1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * handle transition of Linux booting another kernel
4 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
5 */
6
7 #define pr_fmt(fmt) "kexec: " fmt
8
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19 #include <linux/efi.h>
20
21 #include <asm/init.h>
22 #include <asm/tlbflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/io_apic.h>
25 #include <asm/debugreg.h>
26 #include <asm/kexec-bzimage64.h>
27 #include <asm/setup.h>
28 #include <asm/set_memory.h>
29
30 #ifdef CONFIG_ACPI
31 /*
32 * Used while adding mapping for ACPI tables.
33 * Can be reused when other iomem regions need be mapped
34 */
35 struct init_pgtable_data {
36 struct x86_mapping_info *info;
37 pgd_t *level4p;
38 };
39
mem_region_callback(struct resource * res,void * arg)40 static int mem_region_callback(struct resource *res, void *arg)
41 {
42 struct init_pgtable_data *data = arg;
43 unsigned long mstart, mend;
44
45 mstart = res->start;
46 mend = mstart + resource_size(res) - 1;
47
48 return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
49 }
50
51 static int
map_acpi_tables(struct x86_mapping_info * info,pgd_t * level4p)52 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
53 {
54 struct init_pgtable_data data;
55 unsigned long flags;
56 int ret;
57
58 data.info = info;
59 data.level4p = level4p;
60 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
61
62 ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
63 &data, mem_region_callback);
64 if (ret && ret != -EINVAL)
65 return ret;
66
67 /* ACPI tables could be located in ACPI Non-volatile Storage region */
68 ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
69 &data, mem_region_callback);
70 if (ret && ret != -EINVAL)
71 return ret;
72
73 return 0;
74 }
75 #else
map_acpi_tables(struct x86_mapping_info * info,pgd_t * level4p)76 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
77 #endif
78
79 #ifdef CONFIG_KEXEC_FILE
80 const struct kexec_file_ops * const kexec_file_loaders[] = {
81 &kexec_bzImage64_ops,
82 NULL
83 };
84 #endif
85
86 static int
map_efi_systab(struct x86_mapping_info * info,pgd_t * level4p)87 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
88 {
89 #ifdef CONFIG_EFI
90 unsigned long mstart, mend;
91
92 if (!efi_enabled(EFI_BOOT))
93 return 0;
94
95 mstart = (boot_params.efi_info.efi_systab |
96 ((u64)boot_params.efi_info.efi_systab_hi<<32));
97
98 if (efi_enabled(EFI_64BIT))
99 mend = mstart + sizeof(efi_system_table_64_t);
100 else
101 mend = mstart + sizeof(efi_system_table_32_t);
102
103 if (!mstart)
104 return 0;
105
106 return kernel_ident_mapping_init(info, level4p, mstart, mend);
107 #endif
108 return 0;
109 }
110
free_transition_pgtable(struct kimage * image)111 static void free_transition_pgtable(struct kimage *image)
112 {
113 free_page((unsigned long)image->arch.p4d);
114 image->arch.p4d = NULL;
115 free_page((unsigned long)image->arch.pud);
116 image->arch.pud = NULL;
117 free_page((unsigned long)image->arch.pmd);
118 image->arch.pmd = NULL;
119 free_page((unsigned long)image->arch.pte);
120 image->arch.pte = NULL;
121 }
122
init_transition_pgtable(struct kimage * image,pgd_t * pgd)123 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
124 {
125 pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
126 unsigned long vaddr, paddr;
127 int result = -ENOMEM;
128 p4d_t *p4d;
129 pud_t *pud;
130 pmd_t *pmd;
131 pte_t *pte;
132
133 vaddr = (unsigned long)relocate_kernel;
134 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
135 pgd += pgd_index(vaddr);
136 if (!pgd_present(*pgd)) {
137 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
138 if (!p4d)
139 goto err;
140 image->arch.p4d = p4d;
141 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
142 }
143 p4d = p4d_offset(pgd, vaddr);
144 if (!p4d_present(*p4d)) {
145 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
146 if (!pud)
147 goto err;
148 image->arch.pud = pud;
149 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
150 }
151 pud = pud_offset(p4d, vaddr);
152 if (!pud_present(*pud)) {
153 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
154 if (!pmd)
155 goto err;
156 image->arch.pmd = pmd;
157 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
158 }
159 pmd = pmd_offset(pud, vaddr);
160 if (!pmd_present(*pmd)) {
161 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
162 if (!pte)
163 goto err;
164 image->arch.pte = pte;
165 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
166 }
167 pte = pte_offset_kernel(pmd, vaddr);
168
169 if (sev_active())
170 prot = PAGE_KERNEL_EXEC;
171
172 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
173 return 0;
174 err:
175 return result;
176 }
177
alloc_pgt_page(void * data)178 static void *alloc_pgt_page(void *data)
179 {
180 struct kimage *image = (struct kimage *)data;
181 struct page *page;
182 void *p = NULL;
183
184 page = kimage_alloc_control_pages(image, 0);
185 if (page) {
186 p = page_address(page);
187 clear_page(p);
188 }
189
190 return p;
191 }
192
init_pgtable(struct kimage * image,unsigned long start_pgtable)193 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
194 {
195 struct x86_mapping_info info = {
196 .alloc_pgt_page = alloc_pgt_page,
197 .context = image,
198 .page_flag = __PAGE_KERNEL_LARGE_EXEC,
199 .kernpg_flag = _KERNPG_TABLE_NOENC,
200 };
201 unsigned long mstart, mend;
202 pgd_t *level4p;
203 int result;
204 int i;
205
206 level4p = (pgd_t *)__va(start_pgtable);
207 clear_page(level4p);
208
209 if (sev_active()) {
210 info.page_flag |= _PAGE_ENC;
211 info.kernpg_flag |= _PAGE_ENC;
212 }
213
214 if (direct_gbpages)
215 info.direct_gbpages = true;
216
217 for (i = 0; i < nr_pfn_mapped; i++) {
218 mstart = pfn_mapped[i].start << PAGE_SHIFT;
219 mend = pfn_mapped[i].end << PAGE_SHIFT;
220
221 result = kernel_ident_mapping_init(&info,
222 level4p, mstart, mend);
223 if (result)
224 return result;
225 }
226
227 /*
228 * segments's mem ranges could be outside 0 ~ max_pfn,
229 * for example when jump back to original kernel from kexeced kernel.
230 * or first kernel is booted with user mem map, and second kernel
231 * could be loaded out of that range.
232 */
233 for (i = 0; i < image->nr_segments; i++) {
234 mstart = image->segment[i].mem;
235 mend = mstart + image->segment[i].memsz;
236
237 result = kernel_ident_mapping_init(&info,
238 level4p, mstart, mend);
239
240 if (result)
241 return result;
242 }
243
244 /*
245 * Prepare EFI systab and ACPI tables for kexec kernel since they are
246 * not covered by pfn_mapped.
247 */
248 result = map_efi_systab(&info, level4p);
249 if (result)
250 return result;
251
252 result = map_acpi_tables(&info, level4p);
253 if (result)
254 return result;
255
256 return init_transition_pgtable(image, level4p);
257 }
258
load_segments(void)259 static void load_segments(void)
260 {
261 __asm__ __volatile__ (
262 "\tmovl %0,%%ds\n"
263 "\tmovl %0,%%es\n"
264 "\tmovl %0,%%ss\n"
265 "\tmovl %0,%%fs\n"
266 "\tmovl %0,%%gs\n"
267 : : "a" (__KERNEL_DS) : "memory"
268 );
269 }
270
machine_kexec_prepare(struct kimage * image)271 int machine_kexec_prepare(struct kimage *image)
272 {
273 unsigned long start_pgtable;
274 int result;
275
276 /* Calculate the offsets */
277 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
278
279 /* Setup the identity mapped 64bit page table */
280 result = init_pgtable(image, start_pgtable);
281 if (result)
282 return result;
283
284 return 0;
285 }
286
machine_kexec_cleanup(struct kimage * image)287 void machine_kexec_cleanup(struct kimage *image)
288 {
289 free_transition_pgtable(image);
290 }
291
292 /*
293 * Do not allocate memory (or fail in any way) in machine_kexec().
294 * We are past the point of no return, committed to rebooting now.
295 */
machine_kexec(struct kimage * image)296 void machine_kexec(struct kimage *image)
297 {
298 unsigned long page_list[PAGES_NR];
299 void *control_page;
300 int save_ftrace_enabled;
301
302 #ifdef CONFIG_KEXEC_JUMP
303 if (image->preserve_context)
304 save_processor_state();
305 #endif
306
307 save_ftrace_enabled = __ftrace_enabled_save();
308
309 /* Interrupts aren't acceptable while we reboot */
310 local_irq_disable();
311 hw_breakpoint_disable();
312
313 if (image->preserve_context) {
314 #ifdef CONFIG_X86_IO_APIC
315 /*
316 * We need to put APICs in legacy mode so that we can
317 * get timer interrupts in second kernel. kexec/kdump
318 * paths already have calls to restore_boot_irq_mode()
319 * in one form or other. kexec jump path also need one.
320 */
321 clear_IO_APIC();
322 restore_boot_irq_mode();
323 #endif
324 }
325
326 control_page = page_address(image->control_code_page) + PAGE_SIZE;
327 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
328
329 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
330 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
331 page_list[PA_TABLE_PAGE] =
332 (unsigned long)__pa(page_address(image->control_code_page));
333
334 if (image->type == KEXEC_TYPE_DEFAULT)
335 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
336 << PAGE_SHIFT);
337
338 /*
339 * The segment registers are funny things, they have both a
340 * visible and an invisible part. Whenever the visible part is
341 * set to a specific selector, the invisible part is loaded
342 * with from a table in memory. At no other time is the
343 * descriptor table in memory accessed.
344 *
345 * I take advantage of this here by force loading the
346 * segments, before I zap the gdt with an invalid value.
347 */
348 load_segments();
349 /*
350 * The gdt & idt are now invalid.
351 * If you want to load them you must set up your own idt & gdt.
352 */
353 native_idt_invalidate();
354 native_gdt_invalidate();
355
356 /* now call it */
357 image->start = relocate_kernel((unsigned long)image->head,
358 (unsigned long)page_list,
359 image->start,
360 image->preserve_context,
361 sme_active());
362
363 #ifdef CONFIG_KEXEC_JUMP
364 if (image->preserve_context)
365 restore_processor_state();
366 #endif
367
368 __ftrace_enabled_restore(save_ftrace_enabled);
369 }
370
371 /* arch-dependent functionality related to kexec file-based syscall */
372
373 #ifdef CONFIG_KEXEC_FILE
arch_kexec_kernel_image_load(struct kimage * image)374 void *arch_kexec_kernel_image_load(struct kimage *image)
375 {
376 if (!image->fops || !image->fops->load)
377 return ERR_PTR(-ENOEXEC);
378
379 return image->fops->load(image, image->kernel_buf,
380 image->kernel_buf_len, image->initrd_buf,
381 image->initrd_buf_len, image->cmdline_buf,
382 image->cmdline_buf_len);
383 }
384
385 /*
386 * Apply purgatory relocations.
387 *
388 * @pi: Purgatory to be relocated.
389 * @section: Section relocations applying to.
390 * @relsec: Section containing RELAs.
391 * @symtabsec: Corresponding symtab.
392 *
393 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
394 */
arch_kexec_apply_relocations_add(struct purgatory_info * pi,Elf_Shdr * section,const Elf_Shdr * relsec,const Elf_Shdr * symtabsec)395 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
396 Elf_Shdr *section, const Elf_Shdr *relsec,
397 const Elf_Shdr *symtabsec)
398 {
399 unsigned int i;
400 Elf64_Rela *rel;
401 Elf64_Sym *sym;
402 void *location;
403 unsigned long address, sec_base, value;
404 const char *strtab, *name, *shstrtab;
405 const Elf_Shdr *sechdrs;
406
407 /* String & section header string table */
408 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
409 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
410 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
411
412 rel = (void *)pi->ehdr + relsec->sh_offset;
413
414 pr_debug("Applying relocate section %s to %u\n",
415 shstrtab + relsec->sh_name, relsec->sh_info);
416
417 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
418
419 /*
420 * rel[i].r_offset contains byte offset from beginning
421 * of section to the storage unit affected.
422 *
423 * This is location to update. This is temporary buffer
424 * where section is currently loaded. This will finally be
425 * loaded to a different address later, pointed to by
426 * ->sh_addr. kexec takes care of moving it
427 * (kexec_load_segment()).
428 */
429 location = pi->purgatory_buf;
430 location += section->sh_offset;
431 location += rel[i].r_offset;
432
433 /* Final address of the location */
434 address = section->sh_addr + rel[i].r_offset;
435
436 /*
437 * rel[i].r_info contains information about symbol table index
438 * w.r.t which relocation must be made and type of relocation
439 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
440 * these respectively.
441 */
442 sym = (void *)pi->ehdr + symtabsec->sh_offset;
443 sym += ELF64_R_SYM(rel[i].r_info);
444
445 if (sym->st_name)
446 name = strtab + sym->st_name;
447 else
448 name = shstrtab + sechdrs[sym->st_shndx].sh_name;
449
450 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
451 name, sym->st_info, sym->st_shndx, sym->st_value,
452 sym->st_size);
453
454 if (sym->st_shndx == SHN_UNDEF) {
455 pr_err("Undefined symbol: %s\n", name);
456 return -ENOEXEC;
457 }
458
459 if (sym->st_shndx == SHN_COMMON) {
460 pr_err("symbol '%s' in common section\n", name);
461 return -ENOEXEC;
462 }
463
464 if (sym->st_shndx == SHN_ABS)
465 sec_base = 0;
466 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
467 pr_err("Invalid section %d for symbol %s\n",
468 sym->st_shndx, name);
469 return -ENOEXEC;
470 } else
471 sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
472
473 value = sym->st_value;
474 value += sec_base;
475 value += rel[i].r_addend;
476
477 switch (ELF64_R_TYPE(rel[i].r_info)) {
478 case R_X86_64_NONE:
479 break;
480 case R_X86_64_64:
481 *(u64 *)location = value;
482 break;
483 case R_X86_64_32:
484 *(u32 *)location = value;
485 if (value != *(u32 *)location)
486 goto overflow;
487 break;
488 case R_X86_64_32S:
489 *(s32 *)location = value;
490 if ((s64)value != *(s32 *)location)
491 goto overflow;
492 break;
493 case R_X86_64_PC32:
494 case R_X86_64_PLT32:
495 value -= (u64)address;
496 *(u32 *)location = value;
497 break;
498 default:
499 pr_err("Unknown rela relocation: %llu\n",
500 ELF64_R_TYPE(rel[i].r_info));
501 return -ENOEXEC;
502 }
503 }
504 return 0;
505
506 overflow:
507 pr_err("Overflow in relocation type %d value 0x%lx\n",
508 (int)ELF64_R_TYPE(rel[i].r_info), value);
509 return -ENOEXEC;
510 }
511
arch_kimage_file_post_load_cleanup(struct kimage * image)512 int arch_kimage_file_post_load_cleanup(struct kimage *image)
513 {
514 vfree(image->elf_headers);
515 image->elf_headers = NULL;
516 image->elf_headers_sz = 0;
517
518 return kexec_image_post_load_cleanup_default(image);
519 }
520 #endif /* CONFIG_KEXEC_FILE */
521
522 static int
kexec_mark_range(unsigned long start,unsigned long end,bool protect)523 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
524 {
525 struct page *page;
526 unsigned int nr_pages;
527
528 /*
529 * For physical range: [start, end]. We must skip the unassigned
530 * crashk resource with zero-valued "end" member.
531 */
532 if (!end || start > end)
533 return 0;
534
535 page = pfn_to_page(start >> PAGE_SHIFT);
536 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
537 if (protect)
538 return set_pages_ro(page, nr_pages);
539 else
540 return set_pages_rw(page, nr_pages);
541 }
542
kexec_mark_crashkres(bool protect)543 static void kexec_mark_crashkres(bool protect)
544 {
545 unsigned long control;
546
547 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
548
549 /* Don't touch the control code page used in crash_kexec().*/
550 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
551 /* Control code page is located in the 2nd page. */
552 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
553 control += KEXEC_CONTROL_PAGE_SIZE;
554 kexec_mark_range(control, crashk_res.end, protect);
555 }
556
arch_kexec_protect_crashkres(void)557 void arch_kexec_protect_crashkres(void)
558 {
559 kexec_mark_crashkres(true);
560 }
561
arch_kexec_unprotect_crashkres(void)562 void arch_kexec_unprotect_crashkres(void)
563 {
564 kexec_mark_crashkres(false);
565 }
566
567 /*
568 * During a traditional boot under SME, SME will encrypt the kernel,
569 * so the SME kexec kernel also needs to be un-encrypted in order to
570 * replicate a normal SME boot.
571 *
572 * During a traditional boot under SEV, the kernel has already been
573 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
574 * order to replicate a normal SEV boot.
575 */
arch_kexec_post_alloc_pages(void * vaddr,unsigned int pages,gfp_t gfp)576 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
577 {
578 if (sev_active())
579 return 0;
580
581 /*
582 * If SME is active we need to be sure that kexec pages are
583 * not encrypted because when we boot to the new kernel the
584 * pages won't be accessed encrypted (initially).
585 */
586 return set_memory_decrypted((unsigned long)vaddr, pages);
587 }
588
arch_kexec_pre_free_pages(void * vaddr,unsigned int pages)589 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
590 {
591 if (sev_active())
592 return;
593
594 /*
595 * If SME is active we need to reset the pages back to being
596 * an encrypted mapping before freeing them.
597 */
598 set_memory_encrypted((unsigned long)vaddr, pages);
599 }
600