1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 #include <linux/xarray.h>
23
24 #include <trace/events/block.h>
25 #include "blk.h"
26 #include "blk-rq-qos.h"
27
28 struct bio_alloc_cache {
29 struct bio_list free_list;
30 unsigned int nr;
31 };
32
33 static struct biovec_slab {
34 int nr_vecs;
35 char *name;
36 struct kmem_cache *slab;
37 } bvec_slabs[] __read_mostly = {
38 { .nr_vecs = 16, .name = "biovec-16" },
39 { .nr_vecs = 64, .name = "biovec-64" },
40 { .nr_vecs = 128, .name = "biovec-128" },
41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
42 };
43
biovec_slab(unsigned short nr_vecs)44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45 {
46 switch (nr_vecs) {
47 /* smaller bios use inline vecs */
48 case 5 ... 16:
49 return &bvec_slabs[0];
50 case 17 ... 64:
51 return &bvec_slabs[1];
52 case 65 ... 128:
53 return &bvec_slabs[2];
54 case 129 ... BIO_MAX_VECS:
55 return &bvec_slabs[3];
56 default:
57 BUG();
58 return NULL;
59 }
60 }
61
62 /*
63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64 * IO code that does not need private memory pools.
65 */
66 struct bio_set fs_bio_set;
67 EXPORT_SYMBOL(fs_bio_set);
68
69 /*
70 * Our slab pool management
71 */
72 struct bio_slab {
73 struct kmem_cache *slab;
74 unsigned int slab_ref;
75 unsigned int slab_size;
76 char name[8];
77 };
78 static DEFINE_MUTEX(bio_slab_lock);
79 static DEFINE_XARRAY(bio_slabs);
80
create_bio_slab(unsigned int size)81 static struct bio_slab *create_bio_slab(unsigned int size)
82 {
83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
84
85 if (!bslab)
86 return NULL;
87
88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 bslab->slab = kmem_cache_create(bslab->name, size,
90 ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
91 if (!bslab->slab)
92 goto fail_alloc_slab;
93
94 bslab->slab_ref = 1;
95 bslab->slab_size = size;
96
97 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
98 return bslab;
99
100 kmem_cache_destroy(bslab->slab);
101
102 fail_alloc_slab:
103 kfree(bslab);
104 return NULL;
105 }
106
bs_bio_slab_size(struct bio_set * bs)107 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
108 {
109 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
110 }
111
bio_find_or_create_slab(struct bio_set * bs)112 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
113 {
114 unsigned int size = bs_bio_slab_size(bs);
115 struct bio_slab *bslab;
116
117 mutex_lock(&bio_slab_lock);
118 bslab = xa_load(&bio_slabs, size);
119 if (bslab)
120 bslab->slab_ref++;
121 else
122 bslab = create_bio_slab(size);
123 mutex_unlock(&bio_slab_lock);
124
125 if (bslab)
126 return bslab->slab;
127 return NULL;
128 }
129
bio_put_slab(struct bio_set * bs)130 static void bio_put_slab(struct bio_set *bs)
131 {
132 struct bio_slab *bslab = NULL;
133 unsigned int slab_size = bs_bio_slab_size(bs);
134
135 mutex_lock(&bio_slab_lock);
136
137 bslab = xa_load(&bio_slabs, slab_size);
138 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
139 goto out;
140
141 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
142
143 WARN_ON(!bslab->slab_ref);
144
145 if (--bslab->slab_ref)
146 goto out;
147
148 xa_erase(&bio_slabs, slab_size);
149
150 kmem_cache_destroy(bslab->slab);
151 kfree(bslab);
152
153 out:
154 mutex_unlock(&bio_slab_lock);
155 }
156
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned short nr_vecs)157 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
158 {
159 BIO_BUG_ON(nr_vecs > BIO_MAX_VECS);
160
161 if (nr_vecs == BIO_MAX_VECS)
162 mempool_free(bv, pool);
163 else if (nr_vecs > BIO_INLINE_VECS)
164 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
165 }
166
167 /*
168 * Make the first allocation restricted and don't dump info on allocation
169 * failures, since we'll fall back to the mempool in case of failure.
170 */
bvec_alloc_gfp(gfp_t gfp)171 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
172 {
173 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
174 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
175 }
176
bvec_alloc(mempool_t * pool,unsigned short * nr_vecs,gfp_t gfp_mask)177 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
178 gfp_t gfp_mask)
179 {
180 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
181
182 if (WARN_ON_ONCE(!bvs))
183 return NULL;
184
185 /*
186 * Upgrade the nr_vecs request to take full advantage of the allocation.
187 * We also rely on this in the bvec_free path.
188 */
189 *nr_vecs = bvs->nr_vecs;
190
191 /*
192 * Try a slab allocation first for all smaller allocations. If that
193 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
194 * The mempool is sized to handle up to BIO_MAX_VECS entries.
195 */
196 if (*nr_vecs < BIO_MAX_VECS) {
197 struct bio_vec *bvl;
198
199 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
200 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
201 return bvl;
202 *nr_vecs = BIO_MAX_VECS;
203 }
204
205 return mempool_alloc(pool, gfp_mask);
206 }
207
bio_uninit(struct bio * bio)208 void bio_uninit(struct bio *bio)
209 {
210 #ifdef CONFIG_BLK_CGROUP
211 if (bio->bi_blkg) {
212 blkg_put(bio->bi_blkg);
213 bio->bi_blkg = NULL;
214 }
215 #endif
216 if (bio_integrity(bio))
217 bio_integrity_free(bio);
218
219 bio_crypt_free_ctx(bio);
220 }
221 EXPORT_SYMBOL(bio_uninit);
222
bio_free(struct bio * bio)223 static void bio_free(struct bio *bio)
224 {
225 struct bio_set *bs = bio->bi_pool;
226 void *p;
227
228 bio_uninit(bio);
229
230 if (bs) {
231 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
232
233 /*
234 * If we have front padding, adjust the bio pointer before freeing
235 */
236 p = bio;
237 p -= bs->front_pad;
238
239 mempool_free(p, &bs->bio_pool);
240 } else {
241 /* Bio was allocated by bio_kmalloc() */
242 kfree(bio);
243 }
244 }
245
246 /*
247 * Users of this function have their own bio allocation. Subsequently,
248 * they must remember to pair any call to bio_init() with bio_uninit()
249 * when IO has completed, or when the bio is released.
250 */
bio_init(struct bio * bio,struct bio_vec * table,unsigned short max_vecs)251 void bio_init(struct bio *bio, struct bio_vec *table,
252 unsigned short max_vecs)
253 {
254 bio->bi_next = NULL;
255 bio->bi_bdev = NULL;
256 bio->bi_opf = 0;
257 bio->bi_flags = 0;
258 bio->bi_ioprio = 0;
259 bio->bi_write_hint = 0;
260 bio->bi_status = 0;
261 bio->bi_iter.bi_sector = 0;
262 bio->bi_iter.bi_size = 0;
263 bio->bi_iter.bi_idx = 0;
264 bio->bi_iter.bi_bvec_done = 0;
265 bio->bi_end_io = NULL;
266 bio->bi_private = NULL;
267 #ifdef CONFIG_BLK_CGROUP
268 bio->bi_blkg = NULL;
269 bio->bi_issue.value = 0;
270 #ifdef CONFIG_BLK_CGROUP_IOCOST
271 bio->bi_iocost_cost = 0;
272 #endif
273 #endif
274 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
275 bio->bi_crypt_context = NULL;
276 #if IS_ENABLED(CONFIG_DM_DEFAULT_KEY)
277 bio->bi_skip_dm_default_key = false;
278 #endif
279 #endif
280 #ifdef CONFIG_BLK_DEV_INTEGRITY
281 bio->bi_integrity = NULL;
282 #endif
283 bio->bi_vcnt = 0;
284
285 atomic_set(&bio->__bi_remaining, 1);
286 atomic_set(&bio->__bi_cnt, 1);
287
288 bio->bi_max_vecs = max_vecs;
289 bio->bi_io_vec = table;
290 bio->bi_pool = NULL;
291 }
292 EXPORT_SYMBOL(bio_init);
293
294 /**
295 * bio_reset - reinitialize a bio
296 * @bio: bio to reset
297 *
298 * Description:
299 * After calling bio_reset(), @bio will be in the same state as a freshly
300 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
301 * preserved are the ones that are initialized by bio_alloc_bioset(). See
302 * comment in struct bio.
303 */
bio_reset(struct bio * bio)304 void bio_reset(struct bio *bio)
305 {
306 bio_uninit(bio);
307 memset(bio, 0, BIO_RESET_BYTES);
308 atomic_set(&bio->__bi_remaining, 1);
309 }
310 EXPORT_SYMBOL(bio_reset);
311
__bio_chain_endio(struct bio * bio)312 static struct bio *__bio_chain_endio(struct bio *bio)
313 {
314 struct bio *parent = bio->bi_private;
315
316 if (bio->bi_status && !parent->bi_status)
317 parent->bi_status = bio->bi_status;
318 bio_put(bio);
319 return parent;
320 }
321
bio_chain_endio(struct bio * bio)322 static void bio_chain_endio(struct bio *bio)
323 {
324 bio_endio(__bio_chain_endio(bio));
325 }
326
327 /**
328 * bio_chain - chain bio completions
329 * @bio: the target bio
330 * @parent: the parent bio of @bio
331 *
332 * The caller won't have a bi_end_io called when @bio completes - instead,
333 * @parent's bi_end_io won't be called until both @parent and @bio have
334 * completed; the chained bio will also be freed when it completes.
335 *
336 * The caller must not set bi_private or bi_end_io in @bio.
337 */
bio_chain(struct bio * bio,struct bio * parent)338 void bio_chain(struct bio *bio, struct bio *parent)
339 {
340 BUG_ON(bio->bi_private || bio->bi_end_io);
341
342 bio->bi_private = parent;
343 bio->bi_end_io = bio_chain_endio;
344 bio_inc_remaining(parent);
345 }
346 EXPORT_SYMBOL(bio_chain);
347
bio_alloc_rescue(struct work_struct * work)348 static void bio_alloc_rescue(struct work_struct *work)
349 {
350 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
351 struct bio *bio;
352
353 while (1) {
354 spin_lock(&bs->rescue_lock);
355 bio = bio_list_pop(&bs->rescue_list);
356 spin_unlock(&bs->rescue_lock);
357
358 if (!bio)
359 break;
360
361 submit_bio_noacct(bio);
362 }
363 }
364
punt_bios_to_rescuer(struct bio_set * bs)365 static void punt_bios_to_rescuer(struct bio_set *bs)
366 {
367 struct bio_list punt, nopunt;
368 struct bio *bio;
369
370 if (WARN_ON_ONCE(!bs->rescue_workqueue))
371 return;
372 /*
373 * In order to guarantee forward progress we must punt only bios that
374 * were allocated from this bio_set; otherwise, if there was a bio on
375 * there for a stacking driver higher up in the stack, processing it
376 * could require allocating bios from this bio_set, and doing that from
377 * our own rescuer would be bad.
378 *
379 * Since bio lists are singly linked, pop them all instead of trying to
380 * remove from the middle of the list:
381 */
382
383 bio_list_init(&punt);
384 bio_list_init(&nopunt);
385
386 while ((bio = bio_list_pop(¤t->bio_list[0])))
387 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
388 current->bio_list[0] = nopunt;
389
390 bio_list_init(&nopunt);
391 while ((bio = bio_list_pop(¤t->bio_list[1])))
392 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
393 current->bio_list[1] = nopunt;
394
395 spin_lock(&bs->rescue_lock);
396 bio_list_merge(&bs->rescue_list, &punt);
397 spin_unlock(&bs->rescue_lock);
398
399 queue_work(bs->rescue_workqueue, &bs->rescue_work);
400 }
401
402 /**
403 * bio_alloc_bioset - allocate a bio for I/O
404 * @gfp_mask: the GFP_* mask given to the slab allocator
405 * @nr_iovecs: number of iovecs to pre-allocate
406 * @bs: the bio_set to allocate from.
407 *
408 * Allocate a bio from the mempools in @bs.
409 *
410 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
411 * allocate a bio. This is due to the mempool guarantees. To make this work,
412 * callers must never allocate more than 1 bio at a time from the general pool.
413 * Callers that need to allocate more than 1 bio must always submit the
414 * previously allocated bio for IO before attempting to allocate a new one.
415 * Failure to do so can cause deadlocks under memory pressure.
416 *
417 * Note that when running under submit_bio_noacct() (i.e. any block driver),
418 * bios are not submitted until after you return - see the code in
419 * submit_bio_noacct() that converts recursion into iteration, to prevent
420 * stack overflows.
421 *
422 * This would normally mean allocating multiple bios under submit_bio_noacct()
423 * would be susceptible to deadlocks, but we have
424 * deadlock avoidance code that resubmits any blocked bios from a rescuer
425 * thread.
426 *
427 * However, we do not guarantee forward progress for allocations from other
428 * mempools. Doing multiple allocations from the same mempool under
429 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
430 * for per bio allocations.
431 *
432 * Returns: Pointer to new bio on success, NULL on failure.
433 */
bio_alloc_bioset(gfp_t gfp_mask,unsigned short nr_iovecs,struct bio_set * bs)434 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
435 struct bio_set *bs)
436 {
437 gfp_t saved_gfp = gfp_mask;
438 struct bio *bio;
439 void *p;
440
441 /* should not use nobvec bioset for nr_iovecs > 0 */
442 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
443 return NULL;
444
445 /*
446 * submit_bio_noacct() converts recursion to iteration; this means if
447 * we're running beneath it, any bios we allocate and submit will not be
448 * submitted (and thus freed) until after we return.
449 *
450 * This exposes us to a potential deadlock if we allocate multiple bios
451 * from the same bio_set() while running underneath submit_bio_noacct().
452 * If we were to allocate multiple bios (say a stacking block driver
453 * that was splitting bios), we would deadlock if we exhausted the
454 * mempool's reserve.
455 *
456 * We solve this, and guarantee forward progress, with a rescuer
457 * workqueue per bio_set. If we go to allocate and there are bios on
458 * current->bio_list, we first try the allocation without
459 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
460 * blocking to the rescuer workqueue before we retry with the original
461 * gfp_flags.
462 */
463 if (current->bio_list &&
464 (!bio_list_empty(¤t->bio_list[0]) ||
465 !bio_list_empty(¤t->bio_list[1])) &&
466 bs->rescue_workqueue)
467 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
468
469 p = mempool_alloc(&bs->bio_pool, gfp_mask);
470 if (!p && gfp_mask != saved_gfp) {
471 punt_bios_to_rescuer(bs);
472 gfp_mask = saved_gfp;
473 p = mempool_alloc(&bs->bio_pool, gfp_mask);
474 }
475 if (unlikely(!p))
476 return NULL;
477
478 bio = p + bs->front_pad;
479 if (nr_iovecs > BIO_INLINE_VECS) {
480 struct bio_vec *bvl = NULL;
481
482 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
483 if (!bvl && gfp_mask != saved_gfp) {
484 punt_bios_to_rescuer(bs);
485 gfp_mask = saved_gfp;
486 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
487 }
488 if (unlikely(!bvl))
489 goto err_free;
490
491 bio_init(bio, bvl, nr_iovecs);
492 } else if (nr_iovecs) {
493 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
494 } else {
495 bio_init(bio, NULL, 0);
496 }
497
498 bio->bi_pool = bs;
499 return bio;
500
501 err_free:
502 mempool_free(p, &bs->bio_pool);
503 return NULL;
504 }
505 EXPORT_SYMBOL(bio_alloc_bioset);
506
507 /**
508 * bio_kmalloc - kmalloc a bio for I/O
509 * @gfp_mask: the GFP_* mask given to the slab allocator
510 * @nr_iovecs: number of iovecs to pre-allocate
511 *
512 * Use kmalloc to allocate and initialize a bio.
513 *
514 * Returns: Pointer to new bio on success, NULL on failure.
515 */
bio_kmalloc(gfp_t gfp_mask,unsigned short nr_iovecs)516 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
517 {
518 struct bio *bio;
519
520 if (nr_iovecs > UIO_MAXIOV)
521 return NULL;
522
523 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
524 if (unlikely(!bio))
525 return NULL;
526 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
527 bio->bi_pool = NULL;
528 return bio;
529 }
530 EXPORT_SYMBOL(bio_kmalloc);
531
zero_fill_bio(struct bio * bio)532 void zero_fill_bio(struct bio *bio)
533 {
534 struct bio_vec bv;
535 struct bvec_iter iter;
536
537 bio_for_each_segment(bv, bio, iter)
538 memzero_bvec(&bv);
539 }
540 EXPORT_SYMBOL(zero_fill_bio);
541
542 /**
543 * bio_truncate - truncate the bio to small size of @new_size
544 * @bio: the bio to be truncated
545 * @new_size: new size for truncating the bio
546 *
547 * Description:
548 * Truncate the bio to new size of @new_size. If bio_op(bio) is
549 * REQ_OP_READ, zero the truncated part. This function should only
550 * be used for handling corner cases, such as bio eod.
551 */
bio_truncate(struct bio * bio,unsigned new_size)552 void bio_truncate(struct bio *bio, unsigned new_size)
553 {
554 struct bio_vec bv;
555 struct bvec_iter iter;
556 unsigned int done = 0;
557 bool truncated = false;
558
559 if (new_size >= bio->bi_iter.bi_size)
560 return;
561
562 if (bio_op(bio) != REQ_OP_READ)
563 goto exit;
564
565 bio_for_each_segment(bv, bio, iter) {
566 if (done + bv.bv_len > new_size) {
567 unsigned offset;
568
569 if (!truncated)
570 offset = new_size - done;
571 else
572 offset = 0;
573 zero_user(bv.bv_page, bv.bv_offset + offset,
574 bv.bv_len - offset);
575 truncated = true;
576 }
577 done += bv.bv_len;
578 }
579
580 exit:
581 /*
582 * Don't touch bvec table here and make it really immutable, since
583 * fs bio user has to retrieve all pages via bio_for_each_segment_all
584 * in its .end_bio() callback.
585 *
586 * It is enough to truncate bio by updating .bi_size since we can make
587 * correct bvec with the updated .bi_size for drivers.
588 */
589 bio->bi_iter.bi_size = new_size;
590 }
591
592 /**
593 * guard_bio_eod - truncate a BIO to fit the block device
594 * @bio: bio to truncate
595 *
596 * This allows us to do IO even on the odd last sectors of a device, even if the
597 * block size is some multiple of the physical sector size.
598 *
599 * We'll just truncate the bio to the size of the device, and clear the end of
600 * the buffer head manually. Truly out-of-range accesses will turn into actual
601 * I/O errors, this only handles the "we need to be able to do I/O at the final
602 * sector" case.
603 */
guard_bio_eod(struct bio * bio)604 void guard_bio_eod(struct bio *bio)
605 {
606 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
607
608 if (!maxsector)
609 return;
610
611 /*
612 * If the *whole* IO is past the end of the device,
613 * let it through, and the IO layer will turn it into
614 * an EIO.
615 */
616 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
617 return;
618
619 maxsector -= bio->bi_iter.bi_sector;
620 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
621 return;
622
623 bio_truncate(bio, maxsector << 9);
624 }
625
626 #define ALLOC_CACHE_MAX 512
627 #define ALLOC_CACHE_SLACK 64
628
bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)629 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
630 unsigned int nr)
631 {
632 unsigned int i = 0;
633 struct bio *bio;
634
635 while ((bio = bio_list_pop(&cache->free_list)) != NULL) {
636 cache->nr--;
637 bio_free(bio);
638 if (++i == nr)
639 break;
640 }
641 }
642
bio_cpu_dead(unsigned int cpu,struct hlist_node * node)643 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
644 {
645 struct bio_set *bs;
646
647 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
648 if (bs->cache) {
649 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
650
651 bio_alloc_cache_prune(cache, -1U);
652 }
653 return 0;
654 }
655
bio_alloc_cache_destroy(struct bio_set * bs)656 static void bio_alloc_cache_destroy(struct bio_set *bs)
657 {
658 int cpu;
659
660 if (!bs->cache)
661 return;
662
663 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
664 for_each_possible_cpu(cpu) {
665 struct bio_alloc_cache *cache;
666
667 cache = per_cpu_ptr(bs->cache, cpu);
668 bio_alloc_cache_prune(cache, -1U);
669 }
670 free_percpu(bs->cache);
671 bs->cache = NULL;
672 }
673
674 /**
675 * bio_put - release a reference to a bio
676 * @bio: bio to release reference to
677 *
678 * Description:
679 * Put a reference to a &struct bio, either one you have gotten with
680 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
681 **/
bio_put(struct bio * bio)682 void bio_put(struct bio *bio)
683 {
684 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
685 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
686 if (!atomic_dec_and_test(&bio->__bi_cnt))
687 return;
688 }
689
690 if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
691 struct bio_alloc_cache *cache;
692
693 bio_uninit(bio);
694 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
695 bio_list_add_head(&cache->free_list, bio);
696 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
697 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
698 put_cpu();
699 } else {
700 bio_free(bio);
701 }
702 }
703 EXPORT_SYMBOL(bio_put);
704
705 /**
706 * __bio_clone_fast - clone a bio that shares the original bio's biovec
707 * @bio: destination bio
708 * @bio_src: bio to clone
709 *
710 * Clone a &bio. Caller will own the returned bio, but not
711 * the actual data it points to. Reference count of returned
712 * bio will be one.
713 *
714 * Caller must ensure that @bio_src is not freed before @bio.
715 */
__bio_clone_fast(struct bio * bio,struct bio * bio_src)716 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
717 {
718 WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
719
720 /*
721 * most users will be overriding ->bi_bdev with a new target,
722 * so we don't set nor calculate new physical/hw segment counts here
723 */
724 bio->bi_bdev = bio_src->bi_bdev;
725 bio_set_flag(bio, BIO_CLONED);
726 if (bio_flagged(bio_src, BIO_THROTTLED))
727 bio_set_flag(bio, BIO_THROTTLED);
728 if (bio_flagged(bio_src, BIO_REMAPPED))
729 bio_set_flag(bio, BIO_REMAPPED);
730 bio->bi_opf = bio_src->bi_opf;
731 bio->bi_ioprio = bio_src->bi_ioprio;
732 bio->bi_write_hint = bio_src->bi_write_hint;
733 bio->bi_iter = bio_src->bi_iter;
734 bio->bi_io_vec = bio_src->bi_io_vec;
735
736 bio_clone_blkg_association(bio, bio_src);
737 blkcg_bio_issue_init(bio);
738 }
739 EXPORT_SYMBOL(__bio_clone_fast);
740
741 /**
742 * bio_clone_fast - clone a bio that shares the original bio's biovec
743 * @bio: bio to clone
744 * @gfp_mask: allocation priority
745 * @bs: bio_set to allocate from
746 *
747 * Like __bio_clone_fast, only also allocates the returned bio
748 */
bio_clone_fast(struct bio * bio,gfp_t gfp_mask,struct bio_set * bs)749 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
750 {
751 struct bio *b;
752
753 b = bio_alloc_bioset(gfp_mask, 0, bs);
754 if (!b)
755 return NULL;
756
757 __bio_clone_fast(b, bio);
758
759 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
760 goto err_put;
761
762 if (bio_integrity(bio) &&
763 bio_integrity_clone(b, bio, gfp_mask) < 0)
764 goto err_put;
765
766 return b;
767
768 err_put:
769 bio_put(b);
770 return NULL;
771 }
772 EXPORT_SYMBOL(bio_clone_fast);
773
bio_devname(struct bio * bio,char * buf)774 const char *bio_devname(struct bio *bio, char *buf)
775 {
776 return bdevname(bio->bi_bdev, buf);
777 }
778 EXPORT_SYMBOL(bio_devname);
779
page_is_mergeable(const struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off,bool * same_page)780 static inline bool page_is_mergeable(const struct bio_vec *bv,
781 struct page *page, unsigned int len, unsigned int off,
782 bool *same_page)
783 {
784 size_t bv_end = bv->bv_offset + bv->bv_len;
785 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
786 phys_addr_t page_addr = page_to_phys(page);
787
788 if (vec_end_addr + 1 != page_addr + off)
789 return false;
790 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
791 return false;
792
793 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
794 if (*same_page)
795 return true;
796 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
797 }
798
799 /*
800 * Try to merge a page into a segment, while obeying the hardware segment
801 * size limit. This is not for normal read/write bios, but for passthrough
802 * or Zone Append operations that we can't split.
803 */
bio_try_merge_hw_seg(struct request_queue * q,struct bio * bio,struct page * page,unsigned len,unsigned offset,bool * same_page)804 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
805 struct page *page, unsigned len,
806 unsigned offset, bool *same_page)
807 {
808 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
809 unsigned long mask = queue_segment_boundary(q);
810 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
811 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
812
813 if ((addr1 | mask) != (addr2 | mask))
814 return false;
815 if (len > queue_max_segment_size(q) - bv->bv_len)
816 return false;
817 return __bio_try_merge_page(bio, page, len, offset, same_page);
818 }
819
820 /**
821 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
822 * @q: the target queue
823 * @bio: destination bio
824 * @page: page to add
825 * @len: vec entry length
826 * @offset: vec entry offset
827 * @max_sectors: maximum number of sectors that can be added
828 * @same_page: return if the segment has been merged inside the same page
829 *
830 * Add a page to a bio while respecting the hardware max_sectors, max_segment
831 * and gap limitations.
832 */
bio_add_hw_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset,unsigned int max_sectors,bool * same_page)833 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
834 struct page *page, unsigned int len, unsigned int offset,
835 unsigned int max_sectors, bool *same_page)
836 {
837 struct bio_vec *bvec;
838
839 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
840 return 0;
841
842 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
843 return 0;
844
845 if (bio->bi_vcnt > 0) {
846 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
847 return len;
848
849 /*
850 * If the queue doesn't support SG gaps and adding this segment
851 * would create a gap, disallow it.
852 */
853 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
854 if (bvec_gap_to_prev(q, bvec, offset))
855 return 0;
856 }
857
858 if (bio_full(bio, len))
859 return 0;
860
861 if (bio->bi_vcnt >= queue_max_segments(q))
862 return 0;
863
864 bvec = &bio->bi_io_vec[bio->bi_vcnt];
865 bvec->bv_page = page;
866 bvec->bv_len = len;
867 bvec->bv_offset = offset;
868 bio->bi_vcnt++;
869 bio->bi_iter.bi_size += len;
870 return len;
871 }
872
873 /**
874 * bio_add_pc_page - attempt to add page to passthrough bio
875 * @q: the target queue
876 * @bio: destination bio
877 * @page: page to add
878 * @len: vec entry length
879 * @offset: vec entry offset
880 *
881 * Attempt to add a page to the bio_vec maplist. This can fail for a
882 * number of reasons, such as the bio being full or target block device
883 * limitations. The target block device must allow bio's up to PAGE_SIZE,
884 * so it is always possible to add a single page to an empty bio.
885 *
886 * This should only be used by passthrough bios.
887 */
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)888 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
889 struct page *page, unsigned int len, unsigned int offset)
890 {
891 bool same_page = false;
892 return bio_add_hw_page(q, bio, page, len, offset,
893 queue_max_hw_sectors(q), &same_page);
894 }
895 EXPORT_SYMBOL(bio_add_pc_page);
896
897 /**
898 * bio_add_zone_append_page - attempt to add page to zone-append bio
899 * @bio: destination bio
900 * @page: page to add
901 * @len: vec entry length
902 * @offset: vec entry offset
903 *
904 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
905 * for a zone-append request. This can fail for a number of reasons, such as the
906 * bio being full or the target block device is not a zoned block device or
907 * other limitations of the target block device. The target block device must
908 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
909 * to an empty bio.
910 *
911 * Returns: number of bytes added to the bio, or 0 in case of a failure.
912 */
bio_add_zone_append_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)913 int bio_add_zone_append_page(struct bio *bio, struct page *page,
914 unsigned int len, unsigned int offset)
915 {
916 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
917 bool same_page = false;
918
919 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
920 return 0;
921
922 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
923 return 0;
924
925 return bio_add_hw_page(q, bio, page, len, offset,
926 queue_max_zone_append_sectors(q), &same_page);
927 }
928 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
929
930 /**
931 * __bio_try_merge_page - try appending data to an existing bvec.
932 * @bio: destination bio
933 * @page: start page to add
934 * @len: length of the data to add
935 * @off: offset of the data relative to @page
936 * @same_page: return if the segment has been merged inside the same page
937 *
938 * Try to add the data at @page + @off to the last bvec of @bio. This is a
939 * useful optimisation for file systems with a block size smaller than the
940 * page size.
941 *
942 * Warn if (@len, @off) crosses pages in case that @same_page is true.
943 *
944 * Return %true on success or %false on failure.
945 */
__bio_try_merge_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off,bool * same_page)946 bool __bio_try_merge_page(struct bio *bio, struct page *page,
947 unsigned int len, unsigned int off, bool *same_page)
948 {
949 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
950 return false;
951
952 if (bio->bi_vcnt > 0) {
953 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
954
955 if (page_is_mergeable(bv, page, len, off, same_page)) {
956 if (bio->bi_iter.bi_size > UINT_MAX - len) {
957 *same_page = false;
958 return false;
959 }
960 bv->bv_len += len;
961 bio->bi_iter.bi_size += len;
962 return true;
963 }
964 }
965 return false;
966 }
967 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
968
969 /**
970 * __bio_add_page - add page(s) to a bio in a new segment
971 * @bio: destination bio
972 * @page: start page to add
973 * @len: length of the data to add, may cross pages
974 * @off: offset of the data relative to @page, may cross pages
975 *
976 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
977 * that @bio has space for another bvec.
978 */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)979 void __bio_add_page(struct bio *bio, struct page *page,
980 unsigned int len, unsigned int off)
981 {
982 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
983
984 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
985 WARN_ON_ONCE(bio_full(bio, len));
986
987 bv->bv_page = page;
988 bv->bv_offset = off;
989 bv->bv_len = len;
990
991 bio->bi_iter.bi_size += len;
992 bio->bi_vcnt++;
993
994 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
995 bio_set_flag(bio, BIO_WORKINGSET);
996 }
997 EXPORT_SYMBOL_GPL(__bio_add_page);
998
999 /**
1000 * bio_add_page - attempt to add page(s) to bio
1001 * @bio: destination bio
1002 * @page: start page to add
1003 * @len: vec entry length, may cross pages
1004 * @offset: vec entry offset relative to @page, may cross pages
1005 *
1006 * Attempt to add page(s) to the bio_vec maplist. This will only fail
1007 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1008 */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1009 int bio_add_page(struct bio *bio, struct page *page,
1010 unsigned int len, unsigned int offset)
1011 {
1012 bool same_page = false;
1013
1014 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1015 if (bio_full(bio, len))
1016 return 0;
1017 __bio_add_page(bio, page, len, offset);
1018 }
1019 return len;
1020 }
1021 EXPORT_SYMBOL(bio_add_page);
1022
bio_release_pages(struct bio * bio,bool mark_dirty)1023 void bio_release_pages(struct bio *bio, bool mark_dirty)
1024 {
1025 struct bvec_iter_all iter_all;
1026 struct bio_vec *bvec;
1027
1028 if (bio_flagged(bio, BIO_NO_PAGE_REF))
1029 return;
1030
1031 bio_for_each_segment_all(bvec, bio, iter_all) {
1032 if (mark_dirty)
1033 set_page_dirty_lock(bvec->bv_page);
1034 put_page(bvec->bv_page);
1035 }
1036 }
1037 EXPORT_SYMBOL_GPL(bio_release_pages);
1038
__bio_iov_bvec_set(struct bio * bio,struct iov_iter * iter)1039 static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1040 {
1041 WARN_ON_ONCE(bio->bi_max_vecs);
1042
1043 bio->bi_vcnt = iter->nr_segs;
1044 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1045 bio->bi_iter.bi_bvec_done = iter->iov_offset;
1046 bio->bi_iter.bi_size = iter->count;
1047 bio_set_flag(bio, BIO_NO_PAGE_REF);
1048 bio_set_flag(bio, BIO_CLONED);
1049 }
1050
bio_iov_bvec_set(struct bio * bio,struct iov_iter * iter)1051 static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1052 {
1053 __bio_iov_bvec_set(bio, iter);
1054 iov_iter_advance(iter, iter->count);
1055 return 0;
1056 }
1057
bio_iov_bvec_set_append(struct bio * bio,struct iov_iter * iter)1058 static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
1059 {
1060 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1061 struct iov_iter i = *iter;
1062
1063 iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
1064 __bio_iov_bvec_set(bio, &i);
1065 iov_iter_advance(iter, i.count);
1066 return 0;
1067 }
1068
bio_put_pages(struct page ** pages,size_t size,size_t off)1069 static void bio_put_pages(struct page **pages, size_t size, size_t off)
1070 {
1071 size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1072
1073 for (i = 0; i < nr; i++)
1074 put_page(pages[i]);
1075 }
1076
bio_iov_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1077 static int bio_iov_add_page(struct bio *bio, struct page *page,
1078 unsigned int len, unsigned int offset)
1079 {
1080 bool same_page = false;
1081
1082 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1083 if (WARN_ON_ONCE(bio_full(bio, len)))
1084 return -EINVAL;
1085 __bio_add_page(bio, page, len, offset);
1086 return 0;
1087 }
1088
1089 if (same_page)
1090 put_page(page);
1091 return 0;
1092 }
1093
bio_iov_add_zone_append_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1094 static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
1095 unsigned int len, unsigned int offset)
1096 {
1097 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1098 bool same_page = false;
1099
1100 if (bio_add_hw_page(q, bio, page, len, offset,
1101 queue_max_zone_append_sectors(q), &same_page) != len)
1102 return -EINVAL;
1103 if (same_page)
1104 put_page(page);
1105 return 0;
1106 }
1107
1108 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1109
1110 /**
1111 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1112 * @bio: bio to add pages to
1113 * @iter: iov iterator describing the region to be mapped
1114 *
1115 * Pins pages from *iter and appends them to @bio's bvec array. The
1116 * pages will have to be released using put_page() when done.
1117 * For multi-segment *iter, this function only adds pages from the
1118 * next non-empty segment of the iov iterator.
1119 */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1120 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1121 {
1122 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1123 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1124 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1125 struct page **pages = (struct page **)bv;
1126 ssize_t size, left;
1127 unsigned len, i;
1128 size_t offset;
1129 int ret = 0;
1130
1131 /*
1132 * Move page array up in the allocated memory for the bio vecs as far as
1133 * possible so that we can start filling biovecs from the beginning
1134 * without overwriting the temporary page array.
1135 */
1136 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1137 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1138
1139 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1140 if (unlikely(size <= 0))
1141 return size ? size : -EFAULT;
1142
1143 for (left = size, i = 0; left > 0; left -= len, i++) {
1144 struct page *page = pages[i];
1145
1146 len = min_t(size_t, PAGE_SIZE - offset, left);
1147 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1148 ret = bio_iov_add_zone_append_page(bio, page, len,
1149 offset);
1150 else
1151 ret = bio_iov_add_page(bio, page, len, offset);
1152
1153 if (ret) {
1154 bio_put_pages(pages + i, left, offset);
1155 break;
1156 }
1157 offset = 0;
1158 }
1159
1160 iov_iter_advance(iter, size - left);
1161 return ret;
1162 }
1163
1164 /**
1165 * bio_iov_iter_get_pages - add user or kernel pages to a bio
1166 * @bio: bio to add pages to
1167 * @iter: iov iterator describing the region to be added
1168 *
1169 * This takes either an iterator pointing to user memory, or one pointing to
1170 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1171 * map them into the kernel. On IO completion, the caller should put those
1172 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1173 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1174 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1175 * completed by a call to ->ki_complete() or returns with an error other than
1176 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1177 * on IO completion. If it isn't, then pages should be released.
1178 *
1179 * The function tries, but does not guarantee, to pin as many pages as
1180 * fit into the bio, or are requested in @iter, whatever is smaller. If
1181 * MM encounters an error pinning the requested pages, it stops. Error
1182 * is returned only if 0 pages could be pinned.
1183 *
1184 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1185 * responsible for setting BIO_WORKINGSET if necessary.
1186 */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1187 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1188 {
1189 int ret = 0;
1190
1191 if (iov_iter_is_bvec(iter)) {
1192 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1193 return bio_iov_bvec_set_append(bio, iter);
1194 return bio_iov_bvec_set(bio, iter);
1195 }
1196
1197 do {
1198 ret = __bio_iov_iter_get_pages(bio, iter);
1199 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1200
1201 /* don't account direct I/O as memory stall */
1202 bio_clear_flag(bio, BIO_WORKINGSET);
1203 return bio->bi_vcnt ? 0 : ret;
1204 }
1205 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1206
submit_bio_wait_endio(struct bio * bio)1207 static void submit_bio_wait_endio(struct bio *bio)
1208 {
1209 complete(bio->bi_private);
1210 }
1211
1212 /**
1213 * submit_bio_wait - submit a bio, and wait until it completes
1214 * @bio: The &struct bio which describes the I/O
1215 *
1216 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1217 * bio_endio() on failure.
1218 *
1219 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1220 * result in bio reference to be consumed. The caller must drop the reference
1221 * on his own.
1222 */
submit_bio_wait(struct bio * bio)1223 int submit_bio_wait(struct bio *bio)
1224 {
1225 DECLARE_COMPLETION_ONSTACK_MAP(done,
1226 bio->bi_bdev->bd_disk->lockdep_map);
1227 unsigned long hang_check;
1228
1229 bio->bi_private = &done;
1230 bio->bi_end_io = submit_bio_wait_endio;
1231 bio->bi_opf |= REQ_SYNC;
1232 submit_bio(bio);
1233
1234 /* Prevent hang_check timer from firing at us during very long I/O */
1235 hang_check = sysctl_hung_task_timeout_secs;
1236 if (hang_check)
1237 while (!wait_for_completion_io_timeout(&done,
1238 hang_check * (HZ/2)))
1239 ;
1240 else
1241 wait_for_completion_io(&done);
1242
1243 return blk_status_to_errno(bio->bi_status);
1244 }
1245 EXPORT_SYMBOL(submit_bio_wait);
1246
1247 /**
1248 * bio_advance - increment/complete a bio by some number of bytes
1249 * @bio: bio to advance
1250 * @bytes: number of bytes to complete
1251 *
1252 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1253 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1254 * be updated on the last bvec as well.
1255 *
1256 * @bio will then represent the remaining, uncompleted portion of the io.
1257 */
bio_advance(struct bio * bio,unsigned bytes)1258 void bio_advance(struct bio *bio, unsigned bytes)
1259 {
1260 if (bio_integrity(bio))
1261 bio_integrity_advance(bio, bytes);
1262
1263 bio_crypt_advance(bio, bytes);
1264 bio_advance_iter(bio, &bio->bi_iter, bytes);
1265 }
1266 EXPORT_SYMBOL(bio_advance);
1267
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1268 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1269 struct bio *src, struct bvec_iter *src_iter)
1270 {
1271 while (src_iter->bi_size && dst_iter->bi_size) {
1272 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1273 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1274 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1275 void *src_buf = bvec_kmap_local(&src_bv);
1276 void *dst_buf = bvec_kmap_local(&dst_bv);
1277
1278 memcpy(dst_buf, src_buf, bytes);
1279
1280 kunmap_local(dst_buf);
1281 kunmap_local(src_buf);
1282
1283 bio_advance_iter_single(src, src_iter, bytes);
1284 bio_advance_iter_single(dst, dst_iter, bytes);
1285 }
1286 }
1287 EXPORT_SYMBOL(bio_copy_data_iter);
1288
1289 /**
1290 * bio_copy_data - copy contents of data buffers from one bio to another
1291 * @src: source bio
1292 * @dst: destination bio
1293 *
1294 * Stops when it reaches the end of either @src or @dst - that is, copies
1295 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1296 */
bio_copy_data(struct bio * dst,struct bio * src)1297 void bio_copy_data(struct bio *dst, struct bio *src)
1298 {
1299 struct bvec_iter src_iter = src->bi_iter;
1300 struct bvec_iter dst_iter = dst->bi_iter;
1301
1302 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1303 }
1304 EXPORT_SYMBOL(bio_copy_data);
1305
bio_free_pages(struct bio * bio)1306 void bio_free_pages(struct bio *bio)
1307 {
1308 struct bio_vec *bvec;
1309 struct bvec_iter_all iter_all;
1310
1311 bio_for_each_segment_all(bvec, bio, iter_all)
1312 __free_page(bvec->bv_page);
1313 }
1314 EXPORT_SYMBOL(bio_free_pages);
1315
1316 /*
1317 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1318 * for performing direct-IO in BIOs.
1319 *
1320 * The problem is that we cannot run set_page_dirty() from interrupt context
1321 * because the required locks are not interrupt-safe. So what we can do is to
1322 * mark the pages dirty _before_ performing IO. And in interrupt context,
1323 * check that the pages are still dirty. If so, fine. If not, redirty them
1324 * in process context.
1325 *
1326 * We special-case compound pages here: normally this means reads into hugetlb
1327 * pages. The logic in here doesn't really work right for compound pages
1328 * because the VM does not uniformly chase down the head page in all cases.
1329 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1330 * handle them at all. So we skip compound pages here at an early stage.
1331 *
1332 * Note that this code is very hard to test under normal circumstances because
1333 * direct-io pins the pages with get_user_pages(). This makes
1334 * is_page_cache_freeable return false, and the VM will not clean the pages.
1335 * But other code (eg, flusher threads) could clean the pages if they are mapped
1336 * pagecache.
1337 *
1338 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1339 * deferred bio dirtying paths.
1340 */
1341
1342 /*
1343 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1344 */
bio_set_pages_dirty(struct bio * bio)1345 void bio_set_pages_dirty(struct bio *bio)
1346 {
1347 struct bio_vec *bvec;
1348 struct bvec_iter_all iter_all;
1349
1350 bio_for_each_segment_all(bvec, bio, iter_all) {
1351 set_page_dirty_lock(bvec->bv_page);
1352 }
1353 }
1354
1355 /*
1356 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1357 * If they are, then fine. If, however, some pages are clean then they must
1358 * have been written out during the direct-IO read. So we take another ref on
1359 * the BIO and re-dirty the pages in process context.
1360 *
1361 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1362 * here on. It will run one put_page() against each page and will run one
1363 * bio_put() against the BIO.
1364 */
1365
1366 static void bio_dirty_fn(struct work_struct *work);
1367
1368 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1369 static DEFINE_SPINLOCK(bio_dirty_lock);
1370 static struct bio *bio_dirty_list;
1371
1372 /*
1373 * This runs in process context
1374 */
bio_dirty_fn(struct work_struct * work)1375 static void bio_dirty_fn(struct work_struct *work)
1376 {
1377 struct bio *bio, *next;
1378
1379 spin_lock_irq(&bio_dirty_lock);
1380 next = bio_dirty_list;
1381 bio_dirty_list = NULL;
1382 spin_unlock_irq(&bio_dirty_lock);
1383
1384 while ((bio = next) != NULL) {
1385 next = bio->bi_private;
1386
1387 bio_release_pages(bio, true);
1388 bio_put(bio);
1389 }
1390 }
1391
bio_check_pages_dirty(struct bio * bio)1392 void bio_check_pages_dirty(struct bio *bio)
1393 {
1394 struct bio_vec *bvec;
1395 unsigned long flags;
1396 struct bvec_iter_all iter_all;
1397
1398 bio_for_each_segment_all(bvec, bio, iter_all) {
1399 if (!PageDirty(bvec->bv_page))
1400 goto defer;
1401 }
1402
1403 bio_release_pages(bio, false);
1404 bio_put(bio);
1405 return;
1406 defer:
1407 spin_lock_irqsave(&bio_dirty_lock, flags);
1408 bio->bi_private = bio_dirty_list;
1409 bio_dirty_list = bio;
1410 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1411 schedule_work(&bio_dirty_work);
1412 }
1413
bio_remaining_done(struct bio * bio)1414 static inline bool bio_remaining_done(struct bio *bio)
1415 {
1416 /*
1417 * If we're not chaining, then ->__bi_remaining is always 1 and
1418 * we always end io on the first invocation.
1419 */
1420 if (!bio_flagged(bio, BIO_CHAIN))
1421 return true;
1422
1423 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1424
1425 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1426 bio_clear_flag(bio, BIO_CHAIN);
1427 return true;
1428 }
1429
1430 return false;
1431 }
1432
1433 /**
1434 * bio_endio - end I/O on a bio
1435 * @bio: bio
1436 *
1437 * Description:
1438 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1439 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1440 * bio unless they own it and thus know that it has an end_io function.
1441 *
1442 * bio_endio() can be called several times on a bio that has been chained
1443 * using bio_chain(). The ->bi_end_io() function will only be called the
1444 * last time.
1445 **/
bio_endio(struct bio * bio)1446 void bio_endio(struct bio *bio)
1447 {
1448 again:
1449 if (!bio_remaining_done(bio))
1450 return;
1451 if (!bio_integrity_endio(bio))
1452 return;
1453
1454 rq_qos_done_bio(bio);
1455
1456 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1457 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1458 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1459 }
1460
1461 /*
1462 * Need to have a real endio function for chained bios, otherwise
1463 * various corner cases will break (like stacking block devices that
1464 * save/restore bi_end_io) - however, we want to avoid unbounded
1465 * recursion and blowing the stack. Tail call optimization would
1466 * handle this, but compiling with frame pointers also disables
1467 * gcc's sibling call optimization.
1468 */
1469 if (bio->bi_end_io == bio_chain_endio) {
1470 bio = __bio_chain_endio(bio);
1471 goto again;
1472 }
1473
1474 blk_throtl_bio_endio(bio);
1475 /* release cgroup info */
1476 bio_uninit(bio);
1477 if (bio->bi_end_io)
1478 bio->bi_end_io(bio);
1479 }
1480 EXPORT_SYMBOL(bio_endio);
1481
1482 /**
1483 * bio_split - split a bio
1484 * @bio: bio to split
1485 * @sectors: number of sectors to split from the front of @bio
1486 * @gfp: gfp mask
1487 * @bs: bio set to allocate from
1488 *
1489 * Allocates and returns a new bio which represents @sectors from the start of
1490 * @bio, and updates @bio to represent the remaining sectors.
1491 *
1492 * Unless this is a discard request the newly allocated bio will point
1493 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1494 * neither @bio nor @bs are freed before the split bio.
1495 */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1496 struct bio *bio_split(struct bio *bio, int sectors,
1497 gfp_t gfp, struct bio_set *bs)
1498 {
1499 struct bio *split;
1500
1501 BUG_ON(sectors <= 0);
1502 BUG_ON(sectors >= bio_sectors(bio));
1503
1504 /* Zone append commands cannot be split */
1505 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1506 return NULL;
1507
1508 split = bio_clone_fast(bio, gfp, bs);
1509 if (!split)
1510 return NULL;
1511
1512 split->bi_iter.bi_size = sectors << 9;
1513
1514 if (bio_integrity(split))
1515 bio_integrity_trim(split);
1516
1517 bio_advance(bio, split->bi_iter.bi_size);
1518
1519 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1520 bio_set_flag(split, BIO_TRACE_COMPLETION);
1521
1522 return split;
1523 }
1524 EXPORT_SYMBOL(bio_split);
1525
1526 /**
1527 * bio_trim - trim a bio
1528 * @bio: bio to trim
1529 * @offset: number of sectors to trim from the front of @bio
1530 * @size: size we want to trim @bio to, in sectors
1531 *
1532 * This function is typically used for bios that are cloned and submitted
1533 * to the underlying device in parts.
1534 */
bio_trim(struct bio * bio,sector_t offset,sector_t size)1535 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1536 {
1537 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1538 offset + size > bio_sectors(bio)))
1539 return;
1540
1541 size <<= 9;
1542 if (offset == 0 && size == bio->bi_iter.bi_size)
1543 return;
1544
1545 bio_advance(bio, offset << 9);
1546 bio->bi_iter.bi_size = size;
1547
1548 if (bio_integrity(bio))
1549 bio_integrity_trim(bio);
1550 }
1551 EXPORT_SYMBOL_GPL(bio_trim);
1552
1553 /*
1554 * create memory pools for biovec's in a bio_set.
1555 * use the global biovec slabs created for general use.
1556 */
biovec_init_pool(mempool_t * pool,int pool_entries)1557 int biovec_init_pool(mempool_t *pool, int pool_entries)
1558 {
1559 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1560
1561 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1562 }
1563
1564 /*
1565 * bioset_exit - exit a bioset initialized with bioset_init()
1566 *
1567 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1568 * kzalloc()).
1569 */
bioset_exit(struct bio_set * bs)1570 void bioset_exit(struct bio_set *bs)
1571 {
1572 bio_alloc_cache_destroy(bs);
1573 if (bs->rescue_workqueue)
1574 destroy_workqueue(bs->rescue_workqueue);
1575 bs->rescue_workqueue = NULL;
1576
1577 mempool_exit(&bs->bio_pool);
1578 mempool_exit(&bs->bvec_pool);
1579
1580 bioset_integrity_free(bs);
1581 if (bs->bio_slab)
1582 bio_put_slab(bs);
1583 bs->bio_slab = NULL;
1584 }
1585 EXPORT_SYMBOL(bioset_exit);
1586
1587 /**
1588 * bioset_init - Initialize a bio_set
1589 * @bs: pool to initialize
1590 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1591 * @front_pad: Number of bytes to allocate in front of the returned bio
1592 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1593 * and %BIOSET_NEED_RESCUER
1594 *
1595 * Description:
1596 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1597 * to ask for a number of bytes to be allocated in front of the bio.
1598 * Front pad allocation is useful for embedding the bio inside
1599 * another structure, to avoid allocating extra data to go with the bio.
1600 * Note that the bio must be embedded at the END of that structure always,
1601 * or things will break badly.
1602 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1603 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1604 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1605 * dispatch queued requests when the mempool runs out of space.
1606 *
1607 */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)1608 int bioset_init(struct bio_set *bs,
1609 unsigned int pool_size,
1610 unsigned int front_pad,
1611 int flags)
1612 {
1613 bs->front_pad = front_pad;
1614 if (flags & BIOSET_NEED_BVECS)
1615 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1616 else
1617 bs->back_pad = 0;
1618
1619 spin_lock_init(&bs->rescue_lock);
1620 bio_list_init(&bs->rescue_list);
1621 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1622
1623 bs->bio_slab = bio_find_or_create_slab(bs);
1624 if (!bs->bio_slab)
1625 return -ENOMEM;
1626
1627 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1628 goto bad;
1629
1630 if ((flags & BIOSET_NEED_BVECS) &&
1631 biovec_init_pool(&bs->bvec_pool, pool_size))
1632 goto bad;
1633
1634 if (flags & BIOSET_NEED_RESCUER) {
1635 bs->rescue_workqueue = alloc_workqueue("bioset",
1636 WQ_MEM_RECLAIM, 0);
1637 if (!bs->rescue_workqueue)
1638 goto bad;
1639 }
1640 if (flags & BIOSET_PERCPU_CACHE) {
1641 bs->cache = alloc_percpu(struct bio_alloc_cache);
1642 if (!bs->cache)
1643 goto bad;
1644 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1645 }
1646
1647 return 0;
1648 bad:
1649 bioset_exit(bs);
1650 return -ENOMEM;
1651 }
1652 EXPORT_SYMBOL(bioset_init);
1653
1654 /*
1655 * Initialize and setup a new bio_set, based on the settings from
1656 * another bio_set.
1657 */
bioset_init_from_src(struct bio_set * bs,struct bio_set * src)1658 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1659 {
1660 int flags;
1661
1662 flags = 0;
1663 if (src->bvec_pool.min_nr)
1664 flags |= BIOSET_NEED_BVECS;
1665 if (src->rescue_workqueue)
1666 flags |= BIOSET_NEED_RESCUER;
1667
1668 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1669 }
1670 EXPORT_SYMBOL(bioset_init_from_src);
1671
1672 /**
1673 * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1674 * @kiocb: kiocb describing the IO
1675 * @nr_vecs: number of iovecs to pre-allocate
1676 * @bs: bio_set to allocate from
1677 *
1678 * Description:
1679 * Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1680 * used to check if we should dip into the per-cpu bio_set allocation
1681 * cache. The allocation uses GFP_KERNEL internally. On return, the
1682 * bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1683 * MUST be done from process context, not hard/soft IRQ.
1684 *
1685 */
bio_alloc_kiocb(struct kiocb * kiocb,unsigned short nr_vecs,struct bio_set * bs)1686 struct bio *bio_alloc_kiocb(struct kiocb *kiocb, unsigned short nr_vecs,
1687 struct bio_set *bs)
1688 {
1689 struct bio_alloc_cache *cache;
1690 struct bio *bio;
1691
1692 if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1693 return bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1694
1695 cache = per_cpu_ptr(bs->cache, get_cpu());
1696 bio = bio_list_pop(&cache->free_list);
1697 if (bio) {
1698 cache->nr--;
1699 put_cpu();
1700 bio_init(bio, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs);
1701 bio->bi_pool = bs;
1702 bio_set_flag(bio, BIO_PERCPU_CACHE);
1703 return bio;
1704 }
1705 put_cpu();
1706 bio = bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1707 bio_set_flag(bio, BIO_PERCPU_CACHE);
1708 return bio;
1709 }
1710 EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1711
init_bio(void)1712 static int __init init_bio(void)
1713 {
1714 int i;
1715
1716 bio_integrity_init();
1717
1718 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1719 struct biovec_slab *bvs = bvec_slabs + i;
1720
1721 bvs->slab = kmem_cache_create(bvs->name,
1722 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1723 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1724 }
1725
1726 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1727 bio_cpu_dead);
1728
1729 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1730 panic("bio: can't allocate bios\n");
1731
1732 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1733 panic("bio: can't create integrity pool\n");
1734
1735 return 0;
1736 }
1737 subsys_initcall(init_bio);
1738