• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * KVM paravirt_ops implementation
4  *
5  * Copyright (C) 2007, Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  * Copyright IBM Corporation, 2007
7  *   Authors: Anthony Liguori <aliguori@us.ibm.com>
8  */
9 
10 #define pr_fmt(fmt) "kvm-guest: " fmt
11 
12 #include <linux/context_tracking.h>
13 #include <linux/init.h>
14 #include <linux/irq.h>
15 #include <linux/kernel.h>
16 #include <linux/kvm_para.h>
17 #include <linux/cpu.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/hardirq.h>
21 #include <linux/notifier.h>
22 #include <linux/reboot.h>
23 #include <linux/hash.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/kprobes.h>
27 #include <linux/nmi.h>
28 #include <linux/swait.h>
29 #include <linux/syscore_ops.h>
30 #include <asm/timer.h>
31 #include <asm/cpu.h>
32 #include <asm/traps.h>
33 #include <asm/desc.h>
34 #include <asm/tlbflush.h>
35 #include <asm/apic.h>
36 #include <asm/apicdef.h>
37 #include <asm/hypervisor.h>
38 #include <asm/tlb.h>
39 #include <asm/cpuidle_haltpoll.h>
40 #include <asm/ptrace.h>
41 #include <asm/reboot.h>
42 #include <asm/svm.h>
43 
44 DEFINE_STATIC_KEY_FALSE(kvm_async_pf_enabled);
45 
46 static int kvmapf = 1;
47 
parse_no_kvmapf(char * arg)48 static int __init parse_no_kvmapf(char *arg)
49 {
50         kvmapf = 0;
51         return 0;
52 }
53 
54 early_param("no-kvmapf", parse_no_kvmapf);
55 
56 static int steal_acc = 1;
parse_no_stealacc(char * arg)57 static int __init parse_no_stealacc(char *arg)
58 {
59         steal_acc = 0;
60         return 0;
61 }
62 
63 early_param("no-steal-acc", parse_no_stealacc);
64 
65 static DEFINE_PER_CPU_DECRYPTED(struct kvm_vcpu_pv_apf_data, apf_reason) __aligned(64);
66 DEFINE_PER_CPU_DECRYPTED(struct kvm_steal_time, steal_time) __aligned(64) __visible;
67 static int has_steal_clock = 0;
68 
69 static int has_guest_poll = 0;
70 /*
71  * No need for any "IO delay" on KVM
72  */
kvm_io_delay(void)73 static void kvm_io_delay(void)
74 {
75 }
76 
77 #define KVM_TASK_SLEEP_HASHBITS 8
78 #define KVM_TASK_SLEEP_HASHSIZE (1<<KVM_TASK_SLEEP_HASHBITS)
79 
80 struct kvm_task_sleep_node {
81 	struct hlist_node link;
82 	struct swait_queue_head wq;
83 	u32 token;
84 	int cpu;
85 };
86 
87 static struct kvm_task_sleep_head {
88 	raw_spinlock_t lock;
89 	struct hlist_head list;
90 } async_pf_sleepers[KVM_TASK_SLEEP_HASHSIZE];
91 
_find_apf_task(struct kvm_task_sleep_head * b,u32 token)92 static struct kvm_task_sleep_node *_find_apf_task(struct kvm_task_sleep_head *b,
93 						  u32 token)
94 {
95 	struct hlist_node *p;
96 
97 	hlist_for_each(p, &b->list) {
98 		struct kvm_task_sleep_node *n =
99 			hlist_entry(p, typeof(*n), link);
100 		if (n->token == token)
101 			return n;
102 	}
103 
104 	return NULL;
105 }
106 
kvm_async_pf_queue_task(u32 token,struct kvm_task_sleep_node * n)107 static bool kvm_async_pf_queue_task(u32 token, struct kvm_task_sleep_node *n)
108 {
109 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
110 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
111 	struct kvm_task_sleep_node *e;
112 
113 	raw_spin_lock(&b->lock);
114 	e = _find_apf_task(b, token);
115 	if (e) {
116 		/* dummy entry exist -> wake up was delivered ahead of PF */
117 		hlist_del(&e->link);
118 		raw_spin_unlock(&b->lock);
119 		kfree(e);
120 		return false;
121 	}
122 
123 	n->token = token;
124 	n->cpu = smp_processor_id();
125 	init_swait_queue_head(&n->wq);
126 	hlist_add_head(&n->link, &b->list);
127 	raw_spin_unlock(&b->lock);
128 	return true;
129 }
130 
131 /*
132  * kvm_async_pf_task_wait_schedule - Wait for pagefault to be handled
133  * @token:	Token to identify the sleep node entry
134  *
135  * Invoked from the async pagefault handling code or from the VM exit page
136  * fault handler. In both cases RCU is watching.
137  */
kvm_async_pf_task_wait_schedule(u32 token)138 void kvm_async_pf_task_wait_schedule(u32 token)
139 {
140 	struct kvm_task_sleep_node n;
141 	DECLARE_SWAITQUEUE(wait);
142 
143 	lockdep_assert_irqs_disabled();
144 
145 	if (!kvm_async_pf_queue_task(token, &n))
146 		return;
147 
148 	for (;;) {
149 		prepare_to_swait_exclusive(&n.wq, &wait, TASK_UNINTERRUPTIBLE);
150 		if (hlist_unhashed(&n.link))
151 			break;
152 
153 		local_irq_enable();
154 		schedule();
155 		local_irq_disable();
156 	}
157 	finish_swait(&n.wq, &wait);
158 }
159 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wait_schedule);
160 
apf_task_wake_one(struct kvm_task_sleep_node * n)161 static void apf_task_wake_one(struct kvm_task_sleep_node *n)
162 {
163 	hlist_del_init(&n->link);
164 	if (swq_has_sleeper(&n->wq))
165 		swake_up_one(&n->wq);
166 }
167 
apf_task_wake_all(void)168 static void apf_task_wake_all(void)
169 {
170 	int i;
171 
172 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++) {
173 		struct kvm_task_sleep_head *b = &async_pf_sleepers[i];
174 		struct kvm_task_sleep_node *n;
175 		struct hlist_node *p, *next;
176 
177 		raw_spin_lock(&b->lock);
178 		hlist_for_each_safe(p, next, &b->list) {
179 			n = hlist_entry(p, typeof(*n), link);
180 			if (n->cpu == smp_processor_id())
181 				apf_task_wake_one(n);
182 		}
183 		raw_spin_unlock(&b->lock);
184 	}
185 }
186 
kvm_async_pf_task_wake(u32 token)187 void kvm_async_pf_task_wake(u32 token)
188 {
189 	u32 key = hash_32(token, KVM_TASK_SLEEP_HASHBITS);
190 	struct kvm_task_sleep_head *b = &async_pf_sleepers[key];
191 	struct kvm_task_sleep_node *n, *dummy = NULL;
192 
193 	if (token == ~0) {
194 		apf_task_wake_all();
195 		return;
196 	}
197 
198 again:
199 	raw_spin_lock(&b->lock);
200 	n = _find_apf_task(b, token);
201 	if (!n) {
202 		/*
203 		 * Async #PF not yet handled, add a dummy entry for the token.
204 		 * Allocating the token must be down outside of the raw lock
205 		 * as the allocator is preemptible on PREEMPT_RT kernels.
206 		 */
207 		if (!dummy) {
208 			raw_spin_unlock(&b->lock);
209 			dummy = kzalloc(sizeof(*dummy), GFP_ATOMIC);
210 
211 			/*
212 			 * Continue looping on allocation failure, eventually
213 			 * the async #PF will be handled and allocating a new
214 			 * node will be unnecessary.
215 			 */
216 			if (!dummy)
217 				cpu_relax();
218 
219 			/*
220 			 * Recheck for async #PF completion before enqueueing
221 			 * the dummy token to avoid duplicate list entries.
222 			 */
223 			goto again;
224 		}
225 		dummy->token = token;
226 		dummy->cpu = smp_processor_id();
227 		init_swait_queue_head(&dummy->wq);
228 		hlist_add_head(&dummy->link, &b->list);
229 		dummy = NULL;
230 	} else {
231 		apf_task_wake_one(n);
232 	}
233 	raw_spin_unlock(&b->lock);
234 
235 	/* A dummy token might be allocated and ultimately not used.  */
236 	if (dummy)
237 		kfree(dummy);
238 }
239 EXPORT_SYMBOL_GPL(kvm_async_pf_task_wake);
240 
kvm_read_and_reset_apf_flags(void)241 noinstr u32 kvm_read_and_reset_apf_flags(void)
242 {
243 	u32 flags = 0;
244 
245 	if (__this_cpu_read(apf_reason.enabled)) {
246 		flags = __this_cpu_read(apf_reason.flags);
247 		__this_cpu_write(apf_reason.flags, 0);
248 	}
249 
250 	return flags;
251 }
252 EXPORT_SYMBOL_GPL(kvm_read_and_reset_apf_flags);
253 
__kvm_handle_async_pf(struct pt_regs * regs,u32 token)254 noinstr bool __kvm_handle_async_pf(struct pt_regs *regs, u32 token)
255 {
256 	u32 flags = kvm_read_and_reset_apf_flags();
257 	irqentry_state_t state;
258 
259 	if (!flags)
260 		return false;
261 
262 	state = irqentry_enter(regs);
263 	instrumentation_begin();
264 
265 	/*
266 	 * If the host managed to inject an async #PF into an interrupt
267 	 * disabled region, then die hard as this is not going to end well
268 	 * and the host side is seriously broken.
269 	 */
270 	if (unlikely(!(regs->flags & X86_EFLAGS_IF)))
271 		panic("Host injected async #PF in interrupt disabled region\n");
272 
273 	if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
274 		if (unlikely(!(user_mode(regs))))
275 			panic("Host injected async #PF in kernel mode\n");
276 		/* Page is swapped out by the host. */
277 		kvm_async_pf_task_wait_schedule(token);
278 	} else {
279 		WARN_ONCE(1, "Unexpected async PF flags: %x\n", flags);
280 	}
281 
282 	instrumentation_end();
283 	irqentry_exit(regs, state);
284 	return true;
285 }
286 
DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)287 DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_asyncpf_interrupt)
288 {
289 	struct pt_regs *old_regs = set_irq_regs(regs);
290 	u32 token;
291 
292 	ack_APIC_irq();
293 
294 	inc_irq_stat(irq_hv_callback_count);
295 
296 	if (__this_cpu_read(apf_reason.enabled)) {
297 		token = __this_cpu_read(apf_reason.token);
298 		kvm_async_pf_task_wake(token);
299 		__this_cpu_write(apf_reason.token, 0);
300 		wrmsrl(MSR_KVM_ASYNC_PF_ACK, 1);
301 	}
302 
303 	set_irq_regs(old_regs);
304 }
305 
paravirt_ops_setup(void)306 static void __init paravirt_ops_setup(void)
307 {
308 	pv_info.name = "KVM";
309 
310 	if (kvm_para_has_feature(KVM_FEATURE_NOP_IO_DELAY))
311 		pv_ops.cpu.io_delay = kvm_io_delay;
312 
313 #ifdef CONFIG_X86_IO_APIC
314 	no_timer_check = 1;
315 #endif
316 }
317 
kvm_register_steal_time(void)318 static void kvm_register_steal_time(void)
319 {
320 	int cpu = smp_processor_id();
321 	struct kvm_steal_time *st = &per_cpu(steal_time, cpu);
322 
323 	if (!has_steal_clock)
324 		return;
325 
326 	wrmsrl(MSR_KVM_STEAL_TIME, (slow_virt_to_phys(st) | KVM_MSR_ENABLED));
327 	pr_info("stealtime: cpu %d, msr %llx\n", cpu,
328 		(unsigned long long) slow_virt_to_phys(st));
329 }
330 
331 static DEFINE_PER_CPU_DECRYPTED(unsigned long, kvm_apic_eoi) = KVM_PV_EOI_DISABLED;
332 
kvm_guest_apic_eoi_write(u32 reg,u32 val)333 static notrace void kvm_guest_apic_eoi_write(u32 reg, u32 val)
334 {
335 	/**
336 	 * This relies on __test_and_clear_bit to modify the memory
337 	 * in a way that is atomic with respect to the local CPU.
338 	 * The hypervisor only accesses this memory from the local CPU so
339 	 * there's no need for lock or memory barriers.
340 	 * An optimization barrier is implied in apic write.
341 	 */
342 	if (__test_and_clear_bit(KVM_PV_EOI_BIT, this_cpu_ptr(&kvm_apic_eoi)))
343 		return;
344 	apic->native_eoi_write(APIC_EOI, APIC_EOI_ACK);
345 }
346 
kvm_guest_cpu_init(void)347 static void kvm_guest_cpu_init(void)
348 {
349 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
350 		u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
351 
352 		WARN_ON_ONCE(!static_branch_likely(&kvm_async_pf_enabled));
353 
354 		pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
355 		pa |= KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
356 
357 		if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_VMEXIT))
358 			pa |= KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
359 
360 		wrmsrl(MSR_KVM_ASYNC_PF_INT, HYPERVISOR_CALLBACK_VECTOR);
361 
362 		wrmsrl(MSR_KVM_ASYNC_PF_EN, pa);
363 		__this_cpu_write(apf_reason.enabled, 1);
364 		pr_info("setup async PF for cpu %d\n", smp_processor_id());
365 	}
366 
367 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI)) {
368 		unsigned long pa;
369 
370 		/* Size alignment is implied but just to make it explicit. */
371 		BUILD_BUG_ON(__alignof__(kvm_apic_eoi) < 4);
372 		__this_cpu_write(kvm_apic_eoi, 0);
373 		pa = slow_virt_to_phys(this_cpu_ptr(&kvm_apic_eoi))
374 			| KVM_MSR_ENABLED;
375 		wrmsrl(MSR_KVM_PV_EOI_EN, pa);
376 	}
377 
378 	if (has_steal_clock)
379 		kvm_register_steal_time();
380 }
381 
kvm_pv_disable_apf(void)382 static void kvm_pv_disable_apf(void)
383 {
384 	if (!__this_cpu_read(apf_reason.enabled))
385 		return;
386 
387 	wrmsrl(MSR_KVM_ASYNC_PF_EN, 0);
388 	__this_cpu_write(apf_reason.enabled, 0);
389 
390 	pr_info("disable async PF for cpu %d\n", smp_processor_id());
391 }
392 
kvm_disable_steal_time(void)393 static void kvm_disable_steal_time(void)
394 {
395 	if (!has_steal_clock)
396 		return;
397 
398 	wrmsr(MSR_KVM_STEAL_TIME, 0, 0);
399 }
400 
kvm_steal_clock(int cpu)401 static u64 kvm_steal_clock(int cpu)
402 {
403 	u64 steal;
404 	struct kvm_steal_time *src;
405 	int version;
406 
407 	src = &per_cpu(steal_time, cpu);
408 	do {
409 		version = src->version;
410 		virt_rmb();
411 		steal = src->steal;
412 		virt_rmb();
413 	} while ((version & 1) || (version != src->version));
414 
415 	return steal;
416 }
417 
__set_percpu_decrypted(void * ptr,unsigned long size)418 static inline void __set_percpu_decrypted(void *ptr, unsigned long size)
419 {
420 	early_set_memory_decrypted((unsigned long) ptr, size);
421 }
422 
423 /*
424  * Iterate through all possible CPUs and map the memory region pointed
425  * by apf_reason, steal_time and kvm_apic_eoi as decrypted at once.
426  *
427  * Note: we iterate through all possible CPUs to ensure that CPUs
428  * hotplugged will have their per-cpu variable already mapped as
429  * decrypted.
430  */
sev_map_percpu_data(void)431 static void __init sev_map_percpu_data(void)
432 {
433 	int cpu;
434 
435 	if (!sev_active())
436 		return;
437 
438 	for_each_possible_cpu(cpu) {
439 		__set_percpu_decrypted(&per_cpu(apf_reason, cpu), sizeof(apf_reason));
440 		__set_percpu_decrypted(&per_cpu(steal_time, cpu), sizeof(steal_time));
441 		__set_percpu_decrypted(&per_cpu(kvm_apic_eoi, cpu), sizeof(kvm_apic_eoi));
442 	}
443 }
444 
kvm_guest_cpu_offline(bool shutdown)445 static void kvm_guest_cpu_offline(bool shutdown)
446 {
447 	kvm_disable_steal_time();
448 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
449 		wrmsrl(MSR_KVM_PV_EOI_EN, 0);
450 	kvm_pv_disable_apf();
451 	if (!shutdown)
452 		apf_task_wake_all();
453 	kvmclock_disable();
454 }
455 
kvm_cpu_online(unsigned int cpu)456 static int kvm_cpu_online(unsigned int cpu)
457 {
458 	unsigned long flags;
459 
460 	local_irq_save(flags);
461 	kvm_guest_cpu_init();
462 	local_irq_restore(flags);
463 	return 0;
464 }
465 
466 #ifdef CONFIG_SMP
467 
468 static DEFINE_PER_CPU(cpumask_var_t, __pv_cpu_mask);
469 
pv_tlb_flush_supported(void)470 static bool pv_tlb_flush_supported(void)
471 {
472 	return (kvm_para_has_feature(KVM_FEATURE_PV_TLB_FLUSH) &&
473 		!kvm_para_has_hint(KVM_HINTS_REALTIME) &&
474 		kvm_para_has_feature(KVM_FEATURE_STEAL_TIME) &&
475 		(num_possible_cpus() != 1));
476 }
477 
pv_ipi_supported(void)478 static bool pv_ipi_supported(void)
479 {
480 	return (kvm_para_has_feature(KVM_FEATURE_PV_SEND_IPI) &&
481 	       (num_possible_cpus() != 1));
482 }
483 
pv_sched_yield_supported(void)484 static bool pv_sched_yield_supported(void)
485 {
486 	return (kvm_para_has_feature(KVM_FEATURE_PV_SCHED_YIELD) &&
487 		!kvm_para_has_hint(KVM_HINTS_REALTIME) &&
488 	    kvm_para_has_feature(KVM_FEATURE_STEAL_TIME) &&
489 	    (num_possible_cpus() != 1));
490 }
491 
492 #define KVM_IPI_CLUSTER_SIZE	(2 * BITS_PER_LONG)
493 
__send_ipi_mask(const struct cpumask * mask,int vector)494 static void __send_ipi_mask(const struct cpumask *mask, int vector)
495 {
496 	unsigned long flags;
497 	int cpu, apic_id, icr;
498 	int min = 0, max = 0;
499 #ifdef CONFIG_X86_64
500 	__uint128_t ipi_bitmap = 0;
501 #else
502 	u64 ipi_bitmap = 0;
503 #endif
504 	long ret;
505 
506 	if (cpumask_empty(mask))
507 		return;
508 
509 	local_irq_save(flags);
510 
511 	switch (vector) {
512 	default:
513 		icr = APIC_DM_FIXED | vector;
514 		break;
515 	case NMI_VECTOR:
516 		icr = APIC_DM_NMI;
517 		break;
518 	}
519 
520 	for_each_cpu(cpu, mask) {
521 		apic_id = per_cpu(x86_cpu_to_apicid, cpu);
522 		if (!ipi_bitmap) {
523 			min = max = apic_id;
524 		} else if (apic_id < min && max - apic_id < KVM_IPI_CLUSTER_SIZE) {
525 			ipi_bitmap <<= min - apic_id;
526 			min = apic_id;
527 		} else if (apic_id > min && apic_id < min + KVM_IPI_CLUSTER_SIZE) {
528 			max = apic_id < max ? max : apic_id;
529 		} else {
530 			ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
531 				(unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
532 			WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
533 				  ret);
534 			min = max = apic_id;
535 			ipi_bitmap = 0;
536 		}
537 		__set_bit(apic_id - min, (unsigned long *)&ipi_bitmap);
538 	}
539 
540 	if (ipi_bitmap) {
541 		ret = kvm_hypercall4(KVM_HC_SEND_IPI, (unsigned long)ipi_bitmap,
542 			(unsigned long)(ipi_bitmap >> BITS_PER_LONG), min, icr);
543 		WARN_ONCE(ret < 0, "kvm-guest: failed to send PV IPI: %ld",
544 			  ret);
545 	}
546 
547 	local_irq_restore(flags);
548 }
549 
kvm_send_ipi_mask(const struct cpumask * mask,int vector)550 static void kvm_send_ipi_mask(const struct cpumask *mask, int vector)
551 {
552 	__send_ipi_mask(mask, vector);
553 }
554 
kvm_send_ipi_mask_allbutself(const struct cpumask * mask,int vector)555 static void kvm_send_ipi_mask_allbutself(const struct cpumask *mask, int vector)
556 {
557 	unsigned int this_cpu = smp_processor_id();
558 	struct cpumask *new_mask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
559 	const struct cpumask *local_mask;
560 
561 	cpumask_copy(new_mask, mask);
562 	cpumask_clear_cpu(this_cpu, new_mask);
563 	local_mask = new_mask;
564 	__send_ipi_mask(local_mask, vector);
565 }
566 
567 /*
568  * Set the IPI entry points
569  */
kvm_setup_pv_ipi(void)570 static void kvm_setup_pv_ipi(void)
571 {
572 	apic->send_IPI_mask = kvm_send_ipi_mask;
573 	apic->send_IPI_mask_allbutself = kvm_send_ipi_mask_allbutself;
574 	pr_info("setup PV IPIs\n");
575 }
576 
kvm_smp_send_call_func_ipi(const struct cpumask * mask)577 static void kvm_smp_send_call_func_ipi(const struct cpumask *mask)
578 {
579 	int cpu;
580 
581 	native_send_call_func_ipi(mask);
582 
583 	/* Make sure other vCPUs get a chance to run if they need to. */
584 	for_each_cpu(cpu, mask) {
585 		if (vcpu_is_preempted(cpu)) {
586 			kvm_hypercall1(KVM_HC_SCHED_YIELD, per_cpu(x86_cpu_to_apicid, cpu));
587 			break;
588 		}
589 	}
590 }
591 
kvm_flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)592 static void kvm_flush_tlb_multi(const struct cpumask *cpumask,
593 			const struct flush_tlb_info *info)
594 {
595 	u8 state;
596 	int cpu;
597 	struct kvm_steal_time *src;
598 	struct cpumask *flushmask = this_cpu_cpumask_var_ptr(__pv_cpu_mask);
599 
600 	cpumask_copy(flushmask, cpumask);
601 	/*
602 	 * We have to call flush only on online vCPUs. And
603 	 * queue flush_on_enter for pre-empted vCPUs
604 	 */
605 	for_each_cpu(cpu, flushmask) {
606 		/*
607 		 * The local vCPU is never preempted, so we do not explicitly
608 		 * skip check for local vCPU - it will never be cleared from
609 		 * flushmask.
610 		 */
611 		src = &per_cpu(steal_time, cpu);
612 		state = READ_ONCE(src->preempted);
613 		if ((state & KVM_VCPU_PREEMPTED)) {
614 			if (try_cmpxchg(&src->preempted, &state,
615 					state | KVM_VCPU_FLUSH_TLB))
616 				__cpumask_clear_cpu(cpu, flushmask);
617 		}
618 	}
619 
620 	native_flush_tlb_multi(flushmask, info);
621 }
622 
kvm_alloc_cpumask(void)623 static __init int kvm_alloc_cpumask(void)
624 {
625 	int cpu;
626 
627 	if (!kvm_para_available() || nopv)
628 		return 0;
629 
630 	if (pv_tlb_flush_supported() || pv_ipi_supported())
631 		for_each_possible_cpu(cpu) {
632 			zalloc_cpumask_var_node(per_cpu_ptr(&__pv_cpu_mask, cpu),
633 				GFP_KERNEL, cpu_to_node(cpu));
634 		}
635 
636 	return 0;
637 }
638 arch_initcall(kvm_alloc_cpumask);
639 
kvm_smp_prepare_boot_cpu(void)640 static void __init kvm_smp_prepare_boot_cpu(void)
641 {
642 	/*
643 	 * Map the per-cpu variables as decrypted before kvm_guest_cpu_init()
644 	 * shares the guest physical address with the hypervisor.
645 	 */
646 	sev_map_percpu_data();
647 
648 	kvm_guest_cpu_init();
649 	native_smp_prepare_boot_cpu();
650 	kvm_spinlock_init();
651 }
652 
kvm_cpu_down_prepare(unsigned int cpu)653 static int kvm_cpu_down_prepare(unsigned int cpu)
654 {
655 	unsigned long flags;
656 
657 	local_irq_save(flags);
658 	kvm_guest_cpu_offline(false);
659 	local_irq_restore(flags);
660 	return 0;
661 }
662 
663 #endif
664 
kvm_suspend(void)665 static int kvm_suspend(void)
666 {
667 	u64 val = 0;
668 
669 	kvm_guest_cpu_offline(false);
670 
671 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
672 	if (kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
673 		rdmsrl(MSR_KVM_POLL_CONTROL, val);
674 	has_guest_poll = !(val & 1);
675 #endif
676 	return 0;
677 }
678 
kvm_resume(void)679 static void kvm_resume(void)
680 {
681 	kvm_cpu_online(raw_smp_processor_id());
682 
683 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
684 	if (kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL) && has_guest_poll)
685 		wrmsrl(MSR_KVM_POLL_CONTROL, 0);
686 #endif
687 }
688 
689 static struct syscore_ops kvm_syscore_ops = {
690 	.suspend	= kvm_suspend,
691 	.resume		= kvm_resume,
692 };
693 
kvm_pv_guest_cpu_reboot(void * unused)694 static void kvm_pv_guest_cpu_reboot(void *unused)
695 {
696 	kvm_guest_cpu_offline(true);
697 }
698 
kvm_pv_reboot_notify(struct notifier_block * nb,unsigned long code,void * unused)699 static int kvm_pv_reboot_notify(struct notifier_block *nb,
700 				unsigned long code, void *unused)
701 {
702 	if (code == SYS_RESTART)
703 		on_each_cpu(kvm_pv_guest_cpu_reboot, NULL, 1);
704 	return NOTIFY_DONE;
705 }
706 
707 static struct notifier_block kvm_pv_reboot_nb = {
708 	.notifier_call = kvm_pv_reboot_notify,
709 };
710 
711 /*
712  * After a PV feature is registered, the host will keep writing to the
713  * registered memory location. If the guest happens to shutdown, this memory
714  * won't be valid. In cases like kexec, in which you install a new kernel, this
715  * means a random memory location will be kept being written.
716  */
717 #ifdef CONFIG_KEXEC_CORE
kvm_crash_shutdown(struct pt_regs * regs)718 static void kvm_crash_shutdown(struct pt_regs *regs)
719 {
720 	kvm_guest_cpu_offline(true);
721 	native_machine_crash_shutdown(regs);
722 }
723 #endif
724 
kvm_guest_init(void)725 static void __init kvm_guest_init(void)
726 {
727 	int i;
728 
729 	paravirt_ops_setup();
730 	register_reboot_notifier(&kvm_pv_reboot_nb);
731 	for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
732 		raw_spin_lock_init(&async_pf_sleepers[i].lock);
733 
734 	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
735 		has_steal_clock = 1;
736 		static_call_update(pv_steal_clock, kvm_steal_clock);
737 	}
738 
739 	if (kvm_para_has_feature(KVM_FEATURE_PV_EOI))
740 		apic_set_eoi_write(kvm_guest_apic_eoi_write);
741 
742 	if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF_INT) && kvmapf) {
743 		static_branch_enable(&kvm_async_pf_enabled);
744 		alloc_intr_gate(HYPERVISOR_CALLBACK_VECTOR, asm_sysvec_kvm_asyncpf_interrupt);
745 	}
746 
747 #ifdef CONFIG_SMP
748 	if (pv_tlb_flush_supported()) {
749 		pv_ops.mmu.flush_tlb_multi = kvm_flush_tlb_multi;
750 		pv_ops.mmu.tlb_remove_table = tlb_remove_table;
751 		pr_info("KVM setup pv remote TLB flush\n");
752 	}
753 
754 	smp_ops.smp_prepare_boot_cpu = kvm_smp_prepare_boot_cpu;
755 	if (pv_sched_yield_supported()) {
756 		smp_ops.send_call_func_ipi = kvm_smp_send_call_func_ipi;
757 		pr_info("setup PV sched yield\n");
758 	}
759 	if (cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/kvm:online",
760 				      kvm_cpu_online, kvm_cpu_down_prepare) < 0)
761 		pr_err("failed to install cpu hotplug callbacks\n");
762 #else
763 	sev_map_percpu_data();
764 	kvm_guest_cpu_init();
765 #endif
766 
767 #ifdef CONFIG_KEXEC_CORE
768 	machine_ops.crash_shutdown = kvm_crash_shutdown;
769 #endif
770 
771 	register_syscore_ops(&kvm_syscore_ops);
772 
773 	/*
774 	 * Hard lockup detection is enabled by default. Disable it, as guests
775 	 * can get false positives too easily, for example if the host is
776 	 * overcommitted.
777 	 */
778 	hardlockup_detector_disable();
779 }
780 
__kvm_cpuid_base(void)781 static noinline uint32_t __kvm_cpuid_base(void)
782 {
783 	if (boot_cpu_data.cpuid_level < 0)
784 		return 0;	/* So we don't blow up on old processors */
785 
786 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
787 		return hypervisor_cpuid_base("KVMKVMKVM\0\0\0", 0);
788 
789 	return 0;
790 }
791 
kvm_cpuid_base(void)792 static inline uint32_t kvm_cpuid_base(void)
793 {
794 	static int kvm_cpuid_base = -1;
795 
796 	if (kvm_cpuid_base == -1)
797 		kvm_cpuid_base = __kvm_cpuid_base();
798 
799 	return kvm_cpuid_base;
800 }
801 
kvm_para_available(void)802 bool kvm_para_available(void)
803 {
804 	return kvm_cpuid_base() != 0;
805 }
806 EXPORT_SYMBOL_GPL(kvm_para_available);
807 
kvm_arch_para_features(void)808 unsigned int kvm_arch_para_features(void)
809 {
810 	return cpuid_eax(kvm_cpuid_base() | KVM_CPUID_FEATURES);
811 }
812 
kvm_arch_para_hints(void)813 unsigned int kvm_arch_para_hints(void)
814 {
815 	return cpuid_edx(kvm_cpuid_base() | KVM_CPUID_FEATURES);
816 }
817 EXPORT_SYMBOL_GPL(kvm_arch_para_hints);
818 
kvm_detect(void)819 static uint32_t __init kvm_detect(void)
820 {
821 	return kvm_cpuid_base();
822 }
823 
kvm_apic_init(void)824 static void __init kvm_apic_init(void)
825 {
826 #ifdef CONFIG_SMP
827 	if (pv_ipi_supported())
828 		kvm_setup_pv_ipi();
829 #endif
830 }
831 
kvm_msi_ext_dest_id(void)832 static bool __init kvm_msi_ext_dest_id(void)
833 {
834 	return kvm_para_has_feature(KVM_FEATURE_MSI_EXT_DEST_ID);
835 }
836 
kvm_init_platform(void)837 static void __init kvm_init_platform(void)
838 {
839 	kvmclock_init();
840 	x86_platform.apic_post_init = kvm_apic_init;
841 }
842 
843 #if defined(CONFIG_AMD_MEM_ENCRYPT)
kvm_sev_es_hcall_prepare(struct ghcb * ghcb,struct pt_regs * regs)844 static void kvm_sev_es_hcall_prepare(struct ghcb *ghcb, struct pt_regs *regs)
845 {
846 	/* RAX and CPL are already in the GHCB */
847 	ghcb_set_rbx(ghcb, regs->bx);
848 	ghcb_set_rcx(ghcb, regs->cx);
849 	ghcb_set_rdx(ghcb, regs->dx);
850 	ghcb_set_rsi(ghcb, regs->si);
851 }
852 
kvm_sev_es_hcall_finish(struct ghcb * ghcb,struct pt_regs * regs)853 static bool kvm_sev_es_hcall_finish(struct ghcb *ghcb, struct pt_regs *regs)
854 {
855 	/* No checking of the return state needed */
856 	return true;
857 }
858 #endif
859 
860 const __initconst struct hypervisor_x86 x86_hyper_kvm = {
861 	.name				= "KVM",
862 	.detect				= kvm_detect,
863 	.type				= X86_HYPER_KVM,
864 	.init.guest_late_init		= kvm_guest_init,
865 	.init.x2apic_available		= kvm_para_available,
866 	.init.msi_ext_dest_id		= kvm_msi_ext_dest_id,
867 	.init.init_platform		= kvm_init_platform,
868 #if defined(CONFIG_AMD_MEM_ENCRYPT)
869 	.runtime.sev_es_hcall_prepare	= kvm_sev_es_hcall_prepare,
870 	.runtime.sev_es_hcall_finish	= kvm_sev_es_hcall_finish,
871 #endif
872 };
873 
activate_jump_labels(void)874 static __init int activate_jump_labels(void)
875 {
876 	if (has_steal_clock) {
877 		static_key_slow_inc(&paravirt_steal_enabled);
878 		if (steal_acc)
879 			static_key_slow_inc(&paravirt_steal_rq_enabled);
880 	}
881 
882 	return 0;
883 }
884 arch_initcall(activate_jump_labels);
885 
886 #ifdef CONFIG_PARAVIRT_SPINLOCKS
887 
888 /* Kick a cpu by its apicid. Used to wake up a halted vcpu */
kvm_kick_cpu(int cpu)889 static void kvm_kick_cpu(int cpu)
890 {
891 	int apicid;
892 	unsigned long flags = 0;
893 
894 	apicid = per_cpu(x86_cpu_to_apicid, cpu);
895 	kvm_hypercall2(KVM_HC_KICK_CPU, flags, apicid);
896 }
897 
898 #include <asm/qspinlock.h>
899 
kvm_wait(u8 * ptr,u8 val)900 static void kvm_wait(u8 *ptr, u8 val)
901 {
902 	if (in_nmi())
903 		return;
904 
905 	/*
906 	 * halt until it's our turn and kicked. Note that we do safe halt
907 	 * for irq enabled case to avoid hang when lock info is overwritten
908 	 * in irq spinlock slowpath and no spurious interrupt occur to save us.
909 	 */
910 	if (irqs_disabled()) {
911 		if (READ_ONCE(*ptr) == val)
912 			halt();
913 	} else {
914 		local_irq_disable();
915 
916 		/* safe_halt() will enable IRQ */
917 		if (READ_ONCE(*ptr) == val)
918 			safe_halt();
919 		else
920 			local_irq_enable();
921 	}
922 }
923 
924 #ifdef CONFIG_X86_32
__kvm_vcpu_is_preempted(long cpu)925 __visible bool __kvm_vcpu_is_preempted(long cpu)
926 {
927 	struct kvm_steal_time *src = &per_cpu(steal_time, cpu);
928 
929 	return !!(src->preempted & KVM_VCPU_PREEMPTED);
930 }
931 PV_CALLEE_SAVE_REGS_THUNK(__kvm_vcpu_is_preempted);
932 
933 #else
934 
935 #include <asm/asm-offsets.h>
936 
937 extern bool __raw_callee_save___kvm_vcpu_is_preempted(long);
938 
939 /*
940  * Hand-optimize version for x86-64 to avoid 8 64-bit register saving and
941  * restoring to/from the stack.
942  */
943 asm(
944 ".pushsection .text;"
945 ".global __raw_callee_save___kvm_vcpu_is_preempted;"
946 ".type __raw_callee_save___kvm_vcpu_is_preempted, @function;"
947 "__raw_callee_save___kvm_vcpu_is_preempted:"
948 "movq	__per_cpu_offset(,%rdi,8), %rax;"
949 "cmpb	$0, " __stringify(KVM_STEAL_TIME_preempted) "+steal_time(%rax);"
950 "setne	%al;"
951 ASM_RET
952 ".size __raw_callee_save___kvm_vcpu_is_preempted, .-__raw_callee_save___kvm_vcpu_is_preempted;"
953 ".popsection");
954 
955 #endif
956 
957 /*
958  * Setup pv_lock_ops to exploit KVM_FEATURE_PV_UNHALT if present.
959  */
kvm_spinlock_init(void)960 void __init kvm_spinlock_init(void)
961 {
962 	/*
963 	 * In case host doesn't support KVM_FEATURE_PV_UNHALT there is still an
964 	 * advantage of keeping virt_spin_lock_key enabled: virt_spin_lock() is
965 	 * preferred over native qspinlock when vCPU is preempted.
966 	 */
967 	if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT)) {
968 		pr_info("PV spinlocks disabled, no host support\n");
969 		return;
970 	}
971 
972 	/*
973 	 * Disable PV spinlocks and use native qspinlock when dedicated pCPUs
974 	 * are available.
975 	 */
976 	if (kvm_para_has_hint(KVM_HINTS_REALTIME)) {
977 		pr_info("PV spinlocks disabled with KVM_HINTS_REALTIME hints\n");
978 		goto out;
979 	}
980 
981 	if (num_possible_cpus() == 1) {
982 		pr_info("PV spinlocks disabled, single CPU\n");
983 		goto out;
984 	}
985 
986 	if (nopvspin) {
987 		pr_info("PV spinlocks disabled, forced by \"nopvspin\" parameter\n");
988 		goto out;
989 	}
990 
991 	pr_info("PV spinlocks enabled\n");
992 
993 	__pv_init_lock_hash();
994 	pv_ops.lock.queued_spin_lock_slowpath = __pv_queued_spin_lock_slowpath;
995 	pv_ops.lock.queued_spin_unlock =
996 		PV_CALLEE_SAVE(__pv_queued_spin_unlock);
997 	pv_ops.lock.wait = kvm_wait;
998 	pv_ops.lock.kick = kvm_kick_cpu;
999 
1000 	if (kvm_para_has_feature(KVM_FEATURE_STEAL_TIME)) {
1001 		pv_ops.lock.vcpu_is_preempted =
1002 			PV_CALLEE_SAVE(__kvm_vcpu_is_preempted);
1003 	}
1004 	/*
1005 	 * When PV spinlock is enabled which is preferred over
1006 	 * virt_spin_lock(), virt_spin_lock_key's value is meaningless.
1007 	 * Just disable it anyway.
1008 	 */
1009 out:
1010 	static_branch_disable(&virt_spin_lock_key);
1011 }
1012 
1013 #endif	/* CONFIG_PARAVIRT_SPINLOCKS */
1014 
1015 #ifdef CONFIG_ARCH_CPUIDLE_HALTPOLL
1016 
kvm_disable_host_haltpoll(void * i)1017 static void kvm_disable_host_haltpoll(void *i)
1018 {
1019 	wrmsrl(MSR_KVM_POLL_CONTROL, 0);
1020 }
1021 
kvm_enable_host_haltpoll(void * i)1022 static void kvm_enable_host_haltpoll(void *i)
1023 {
1024 	wrmsrl(MSR_KVM_POLL_CONTROL, 1);
1025 }
1026 
arch_haltpoll_enable(unsigned int cpu)1027 void arch_haltpoll_enable(unsigned int cpu)
1028 {
1029 	if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL)) {
1030 		pr_err_once("host does not support poll control\n");
1031 		pr_err_once("host upgrade recommended\n");
1032 		return;
1033 	}
1034 
1035 	/* Enable guest halt poll disables host halt poll */
1036 	smp_call_function_single(cpu, kvm_disable_host_haltpoll, NULL, 1);
1037 }
1038 EXPORT_SYMBOL_GPL(arch_haltpoll_enable);
1039 
arch_haltpoll_disable(unsigned int cpu)1040 void arch_haltpoll_disable(unsigned int cpu)
1041 {
1042 	if (!kvm_para_has_feature(KVM_FEATURE_POLL_CONTROL))
1043 		return;
1044 
1045 	/* Disable guest halt poll enables host halt poll */
1046 	smp_call_function_single(cpu, kvm_enable_host_haltpoll, NULL, 1);
1047 }
1048 EXPORT_SYMBOL_GPL(arch_haltpoll_disable);
1049 #endif
1050