• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/swapfile.h>
7 #include <linux/swapops.h>
8 #include <linux/kmemleak.h>
9 #include <linux/sched/task.h>
10 
11 #include <asm/set_memory.h>
12 #include <asm/cpu_device_id.h>
13 #include <asm/e820/api.h>
14 #include <asm/init.h>
15 #include <asm/page.h>
16 #include <asm/page_types.h>
17 #include <asm/sections.h>
18 #include <asm/setup.h>
19 #include <asm/tlbflush.h>
20 #include <asm/tlb.h>
21 #include <asm/proto.h>
22 #include <asm/dma.h>		/* for MAX_DMA_PFN */
23 #include <asm/microcode.h>
24 #include <asm/kaslr.h>
25 #include <asm/hypervisor.h>
26 #include <asm/cpufeature.h>
27 #include <asm/pti.h>
28 #include <asm/text-patching.h>
29 #include <asm/memtype.h>
30 #include <asm/paravirt.h>
31 
32 /*
33  * We need to define the tracepoints somewhere, and tlb.c
34  * is only compiled when SMP=y.
35  */
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/tlb.h>
38 
39 #include "mm_internal.h"
40 
41 /*
42  * Tables translating between page_cache_type_t and pte encoding.
43  *
44  * The default values are defined statically as minimal supported mode;
45  * WC and WT fall back to UC-.  pat_init() updates these values to support
46  * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
47  * for the details.  Note, __early_ioremap() used during early boot-time
48  * takes pgprot_t (pte encoding) and does not use these tables.
49  *
50  *   Index into __cachemode2pte_tbl[] is the cachemode.
51  *
52  *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
53  *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
54  */
55 static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
56 	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
57 	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
58 	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
59 	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
60 	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
61 	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
62 };
63 
cachemode2protval(enum page_cache_mode pcm)64 unsigned long cachemode2protval(enum page_cache_mode pcm)
65 {
66 	if (likely(pcm == 0))
67 		return 0;
68 	return __cachemode2pte_tbl[pcm];
69 }
70 EXPORT_SYMBOL(cachemode2protval);
71 
72 static uint8_t __pte2cachemode_tbl[8] = {
73 	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
74 	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
75 	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
76 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
77 	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
78 	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
79 	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
80 	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
81 };
82 
83 /*
84  * Check that the write-protect PAT entry is set for write-protect.
85  * To do this without making assumptions how PAT has been set up (Xen has
86  * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
87  * mode via the __cachemode2pte_tbl[] into protection bits (those protection
88  * bits will select a cache mode of WP or better), and then translate the
89  * protection bits back into the cache mode using __pte2cm_idx() and the
90  * __pte2cachemode_tbl[] array. This will return the really used cache mode.
91  */
x86_has_pat_wp(void)92 bool x86_has_pat_wp(void)
93 {
94 	uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
95 
96 	return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
97 }
98 
pgprot2cachemode(pgprot_t pgprot)99 enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
100 {
101 	unsigned long masked;
102 
103 	masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
104 	if (likely(masked == 0))
105 		return 0;
106 	return __pte2cachemode_tbl[__pte2cm_idx(masked)];
107 }
108 
109 static unsigned long __initdata pgt_buf_start;
110 static unsigned long __initdata pgt_buf_end;
111 static unsigned long __initdata pgt_buf_top;
112 
113 static unsigned long min_pfn_mapped;
114 
115 static bool __initdata can_use_brk_pgt = true;
116 
117 /*
118  * Provide a run-time mean of disabling ZONE_DMA32 if it is enabled via
119  * CONFIG_ZONE_DMA32.
120  */
121 static bool disable_dma32 __ro_after_init;
122 
123 /*
124  * Pages returned are already directly mapped.
125  *
126  * Changing that is likely to break Xen, see commit:
127  *
128  *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
129  *
130  * for detailed information.
131  */
alloc_low_pages(unsigned int num)132 __ref void *alloc_low_pages(unsigned int num)
133 {
134 	unsigned long pfn;
135 	int i;
136 
137 	if (after_bootmem) {
138 		unsigned int order;
139 
140 		order = get_order((unsigned long)num << PAGE_SHIFT);
141 		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
142 	}
143 
144 	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
145 		unsigned long ret = 0;
146 
147 		if (min_pfn_mapped < max_pfn_mapped) {
148 			ret = memblock_phys_alloc_range(
149 					PAGE_SIZE * num, PAGE_SIZE,
150 					min_pfn_mapped << PAGE_SHIFT,
151 					max_pfn_mapped << PAGE_SHIFT);
152 		}
153 		if (!ret && can_use_brk_pgt)
154 			ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
155 
156 		if (!ret)
157 			panic("alloc_low_pages: can not alloc memory");
158 
159 		pfn = ret >> PAGE_SHIFT;
160 	} else {
161 		pfn = pgt_buf_end;
162 		pgt_buf_end += num;
163 	}
164 
165 	for (i = 0; i < num; i++) {
166 		void *adr;
167 
168 		adr = __va((pfn + i) << PAGE_SHIFT);
169 		clear_page(adr);
170 	}
171 
172 	return __va(pfn << PAGE_SHIFT);
173 }
174 
175 /*
176  * By default need to be able to allocate page tables below PGD firstly for
177  * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
178  * With KASLR memory randomization, depending on the machine e820 memory and the
179  * PUD alignment, twice that many pages may be needed when KASLR memory
180  * randomization is enabled.
181  */
182 
183 #ifndef CONFIG_X86_5LEVEL
184 #define INIT_PGD_PAGE_TABLES    3
185 #else
186 #define INIT_PGD_PAGE_TABLES    4
187 #endif
188 
189 #ifndef CONFIG_RANDOMIZE_MEMORY
190 #define INIT_PGD_PAGE_COUNT      (2 * INIT_PGD_PAGE_TABLES)
191 #else
192 #define INIT_PGD_PAGE_COUNT      (4 * INIT_PGD_PAGE_TABLES)
193 #endif
194 
195 #define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
196 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
early_alloc_pgt_buf(void)197 void  __init early_alloc_pgt_buf(void)
198 {
199 	unsigned long tables = INIT_PGT_BUF_SIZE;
200 	phys_addr_t base;
201 
202 	base = __pa(extend_brk(tables, PAGE_SIZE));
203 
204 	pgt_buf_start = base >> PAGE_SHIFT;
205 	pgt_buf_end = pgt_buf_start;
206 	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
207 }
208 
209 int after_bootmem;
210 
211 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
212 
213 struct map_range {
214 	unsigned long start;
215 	unsigned long end;
216 	unsigned page_size_mask;
217 };
218 
219 static int page_size_mask;
220 
221 /*
222  * Save some of cr4 feature set we're using (e.g.  Pentium 4MB
223  * enable and PPro Global page enable), so that any CPU's that boot
224  * up after us can get the correct flags. Invoked on the boot CPU.
225  */
cr4_set_bits_and_update_boot(unsigned long mask)226 static inline void cr4_set_bits_and_update_boot(unsigned long mask)
227 {
228 	mmu_cr4_features |= mask;
229 	if (trampoline_cr4_features)
230 		*trampoline_cr4_features = mmu_cr4_features;
231 	cr4_set_bits(mask);
232 }
233 
probe_page_size_mask(void)234 static void __init probe_page_size_mask(void)
235 {
236 	/*
237 	 * For pagealloc debugging, identity mapping will use small pages.
238 	 * This will simplify cpa(), which otherwise needs to support splitting
239 	 * large pages into small in interrupt context, etc.
240 	 */
241 	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
242 		page_size_mask |= 1 << PG_LEVEL_2M;
243 	else
244 		direct_gbpages = 0;
245 
246 	/* Enable PSE if available */
247 	if (boot_cpu_has(X86_FEATURE_PSE))
248 		cr4_set_bits_and_update_boot(X86_CR4_PSE);
249 
250 	/* Enable PGE if available */
251 	__supported_pte_mask &= ~_PAGE_GLOBAL;
252 	if (boot_cpu_has(X86_FEATURE_PGE)) {
253 		cr4_set_bits_and_update_boot(X86_CR4_PGE);
254 		__supported_pte_mask |= _PAGE_GLOBAL;
255 	}
256 
257 	/* By the default is everything supported: */
258 	__default_kernel_pte_mask = __supported_pte_mask;
259 	/* Except when with PTI where the kernel is mostly non-Global: */
260 	if (cpu_feature_enabled(X86_FEATURE_PTI))
261 		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
262 
263 	/* Enable 1 GB linear kernel mappings if available: */
264 	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
265 		printk(KERN_INFO "Using GB pages for direct mapping\n");
266 		page_size_mask |= 1 << PG_LEVEL_1G;
267 	} else {
268 		direct_gbpages = 0;
269 	}
270 }
271 
272 #define INTEL_MATCH(_model) { .vendor  = X86_VENDOR_INTEL,	\
273 			      .family  = 6,			\
274 			      .model = _model,			\
275 			    }
276 /*
277  * INVLPG may not properly flush Global entries
278  * on these CPUs when PCIDs are enabled.
279  */
280 static const struct x86_cpu_id invlpg_miss_ids[] = {
281 	INTEL_MATCH(INTEL_FAM6_ALDERLAKE   ),
282 	INTEL_MATCH(INTEL_FAM6_ALDERLAKE_L ),
283 	INTEL_MATCH(INTEL_FAM6_ALDERLAKE_N ),
284 	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE  ),
285 	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_P),
286 	INTEL_MATCH(INTEL_FAM6_RAPTORLAKE_S),
287 	{}
288 };
289 
setup_pcid(void)290 static void setup_pcid(void)
291 {
292 	if (!IS_ENABLED(CONFIG_X86_64))
293 		return;
294 
295 	if (!boot_cpu_has(X86_FEATURE_PCID))
296 		return;
297 
298 	if (x86_match_cpu(invlpg_miss_ids)) {
299 		pr_info("Incomplete global flushes, disabling PCID");
300 		setup_clear_cpu_cap(X86_FEATURE_PCID);
301 		return;
302 	}
303 
304 	if (boot_cpu_has(X86_FEATURE_PGE)) {
305 		/*
306 		 * This can't be cr4_set_bits_and_update_boot() -- the
307 		 * trampoline code can't handle CR4.PCIDE and it wouldn't
308 		 * do any good anyway.  Despite the name,
309 		 * cr4_set_bits_and_update_boot() doesn't actually cause
310 		 * the bits in question to remain set all the way through
311 		 * the secondary boot asm.
312 		 *
313 		 * Instead, we brute-force it and set CR4.PCIDE manually in
314 		 * start_secondary().
315 		 */
316 		cr4_set_bits(X86_CR4_PCIDE);
317 
318 		/*
319 		 * INVPCID's single-context modes (2/3) only work if we set
320 		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
321 		 * on systems that have X86_CR4_PCIDE clear, or that have
322 		 * no INVPCID support at all.
323 		 */
324 		if (boot_cpu_has(X86_FEATURE_INVPCID))
325 			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
326 	} else {
327 		/*
328 		 * flush_tlb_all(), as currently implemented, won't work if
329 		 * PCID is on but PGE is not.  Since that combination
330 		 * doesn't exist on real hardware, there's no reason to try
331 		 * to fully support it, but it's polite to avoid corrupting
332 		 * data if we're on an improperly configured VM.
333 		 */
334 		setup_clear_cpu_cap(X86_FEATURE_PCID);
335 	}
336 }
337 
338 #ifdef CONFIG_X86_32
339 #define NR_RANGE_MR 3
340 #else /* CONFIG_X86_64 */
341 #define NR_RANGE_MR 5
342 #endif
343 
save_mr(struct map_range * mr,int nr_range,unsigned long start_pfn,unsigned long end_pfn,unsigned long page_size_mask)344 static int __meminit save_mr(struct map_range *mr, int nr_range,
345 			     unsigned long start_pfn, unsigned long end_pfn,
346 			     unsigned long page_size_mask)
347 {
348 	if (start_pfn < end_pfn) {
349 		if (nr_range >= NR_RANGE_MR)
350 			panic("run out of range for init_memory_mapping\n");
351 		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
352 		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
353 		mr[nr_range].page_size_mask = page_size_mask;
354 		nr_range++;
355 	}
356 
357 	return nr_range;
358 }
359 
360 /*
361  * adjust the page_size_mask for small range to go with
362  *	big page size instead small one if nearby are ram too.
363  */
adjust_range_page_size_mask(struct map_range * mr,int nr_range)364 static void __ref adjust_range_page_size_mask(struct map_range *mr,
365 							 int nr_range)
366 {
367 	int i;
368 
369 	for (i = 0; i < nr_range; i++) {
370 		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
371 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
372 			unsigned long start = round_down(mr[i].start, PMD_SIZE);
373 			unsigned long end = round_up(mr[i].end, PMD_SIZE);
374 
375 #ifdef CONFIG_X86_32
376 			if ((end >> PAGE_SHIFT) > max_low_pfn)
377 				continue;
378 #endif
379 
380 			if (memblock_is_region_memory(start, end - start))
381 				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
382 		}
383 		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
384 		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
385 			unsigned long start = round_down(mr[i].start, PUD_SIZE);
386 			unsigned long end = round_up(mr[i].end, PUD_SIZE);
387 
388 			if (memblock_is_region_memory(start, end - start))
389 				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
390 		}
391 	}
392 }
393 
page_size_string(struct map_range * mr)394 static const char *page_size_string(struct map_range *mr)
395 {
396 	static const char str_1g[] = "1G";
397 	static const char str_2m[] = "2M";
398 	static const char str_4m[] = "4M";
399 	static const char str_4k[] = "4k";
400 
401 	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
402 		return str_1g;
403 	/*
404 	 * 32-bit without PAE has a 4M large page size.
405 	 * PG_LEVEL_2M is misnamed, but we can at least
406 	 * print out the right size in the string.
407 	 */
408 	if (IS_ENABLED(CONFIG_X86_32) &&
409 	    !IS_ENABLED(CONFIG_X86_PAE) &&
410 	    mr->page_size_mask & (1<<PG_LEVEL_2M))
411 		return str_4m;
412 
413 	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
414 		return str_2m;
415 
416 	return str_4k;
417 }
418 
split_mem_range(struct map_range * mr,int nr_range,unsigned long start,unsigned long end)419 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
420 				     unsigned long start,
421 				     unsigned long end)
422 {
423 	unsigned long start_pfn, end_pfn, limit_pfn;
424 	unsigned long pfn;
425 	int i;
426 
427 	limit_pfn = PFN_DOWN(end);
428 
429 	/* head if not big page alignment ? */
430 	pfn = start_pfn = PFN_DOWN(start);
431 #ifdef CONFIG_X86_32
432 	/*
433 	 * Don't use a large page for the first 2/4MB of memory
434 	 * because there are often fixed size MTRRs in there
435 	 * and overlapping MTRRs into large pages can cause
436 	 * slowdowns.
437 	 */
438 	if (pfn == 0)
439 		end_pfn = PFN_DOWN(PMD_SIZE);
440 	else
441 		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
442 #else /* CONFIG_X86_64 */
443 	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
444 #endif
445 	if (end_pfn > limit_pfn)
446 		end_pfn = limit_pfn;
447 	if (start_pfn < end_pfn) {
448 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
449 		pfn = end_pfn;
450 	}
451 
452 	/* big page (2M) range */
453 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
454 #ifdef CONFIG_X86_32
455 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
456 #else /* CONFIG_X86_64 */
457 	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
458 	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
459 		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
460 #endif
461 
462 	if (start_pfn < end_pfn) {
463 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
464 				page_size_mask & (1<<PG_LEVEL_2M));
465 		pfn = end_pfn;
466 	}
467 
468 #ifdef CONFIG_X86_64
469 	/* big page (1G) range */
470 	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
471 	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
472 	if (start_pfn < end_pfn) {
473 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
474 				page_size_mask &
475 				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
476 		pfn = end_pfn;
477 	}
478 
479 	/* tail is not big page (1G) alignment */
480 	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
481 	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
482 	if (start_pfn < end_pfn) {
483 		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
484 				page_size_mask & (1<<PG_LEVEL_2M));
485 		pfn = end_pfn;
486 	}
487 #endif
488 
489 	/* tail is not big page (2M) alignment */
490 	start_pfn = pfn;
491 	end_pfn = limit_pfn;
492 	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
493 
494 	if (!after_bootmem)
495 		adjust_range_page_size_mask(mr, nr_range);
496 
497 	/* try to merge same page size and continuous */
498 	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
499 		unsigned long old_start;
500 		if (mr[i].end != mr[i+1].start ||
501 		    mr[i].page_size_mask != mr[i+1].page_size_mask)
502 			continue;
503 		/* move it */
504 		old_start = mr[i].start;
505 		memmove(&mr[i], &mr[i+1],
506 			(nr_range - 1 - i) * sizeof(struct map_range));
507 		mr[i--].start = old_start;
508 		nr_range--;
509 	}
510 
511 	for (i = 0; i < nr_range; i++)
512 		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
513 				mr[i].start, mr[i].end - 1,
514 				page_size_string(&mr[i]));
515 
516 	return nr_range;
517 }
518 
519 struct range pfn_mapped[E820_MAX_ENTRIES];
520 int nr_pfn_mapped;
521 
add_pfn_range_mapped(unsigned long start_pfn,unsigned long end_pfn)522 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
523 {
524 	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
525 					     nr_pfn_mapped, start_pfn, end_pfn);
526 	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
527 
528 	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
529 
530 	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
531 		max_low_pfn_mapped = max(max_low_pfn_mapped,
532 					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
533 }
534 
pfn_range_is_mapped(unsigned long start_pfn,unsigned long end_pfn)535 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
536 {
537 	int i;
538 
539 	for (i = 0; i < nr_pfn_mapped; i++)
540 		if ((start_pfn >= pfn_mapped[i].start) &&
541 		    (end_pfn <= pfn_mapped[i].end))
542 			return true;
543 
544 	return false;
545 }
546 
547 /*
548  * Setup the direct mapping of the physical memory at PAGE_OFFSET.
549  * This runs before bootmem is initialized and gets pages directly from
550  * the physical memory. To access them they are temporarily mapped.
551  */
init_memory_mapping(unsigned long start,unsigned long end,pgprot_t prot)552 unsigned long __ref init_memory_mapping(unsigned long start,
553 					unsigned long end, pgprot_t prot)
554 {
555 	struct map_range mr[NR_RANGE_MR];
556 	unsigned long ret = 0;
557 	int nr_range, i;
558 
559 	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
560 	       start, end - 1);
561 
562 	memset(mr, 0, sizeof(mr));
563 	nr_range = split_mem_range(mr, 0, start, end);
564 
565 	for (i = 0; i < nr_range; i++)
566 		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
567 						   mr[i].page_size_mask,
568 						   prot);
569 
570 	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
571 
572 	return ret >> PAGE_SHIFT;
573 }
574 
575 /*
576  * We need to iterate through the E820 memory map and create direct mappings
577  * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
578  * create direct mappings for all pfns from [0 to max_low_pfn) and
579  * [4GB to max_pfn) because of possible memory holes in high addresses
580  * that cannot be marked as UC by fixed/variable range MTRRs.
581  * Depending on the alignment of E820 ranges, this may possibly result
582  * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
583  *
584  * init_mem_mapping() calls init_range_memory_mapping() with big range.
585  * That range would have hole in the middle or ends, and only ram parts
586  * will be mapped in init_range_memory_mapping().
587  */
init_range_memory_mapping(unsigned long r_start,unsigned long r_end)588 static unsigned long __init init_range_memory_mapping(
589 					   unsigned long r_start,
590 					   unsigned long r_end)
591 {
592 	unsigned long start_pfn, end_pfn;
593 	unsigned long mapped_ram_size = 0;
594 	int i;
595 
596 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
597 		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
598 		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
599 		if (start >= end)
600 			continue;
601 
602 		/*
603 		 * if it is overlapping with brk pgt, we need to
604 		 * alloc pgt buf from memblock instead.
605 		 */
606 		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
607 				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
608 		init_memory_mapping(start, end, PAGE_KERNEL);
609 		mapped_ram_size += end - start;
610 		can_use_brk_pgt = true;
611 	}
612 
613 	return mapped_ram_size;
614 }
615 
get_new_step_size(unsigned long step_size)616 static unsigned long __init get_new_step_size(unsigned long step_size)
617 {
618 	/*
619 	 * Initial mapped size is PMD_SIZE (2M).
620 	 * We can not set step_size to be PUD_SIZE (1G) yet.
621 	 * In worse case, when we cross the 1G boundary, and
622 	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
623 	 * to map 1G range with PTE. Hence we use one less than the
624 	 * difference of page table level shifts.
625 	 *
626 	 * Don't need to worry about overflow in the top-down case, on 32bit,
627 	 * when step_size is 0, round_down() returns 0 for start, and that
628 	 * turns it into 0x100000000ULL.
629 	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
630 	 * needs to be taken into consideration by the code below.
631 	 */
632 	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
633 }
634 
635 /**
636  * memory_map_top_down - Map [map_start, map_end) top down
637  * @map_start: start address of the target memory range
638  * @map_end: end address of the target memory range
639  *
640  * This function will setup direct mapping for memory range
641  * [map_start, map_end) in top-down. That said, the page tables
642  * will be allocated at the end of the memory, and we map the
643  * memory in top-down.
644  */
memory_map_top_down(unsigned long map_start,unsigned long map_end)645 static void __init memory_map_top_down(unsigned long map_start,
646 				       unsigned long map_end)
647 {
648 	unsigned long real_end, last_start;
649 	unsigned long step_size;
650 	unsigned long addr;
651 	unsigned long mapped_ram_size = 0;
652 
653 	/*
654 	 * Systems that have many reserved areas near top of the memory,
655 	 * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
656 	 * require lots of 4K mappings which may exhaust pgt_buf.
657 	 * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
658 	 * there is enough mapped memory that can be allocated from
659 	 * memblock.
660 	 */
661 	addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
662 					 map_end);
663 	memblock_free(addr, PMD_SIZE);
664 	real_end = addr + PMD_SIZE;
665 
666 	/* step_size need to be small so pgt_buf from BRK could cover it */
667 	step_size = PMD_SIZE;
668 	max_pfn_mapped = 0; /* will get exact value next */
669 	min_pfn_mapped = real_end >> PAGE_SHIFT;
670 	last_start = real_end;
671 
672 	/*
673 	 * We start from the top (end of memory) and go to the bottom.
674 	 * The memblock_find_in_range() gets us a block of RAM from the
675 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
676 	 * for page table.
677 	 */
678 	while (last_start > map_start) {
679 		unsigned long start;
680 
681 		if (last_start > step_size) {
682 			start = round_down(last_start - 1, step_size);
683 			if (start < map_start)
684 				start = map_start;
685 		} else
686 			start = map_start;
687 		mapped_ram_size += init_range_memory_mapping(start,
688 							last_start);
689 		last_start = start;
690 		min_pfn_mapped = last_start >> PAGE_SHIFT;
691 		if (mapped_ram_size >= step_size)
692 			step_size = get_new_step_size(step_size);
693 	}
694 
695 	if (real_end < map_end)
696 		init_range_memory_mapping(real_end, map_end);
697 }
698 
699 /**
700  * memory_map_bottom_up - Map [map_start, map_end) bottom up
701  * @map_start: start address of the target memory range
702  * @map_end: end address of the target memory range
703  *
704  * This function will setup direct mapping for memory range
705  * [map_start, map_end) in bottom-up. Since we have limited the
706  * bottom-up allocation above the kernel, the page tables will
707  * be allocated just above the kernel and we map the memory
708  * in [map_start, map_end) in bottom-up.
709  */
memory_map_bottom_up(unsigned long map_start,unsigned long map_end)710 static void __init memory_map_bottom_up(unsigned long map_start,
711 					unsigned long map_end)
712 {
713 	unsigned long next, start;
714 	unsigned long mapped_ram_size = 0;
715 	/* step_size need to be small so pgt_buf from BRK could cover it */
716 	unsigned long step_size = PMD_SIZE;
717 
718 	start = map_start;
719 	min_pfn_mapped = start >> PAGE_SHIFT;
720 
721 	/*
722 	 * We start from the bottom (@map_start) and go to the top (@map_end).
723 	 * The memblock_find_in_range() gets us a block of RAM from the
724 	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
725 	 * for page table.
726 	 */
727 	while (start < map_end) {
728 		if (step_size && map_end - start > step_size) {
729 			next = round_up(start + 1, step_size);
730 			if (next > map_end)
731 				next = map_end;
732 		} else {
733 			next = map_end;
734 		}
735 
736 		mapped_ram_size += init_range_memory_mapping(start, next);
737 		start = next;
738 
739 		if (mapped_ram_size >= step_size)
740 			step_size = get_new_step_size(step_size);
741 	}
742 }
743 
744 /*
745  * The real mode trampoline, which is required for bootstrapping CPUs
746  * occupies only a small area under the low 1MB.  See reserve_real_mode()
747  * for details.
748  *
749  * If KASLR is disabled the first PGD entry of the direct mapping is copied
750  * to map the real mode trampoline.
751  *
752  * If KASLR is enabled, copy only the PUD which covers the low 1MB
753  * area. This limits the randomization granularity to 1GB for both 4-level
754  * and 5-level paging.
755  */
init_trampoline(void)756 static void __init init_trampoline(void)
757 {
758 #ifdef CONFIG_X86_64
759 	if (!kaslr_memory_enabled())
760 		trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
761 	else
762 		init_trampoline_kaslr();
763 #endif
764 }
765 
init_mem_mapping(void)766 void __init init_mem_mapping(void)
767 {
768 	unsigned long end;
769 
770 	pti_check_boottime_disable();
771 	probe_page_size_mask();
772 	setup_pcid();
773 
774 #ifdef CONFIG_X86_64
775 	end = max_pfn << PAGE_SHIFT;
776 #else
777 	end = max_low_pfn << PAGE_SHIFT;
778 #endif
779 
780 	/* the ISA range is always mapped regardless of memory holes */
781 	init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
782 
783 	/* Init the trampoline, possibly with KASLR memory offset */
784 	init_trampoline();
785 
786 	/*
787 	 * If the allocation is in bottom-up direction, we setup direct mapping
788 	 * in bottom-up, otherwise we setup direct mapping in top-down.
789 	 */
790 	if (memblock_bottom_up()) {
791 		unsigned long kernel_end = __pa_symbol(_end);
792 
793 		/*
794 		 * we need two separate calls here. This is because we want to
795 		 * allocate page tables above the kernel. So we first map
796 		 * [kernel_end, end) to make memory above the kernel be mapped
797 		 * as soon as possible. And then use page tables allocated above
798 		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
799 		 */
800 		memory_map_bottom_up(kernel_end, end);
801 		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
802 	} else {
803 		memory_map_top_down(ISA_END_ADDRESS, end);
804 	}
805 
806 #ifdef CONFIG_X86_64
807 	if (max_pfn > max_low_pfn) {
808 		/* can we preserve max_low_pfn ?*/
809 		max_low_pfn = max_pfn;
810 	}
811 #else
812 	early_ioremap_page_table_range_init();
813 #endif
814 
815 	load_cr3(swapper_pg_dir);
816 	__flush_tlb_all();
817 
818 	x86_init.hyper.init_mem_mapping();
819 
820 	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
821 }
822 
823 /*
824  * Initialize an mm_struct to be used during poking and a pointer to be used
825  * during patching.
826  */
poking_init(void)827 void __init poking_init(void)
828 {
829 	spinlock_t *ptl;
830 	pte_t *ptep;
831 
832 	poking_mm = mm_alloc();
833 	BUG_ON(!poking_mm);
834 
835 	/* Xen PV guests need the PGD to be pinned. */
836 	paravirt_arch_dup_mmap(NULL, poking_mm);
837 
838 	/*
839 	 * Randomize the poking address, but make sure that the following page
840 	 * will be mapped at the same PMD. We need 2 pages, so find space for 3,
841 	 * and adjust the address if the PMD ends after the first one.
842 	 */
843 	poking_addr = TASK_UNMAPPED_BASE;
844 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
845 		poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
846 			(TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
847 
848 	if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
849 		poking_addr += PAGE_SIZE;
850 
851 	/*
852 	 * We need to trigger the allocation of the page-tables that will be
853 	 * needed for poking now. Later, poking may be performed in an atomic
854 	 * section, which might cause allocation to fail.
855 	 */
856 	ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
857 	BUG_ON(!ptep);
858 	pte_unmap_unlock(ptep, ptl);
859 }
860 
861 /*
862  * devmem_is_allowed() checks to see if /dev/mem access to a certain address
863  * is valid. The argument is a physical page number.
864  *
865  * On x86, access has to be given to the first megabyte of RAM because that
866  * area traditionally contains BIOS code and data regions used by X, dosemu,
867  * and similar apps. Since they map the entire memory range, the whole range
868  * must be allowed (for mapping), but any areas that would otherwise be
869  * disallowed are flagged as being "zero filled" instead of rejected.
870  * Access has to be given to non-kernel-ram areas as well, these contain the
871  * PCI mmio resources as well as potential bios/acpi data regions.
872  */
devmem_is_allowed(unsigned long pagenr)873 int devmem_is_allowed(unsigned long pagenr)
874 {
875 	if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
876 				IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
877 			!= REGION_DISJOINT) {
878 		/*
879 		 * For disallowed memory regions in the low 1MB range,
880 		 * request that the page be shown as all zeros.
881 		 */
882 		if (pagenr < 256)
883 			return 2;
884 
885 		return 0;
886 	}
887 
888 	/*
889 	 * This must follow RAM test, since System RAM is considered a
890 	 * restricted resource under CONFIG_STRICT_IOMEM.
891 	 */
892 	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
893 		/* Low 1MB bypasses iomem restrictions. */
894 		if (pagenr < 256)
895 			return 1;
896 
897 		return 0;
898 	}
899 
900 	return 1;
901 }
902 
free_init_pages(const char * what,unsigned long begin,unsigned long end)903 void free_init_pages(const char *what, unsigned long begin, unsigned long end)
904 {
905 	unsigned long begin_aligned, end_aligned;
906 
907 	/* Make sure boundaries are page aligned */
908 	begin_aligned = PAGE_ALIGN(begin);
909 	end_aligned   = end & PAGE_MASK;
910 
911 	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
912 		begin = begin_aligned;
913 		end   = end_aligned;
914 	}
915 
916 	if (begin >= end)
917 		return;
918 
919 	/*
920 	 * If debugging page accesses then do not free this memory but
921 	 * mark them not present - any buggy init-section access will
922 	 * create a kernel page fault:
923 	 */
924 	if (debug_pagealloc_enabled()) {
925 		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
926 			begin, end - 1);
927 		/*
928 		 * Inform kmemleak about the hole in the memory since the
929 		 * corresponding pages will be unmapped.
930 		 */
931 		kmemleak_free_part((void *)begin, end - begin);
932 		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
933 	} else {
934 		/*
935 		 * We just marked the kernel text read only above, now that
936 		 * we are going to free part of that, we need to make that
937 		 * writeable and non-executable first.
938 		 */
939 		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
940 		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
941 
942 		free_reserved_area((void *)begin, (void *)end,
943 				   POISON_FREE_INITMEM, what);
944 	}
945 }
946 
947 /*
948  * begin/end can be in the direct map or the "high kernel mapping"
949  * used for the kernel image only.  free_init_pages() will do the
950  * right thing for either kind of address.
951  */
free_kernel_image_pages(const char * what,void * begin,void * end)952 void free_kernel_image_pages(const char *what, void *begin, void *end)
953 {
954 	unsigned long begin_ul = (unsigned long)begin;
955 	unsigned long end_ul = (unsigned long)end;
956 	unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
957 
958 	free_init_pages(what, begin_ul, end_ul);
959 
960 	/*
961 	 * PTI maps some of the kernel into userspace.  For performance,
962 	 * this includes some kernel areas that do not contain secrets.
963 	 * Those areas might be adjacent to the parts of the kernel image
964 	 * being freed, which may contain secrets.  Remove the "high kernel
965 	 * image mapping" for these freed areas, ensuring they are not even
966 	 * potentially vulnerable to Meltdown regardless of the specific
967 	 * optimizations PTI is currently using.
968 	 *
969 	 * The "noalias" prevents unmapping the direct map alias which is
970 	 * needed to access the freed pages.
971 	 *
972 	 * This is only valid for 64bit kernels. 32bit has only one mapping
973 	 * which can't be treated in this way for obvious reasons.
974 	 */
975 	if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
976 		set_memory_np_noalias(begin_ul, len_pages);
977 }
978 
free_initmem(void)979 void __ref free_initmem(void)
980 {
981 	e820__reallocate_tables();
982 
983 	mem_encrypt_free_decrypted_mem();
984 
985 	free_kernel_image_pages("unused kernel image (initmem)",
986 				&__init_begin, &__init_end);
987 }
988 
989 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)990 void __init free_initrd_mem(unsigned long start, unsigned long end)
991 {
992 	/*
993 	 * end could be not aligned, and We can not align that,
994 	 * decompressor could be confused by aligned initrd_end
995 	 * We already reserve the end partial page before in
996 	 *   - i386_start_kernel()
997 	 *   - x86_64_start_kernel()
998 	 *   - relocate_initrd()
999 	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
1000 	 */
1001 	free_init_pages("initrd", start, PAGE_ALIGN(end));
1002 }
1003 #endif
1004 
1005 /*
1006  * Calculate the precise size of the DMA zone (first 16 MB of RAM),
1007  * and pass it to the MM layer - to help it set zone watermarks more
1008  * accurately.
1009  *
1010  * Done on 64-bit systems only for the time being, although 32-bit systems
1011  * might benefit from this as well.
1012  */
memblock_find_dma_reserve(void)1013 void __init memblock_find_dma_reserve(void)
1014 {
1015 #ifdef CONFIG_X86_64
1016 	u64 nr_pages = 0, nr_free_pages = 0;
1017 	unsigned long start_pfn, end_pfn;
1018 	phys_addr_t start_addr, end_addr;
1019 	int i;
1020 	u64 u;
1021 
1022 	/*
1023 	 * Iterate over all memory ranges (free and reserved ones alike),
1024 	 * to calculate the total number of pages in the first 16 MB of RAM:
1025 	 */
1026 	nr_pages = 0;
1027 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
1028 		start_pfn = min(start_pfn, MAX_DMA_PFN);
1029 		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
1030 
1031 		nr_pages += end_pfn - start_pfn;
1032 	}
1033 
1034 	/*
1035 	 * Iterate over free memory ranges to calculate the number of free
1036 	 * pages in the DMA zone, while not counting potential partial
1037 	 * pages at the beginning or the end of the range:
1038 	 */
1039 	nr_free_pages = 0;
1040 	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
1041 		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
1042 		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
1043 
1044 		if (start_pfn < end_pfn)
1045 			nr_free_pages += end_pfn - start_pfn;
1046 	}
1047 
1048 	set_dma_reserve(nr_pages - nr_free_pages);
1049 #endif
1050 }
1051 
zone_sizes_init(void)1052 void __init zone_sizes_init(void)
1053 {
1054 	unsigned long max_zone_pfns[MAX_NR_ZONES];
1055 
1056 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1057 
1058 #ifdef CONFIG_ZONE_DMA
1059 	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
1060 #endif
1061 #ifdef CONFIG_ZONE_DMA32
1062 	max_zone_pfns[ZONE_DMA32]	= disable_dma32 ? 0 : min(MAX_DMA32_PFN, max_low_pfn);
1063 #endif
1064 	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
1065 #ifdef CONFIG_HIGHMEM
1066 	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
1067 #endif
1068 
1069 	free_area_init(max_zone_pfns);
1070 }
1071 
early_disable_dma32(char * buf)1072 static int __init early_disable_dma32(char *buf)
1073 {
1074 	if (!buf)
1075 		return -EINVAL;
1076 
1077 	if (!strcmp(buf, "on"))
1078 		disable_dma32 = true;
1079 
1080 	return 0;
1081 }
1082 early_param("disable_dma32", early_disable_dma32);
1083 
1084 __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
1085 	.loaded_mm = &init_mm,
1086 	.next_asid = 1,
1087 	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
1088 };
1089 
update_cache_mode_entry(unsigned entry,enum page_cache_mode cache)1090 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
1091 {
1092 	/* entry 0 MUST be WB (hardwired to speed up translations) */
1093 	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
1094 
1095 	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
1096 	__pte2cachemode_tbl[entry] = cache;
1097 }
1098 
1099 #ifdef CONFIG_SWAP
max_swapfile_size(void)1100 unsigned long max_swapfile_size(void)
1101 {
1102 	unsigned long pages;
1103 
1104 	pages = generic_max_swapfile_size();
1105 
1106 	if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
1107 		/* Limit the swap file size to MAX_PA/2 for L1TF workaround */
1108 		unsigned long long l1tf_limit = l1tf_pfn_limit();
1109 		/*
1110 		 * We encode swap offsets also with 3 bits below those for pfn
1111 		 * which makes the usable limit higher.
1112 		 */
1113 #if CONFIG_PGTABLE_LEVELS > 2
1114 		l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
1115 #endif
1116 		pages = min_t(unsigned long long, l1tf_limit, pages);
1117 	}
1118 	return pages;
1119 }
1120 #endif
1121