] = {
5015 EVENT_PTR(tx_start),
5016 EVENT_PTR(tx_abort),
5017 EVENT_PTR(tx_commit),
5018 EVENT_PTR(tx_capacity_read),
5019 EVENT_PTR(tx_capacity_write),
5020 EVENT_PTR(tx_conflict),
5021 EVENT_PTR(cycles_t),
5022 EVENT_PTR(cycles_ct),
5023 NULL,
5024 };
5025
freeze_on_smi_show(struct device * cdev,struct device_attribute * attr,char * buf)5026 static ssize_t freeze_on_smi_show(struct device *cdev,
5027 struct device_attribute *attr,
5028 char *buf)
5029 {
5030 return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
5031 }
5032
5033 static DEFINE_MUTEX(freeze_on_smi_mutex);
5034
freeze_on_smi_store(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)5035 static ssize_t freeze_on_smi_store(struct device *cdev,
5036 struct device_attribute *attr,
5037 const char *buf, size_t count)
5038 {
5039 unsigned long val;
5040 ssize_t ret;
5041
5042 ret = kstrtoul(buf, 0, &val);
5043 if (ret)
5044 return ret;
5045
5046 if (val > 1)
5047 return -EINVAL;
5048
5049 mutex_lock(&freeze_on_smi_mutex);
5050
5051 if (x86_pmu.attr_freeze_on_smi == val)
5052 goto done;
5053
5054 x86_pmu.attr_freeze_on_smi = val;
5055
5056 cpus_read_lock();
5057 on_each_cpu(flip_smm_bit, &val, 1);
5058 cpus_read_unlock();
5059 done:
5060 mutex_unlock(&freeze_on_smi_mutex);
5061
5062 return count;
5063 }
5064
update_tfa_sched(void * ignored)5065 static void update_tfa_sched(void *ignored)
5066 {
5067 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
5068
5069 /*
5070 * check if PMC3 is used
5071 * and if so force schedule out for all event types all contexts
5072 */
5073 if (test_bit(3, cpuc->active_mask))
5074 perf_pmu_resched(x86_get_pmu(smp_processor_id()));
5075 }
5076
show_sysctl_tfa(struct device * cdev,struct device_attribute * attr,char * buf)5077 static ssize_t show_sysctl_tfa(struct device *cdev,
5078 struct device_attribute *attr,
5079 char *buf)
5080 {
5081 return snprintf(buf, 40, "%d\n", allow_tsx_force_abort);
5082 }
5083
set_sysctl_tfa(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)5084 static ssize_t set_sysctl_tfa(struct device *cdev,
5085 struct device_attribute *attr,
5086 const char *buf, size_t count)
5087 {
5088 bool val;
5089 ssize_t ret;
5090
5091 ret = kstrtobool(buf, &val);
5092 if (ret)
5093 return ret;
5094
5095 /* no change */
5096 if (val == allow_tsx_force_abort)
5097 return count;
5098
5099 allow_tsx_force_abort = val;
5100
5101 cpus_read_lock();
5102 on_each_cpu(update_tfa_sched, NULL, 1);
5103 cpus_read_unlock();
5104
5105 return count;
5106 }
5107
5108
5109 static DEVICE_ATTR_RW(freeze_on_smi);
5110
branches_show(struct device * cdev,struct device_attribute * attr,char * buf)5111 static ssize_t branches_show(struct device *cdev,
5112 struct device_attribute *attr,
5113 char *buf)
5114 {
5115 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
5116 }
5117
5118 static DEVICE_ATTR_RO(branches);
5119
5120 static struct attribute *lbr_attrs[] = {
5121 &dev_attr_branches.attr,
5122 NULL
5123 };
5124
5125 static char pmu_name_str[30];
5126
pmu_name_show(struct device * cdev,struct device_attribute * attr,char * buf)5127 static ssize_t pmu_name_show(struct device *cdev,
5128 struct device_attribute *attr,
5129 char *buf)
5130 {
5131 return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
5132 }
5133
5134 static DEVICE_ATTR_RO(pmu_name);
5135
5136 static struct attribute *intel_pmu_caps_attrs[] = {
5137 &dev_attr_pmu_name.attr,
5138 NULL
5139 };
5140
5141 static DEVICE_ATTR(allow_tsx_force_abort, 0644,
5142 show_sysctl_tfa,
5143 set_sysctl_tfa);
5144
5145 static struct attribute *intel_pmu_attrs[] = {
5146 &dev_attr_freeze_on_smi.attr,
5147 &dev_attr_allow_tsx_force_abort.attr,
5148 NULL,
5149 };
5150
5151 static umode_t
tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)5152 tsx_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5153 {
5154 return boot_cpu_has(X86_FEATURE_RTM) ? attr->mode : 0;
5155 }
5156
5157 static umode_t
pebs_is_visible(struct kobject * kobj,struct attribute * attr,int i)5158 pebs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5159 {
5160 return x86_pmu.pebs ? attr->mode : 0;
5161 }
5162
5163 static umode_t
lbr_is_visible(struct kobject * kobj,struct attribute * attr,int i)5164 lbr_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5165 {
5166 return x86_pmu.lbr_nr ? attr->mode : 0;
5167 }
5168
5169 static umode_t
exra_is_visible(struct kobject * kobj,struct attribute * attr,int i)5170 exra_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5171 {
5172 return x86_pmu.version >= 2 ? attr->mode : 0;
5173 }
5174
5175 static umode_t
default_is_visible(struct kobject * kobj,struct attribute * attr,int i)5176 default_is_visible(struct kobject *kobj, struct attribute *attr, int i)
5177 {
5178 if (attr == &dev_attr_allow_tsx_force_abort.attr)
5179 return x86_pmu.flags & PMU_FL_TFA ? attr->mode : 0;
5180
5181 return attr->mode;
5182 }
5183
5184 static struct attribute_group group_events_td = {
5185 .name = "events",
5186 };
5187
5188 static struct attribute_group group_events_mem = {
5189 .name = "events",
5190 .is_visible = pebs_is_visible,
5191 };
5192
5193 static struct attribute_group group_events_tsx = {
5194 .name = "events",
5195 .is_visible = tsx_is_visible,
5196 };
5197
5198 static struct attribute_group group_caps_gen = {
5199 .name = "caps",
5200 .attrs = intel_pmu_caps_attrs,
5201 };
5202
5203 static struct attribute_group group_caps_lbr = {
5204 .name = "caps",
5205 .attrs = lbr_attrs,
5206 .is_visible = lbr_is_visible,
5207 };
5208
5209 static struct attribute_group group_format_extra = {
5210 .name = "format",
5211 .is_visible = exra_is_visible,
5212 };
5213
5214 static struct attribute_group group_format_extra_skl = {
5215 .name = "format",
5216 .is_visible = exra_is_visible,
5217 };
5218
5219 static struct attribute_group group_default = {
5220 .attrs = intel_pmu_attrs,
5221 .is_visible = default_is_visible,
5222 };
5223
5224 static const struct attribute_group *attr_update[] = {
5225 &group_events_td,
5226 &group_events_mem,
5227 &group_events_tsx,
5228 &group_caps_gen,
5229 &group_caps_lbr,
5230 &group_format_extra,
5231 &group_format_extra_skl,
5232 &group_default,
5233 NULL,
5234 };
5235
5236 EVENT_ATTR_STR_HYBRID(slots, slots_adl, "event=0x00,umask=0x4", hybrid_big);
5237 EVENT_ATTR_STR_HYBRID(topdown-retiring, td_retiring_adl, "event=0xc2,umask=0x0;event=0x00,umask=0x80", hybrid_big_small);
5238 EVENT_ATTR_STR_HYBRID(topdown-bad-spec, td_bad_spec_adl, "event=0x73,umask=0x0;event=0x00,umask=0x81", hybrid_big_small);
5239 EVENT_ATTR_STR_HYBRID(topdown-fe-bound, td_fe_bound_adl, "event=0x71,umask=0x0;event=0x00,umask=0x82", hybrid_big_small);
5240 EVENT_ATTR_STR_HYBRID(topdown-be-bound, td_be_bound_adl, "event=0x74,umask=0x0;event=0x00,umask=0x83", hybrid_big_small);
5241 EVENT_ATTR_STR_HYBRID(topdown-heavy-ops, td_heavy_ops_adl, "event=0x00,umask=0x84", hybrid_big);
5242 EVENT_ATTR_STR_HYBRID(topdown-br-mispredict, td_br_mis_adl, "event=0x00,umask=0x85", hybrid_big);
5243 EVENT_ATTR_STR_HYBRID(topdown-fetch-lat, td_fetch_lat_adl, "event=0x00,umask=0x86", hybrid_big);
5244 EVENT_ATTR_STR_HYBRID(topdown-mem-bound, td_mem_bound_adl, "event=0x00,umask=0x87", hybrid_big);
5245
5246 static struct attribute *adl_hybrid_events_attrs[] = {
5247 EVENT_PTR(slots_adl),
5248 EVENT_PTR(td_retiring_adl),
5249 EVENT_PTR(td_bad_spec_adl),
5250 EVENT_PTR(td_fe_bound_adl),
5251 EVENT_PTR(td_be_bound_adl),
5252 EVENT_PTR(td_heavy_ops_adl),
5253 EVENT_PTR(td_br_mis_adl),
5254 EVENT_PTR(td_fetch_lat_adl),
5255 EVENT_PTR(td_mem_bound_adl),
5256 NULL,
5257 };
5258
5259 /* Must be in IDX order */
5260 EVENT_ATTR_STR_HYBRID(mem-loads, mem_ld_adl, "event=0xd0,umask=0x5,ldlat=3;event=0xcd,umask=0x1,ldlat=3", hybrid_big_small);
5261 EVENT_ATTR_STR_HYBRID(mem-stores, mem_st_adl, "event=0xd0,umask=0x6;event=0xcd,umask=0x2", hybrid_big_small);
5262 EVENT_ATTR_STR_HYBRID(mem-loads-aux, mem_ld_aux_adl, "event=0x03,umask=0x82", hybrid_big);
5263
5264 static struct attribute *adl_hybrid_mem_attrs[] = {
5265 EVENT_PTR(mem_ld_adl),
5266 EVENT_PTR(mem_st_adl),
5267 EVENT_PTR(mem_ld_aux_adl),
5268 NULL,
5269 };
5270
5271 EVENT_ATTR_STR_HYBRID(tx-start, tx_start_adl, "event=0xc9,umask=0x1", hybrid_big);
5272 EVENT_ATTR_STR_HYBRID(tx-commit, tx_commit_adl, "event=0xc9,umask=0x2", hybrid_big);
5273 EVENT_ATTR_STR_HYBRID(tx-abort, tx_abort_adl, "event=0xc9,umask=0x4", hybrid_big);
5274 EVENT_ATTR_STR_HYBRID(tx-conflict, tx_conflict_adl, "event=0x54,umask=0x1", hybrid_big);
5275 EVENT_ATTR_STR_HYBRID(cycles-t, cycles_t_adl, "event=0x3c,in_tx=1", hybrid_big);
5276 EVENT_ATTR_STR_HYBRID(cycles-ct, cycles_ct_adl, "event=0x3c,in_tx=1,in_tx_cp=1", hybrid_big);
5277 EVENT_ATTR_STR_HYBRID(tx-capacity-read, tx_capacity_read_adl, "event=0x54,umask=0x80", hybrid_big);
5278 EVENT_ATTR_STR_HYBRID(tx-capacity-write, tx_capacity_write_adl, "event=0x54,umask=0x2", hybrid_big);
5279
5280 static struct attribute *adl_hybrid_tsx_attrs[] = {
5281 EVENT_PTR(tx_start_adl),
5282 EVENT_PTR(tx_abort_adl),
5283 EVENT_PTR(tx_commit_adl),
5284 EVENT_PTR(tx_capacity_read_adl),
5285 EVENT_PTR(tx_capacity_write_adl),
5286 EVENT_PTR(tx_conflict_adl),
5287 EVENT_PTR(cycles_t_adl),
5288 EVENT_PTR(cycles_ct_adl),
5289 NULL,
5290 };
5291
5292 FORMAT_ATTR_HYBRID(in_tx, hybrid_big);
5293 FORMAT_ATTR_HYBRID(in_tx_cp, hybrid_big);
5294 FORMAT_ATTR_HYBRID(offcore_rsp, hybrid_big_small);
5295 FORMAT_ATTR_HYBRID(ldlat, hybrid_big_small);
5296 FORMAT_ATTR_HYBRID(frontend, hybrid_big);
5297
5298 static struct attribute *adl_hybrid_extra_attr_rtm[] = {
5299 FORMAT_HYBRID_PTR(in_tx),
5300 FORMAT_HYBRID_PTR(in_tx_cp),
5301 FORMAT_HYBRID_PTR(offcore_rsp),
5302 FORMAT_HYBRID_PTR(ldlat),
5303 FORMAT_HYBRID_PTR(frontend),
5304 NULL,
5305 };
5306
5307 static struct attribute *adl_hybrid_extra_attr[] = {
5308 FORMAT_HYBRID_PTR(offcore_rsp),
5309 FORMAT_HYBRID_PTR(ldlat),
5310 FORMAT_HYBRID_PTR(frontend),
5311 NULL,
5312 };
5313
is_attr_for_this_pmu(struct kobject * kobj,struct attribute * attr)5314 static bool is_attr_for_this_pmu(struct kobject *kobj, struct attribute *attr)
5315 {
5316 struct device *dev = kobj_to_dev(kobj);
5317 struct x86_hybrid_pmu *pmu =
5318 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5319 struct perf_pmu_events_hybrid_attr *pmu_attr =
5320 container_of(attr, struct perf_pmu_events_hybrid_attr, attr.attr);
5321
5322 return pmu->cpu_type & pmu_attr->pmu_type;
5323 }
5324
hybrid_events_is_visible(struct kobject * kobj,struct attribute * attr,int i)5325 static umode_t hybrid_events_is_visible(struct kobject *kobj,
5326 struct attribute *attr, int i)
5327 {
5328 return is_attr_for_this_pmu(kobj, attr) ? attr->mode : 0;
5329 }
5330
hybrid_find_supported_cpu(struct x86_hybrid_pmu * pmu)5331 static inline int hybrid_find_supported_cpu(struct x86_hybrid_pmu *pmu)
5332 {
5333 int cpu = cpumask_first(&pmu->supported_cpus);
5334
5335 return (cpu >= nr_cpu_ids) ? -1 : cpu;
5336 }
5337
hybrid_tsx_is_visible(struct kobject * kobj,struct attribute * attr,int i)5338 static umode_t hybrid_tsx_is_visible(struct kobject *kobj,
5339 struct attribute *attr, int i)
5340 {
5341 struct device *dev = kobj_to_dev(kobj);
5342 struct x86_hybrid_pmu *pmu =
5343 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5344 int cpu = hybrid_find_supported_cpu(pmu);
5345
5346 return (cpu >= 0) && is_attr_for_this_pmu(kobj, attr) && cpu_has(&cpu_data(cpu), X86_FEATURE_RTM) ? attr->mode : 0;
5347 }
5348
hybrid_format_is_visible(struct kobject * kobj,struct attribute * attr,int i)5349 static umode_t hybrid_format_is_visible(struct kobject *kobj,
5350 struct attribute *attr, int i)
5351 {
5352 struct device *dev = kobj_to_dev(kobj);
5353 struct x86_hybrid_pmu *pmu =
5354 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5355 struct perf_pmu_format_hybrid_attr *pmu_attr =
5356 container_of(attr, struct perf_pmu_format_hybrid_attr, attr.attr);
5357 int cpu = hybrid_find_supported_cpu(pmu);
5358
5359 return (cpu >= 0) && (pmu->cpu_type & pmu_attr->pmu_type) ? attr->mode : 0;
5360 }
5361
5362 static struct attribute_group hybrid_group_events_td = {
5363 .name = "events",
5364 .is_visible = hybrid_events_is_visible,
5365 };
5366
5367 static struct attribute_group hybrid_group_events_mem = {
5368 .name = "events",
5369 .is_visible = hybrid_events_is_visible,
5370 };
5371
5372 static struct attribute_group hybrid_group_events_tsx = {
5373 .name = "events",
5374 .is_visible = hybrid_tsx_is_visible,
5375 };
5376
5377 static struct attribute_group hybrid_group_format_extra = {
5378 .name = "format",
5379 .is_visible = hybrid_format_is_visible,
5380 };
5381
intel_hybrid_get_attr_cpus(struct device * dev,struct device_attribute * attr,char * buf)5382 static ssize_t intel_hybrid_get_attr_cpus(struct device *dev,
5383 struct device_attribute *attr,
5384 char *buf)
5385 {
5386 struct x86_hybrid_pmu *pmu =
5387 container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
5388
5389 return cpumap_print_to_pagebuf(true, buf, &pmu->supported_cpus);
5390 }
5391
5392 static DEVICE_ATTR(cpus, S_IRUGO, intel_hybrid_get_attr_cpus, NULL);
5393 static struct attribute *intel_hybrid_cpus_attrs[] = {
5394 &dev_attr_cpus.attr,
5395 NULL,
5396 };
5397
5398 static struct attribute_group hybrid_group_cpus = {
5399 .attrs = intel_hybrid_cpus_attrs,
5400 };
5401
5402 static const struct attribute_group *hybrid_attr_update[] = {
5403 &hybrid_group_events_td,
5404 &hybrid_group_events_mem,
5405 &hybrid_group_events_tsx,
5406 &group_caps_gen,
5407 &group_caps_lbr,
5408 &hybrid_group_format_extra,
5409 &group_default,
5410 &hybrid_group_cpus,
5411 NULL,
5412 };
5413
5414 static struct attribute *empty_attrs;
5415
intel_pmu_check_num_counters(int * num_counters,int * num_counters_fixed,u64 * intel_ctrl,u64 fixed_mask)5416 static void intel_pmu_check_num_counters(int *num_counters,
5417 int *num_counters_fixed,
5418 u64 *intel_ctrl, u64 fixed_mask)
5419 {
5420 if (*num_counters > INTEL_PMC_MAX_GENERIC) {
5421 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
5422 *num_counters, INTEL_PMC_MAX_GENERIC);
5423 *num_counters = INTEL_PMC_MAX_GENERIC;
5424 }
5425 *intel_ctrl = (1ULL << *num_counters) - 1;
5426
5427 if (*num_counters_fixed > INTEL_PMC_MAX_FIXED) {
5428 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
5429 *num_counters_fixed, INTEL_PMC_MAX_FIXED);
5430 *num_counters_fixed = INTEL_PMC_MAX_FIXED;
5431 }
5432
5433 *intel_ctrl |= fixed_mask << INTEL_PMC_IDX_FIXED;
5434 }
5435
intel_pmu_check_event_constraints(struct event_constraint * event_constraints,int num_counters,int num_counters_fixed,u64 intel_ctrl)5436 static void intel_pmu_check_event_constraints(struct event_constraint *event_constraints,
5437 int num_counters,
5438 int num_counters_fixed,
5439 u64 intel_ctrl)
5440 {
5441 struct event_constraint *c;
5442
5443 if (!event_constraints)
5444 return;
5445
5446 /*
5447 * event on fixed counter2 (REF_CYCLES) only works on this
5448 * counter, so do not extend mask to generic counters
5449 */
5450 for_each_event_constraint(c, event_constraints) {
5451 /*
5452 * Don't extend the topdown slots and metrics
5453 * events to the generic counters.
5454 */
5455 if (c->idxmsk64 & INTEL_PMC_MSK_TOPDOWN) {
5456 /*
5457 * Disable topdown slots and metrics events,
5458 * if slots event is not in CPUID.
5459 */
5460 if (!(INTEL_PMC_MSK_FIXED_SLOTS & intel_ctrl))
5461 c->idxmsk64 = 0;
5462 c->weight = hweight64(c->idxmsk64);
5463 continue;
5464 }
5465
5466 if (c->cmask == FIXED_EVENT_FLAGS) {
5467 /* Disabled fixed counters which are not in CPUID */
5468 c->idxmsk64 &= intel_ctrl;
5469
5470 /*
5471 * Don't extend the pseudo-encoding to the
5472 * generic counters
5473 */
5474 if (!use_fixed_pseudo_encoding(c->code))
5475 c->idxmsk64 |= (1ULL << num_counters) - 1;
5476 }
5477 c->idxmsk64 &=
5478 ~(~0ULL << (INTEL_PMC_IDX_FIXED + num_counters_fixed));
5479 c->weight = hweight64(c->idxmsk64);
5480 }
5481 }
5482
intel_pmu_check_extra_regs(struct extra_reg * extra_regs)5483 static void intel_pmu_check_extra_regs(struct extra_reg *extra_regs)
5484 {
5485 struct extra_reg *er;
5486
5487 /*
5488 * Access extra MSR may cause #GP under certain circumstances.
5489 * E.g. KVM doesn't support offcore event
5490 * Check all extra_regs here.
5491 */
5492 if (!extra_regs)
5493 return;
5494
5495 for (er = extra_regs; er->msr; er++) {
5496 er->extra_msr_access = check_msr(er->msr, 0x11UL);
5497 /* Disable LBR select mapping */
5498 if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
5499 x86_pmu.lbr_sel_map = NULL;
5500 }
5501 }
5502
intel_pmu_check_hybrid_pmus(u64 fixed_mask)5503 static void intel_pmu_check_hybrid_pmus(u64 fixed_mask)
5504 {
5505 struct x86_hybrid_pmu *pmu;
5506 int i;
5507
5508 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
5509 pmu = &x86_pmu.hybrid_pmu[i];
5510
5511 intel_pmu_check_num_counters(&pmu->num_counters,
5512 &pmu->num_counters_fixed,
5513 &pmu->intel_ctrl,
5514 fixed_mask);
5515
5516 if (pmu->intel_cap.perf_metrics) {
5517 pmu->intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
5518 pmu->intel_ctrl |= INTEL_PMC_MSK_FIXED_SLOTS;
5519 }
5520
5521 if (pmu->intel_cap.pebs_output_pt_available)
5522 pmu->pmu.capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
5523
5524 intel_pmu_check_event_constraints(pmu->event_constraints,
5525 pmu->num_counters,
5526 pmu->num_counters_fixed,
5527 pmu->intel_ctrl);
5528
5529 intel_pmu_check_extra_regs(pmu->extra_regs);
5530 }
5531 }
5532
intel_pmu_init(void)5533 __init int intel_pmu_init(void)
5534 {
5535 struct attribute **extra_skl_attr = &empty_attrs;
5536 struct attribute **extra_attr = &empty_attrs;
5537 struct attribute **td_attr = &empty_attrs;
5538 struct attribute **mem_attr = &empty_attrs;
5539 struct attribute **tsx_attr = &empty_attrs;
5540 union cpuid10_edx edx;
5541 union cpuid10_eax eax;
5542 union cpuid10_ebx ebx;
5543 unsigned int fixed_mask;
5544 bool pmem = false;
5545 int version, i;
5546 char *name;
5547 struct x86_hybrid_pmu *pmu;
5548
5549 if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
5550 switch (boot_cpu_data.x86) {
5551 case 0x6:
5552 return p6_pmu_init();
5553 case 0xb:
5554 return knc_pmu_init();
5555 case 0xf:
5556 return p4_pmu_init();
5557 }
5558 return -ENODEV;
5559 }
5560
5561 /*
5562 * Check whether the Architectural PerfMon supports
5563 * Branch Misses Retired hw_event or not.
5564 */
5565 cpuid(10, &eax.full, &ebx.full, &fixed_mask, &edx.full);
5566 if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
5567 return -ENODEV;
5568
5569 version = eax.split.version_id;
5570 if (version < 2)
5571 x86_pmu = core_pmu;
5572 else
5573 x86_pmu = intel_pmu;
5574
5575 x86_pmu.version = version;
5576 x86_pmu.num_counters = eax.split.num_counters;
5577 x86_pmu.cntval_bits = eax.split.bit_width;
5578 x86_pmu.cntval_mask = (1ULL << eax.split.bit_width) - 1;
5579
5580 x86_pmu.events_maskl = ebx.full;
5581 x86_pmu.events_mask_len = eax.split.mask_length;
5582
5583 x86_pmu.max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
5584
5585 /*
5586 * Quirk: v2 perfmon does not report fixed-purpose events, so
5587 * assume at least 3 events, when not running in a hypervisor:
5588 */
5589 if (version > 1 && version < 5) {
5590 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
5591
5592 x86_pmu.num_counters_fixed =
5593 max((int)edx.split.num_counters_fixed, assume);
5594
5595 fixed_mask = (1L << x86_pmu.num_counters_fixed) - 1;
5596 } else if (version >= 5)
5597 x86_pmu.num_counters_fixed = fls(fixed_mask);
5598
5599 if (boot_cpu_has(X86_FEATURE_PDCM)) {
5600 u64 capabilities;
5601
5602 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
5603 x86_pmu.intel_cap.capabilities = capabilities;
5604 }
5605
5606 if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_32) {
5607 x86_pmu.lbr_reset = intel_pmu_lbr_reset_32;
5608 x86_pmu.lbr_read = intel_pmu_lbr_read_32;
5609 }
5610
5611 if (boot_cpu_has(X86_FEATURE_ARCH_LBR))
5612 intel_pmu_arch_lbr_init();
5613
5614 intel_ds_init();
5615
5616 x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
5617
5618 if (version >= 5) {
5619 x86_pmu.intel_cap.anythread_deprecated = edx.split.anythread_deprecated;
5620 if (x86_pmu.intel_cap.anythread_deprecated)
5621 pr_cont(" AnyThread deprecated, ");
5622 }
5623
5624 /*
5625 * Install the hw-cache-events table:
5626 */
5627 switch (boot_cpu_data.x86_model) {
5628 case INTEL_FAM6_CORE_YONAH:
5629 pr_cont("Core events, ");
5630 name = "core";
5631 break;
5632
5633 case INTEL_FAM6_CORE2_MEROM:
5634 x86_add_quirk(intel_clovertown_quirk);
5635 fallthrough;
5636
5637 case INTEL_FAM6_CORE2_MEROM_L:
5638 case INTEL_FAM6_CORE2_PENRYN:
5639 case INTEL_FAM6_CORE2_DUNNINGTON:
5640 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
5641 sizeof(hw_cache_event_ids));
5642
5643 intel_pmu_lbr_init_core();
5644
5645 x86_pmu.event_constraints = intel_core2_event_constraints;
5646 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
5647 pr_cont("Core2 events, ");
5648 name = "core2";
5649 break;
5650
5651 case INTEL_FAM6_NEHALEM:
5652 case INTEL_FAM6_NEHALEM_EP:
5653 case INTEL_FAM6_NEHALEM_EX:
5654 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
5655 sizeof(hw_cache_event_ids));
5656 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5657 sizeof(hw_cache_extra_regs));
5658
5659 intel_pmu_lbr_init_nhm();
5660
5661 x86_pmu.event_constraints = intel_nehalem_event_constraints;
5662 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
5663 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5664 x86_pmu.extra_regs = intel_nehalem_extra_regs;
5665 x86_pmu.limit_period = nhm_limit_period;
5666
5667 mem_attr = nhm_mem_events_attrs;
5668
5669 /* UOPS_ISSUED.STALLED_CYCLES */
5670 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5671 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5672 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5673 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5674 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5675
5676 intel_pmu_pebs_data_source_nhm();
5677 x86_add_quirk(intel_nehalem_quirk);
5678 x86_pmu.pebs_no_tlb = 1;
5679 extra_attr = nhm_format_attr;
5680
5681 pr_cont("Nehalem events, ");
5682 name = "nehalem";
5683 break;
5684
5685 case INTEL_FAM6_ATOM_BONNELL:
5686 case INTEL_FAM6_ATOM_BONNELL_MID:
5687 case INTEL_FAM6_ATOM_SALTWELL:
5688 case INTEL_FAM6_ATOM_SALTWELL_MID:
5689 case INTEL_FAM6_ATOM_SALTWELL_TABLET:
5690 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
5691 sizeof(hw_cache_event_ids));
5692
5693 intel_pmu_lbr_init_atom();
5694
5695 x86_pmu.event_constraints = intel_gen_event_constraints;
5696 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
5697 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
5698 pr_cont("Atom events, ");
5699 name = "bonnell";
5700 break;
5701
5702 case INTEL_FAM6_ATOM_SILVERMONT:
5703 case INTEL_FAM6_ATOM_SILVERMONT_D:
5704 case INTEL_FAM6_ATOM_SILVERMONT_MID:
5705 case INTEL_FAM6_ATOM_AIRMONT:
5706 case INTEL_FAM6_ATOM_AIRMONT_MID:
5707 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
5708 sizeof(hw_cache_event_ids));
5709 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
5710 sizeof(hw_cache_extra_regs));
5711
5712 intel_pmu_lbr_init_slm();
5713
5714 x86_pmu.event_constraints = intel_slm_event_constraints;
5715 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
5716 x86_pmu.extra_regs = intel_slm_extra_regs;
5717 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5718 td_attr = slm_events_attrs;
5719 extra_attr = slm_format_attr;
5720 pr_cont("Silvermont events, ");
5721 name = "silvermont";
5722 break;
5723
5724 case INTEL_FAM6_ATOM_GOLDMONT:
5725 case INTEL_FAM6_ATOM_GOLDMONT_D:
5726 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
5727 sizeof(hw_cache_event_ids));
5728 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
5729 sizeof(hw_cache_extra_regs));
5730
5731 intel_pmu_lbr_init_skl();
5732
5733 x86_pmu.event_constraints = intel_slm_event_constraints;
5734 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
5735 x86_pmu.extra_regs = intel_glm_extra_regs;
5736 /*
5737 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5738 * for precise cycles.
5739 * :pp is identical to :ppp
5740 */
5741 x86_pmu.pebs_aliases = NULL;
5742 x86_pmu.pebs_prec_dist = true;
5743 x86_pmu.lbr_pt_coexist = true;
5744 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5745 td_attr = glm_events_attrs;
5746 extra_attr = slm_format_attr;
5747 pr_cont("Goldmont events, ");
5748 name = "goldmont";
5749 break;
5750
5751 case INTEL_FAM6_ATOM_GOLDMONT_PLUS:
5752 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5753 sizeof(hw_cache_event_ids));
5754 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
5755 sizeof(hw_cache_extra_regs));
5756
5757 intel_pmu_lbr_init_skl();
5758
5759 x86_pmu.event_constraints = intel_slm_event_constraints;
5760 x86_pmu.extra_regs = intel_glm_extra_regs;
5761 /*
5762 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5763 * for precise cycles.
5764 */
5765 x86_pmu.pebs_aliases = NULL;
5766 x86_pmu.pebs_prec_dist = true;
5767 x86_pmu.lbr_pt_coexist = true;
5768 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5769 x86_pmu.flags |= PMU_FL_PEBS_ALL;
5770 x86_pmu.get_event_constraints = glp_get_event_constraints;
5771 td_attr = glm_events_attrs;
5772 /* Goldmont Plus has 4-wide pipeline */
5773 event_attr_td_total_slots_scale_glm.event_str = "4";
5774 extra_attr = slm_format_attr;
5775 pr_cont("Goldmont plus events, ");
5776 name = "goldmont_plus";
5777 break;
5778
5779 case INTEL_FAM6_ATOM_TREMONT_D:
5780 case INTEL_FAM6_ATOM_TREMONT:
5781 case INTEL_FAM6_ATOM_TREMONT_L:
5782 x86_pmu.late_ack = true;
5783 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
5784 sizeof(hw_cache_event_ids));
5785 memcpy(hw_cache_extra_regs, tnt_hw_cache_extra_regs,
5786 sizeof(hw_cache_extra_regs));
5787 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
5788
5789 intel_pmu_lbr_init_skl();
5790
5791 x86_pmu.event_constraints = intel_slm_event_constraints;
5792 x86_pmu.extra_regs = intel_tnt_extra_regs;
5793 /*
5794 * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
5795 * for precise cycles.
5796 */
5797 x86_pmu.pebs_aliases = NULL;
5798 x86_pmu.pebs_prec_dist = true;
5799 x86_pmu.lbr_pt_coexist = true;
5800 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5801 x86_pmu.get_event_constraints = tnt_get_event_constraints;
5802 td_attr = tnt_events_attrs;
5803 extra_attr = slm_format_attr;
5804 pr_cont("Tremont events, ");
5805 name = "Tremont";
5806 break;
5807
5808 case INTEL_FAM6_WESTMERE:
5809 case INTEL_FAM6_WESTMERE_EP:
5810 case INTEL_FAM6_WESTMERE_EX:
5811 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
5812 sizeof(hw_cache_event_ids));
5813 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
5814 sizeof(hw_cache_extra_regs));
5815
5816 intel_pmu_lbr_init_nhm();
5817
5818 x86_pmu.event_constraints = intel_westmere_event_constraints;
5819 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
5820 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
5821 x86_pmu.extra_regs = intel_westmere_extra_regs;
5822 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5823
5824 mem_attr = nhm_mem_events_attrs;
5825
5826 /* UOPS_ISSUED.STALLED_CYCLES */
5827 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5828 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5829 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
5830 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5831 X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
5832
5833 intel_pmu_pebs_data_source_nhm();
5834 extra_attr = nhm_format_attr;
5835 pr_cont("Westmere events, ");
5836 name = "westmere";
5837 break;
5838
5839 case INTEL_FAM6_SANDYBRIDGE:
5840 case INTEL_FAM6_SANDYBRIDGE_X:
5841 x86_add_quirk(intel_sandybridge_quirk);
5842 x86_add_quirk(intel_ht_bug);
5843 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5844 sizeof(hw_cache_event_ids));
5845 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5846 sizeof(hw_cache_extra_regs));
5847
5848 intel_pmu_lbr_init_snb();
5849
5850 x86_pmu.event_constraints = intel_snb_event_constraints;
5851 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
5852 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
5853 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
5854 x86_pmu.extra_regs = intel_snbep_extra_regs;
5855 else
5856 x86_pmu.extra_regs = intel_snb_extra_regs;
5857
5858
5859 /* all extra regs are per-cpu when HT is on */
5860 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5861 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5862
5863 td_attr = snb_events_attrs;
5864 mem_attr = snb_mem_events_attrs;
5865
5866 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5867 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5868 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5869 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
5870 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
5871 X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
5872
5873 extra_attr = nhm_format_attr;
5874
5875 pr_cont("SandyBridge events, ");
5876 name = "sandybridge";
5877 break;
5878
5879 case INTEL_FAM6_IVYBRIDGE:
5880 case INTEL_FAM6_IVYBRIDGE_X:
5881 x86_add_quirk(intel_ht_bug);
5882 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
5883 sizeof(hw_cache_event_ids));
5884 /* dTLB-load-misses on IVB is different than SNB */
5885 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
5886
5887 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
5888 sizeof(hw_cache_extra_regs));
5889
5890 intel_pmu_lbr_init_snb();
5891
5892 x86_pmu.event_constraints = intel_ivb_event_constraints;
5893 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
5894 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5895 x86_pmu.pebs_prec_dist = true;
5896 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
5897 x86_pmu.extra_regs = intel_snbep_extra_regs;
5898 else
5899 x86_pmu.extra_regs = intel_snb_extra_regs;
5900 /* all extra regs are per-cpu when HT is on */
5901 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5902 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5903
5904 td_attr = snb_events_attrs;
5905 mem_attr = snb_mem_events_attrs;
5906
5907 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
5908 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
5909 X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
5910
5911 extra_attr = nhm_format_attr;
5912
5913 pr_cont("IvyBridge events, ");
5914 name = "ivybridge";
5915 break;
5916
5917
5918 case INTEL_FAM6_HASWELL:
5919 case INTEL_FAM6_HASWELL_X:
5920 case INTEL_FAM6_HASWELL_L:
5921 case INTEL_FAM6_HASWELL_G:
5922 x86_add_quirk(intel_ht_bug);
5923 x86_add_quirk(intel_pebs_isolation_quirk);
5924 x86_pmu.late_ack = true;
5925 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5926 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5927
5928 intel_pmu_lbr_init_hsw();
5929
5930 x86_pmu.event_constraints = intel_hsw_event_constraints;
5931 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
5932 x86_pmu.extra_regs = intel_snbep_extra_regs;
5933 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5934 x86_pmu.pebs_prec_dist = true;
5935 /* all extra regs are per-cpu when HT is on */
5936 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5937 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5938
5939 x86_pmu.hw_config = hsw_hw_config;
5940 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5941 x86_pmu.lbr_double_abort = true;
5942 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5943 hsw_format_attr : nhm_format_attr;
5944 td_attr = hsw_events_attrs;
5945 mem_attr = hsw_mem_events_attrs;
5946 tsx_attr = hsw_tsx_events_attrs;
5947 pr_cont("Haswell events, ");
5948 name = "haswell";
5949 break;
5950
5951 case INTEL_FAM6_BROADWELL:
5952 case INTEL_FAM6_BROADWELL_D:
5953 case INTEL_FAM6_BROADWELL_G:
5954 case INTEL_FAM6_BROADWELL_X:
5955 x86_add_quirk(intel_pebs_isolation_quirk);
5956 x86_pmu.late_ack = true;
5957 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5958 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5959
5960 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
5961 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
5962 BDW_L3_MISS|HSW_SNOOP_DRAM;
5963 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
5964 HSW_SNOOP_DRAM;
5965 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
5966 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5967 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
5968 BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
5969
5970 intel_pmu_lbr_init_hsw();
5971
5972 x86_pmu.event_constraints = intel_bdw_event_constraints;
5973 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
5974 x86_pmu.extra_regs = intel_snbep_extra_regs;
5975 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
5976 x86_pmu.pebs_prec_dist = true;
5977 /* all extra regs are per-cpu when HT is on */
5978 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
5979 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
5980
5981 x86_pmu.hw_config = hsw_hw_config;
5982 x86_pmu.get_event_constraints = hsw_get_event_constraints;
5983 x86_pmu.limit_period = bdw_limit_period;
5984 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
5985 hsw_format_attr : nhm_format_attr;
5986 td_attr = hsw_events_attrs;
5987 mem_attr = hsw_mem_events_attrs;
5988 tsx_attr = hsw_tsx_events_attrs;
5989 pr_cont("Broadwell events, ");
5990 name = "broadwell";
5991 break;
5992
5993 case INTEL_FAM6_XEON_PHI_KNL:
5994 case INTEL_FAM6_XEON_PHI_KNM:
5995 memcpy(hw_cache_event_ids,
5996 slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
5997 memcpy(hw_cache_extra_regs,
5998 knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
5999 intel_pmu_lbr_init_knl();
6000
6001 x86_pmu.event_constraints = intel_slm_event_constraints;
6002 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
6003 x86_pmu.extra_regs = intel_knl_extra_regs;
6004
6005 /* all extra regs are per-cpu when HT is on */
6006 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6007 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6008 extra_attr = slm_format_attr;
6009 pr_cont("Knights Landing/Mill events, ");
6010 name = "knights-landing";
6011 break;
6012
6013 case INTEL_FAM6_SKYLAKE_X:
6014 pmem = true;
6015 fallthrough;
6016 case INTEL_FAM6_SKYLAKE_L:
6017 case INTEL_FAM6_SKYLAKE:
6018 case INTEL_FAM6_KABYLAKE_L:
6019 case INTEL_FAM6_KABYLAKE:
6020 case INTEL_FAM6_COMETLAKE_L:
6021 case INTEL_FAM6_COMETLAKE:
6022 x86_add_quirk(intel_pebs_isolation_quirk);
6023 x86_pmu.late_ack = true;
6024 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6025 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6026 intel_pmu_lbr_init_skl();
6027
6028 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
6029 event_attr_td_recovery_bubbles.event_str_noht =
6030 "event=0xd,umask=0x1,cmask=1";
6031 event_attr_td_recovery_bubbles.event_str_ht =
6032 "event=0xd,umask=0x1,cmask=1,any=1";
6033
6034 x86_pmu.event_constraints = intel_skl_event_constraints;
6035 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
6036 x86_pmu.extra_regs = intel_skl_extra_regs;
6037 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
6038 x86_pmu.pebs_prec_dist = true;
6039 /* all extra regs are per-cpu when HT is on */
6040 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6041 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6042
6043 x86_pmu.hw_config = hsw_hw_config;
6044 x86_pmu.get_event_constraints = hsw_get_event_constraints;
6045 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6046 hsw_format_attr : nhm_format_attr;
6047 extra_skl_attr = skl_format_attr;
6048 td_attr = hsw_events_attrs;
6049 mem_attr = hsw_mem_events_attrs;
6050 tsx_attr = hsw_tsx_events_attrs;
6051 intel_pmu_pebs_data_source_skl(pmem);
6052
6053 /*
6054 * Processors with CPUID.RTM_ALWAYS_ABORT have TSX deprecated by default.
6055 * TSX force abort hooks are not required on these systems. Only deploy
6056 * workaround when microcode has not enabled X86_FEATURE_RTM_ALWAYS_ABORT.
6057 */
6058 if (boot_cpu_has(X86_FEATURE_TSX_FORCE_ABORT) &&
6059 !boot_cpu_has(X86_FEATURE_RTM_ALWAYS_ABORT)) {
6060 x86_pmu.flags |= PMU_FL_TFA;
6061 x86_pmu.get_event_constraints = tfa_get_event_constraints;
6062 x86_pmu.enable_all = intel_tfa_pmu_enable_all;
6063 x86_pmu.commit_scheduling = intel_tfa_commit_scheduling;
6064 }
6065
6066 pr_cont("Skylake events, ");
6067 name = "skylake";
6068 break;
6069
6070 case INTEL_FAM6_ICELAKE_X:
6071 case INTEL_FAM6_ICELAKE_D:
6072 pmem = true;
6073 fallthrough;
6074 case INTEL_FAM6_ICELAKE_L:
6075 case INTEL_FAM6_ICELAKE:
6076 case INTEL_FAM6_TIGERLAKE_L:
6077 case INTEL_FAM6_TIGERLAKE:
6078 case INTEL_FAM6_ROCKETLAKE:
6079 x86_pmu.late_ack = true;
6080 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6081 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6082 hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6083 intel_pmu_lbr_init_skl();
6084
6085 x86_pmu.event_constraints = intel_icl_event_constraints;
6086 x86_pmu.pebs_constraints = intel_icl_pebs_event_constraints;
6087 x86_pmu.extra_regs = intel_icl_extra_regs;
6088 x86_pmu.pebs_aliases = NULL;
6089 x86_pmu.pebs_prec_dist = true;
6090 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6091 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6092
6093 x86_pmu.hw_config = hsw_hw_config;
6094 x86_pmu.get_event_constraints = icl_get_event_constraints;
6095 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6096 hsw_format_attr : nhm_format_attr;
6097 extra_skl_attr = skl_format_attr;
6098 mem_attr = icl_events_attrs;
6099 td_attr = icl_td_events_attrs;
6100 tsx_attr = icl_tsx_events_attrs;
6101 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6102 x86_pmu.lbr_pt_coexist = true;
6103 intel_pmu_pebs_data_source_skl(pmem);
6104 x86_pmu.num_topdown_events = 4;
6105 x86_pmu.update_topdown_event = icl_update_topdown_event;
6106 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6107 pr_cont("Icelake events, ");
6108 name = "icelake";
6109 break;
6110
6111 case INTEL_FAM6_SAPPHIRERAPIDS_X:
6112 case INTEL_FAM6_EMERALDRAPIDS_X:
6113 pmem = true;
6114 x86_pmu.late_ack = true;
6115 memcpy(hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(hw_cache_event_ids));
6116 memcpy(hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
6117
6118 x86_pmu.event_constraints = intel_spr_event_constraints;
6119 x86_pmu.pebs_constraints = intel_spr_pebs_event_constraints;
6120 x86_pmu.extra_regs = intel_spr_extra_regs;
6121 x86_pmu.limit_period = spr_limit_period;
6122 x86_pmu.pebs_aliases = NULL;
6123 x86_pmu.pebs_prec_dist = true;
6124 x86_pmu.pebs_block = true;
6125 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6126 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6127 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6128 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6129 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6130
6131 x86_pmu.hw_config = hsw_hw_config;
6132 x86_pmu.get_event_constraints = spr_get_event_constraints;
6133 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6134 hsw_format_attr : nhm_format_attr;
6135 extra_skl_attr = skl_format_attr;
6136 mem_attr = spr_events_attrs;
6137 td_attr = spr_td_events_attrs;
6138 tsx_attr = spr_tsx_events_attrs;
6139 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6140 x86_pmu.lbr_pt_coexist = true;
6141 intel_pmu_pebs_data_source_skl(pmem);
6142 x86_pmu.num_topdown_events = 8;
6143 x86_pmu.update_topdown_event = icl_update_topdown_event;
6144 x86_pmu.set_topdown_event_period = icl_set_topdown_event_period;
6145 pr_cont("Sapphire Rapids events, ");
6146 name = "sapphire_rapids";
6147 break;
6148
6149 case INTEL_FAM6_ALDERLAKE:
6150 case INTEL_FAM6_ALDERLAKE_L:
6151 /*
6152 * Alder Lake has 2 types of CPU, core and atom.
6153 *
6154 * Initialize the common PerfMon capabilities here.
6155 */
6156 x86_pmu.hybrid_pmu = kcalloc(X86_HYBRID_NUM_PMUS,
6157 sizeof(struct x86_hybrid_pmu),
6158 GFP_KERNEL);
6159 if (!x86_pmu.hybrid_pmu)
6160 return -ENOMEM;
6161 static_branch_enable(&perf_is_hybrid);
6162 x86_pmu.num_hybrid_pmus = X86_HYBRID_NUM_PMUS;
6163
6164 x86_pmu.pebs_aliases = NULL;
6165 x86_pmu.pebs_prec_dist = true;
6166 x86_pmu.pebs_block = true;
6167 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
6168 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
6169 x86_pmu.flags |= PMU_FL_PEBS_ALL;
6170 x86_pmu.flags |= PMU_FL_INSTR_LATENCY;
6171 x86_pmu.flags |= PMU_FL_MEM_LOADS_AUX;
6172 x86_pmu.lbr_pt_coexist = true;
6173 intel_pmu_pebs_data_source_skl(false);
6174 x86_pmu.num_topdown_events = 8;
6175 x86_pmu.update_topdown_event = adl_update_topdown_event;
6176 x86_pmu.set_topdown_event_period = adl_set_topdown_event_period;
6177
6178 x86_pmu.filter_match = intel_pmu_filter_match;
6179 x86_pmu.get_event_constraints = adl_get_event_constraints;
6180 x86_pmu.hw_config = adl_hw_config;
6181 x86_pmu.limit_period = spr_limit_period;
6182 x86_pmu.get_hybrid_cpu_type = adl_get_hybrid_cpu_type;
6183 /*
6184 * The rtm_abort_event is used to check whether to enable GPRs
6185 * for the RTM abort event. Atom doesn't have the RTM abort
6186 * event. There is no harmful to set it in the common
6187 * x86_pmu.rtm_abort_event.
6188 */
6189 x86_pmu.rtm_abort_event = X86_CONFIG(.event=0xc9, .umask=0x04);
6190
6191 td_attr = adl_hybrid_events_attrs;
6192 mem_attr = adl_hybrid_mem_attrs;
6193 tsx_attr = adl_hybrid_tsx_attrs;
6194 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
6195 adl_hybrid_extra_attr_rtm : adl_hybrid_extra_attr;
6196
6197 /* Initialize big core specific PerfMon capabilities.*/
6198 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX];
6199 pmu->name = "cpu_core";
6200 pmu->cpu_type = hybrid_big;
6201 pmu->late_ack = true;
6202 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) {
6203 pmu->num_counters = x86_pmu.num_counters + 2;
6204 pmu->num_counters_fixed = x86_pmu.num_counters_fixed + 1;
6205 } else {
6206 pmu->num_counters = x86_pmu.num_counters;
6207 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6208 }
6209
6210 /*
6211 * Quirk: For some Alder Lake machine, when all E-cores are disabled in
6212 * a BIOS, the leaf 0xA will enumerate all counters of P-cores. However,
6213 * the X86_FEATURE_HYBRID_CPU is still set. The above codes will
6214 * mistakenly add extra counters for P-cores. Correct the number of
6215 * counters here.
6216 */
6217 if ((pmu->num_counters > 8) || (pmu->num_counters_fixed > 4)) {
6218 pmu->num_counters = x86_pmu.num_counters;
6219 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6220 }
6221
6222 pmu->max_pebs_events = min_t(unsigned, MAX_PEBS_EVENTS, pmu->num_counters);
6223 pmu->unconstrained = (struct event_constraint)
6224 __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6225 0, pmu->num_counters, 0, 0);
6226 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6227 pmu->intel_cap.perf_metrics = 1;
6228 pmu->intel_cap.pebs_output_pt_available = 0;
6229
6230 memcpy(pmu->hw_cache_event_ids, spr_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6231 memcpy(pmu->hw_cache_extra_regs, spr_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6232 pmu->event_constraints = intel_spr_event_constraints;
6233 pmu->pebs_constraints = intel_spr_pebs_event_constraints;
6234 pmu->extra_regs = intel_spr_extra_regs;
6235
6236 /* Initialize Atom core specific PerfMon capabilities.*/
6237 pmu = &x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX];
6238 pmu->name = "cpu_atom";
6239 pmu->cpu_type = hybrid_small;
6240 pmu->mid_ack = true;
6241 pmu->num_counters = x86_pmu.num_counters;
6242 pmu->num_counters_fixed = x86_pmu.num_counters_fixed;
6243 pmu->max_pebs_events = x86_pmu.max_pebs_events;
6244 pmu->unconstrained = (struct event_constraint)
6245 __EVENT_CONSTRAINT(0, (1ULL << pmu->num_counters) - 1,
6246 0, pmu->num_counters, 0, 0);
6247 pmu->intel_cap.capabilities = x86_pmu.intel_cap.capabilities;
6248 pmu->intel_cap.perf_metrics = 0;
6249 pmu->intel_cap.pebs_output_pt_available = 1;
6250
6251 memcpy(pmu->hw_cache_event_ids, glp_hw_cache_event_ids, sizeof(pmu->hw_cache_event_ids));
6252 memcpy(pmu->hw_cache_extra_regs, tnt_hw_cache_extra_regs, sizeof(pmu->hw_cache_extra_regs));
6253 pmu->hw_cache_event_ids[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)] = -1;
6254 pmu->event_constraints = intel_slm_event_constraints;
6255 pmu->pebs_constraints = intel_grt_pebs_event_constraints;
6256 pmu->extra_regs = intel_grt_extra_regs;
6257 pr_cont("Alderlake Hybrid events, ");
6258 name = "alderlake_hybrid";
6259 break;
6260
6261 default:
6262 switch (x86_pmu.version) {
6263 case 1:
6264 x86_pmu.event_constraints = intel_v1_event_constraints;
6265 pr_cont("generic architected perfmon v1, ");
6266 name = "generic_arch_v1";
6267 break;
6268 default:
6269 /*
6270 * default constraints for v2 and up
6271 */
6272 x86_pmu.event_constraints = intel_gen_event_constraints;
6273 pr_cont("generic architected perfmon, ");
6274 name = "generic_arch_v2+";
6275 break;
6276 }
6277 }
6278
6279 snprintf(pmu_name_str, sizeof(pmu_name_str), "%s", name);
6280
6281 if (!is_hybrid()) {
6282 group_events_td.attrs = td_attr;
6283 group_events_mem.attrs = mem_attr;
6284 group_events_tsx.attrs = tsx_attr;
6285 group_format_extra.attrs = extra_attr;
6286 group_format_extra_skl.attrs = extra_skl_attr;
6287
6288 x86_pmu.attr_update = attr_update;
6289 } else {
6290 hybrid_group_events_td.attrs = td_attr;
6291 hybrid_group_events_mem.attrs = mem_attr;
6292 hybrid_group_events_tsx.attrs = tsx_attr;
6293 hybrid_group_format_extra.attrs = extra_attr;
6294
6295 x86_pmu.attr_update = hybrid_attr_update;
6296 }
6297
6298 intel_pmu_check_num_counters(&x86_pmu.num_counters,
6299 &x86_pmu.num_counters_fixed,
6300 &x86_pmu.intel_ctrl,
6301 (u64)fixed_mask);
6302
6303 /* AnyThread may be deprecated on arch perfmon v5 or later */
6304 if (x86_pmu.intel_cap.anythread_deprecated)
6305 x86_pmu.format_attrs = intel_arch_formats_attr;
6306
6307 intel_pmu_check_event_constraints(x86_pmu.event_constraints,
6308 x86_pmu.num_counters,
6309 x86_pmu.num_counters_fixed,
6310 x86_pmu.intel_ctrl);
6311 /*
6312 * Access LBR MSR may cause #GP under certain circumstances.
6313 * E.g. KVM doesn't support LBR MSR
6314 * Check all LBT MSR here.
6315 * Disable LBR access if any LBR MSRs can not be accessed.
6316 */
6317 if (x86_pmu.lbr_tos && !check_msr(x86_pmu.lbr_tos, 0x3UL))
6318 x86_pmu.lbr_nr = 0;
6319 for (i = 0; i < x86_pmu.lbr_nr; i++) {
6320 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
6321 check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
6322 x86_pmu.lbr_nr = 0;
6323 }
6324
6325 if (x86_pmu.lbr_nr)
6326 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
6327
6328 intel_pmu_check_extra_regs(x86_pmu.extra_regs);
6329
6330 /* Support full width counters using alternative MSR range */
6331 if (x86_pmu.intel_cap.full_width_write) {
6332 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
6333 x86_pmu.perfctr = MSR_IA32_PMC0;
6334 pr_cont("full-width counters, ");
6335 }
6336
6337 if (!is_hybrid() && x86_pmu.intel_cap.perf_metrics)
6338 x86_pmu.intel_ctrl |= 1ULL << GLOBAL_CTRL_EN_PERF_METRICS;
6339
6340 if (is_hybrid())
6341 intel_pmu_check_hybrid_pmus((u64)fixed_mask);
6342
6343 return 0;
6344 }
6345
6346 /*
6347 * HT bug: phase 2 init
6348 * Called once we have valid topology information to check
6349 * whether or not HT is enabled
6350 * If HT is off, then we disable the workaround
6351 */
fixup_ht_bug(void)6352 static __init int fixup_ht_bug(void)
6353 {
6354 int c;
6355 /*
6356 * problem not present on this CPU model, nothing to do
6357 */
6358 if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
6359 return 0;
6360
6361 if (topology_max_smt_threads() > 1) {
6362 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
6363 return 0;
6364 }
6365
6366 cpus_read_lock();
6367
6368 hardlockup_detector_perf_stop();
6369
6370 x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
6371
6372 x86_pmu.start_scheduling = NULL;
6373 x86_pmu.commit_scheduling = NULL;
6374 x86_pmu.stop_scheduling = NULL;
6375
6376 hardlockup_detector_perf_restart();
6377
6378 for_each_online_cpu(c)
6379 free_excl_cntrs(&per_cpu(cpu_hw_events, c));
6380
6381 cpus_read_unlock();
6382 pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
6383 return 0;
6384 }
6385 subsys_initcall(fixup_ht_bug)
6386