1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Re-map IO memory to kernel address space so that we can access it.
4 * This is needed for high PCI addresses that aren't mapped in the
5 * 640k-1MB IO memory area on PC's
6 *
7 * (C) Copyright 1995 1996 Linus Torvalds
8 */
9
10 #include <linux/memblock.h>
11 #include <linux/init.h>
12 #include <linux/io.h>
13 #include <linux/ioport.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mmiotrace.h>
17 #include <linux/mem_encrypt.h>
18 #include <linux/efi.h>
19 #include <linux/pgtable.h>
20
21 #include <asm/set_memory.h>
22 #include <asm/e820/api.h>
23 #include <asm/efi.h>
24 #include <asm/fixmap.h>
25 #include <asm/tlbflush.h>
26 #include <asm/pgalloc.h>
27 #include <asm/memtype.h>
28 #include <asm/setup.h>
29
30 #include "physaddr.h"
31
32 /*
33 * Descriptor controlling ioremap() behavior.
34 */
35 struct ioremap_desc {
36 unsigned int flags;
37 };
38
39 /*
40 * Fix up the linear direct mapping of the kernel to avoid cache attribute
41 * conflicts.
42 */
ioremap_change_attr(unsigned long vaddr,unsigned long size,enum page_cache_mode pcm)43 int ioremap_change_attr(unsigned long vaddr, unsigned long size,
44 enum page_cache_mode pcm)
45 {
46 unsigned long nrpages = size >> PAGE_SHIFT;
47 int err;
48
49 switch (pcm) {
50 case _PAGE_CACHE_MODE_UC:
51 default:
52 err = _set_memory_uc(vaddr, nrpages);
53 break;
54 case _PAGE_CACHE_MODE_WC:
55 err = _set_memory_wc(vaddr, nrpages);
56 break;
57 case _PAGE_CACHE_MODE_WT:
58 err = _set_memory_wt(vaddr, nrpages);
59 break;
60 case _PAGE_CACHE_MODE_WB:
61 err = _set_memory_wb(vaddr, nrpages);
62 break;
63 }
64
65 return err;
66 }
67
68 /* Does the range (or a subset of) contain normal RAM? */
__ioremap_check_ram(struct resource * res)69 static unsigned int __ioremap_check_ram(struct resource *res)
70 {
71 unsigned long start_pfn, stop_pfn;
72 unsigned long i;
73
74 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
75 return 0;
76
77 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
78 stop_pfn = (res->end + 1) >> PAGE_SHIFT;
79 if (stop_pfn > start_pfn) {
80 for (i = 0; i < (stop_pfn - start_pfn); ++i)
81 if (pfn_valid(start_pfn + i) &&
82 !PageReserved(pfn_to_page(start_pfn + i)))
83 return IORES_MAP_SYSTEM_RAM;
84 }
85
86 return 0;
87 }
88
89 /*
90 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
91 * there the whole memory is already encrypted.
92 */
__ioremap_check_encrypted(struct resource * res)93 static unsigned int __ioremap_check_encrypted(struct resource *res)
94 {
95 if (!sev_active())
96 return 0;
97
98 switch (res->desc) {
99 case IORES_DESC_NONE:
100 case IORES_DESC_RESERVED:
101 break;
102 default:
103 return IORES_MAP_ENCRYPTED;
104 }
105
106 return 0;
107 }
108
109 /*
110 * The EFI runtime services data area is not covered by walk_mem_res(), but must
111 * be mapped encrypted when SEV is active.
112 */
__ioremap_check_other(resource_size_t addr,struct ioremap_desc * desc)113 static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
114 {
115 if (!sev_active())
116 return;
117
118 if (!IS_ENABLED(CONFIG_EFI))
119 return;
120
121 if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
122 (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
123 efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
124 desc->flags |= IORES_MAP_ENCRYPTED;
125 }
126
__ioremap_collect_map_flags(struct resource * res,void * arg)127 static int __ioremap_collect_map_flags(struct resource *res, void *arg)
128 {
129 struct ioremap_desc *desc = arg;
130
131 if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
132 desc->flags |= __ioremap_check_ram(res);
133
134 if (!(desc->flags & IORES_MAP_ENCRYPTED))
135 desc->flags |= __ioremap_check_encrypted(res);
136
137 return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
138 (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
139 }
140
141 /*
142 * To avoid multiple resource walks, this function walks resources marked as
143 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
144 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
145 *
146 * After that, deal with misc other ranges in __ioremap_check_other() which do
147 * not fall into the above category.
148 */
__ioremap_check_mem(resource_size_t addr,unsigned long size,struct ioremap_desc * desc)149 static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
150 struct ioremap_desc *desc)
151 {
152 u64 start, end;
153
154 start = (u64)addr;
155 end = start + size - 1;
156 memset(desc, 0, sizeof(struct ioremap_desc));
157
158 walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
159
160 __ioremap_check_other(addr, desc);
161 }
162
163 /*
164 * Remap an arbitrary physical address space into the kernel virtual
165 * address space. It transparently creates kernel huge I/O mapping when
166 * the physical address is aligned by a huge page size (1GB or 2MB) and
167 * the requested size is at least the huge page size.
168 *
169 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
170 * Therefore, the mapping code falls back to use a smaller page toward 4KB
171 * when a mapping range is covered by non-WB type of MTRRs.
172 *
173 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
174 * have to convert them into an offset in a page-aligned mapping, but the
175 * caller shouldn't need to know that small detail.
176 */
177 static void __iomem *
__ioremap_caller(resource_size_t phys_addr,unsigned long size,enum page_cache_mode pcm,void * caller,bool encrypted)178 __ioremap_caller(resource_size_t phys_addr, unsigned long size,
179 enum page_cache_mode pcm, void *caller, bool encrypted)
180 {
181 unsigned long offset, vaddr;
182 resource_size_t last_addr;
183 const resource_size_t unaligned_phys_addr = phys_addr;
184 const unsigned long unaligned_size = size;
185 struct ioremap_desc io_desc;
186 struct vm_struct *area;
187 enum page_cache_mode new_pcm;
188 pgprot_t prot;
189 int retval;
190 void __iomem *ret_addr;
191
192 /* Don't allow wraparound or zero size */
193 last_addr = phys_addr + size - 1;
194 if (!size || last_addr < phys_addr)
195 return NULL;
196
197 if (!phys_addr_valid(phys_addr)) {
198 printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
199 (unsigned long long)phys_addr);
200 WARN_ON_ONCE(1);
201 return NULL;
202 }
203
204 __ioremap_check_mem(phys_addr, size, &io_desc);
205
206 /*
207 * Don't allow anybody to remap normal RAM that we're using..
208 */
209 if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
210 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
211 &phys_addr, &last_addr);
212 return NULL;
213 }
214
215 /*
216 * Mappings have to be page-aligned
217 */
218 offset = phys_addr & ~PAGE_MASK;
219 phys_addr &= PAGE_MASK;
220 size = PAGE_ALIGN(last_addr+1) - phys_addr;
221
222 /*
223 * Mask out any bits not part of the actual physical
224 * address, like memory encryption bits.
225 */
226 phys_addr &= PHYSICAL_PAGE_MASK;
227
228 retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
229 pcm, &new_pcm);
230 if (retval) {
231 printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
232 return NULL;
233 }
234
235 if (pcm != new_pcm) {
236 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
237 printk(KERN_ERR
238 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
239 (unsigned long long)phys_addr,
240 (unsigned long long)(phys_addr + size),
241 pcm, new_pcm);
242 goto err_free_memtype;
243 }
244 pcm = new_pcm;
245 }
246
247 /*
248 * If the page being mapped is in memory and SEV is active then
249 * make sure the memory encryption attribute is enabled in the
250 * resulting mapping.
251 */
252 prot = PAGE_KERNEL_IO;
253 if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
254 prot = pgprot_encrypted(prot);
255
256 switch (pcm) {
257 case _PAGE_CACHE_MODE_UC:
258 default:
259 prot = __pgprot(pgprot_val(prot) |
260 cachemode2protval(_PAGE_CACHE_MODE_UC));
261 break;
262 case _PAGE_CACHE_MODE_UC_MINUS:
263 prot = __pgprot(pgprot_val(prot) |
264 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
265 break;
266 case _PAGE_CACHE_MODE_WC:
267 prot = __pgprot(pgprot_val(prot) |
268 cachemode2protval(_PAGE_CACHE_MODE_WC));
269 break;
270 case _PAGE_CACHE_MODE_WT:
271 prot = __pgprot(pgprot_val(prot) |
272 cachemode2protval(_PAGE_CACHE_MODE_WT));
273 break;
274 case _PAGE_CACHE_MODE_WB:
275 break;
276 }
277
278 /*
279 * Ok, go for it..
280 */
281 area = get_vm_area_caller(size, VM_IOREMAP, caller);
282 if (!area)
283 goto err_free_memtype;
284 area->phys_addr = phys_addr;
285 vaddr = (unsigned long) area->addr;
286
287 if (memtype_kernel_map_sync(phys_addr, size, pcm))
288 goto err_free_area;
289
290 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
291 goto err_free_area;
292
293 ret_addr = (void __iomem *) (vaddr + offset);
294 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
295
296 /*
297 * Check if the request spans more than any BAR in the iomem resource
298 * tree.
299 */
300 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
301 pr_warn("caller %pS mapping multiple BARs\n", caller);
302
303 return ret_addr;
304 err_free_area:
305 free_vm_area(area);
306 err_free_memtype:
307 memtype_free(phys_addr, phys_addr + size);
308 return NULL;
309 }
310
311 /**
312 * ioremap - map bus memory into CPU space
313 * @phys_addr: bus address of the memory
314 * @size: size of the resource to map
315 *
316 * ioremap performs a platform specific sequence of operations to
317 * make bus memory CPU accessible via the readb/readw/readl/writeb/
318 * writew/writel functions and the other mmio helpers. The returned
319 * address is not guaranteed to be usable directly as a virtual
320 * address.
321 *
322 * This version of ioremap ensures that the memory is marked uncachable
323 * on the CPU as well as honouring existing caching rules from things like
324 * the PCI bus. Note that there are other caches and buffers on many
325 * busses. In particular driver authors should read up on PCI writes
326 *
327 * It's useful if some control registers are in such an area and
328 * write combining or read caching is not desirable:
329 *
330 * Must be freed with iounmap.
331 */
ioremap(resource_size_t phys_addr,unsigned long size)332 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
333 {
334 /*
335 * Ideally, this should be:
336 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
337 *
338 * Till we fix all X drivers to use ioremap_wc(), we will use
339 * UC MINUS. Drivers that are certain they need or can already
340 * be converted over to strong UC can use ioremap_uc().
341 */
342 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
343
344 return __ioremap_caller(phys_addr, size, pcm,
345 __builtin_return_address(0), false);
346 }
347 EXPORT_SYMBOL(ioremap);
348
349 /**
350 * ioremap_uc - map bus memory into CPU space as strongly uncachable
351 * @phys_addr: bus address of the memory
352 * @size: size of the resource to map
353 *
354 * ioremap_uc performs a platform specific sequence of operations to
355 * make bus memory CPU accessible via the readb/readw/readl/writeb/
356 * writew/writel functions and the other mmio helpers. The returned
357 * address is not guaranteed to be usable directly as a virtual
358 * address.
359 *
360 * This version of ioremap ensures that the memory is marked with a strong
361 * preference as completely uncachable on the CPU when possible. For non-PAT
362 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
363 * systems this will set the PAT entry for the pages as strong UC. This call
364 * will honor existing caching rules from things like the PCI bus. Note that
365 * there are other caches and buffers on many busses. In particular driver
366 * authors should read up on PCI writes.
367 *
368 * It's useful if some control registers are in such an area and
369 * write combining or read caching is not desirable:
370 *
371 * Must be freed with iounmap.
372 */
ioremap_uc(resource_size_t phys_addr,unsigned long size)373 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
374 {
375 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
376
377 return __ioremap_caller(phys_addr, size, pcm,
378 __builtin_return_address(0), false);
379 }
380 EXPORT_SYMBOL_GPL(ioremap_uc);
381
382 /**
383 * ioremap_wc - map memory into CPU space write combined
384 * @phys_addr: bus address of the memory
385 * @size: size of the resource to map
386 *
387 * This version of ioremap ensures that the memory is marked write combining.
388 * Write combining allows faster writes to some hardware devices.
389 *
390 * Must be freed with iounmap.
391 */
ioremap_wc(resource_size_t phys_addr,unsigned long size)392 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
393 {
394 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
395 __builtin_return_address(0), false);
396 }
397 EXPORT_SYMBOL(ioremap_wc);
398
399 /**
400 * ioremap_wt - map memory into CPU space write through
401 * @phys_addr: bus address of the memory
402 * @size: size of the resource to map
403 *
404 * This version of ioremap ensures that the memory is marked write through.
405 * Write through stores data into memory while keeping the cache up-to-date.
406 *
407 * Must be freed with iounmap.
408 */
ioremap_wt(resource_size_t phys_addr,unsigned long size)409 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
410 {
411 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
412 __builtin_return_address(0), false);
413 }
414 EXPORT_SYMBOL(ioremap_wt);
415
ioremap_encrypted(resource_size_t phys_addr,unsigned long size)416 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
417 {
418 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
419 __builtin_return_address(0), true);
420 }
421 EXPORT_SYMBOL(ioremap_encrypted);
422
ioremap_cache(resource_size_t phys_addr,unsigned long size)423 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
424 {
425 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
426 __builtin_return_address(0), false);
427 }
428 EXPORT_SYMBOL(ioremap_cache);
429
ioremap_prot(resource_size_t phys_addr,unsigned long size,unsigned long prot_val)430 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
431 unsigned long prot_val)
432 {
433 return __ioremap_caller(phys_addr, size,
434 pgprot2cachemode(__pgprot(prot_val)),
435 __builtin_return_address(0), false);
436 }
437 EXPORT_SYMBOL(ioremap_prot);
438
439 /**
440 * iounmap - Free a IO remapping
441 * @addr: virtual address from ioremap_*
442 *
443 * Caller must ensure there is only one unmapping for the same pointer.
444 */
iounmap(volatile void __iomem * addr)445 void iounmap(volatile void __iomem *addr)
446 {
447 struct vm_struct *p, *o;
448
449 if ((void __force *)addr <= high_memory)
450 return;
451
452 /*
453 * The PCI/ISA range special-casing was removed from __ioremap()
454 * so this check, in theory, can be removed. However, there are
455 * cases where iounmap() is called for addresses not obtained via
456 * ioremap() (vga16fb for example). Add a warning so that these
457 * cases can be caught and fixed.
458 */
459 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
460 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
461 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
462 return;
463 }
464
465 mmiotrace_iounmap(addr);
466
467 addr = (volatile void __iomem *)
468 (PAGE_MASK & (unsigned long __force)addr);
469
470 /* Use the vm area unlocked, assuming the caller
471 ensures there isn't another iounmap for the same address
472 in parallel. Reuse of the virtual address is prevented by
473 leaving it in the global lists until we're done with it.
474 cpa takes care of the direct mappings. */
475 p = find_vm_area((void __force *)addr);
476
477 if (!p) {
478 printk(KERN_ERR "iounmap: bad address %p\n", addr);
479 dump_stack();
480 return;
481 }
482
483 memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
484
485 /* Finally remove it */
486 o = remove_vm_area((void __force *)addr);
487 BUG_ON(p != o || o == NULL);
488 kfree(p);
489 }
490 EXPORT_SYMBOL(iounmap);
491
492 /*
493 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
494 * access
495 */
xlate_dev_mem_ptr(phys_addr_t phys)496 void *xlate_dev_mem_ptr(phys_addr_t phys)
497 {
498 unsigned long start = phys & PAGE_MASK;
499 unsigned long offset = phys & ~PAGE_MASK;
500 void *vaddr;
501
502 /* memremap() maps if RAM, otherwise falls back to ioremap() */
503 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
504
505 /* Only add the offset on success and return NULL if memremap() failed */
506 if (vaddr)
507 vaddr += offset;
508
509 return vaddr;
510 }
511
unxlate_dev_mem_ptr(phys_addr_t phys,void * addr)512 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
513 {
514 memunmap((void *)((unsigned long)addr & PAGE_MASK));
515 }
516
517 /*
518 * Examine the physical address to determine if it is an area of memory
519 * that should be mapped decrypted. If the memory is not part of the
520 * kernel usable area it was accessed and created decrypted, so these
521 * areas should be mapped decrypted. And since the encryption key can
522 * change across reboots, persistent memory should also be mapped
523 * decrypted.
524 *
525 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
526 * only persistent memory should be mapped decrypted.
527 */
memremap_should_map_decrypted(resource_size_t phys_addr,unsigned long size)528 static bool memremap_should_map_decrypted(resource_size_t phys_addr,
529 unsigned long size)
530 {
531 int is_pmem;
532
533 /*
534 * Check if the address is part of a persistent memory region.
535 * This check covers areas added by E820, EFI and ACPI.
536 */
537 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
538 IORES_DESC_PERSISTENT_MEMORY);
539 if (is_pmem != REGION_DISJOINT)
540 return true;
541
542 /*
543 * Check if the non-volatile attribute is set for an EFI
544 * reserved area.
545 */
546 if (efi_enabled(EFI_BOOT)) {
547 switch (efi_mem_type(phys_addr)) {
548 case EFI_RESERVED_TYPE:
549 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
550 return true;
551 break;
552 default:
553 break;
554 }
555 }
556
557 /* Check if the address is outside kernel usable area */
558 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
559 case E820_TYPE_RESERVED:
560 case E820_TYPE_ACPI:
561 case E820_TYPE_NVS:
562 case E820_TYPE_UNUSABLE:
563 /* For SEV, these areas are encrypted */
564 if (sev_active())
565 break;
566 fallthrough;
567
568 case E820_TYPE_PRAM:
569 return true;
570 default:
571 break;
572 }
573
574 return false;
575 }
576
577 /*
578 * Examine the physical address to determine if it is EFI data. Check
579 * it against the boot params structure and EFI tables and memory types.
580 */
memremap_is_efi_data(resource_size_t phys_addr,unsigned long size)581 static bool memremap_is_efi_data(resource_size_t phys_addr,
582 unsigned long size)
583 {
584 u64 paddr;
585
586 /* Check if the address is part of EFI boot/runtime data */
587 if (!efi_enabled(EFI_BOOT))
588 return false;
589
590 paddr = boot_params.efi_info.efi_memmap_hi;
591 paddr <<= 32;
592 paddr |= boot_params.efi_info.efi_memmap;
593 if (phys_addr == paddr)
594 return true;
595
596 paddr = boot_params.efi_info.efi_systab_hi;
597 paddr <<= 32;
598 paddr |= boot_params.efi_info.efi_systab;
599 if (phys_addr == paddr)
600 return true;
601
602 if (efi_is_table_address(phys_addr))
603 return true;
604
605 switch (efi_mem_type(phys_addr)) {
606 case EFI_BOOT_SERVICES_DATA:
607 case EFI_RUNTIME_SERVICES_DATA:
608 return true;
609 default:
610 break;
611 }
612
613 return false;
614 }
615
616 /*
617 * Examine the physical address to determine if it is boot data by checking
618 * it against the boot params setup_data chain.
619 */
memremap_is_setup_data(resource_size_t phys_addr,unsigned long size)620 static bool memremap_is_setup_data(resource_size_t phys_addr,
621 unsigned long size)
622 {
623 struct setup_indirect *indirect;
624 struct setup_data *data;
625 u64 paddr, paddr_next;
626
627 paddr = boot_params.hdr.setup_data;
628 while (paddr) {
629 unsigned int len;
630
631 if (phys_addr == paddr)
632 return true;
633
634 data = memremap(paddr, sizeof(*data),
635 MEMREMAP_WB | MEMREMAP_DEC);
636 if (!data) {
637 pr_warn("failed to memremap setup_data entry\n");
638 return false;
639 }
640
641 paddr_next = data->next;
642 len = data->len;
643
644 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
645 memunmap(data);
646 return true;
647 }
648
649 if (data->type == SETUP_INDIRECT) {
650 memunmap(data);
651 data = memremap(paddr, sizeof(*data) + len,
652 MEMREMAP_WB | MEMREMAP_DEC);
653 if (!data) {
654 pr_warn("failed to memremap indirect setup_data\n");
655 return false;
656 }
657
658 indirect = (struct setup_indirect *)data->data;
659
660 if (indirect->type != SETUP_INDIRECT) {
661 paddr = indirect->addr;
662 len = indirect->len;
663 }
664 }
665
666 memunmap(data);
667
668 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
669 return true;
670
671 paddr = paddr_next;
672 }
673
674 return false;
675 }
676
677 /*
678 * Examine the physical address to determine if it is boot data by checking
679 * it against the boot params setup_data chain (early boot version).
680 */
early_memremap_is_setup_data(resource_size_t phys_addr,unsigned long size)681 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
682 unsigned long size)
683 {
684 struct setup_indirect *indirect;
685 struct setup_data *data;
686 u64 paddr, paddr_next;
687
688 paddr = boot_params.hdr.setup_data;
689 while (paddr) {
690 unsigned int len, size;
691
692 if (phys_addr == paddr)
693 return true;
694
695 data = early_memremap_decrypted(paddr, sizeof(*data));
696 if (!data) {
697 pr_warn("failed to early memremap setup_data entry\n");
698 return false;
699 }
700
701 size = sizeof(*data);
702
703 paddr_next = data->next;
704 len = data->len;
705
706 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
707 early_memunmap(data, sizeof(*data));
708 return true;
709 }
710
711 if (data->type == SETUP_INDIRECT) {
712 size += len;
713 early_memunmap(data, sizeof(*data));
714 data = early_memremap_decrypted(paddr, size);
715 if (!data) {
716 pr_warn("failed to early memremap indirect setup_data\n");
717 return false;
718 }
719
720 indirect = (struct setup_indirect *)data->data;
721
722 if (indirect->type != SETUP_INDIRECT) {
723 paddr = indirect->addr;
724 len = indirect->len;
725 }
726 }
727
728 early_memunmap(data, size);
729
730 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
731 return true;
732
733 paddr = paddr_next;
734 }
735
736 return false;
737 }
738
739 /*
740 * Architecture function to determine if RAM remap is allowed. By default, a
741 * RAM remap will map the data as encrypted. Determine if a RAM remap should
742 * not be done so that the data will be mapped decrypted.
743 */
arch_memremap_can_ram_remap(resource_size_t phys_addr,unsigned long size,unsigned long flags)744 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
745 unsigned long flags)
746 {
747 if (!mem_encrypt_active())
748 return true;
749
750 if (flags & MEMREMAP_ENC)
751 return true;
752
753 if (flags & MEMREMAP_DEC)
754 return false;
755
756 if (sme_active()) {
757 if (memremap_is_setup_data(phys_addr, size) ||
758 memremap_is_efi_data(phys_addr, size))
759 return false;
760 }
761
762 return !memremap_should_map_decrypted(phys_addr, size);
763 }
764
765 /*
766 * Architecture override of __weak function to adjust the protection attributes
767 * used when remapping memory. By default, early_memremap() will map the data
768 * as encrypted. Determine if an encrypted mapping should not be done and set
769 * the appropriate protection attributes.
770 */
early_memremap_pgprot_adjust(resource_size_t phys_addr,unsigned long size,pgprot_t prot)771 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
772 unsigned long size,
773 pgprot_t prot)
774 {
775 bool encrypted_prot;
776
777 if (!mem_encrypt_active())
778 return prot;
779
780 encrypted_prot = true;
781
782 if (sme_active()) {
783 if (early_memremap_is_setup_data(phys_addr, size) ||
784 memremap_is_efi_data(phys_addr, size))
785 encrypted_prot = false;
786 }
787
788 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
789 encrypted_prot = false;
790
791 return encrypted_prot ? pgprot_encrypted(prot)
792 : pgprot_decrypted(prot);
793 }
794
phys_mem_access_encrypted(unsigned long phys_addr,unsigned long size)795 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
796 {
797 return arch_memremap_can_ram_remap(phys_addr, size, 0);
798 }
799
800 #ifdef CONFIG_AMD_MEM_ENCRYPT
801 /* Remap memory with encryption */
early_memremap_encrypted(resource_size_t phys_addr,unsigned long size)802 void __init *early_memremap_encrypted(resource_size_t phys_addr,
803 unsigned long size)
804 {
805 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
806 }
807
808 /*
809 * Remap memory with encryption and write-protected - cannot be called
810 * before pat_init() is called
811 */
early_memremap_encrypted_wp(resource_size_t phys_addr,unsigned long size)812 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
813 unsigned long size)
814 {
815 if (!x86_has_pat_wp())
816 return NULL;
817 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
818 }
819
820 /* Remap memory without encryption */
early_memremap_decrypted(resource_size_t phys_addr,unsigned long size)821 void __init *early_memremap_decrypted(resource_size_t phys_addr,
822 unsigned long size)
823 {
824 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
825 }
826
827 /*
828 * Remap memory without encryption and write-protected - cannot be called
829 * before pat_init() is called
830 */
early_memremap_decrypted_wp(resource_size_t phys_addr,unsigned long size)831 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
832 unsigned long size)
833 {
834 if (!x86_has_pat_wp())
835 return NULL;
836 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
837 }
838 #endif /* CONFIG_AMD_MEM_ENCRYPT */
839
840 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
841
early_ioremap_pmd(unsigned long addr)842 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
843 {
844 /* Don't assume we're using swapper_pg_dir at this point */
845 pgd_t *base = __va(read_cr3_pa());
846 pgd_t *pgd = &base[pgd_index(addr)];
847 p4d_t *p4d = p4d_offset(pgd, addr);
848 pud_t *pud = pud_offset(p4d, addr);
849 pmd_t *pmd = pmd_offset(pud, addr);
850
851 return pmd;
852 }
853
early_ioremap_pte(unsigned long addr)854 static inline pte_t * __init early_ioremap_pte(unsigned long addr)
855 {
856 return &bm_pte[pte_index(addr)];
857 }
858
is_early_ioremap_ptep(pte_t * ptep)859 bool __init is_early_ioremap_ptep(pte_t *ptep)
860 {
861 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
862 }
863
early_ioremap_init(void)864 void __init early_ioremap_init(void)
865 {
866 pmd_t *pmd;
867
868 #ifdef CONFIG_X86_64
869 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
870 #else
871 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
872 #endif
873
874 early_ioremap_setup();
875
876 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
877 memset(bm_pte, 0, sizeof(bm_pte));
878 pmd_populate_kernel(&init_mm, pmd, bm_pte);
879
880 /*
881 * The boot-ioremap range spans multiple pmds, for which
882 * we are not prepared:
883 */
884 #define __FIXADDR_TOP (-PAGE_SIZE)
885 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
886 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
887 #undef __FIXADDR_TOP
888 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
889 WARN_ON(1);
890 printk(KERN_WARNING "pmd %p != %p\n",
891 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
892 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
893 fix_to_virt(FIX_BTMAP_BEGIN));
894 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
895 fix_to_virt(FIX_BTMAP_END));
896
897 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
898 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
899 FIX_BTMAP_BEGIN);
900 }
901 }
902
__early_set_fixmap(enum fixed_addresses idx,phys_addr_t phys,pgprot_t flags)903 void __init __early_set_fixmap(enum fixed_addresses idx,
904 phys_addr_t phys, pgprot_t flags)
905 {
906 unsigned long addr = __fix_to_virt(idx);
907 pte_t *pte;
908
909 if (idx >= __end_of_fixed_addresses) {
910 BUG();
911 return;
912 }
913 pte = early_ioremap_pte(addr);
914
915 /* Sanitize 'prot' against any unsupported bits: */
916 pgprot_val(flags) &= __supported_pte_mask;
917
918 if (pgprot_val(flags))
919 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
920 else
921 pte_clear(&init_mm, addr, pte);
922 flush_tlb_one_kernel(addr);
923 }
924