• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4  */
5 #include <linux/mm.h>
6 #include <linux/swap.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/uio.h>
10 #include <linux/iocontext.h>
11 #include <linux/slab.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/export.h>
15 #include <linux/mempool.h>
16 #include <linux/workqueue.h>
17 #include <linux/cgroup.h>
18 #include <linux/blk-cgroup.h>
19 #include <linux/highmem.h>
20 #include <linux/sched/sysctl.h>
21 #include <linux/blk-crypto.h>
22 #include <linux/xarray.h>
23 
24 #include <trace/events/block.h>
25 #include "blk.h"
26 #include "blk-rq-qos.h"
27 
28 struct bio_alloc_cache {
29 	struct bio_list		free_list;
30 	unsigned int		nr;
31 };
32 
33 static struct biovec_slab {
34 	int nr_vecs;
35 	char *name;
36 	struct kmem_cache *slab;
37 } bvec_slabs[] __read_mostly = {
38 	{ .nr_vecs = 16, .name = "biovec-16" },
39 	{ .nr_vecs = 64, .name = "biovec-64" },
40 	{ .nr_vecs = 128, .name = "biovec-128" },
41 	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
42 };
43 
biovec_slab(unsigned short nr_vecs)44 static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45 {
46 	switch (nr_vecs) {
47 	/* smaller bios use inline vecs */
48 	case 5 ... 16:
49 		return &bvec_slabs[0];
50 	case 17 ... 64:
51 		return &bvec_slabs[1];
52 	case 65 ... 128:
53 		return &bvec_slabs[2];
54 	case 129 ... BIO_MAX_VECS:
55 		return &bvec_slabs[3];
56 	default:
57 		BUG();
58 		return NULL;
59 	}
60 }
61 
62 /*
63  * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64  * IO code that does not need private memory pools.
65  */
66 struct bio_set fs_bio_set;
67 EXPORT_SYMBOL(fs_bio_set);
68 
69 /*
70  * Our slab pool management
71  */
72 struct bio_slab {
73 	struct kmem_cache *slab;
74 	unsigned int slab_ref;
75 	unsigned int slab_size;
76 	char name[8];
77 };
78 static DEFINE_MUTEX(bio_slab_lock);
79 static DEFINE_XARRAY(bio_slabs);
80 
create_bio_slab(unsigned int size)81 static struct bio_slab *create_bio_slab(unsigned int size)
82 {
83 	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
84 
85 	if (!bslab)
86 		return NULL;
87 
88 	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 	bslab->slab = kmem_cache_create(bslab->name, size,
90 			ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
91 	if (!bslab->slab)
92 		goto fail_alloc_slab;
93 
94 	bslab->slab_ref = 1;
95 	bslab->slab_size = size;
96 
97 	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
98 		return bslab;
99 
100 	kmem_cache_destroy(bslab->slab);
101 
102 fail_alloc_slab:
103 	kfree(bslab);
104 	return NULL;
105 }
106 
bs_bio_slab_size(struct bio_set * bs)107 static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
108 {
109 	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
110 }
111 
bio_find_or_create_slab(struct bio_set * bs)112 static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
113 {
114 	unsigned int size = bs_bio_slab_size(bs);
115 	struct bio_slab *bslab;
116 
117 	mutex_lock(&bio_slab_lock);
118 	bslab = xa_load(&bio_slabs, size);
119 	if (bslab)
120 		bslab->slab_ref++;
121 	else
122 		bslab = create_bio_slab(size);
123 	mutex_unlock(&bio_slab_lock);
124 
125 	if (bslab)
126 		return bslab->slab;
127 	return NULL;
128 }
129 
bio_put_slab(struct bio_set * bs)130 static void bio_put_slab(struct bio_set *bs)
131 {
132 	struct bio_slab *bslab = NULL;
133 	unsigned int slab_size = bs_bio_slab_size(bs);
134 
135 	mutex_lock(&bio_slab_lock);
136 
137 	bslab = xa_load(&bio_slabs, slab_size);
138 	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
139 		goto out;
140 
141 	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
142 
143 	WARN_ON(!bslab->slab_ref);
144 
145 	if (--bslab->slab_ref)
146 		goto out;
147 
148 	xa_erase(&bio_slabs, slab_size);
149 
150 	kmem_cache_destroy(bslab->slab);
151 	kfree(bslab);
152 
153 out:
154 	mutex_unlock(&bio_slab_lock);
155 }
156 
bvec_free(mempool_t * pool,struct bio_vec * bv,unsigned short nr_vecs)157 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
158 {
159 	BIO_BUG_ON(nr_vecs > BIO_MAX_VECS);
160 
161 	if (nr_vecs == BIO_MAX_VECS)
162 		mempool_free(bv, pool);
163 	else if (nr_vecs > BIO_INLINE_VECS)
164 		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
165 }
166 
167 /*
168  * Make the first allocation restricted and don't dump info on allocation
169  * failures, since we'll fall back to the mempool in case of failure.
170  */
bvec_alloc_gfp(gfp_t gfp)171 static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
172 {
173 	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
174 		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
175 }
176 
bvec_alloc(mempool_t * pool,unsigned short * nr_vecs,gfp_t gfp_mask)177 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
178 		gfp_t gfp_mask)
179 {
180 	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
181 
182 	if (WARN_ON_ONCE(!bvs))
183 		return NULL;
184 
185 	/*
186 	 * Upgrade the nr_vecs request to take full advantage of the allocation.
187 	 * We also rely on this in the bvec_free path.
188 	 */
189 	*nr_vecs = bvs->nr_vecs;
190 
191 	/*
192 	 * Try a slab allocation first for all smaller allocations.  If that
193 	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
194 	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
195 	 */
196 	if (*nr_vecs < BIO_MAX_VECS) {
197 		struct bio_vec *bvl;
198 
199 		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
200 		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
201 			return bvl;
202 		*nr_vecs = BIO_MAX_VECS;
203 	}
204 
205 	return mempool_alloc(pool, gfp_mask);
206 }
207 
bio_uninit(struct bio * bio)208 void bio_uninit(struct bio *bio)
209 {
210 #ifdef CONFIG_BLK_CGROUP
211 	if (bio->bi_blkg) {
212 		blkg_put(bio->bi_blkg);
213 		bio->bi_blkg = NULL;
214 	}
215 #endif
216 	if (bio_integrity(bio))
217 		bio_integrity_free(bio);
218 
219 	bio_crypt_free_ctx(bio);
220 }
221 EXPORT_SYMBOL(bio_uninit);
222 
bio_free(struct bio * bio)223 static void bio_free(struct bio *bio)
224 {
225 	struct bio_set *bs = bio->bi_pool;
226 	void *p;
227 
228 	bio_uninit(bio);
229 
230 	if (bs) {
231 		bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
232 
233 		/*
234 		 * If we have front padding, adjust the bio pointer before freeing
235 		 */
236 		p = bio;
237 		p -= bs->front_pad;
238 
239 		mempool_free(p, &bs->bio_pool);
240 	} else {
241 		/* Bio was allocated by bio_kmalloc() */
242 		kfree(bio);
243 	}
244 }
245 
246 /*
247  * Users of this function have their own bio allocation. Subsequently,
248  * they must remember to pair any call to bio_init() with bio_uninit()
249  * when IO has completed, or when the bio is released.
250  */
bio_init(struct bio * bio,struct bio_vec * table,unsigned short max_vecs)251 void bio_init(struct bio *bio, struct bio_vec *table,
252 	      unsigned short max_vecs)
253 {
254 	bio->bi_next = NULL;
255 	bio->bi_bdev = NULL;
256 	bio->bi_opf = 0;
257 	bio->bi_flags = 0;
258 	bio->bi_ioprio = 0;
259 	bio->bi_write_hint = 0;
260 	bio->bi_status = 0;
261 	bio->bi_iter.bi_sector = 0;
262 	bio->bi_iter.bi_size = 0;
263 	bio->bi_iter.bi_idx = 0;
264 	bio->bi_iter.bi_bvec_done = 0;
265 	bio->bi_end_io = NULL;
266 	bio->bi_private = NULL;
267 #ifdef CONFIG_BLK_CGROUP
268 	bio->bi_blkg = NULL;
269 	bio->bi_issue.value = 0;
270 #ifdef CONFIG_BLK_CGROUP_IOCOST
271 	bio->bi_iocost_cost = 0;
272 #endif
273 #endif
274 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
275 	bio->bi_crypt_context = NULL;
276 #if IS_ENABLED(CONFIG_DM_DEFAULT_KEY)
277 	bio->bi_skip_dm_default_key = false;
278 #endif
279 #endif
280 #ifdef CONFIG_BLK_DEV_INTEGRITY
281 	bio->bi_integrity = NULL;
282 #endif
283 	bio->bi_vcnt = 0;
284 
285 	atomic_set(&bio->__bi_remaining, 1);
286 	atomic_set(&bio->__bi_cnt, 1);
287 
288 	bio->bi_max_vecs = max_vecs;
289 	bio->bi_io_vec = table;
290 	bio->bi_pool = NULL;
291 }
292 EXPORT_SYMBOL(bio_init);
293 
294 /**
295  * bio_reset - reinitialize a bio
296  * @bio:	bio to reset
297  *
298  * Description:
299  *   After calling bio_reset(), @bio will be in the same state as a freshly
300  *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
301  *   preserved are the ones that are initialized by bio_alloc_bioset(). See
302  *   comment in struct bio.
303  */
bio_reset(struct bio * bio)304 void bio_reset(struct bio *bio)
305 {
306 	bio_uninit(bio);
307 	memset(bio, 0, BIO_RESET_BYTES);
308 	atomic_set(&bio->__bi_remaining, 1);
309 }
310 EXPORT_SYMBOL(bio_reset);
311 
__bio_chain_endio(struct bio * bio)312 static struct bio *__bio_chain_endio(struct bio *bio)
313 {
314 	struct bio *parent = bio->bi_private;
315 
316 	if (bio->bi_status && !parent->bi_status)
317 		parent->bi_status = bio->bi_status;
318 	bio_put(bio);
319 	return parent;
320 }
321 
bio_chain_endio(struct bio * bio)322 static void bio_chain_endio(struct bio *bio)
323 {
324 	bio_endio(__bio_chain_endio(bio));
325 }
326 
327 /**
328  * bio_chain - chain bio completions
329  * @bio: the target bio
330  * @parent: the parent bio of @bio
331  *
332  * The caller won't have a bi_end_io called when @bio completes - instead,
333  * @parent's bi_end_io won't be called until both @parent and @bio have
334  * completed; the chained bio will also be freed when it completes.
335  *
336  * The caller must not set bi_private or bi_end_io in @bio.
337  */
bio_chain(struct bio * bio,struct bio * parent)338 void bio_chain(struct bio *bio, struct bio *parent)
339 {
340 	BUG_ON(bio->bi_private || bio->bi_end_io);
341 
342 	bio->bi_private = parent;
343 	bio->bi_end_io	= bio_chain_endio;
344 	bio_inc_remaining(parent);
345 }
346 EXPORT_SYMBOL(bio_chain);
347 
bio_alloc_rescue(struct work_struct * work)348 static void bio_alloc_rescue(struct work_struct *work)
349 {
350 	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
351 	struct bio *bio;
352 
353 	while (1) {
354 		spin_lock(&bs->rescue_lock);
355 		bio = bio_list_pop(&bs->rescue_list);
356 		spin_unlock(&bs->rescue_lock);
357 
358 		if (!bio)
359 			break;
360 
361 		submit_bio_noacct(bio);
362 	}
363 }
364 
punt_bios_to_rescuer(struct bio_set * bs)365 static void punt_bios_to_rescuer(struct bio_set *bs)
366 {
367 	struct bio_list punt, nopunt;
368 	struct bio *bio;
369 
370 	if (WARN_ON_ONCE(!bs->rescue_workqueue))
371 		return;
372 	/*
373 	 * In order to guarantee forward progress we must punt only bios that
374 	 * were allocated from this bio_set; otherwise, if there was a bio on
375 	 * there for a stacking driver higher up in the stack, processing it
376 	 * could require allocating bios from this bio_set, and doing that from
377 	 * our own rescuer would be bad.
378 	 *
379 	 * Since bio lists are singly linked, pop them all instead of trying to
380 	 * remove from the middle of the list:
381 	 */
382 
383 	bio_list_init(&punt);
384 	bio_list_init(&nopunt);
385 
386 	while ((bio = bio_list_pop(&current->bio_list[0])))
387 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
388 	current->bio_list[0] = nopunt;
389 
390 	bio_list_init(&nopunt);
391 	while ((bio = bio_list_pop(&current->bio_list[1])))
392 		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
393 	current->bio_list[1] = nopunt;
394 
395 	spin_lock(&bs->rescue_lock);
396 	bio_list_merge(&bs->rescue_list, &punt);
397 	spin_unlock(&bs->rescue_lock);
398 
399 	queue_work(bs->rescue_workqueue, &bs->rescue_work);
400 }
401 
402 /**
403  * bio_alloc_bioset - allocate a bio for I/O
404  * @gfp_mask:   the GFP_* mask given to the slab allocator
405  * @nr_iovecs:	number of iovecs to pre-allocate
406  * @bs:		the bio_set to allocate from.
407  *
408  * Allocate a bio from the mempools in @bs.
409  *
410  * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
411  * allocate a bio.  This is due to the mempool guarantees.  To make this work,
412  * callers must never allocate more than 1 bio at a time from the general pool.
413  * Callers that need to allocate more than 1 bio must always submit the
414  * previously allocated bio for IO before attempting to allocate a new one.
415  * Failure to do so can cause deadlocks under memory pressure.
416  *
417  * Note that when running under submit_bio_noacct() (i.e. any block driver),
418  * bios are not submitted until after you return - see the code in
419  * submit_bio_noacct() that converts recursion into iteration, to prevent
420  * stack overflows.
421  *
422  * This would normally mean allocating multiple bios under submit_bio_noacct()
423  * would be susceptible to deadlocks, but we have
424  * deadlock avoidance code that resubmits any blocked bios from a rescuer
425  * thread.
426  *
427  * However, we do not guarantee forward progress for allocations from other
428  * mempools. Doing multiple allocations from the same mempool under
429  * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
430  * for per bio allocations.
431  *
432  * Returns: Pointer to new bio on success, NULL on failure.
433  */
bio_alloc_bioset(gfp_t gfp_mask,unsigned short nr_iovecs,struct bio_set * bs)434 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
435 			     struct bio_set *bs)
436 {
437 	gfp_t saved_gfp = gfp_mask;
438 	struct bio *bio;
439 	void *p;
440 
441 	/* should not use nobvec bioset for nr_iovecs > 0 */
442 	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
443 		return NULL;
444 
445 	/*
446 	 * submit_bio_noacct() converts recursion to iteration; this means if
447 	 * we're running beneath it, any bios we allocate and submit will not be
448 	 * submitted (and thus freed) until after we return.
449 	 *
450 	 * This exposes us to a potential deadlock if we allocate multiple bios
451 	 * from the same bio_set() while running underneath submit_bio_noacct().
452 	 * If we were to allocate multiple bios (say a stacking block driver
453 	 * that was splitting bios), we would deadlock if we exhausted the
454 	 * mempool's reserve.
455 	 *
456 	 * We solve this, and guarantee forward progress, with a rescuer
457 	 * workqueue per bio_set. If we go to allocate and there are bios on
458 	 * current->bio_list, we first try the allocation without
459 	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
460 	 * blocking to the rescuer workqueue before we retry with the original
461 	 * gfp_flags.
462 	 */
463 	if (current->bio_list &&
464 	    (!bio_list_empty(&current->bio_list[0]) ||
465 	     !bio_list_empty(&current->bio_list[1])) &&
466 	    bs->rescue_workqueue)
467 		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
468 
469 	p = mempool_alloc(&bs->bio_pool, gfp_mask);
470 	if (!p && gfp_mask != saved_gfp) {
471 		punt_bios_to_rescuer(bs);
472 		gfp_mask = saved_gfp;
473 		p = mempool_alloc(&bs->bio_pool, gfp_mask);
474 	}
475 	if (unlikely(!p))
476 		return NULL;
477 
478 	bio = p + bs->front_pad;
479 	if (nr_iovecs > BIO_INLINE_VECS) {
480 		struct bio_vec *bvl = NULL;
481 
482 		bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
483 		if (!bvl && gfp_mask != saved_gfp) {
484 			punt_bios_to_rescuer(bs);
485 			gfp_mask = saved_gfp;
486 			bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
487 		}
488 		if (unlikely(!bvl))
489 			goto err_free;
490 
491 		bio_init(bio, bvl, nr_iovecs);
492 	} else if (nr_iovecs) {
493 		bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
494 	} else {
495 		bio_init(bio, NULL, 0);
496 	}
497 
498 	bio->bi_pool = bs;
499 	return bio;
500 
501 err_free:
502 	mempool_free(p, &bs->bio_pool);
503 	return NULL;
504 }
505 EXPORT_SYMBOL(bio_alloc_bioset);
506 
507 /**
508  * bio_kmalloc - kmalloc a bio for I/O
509  * @gfp_mask:   the GFP_* mask given to the slab allocator
510  * @nr_iovecs:	number of iovecs to pre-allocate
511  *
512  * Use kmalloc to allocate and initialize a bio.
513  *
514  * Returns: Pointer to new bio on success, NULL on failure.
515  */
bio_kmalloc(gfp_t gfp_mask,unsigned short nr_iovecs)516 struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
517 {
518 	struct bio *bio;
519 
520 	if (nr_iovecs > UIO_MAXIOV)
521 		return NULL;
522 
523 	bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
524 	if (unlikely(!bio))
525 		return NULL;
526 	bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
527 	bio->bi_pool = NULL;
528 	return bio;
529 }
530 EXPORT_SYMBOL(bio_kmalloc);
531 
zero_fill_bio(struct bio * bio)532 void zero_fill_bio(struct bio *bio)
533 {
534 	struct bio_vec bv;
535 	struct bvec_iter iter;
536 
537 	bio_for_each_segment(bv, bio, iter)
538 		memzero_bvec(&bv);
539 }
540 EXPORT_SYMBOL(zero_fill_bio);
541 
542 /**
543  * bio_truncate - truncate the bio to small size of @new_size
544  * @bio:	the bio to be truncated
545  * @new_size:	new size for truncating the bio
546  *
547  * Description:
548  *   Truncate the bio to new size of @new_size. If bio_op(bio) is
549  *   REQ_OP_READ, zero the truncated part. This function should only
550  *   be used for handling corner cases, such as bio eod.
551  */
bio_truncate(struct bio * bio,unsigned new_size)552 void bio_truncate(struct bio *bio, unsigned new_size)
553 {
554 	struct bio_vec bv;
555 	struct bvec_iter iter;
556 	unsigned int done = 0;
557 	bool truncated = false;
558 
559 	if (new_size >= bio->bi_iter.bi_size)
560 		return;
561 
562 	if (bio_op(bio) != REQ_OP_READ)
563 		goto exit;
564 
565 	bio_for_each_segment(bv, bio, iter) {
566 		if (done + bv.bv_len > new_size) {
567 			unsigned offset;
568 
569 			if (!truncated)
570 				offset = new_size - done;
571 			else
572 				offset = 0;
573 			zero_user(bv.bv_page, bv.bv_offset + offset,
574 				  bv.bv_len - offset);
575 			truncated = true;
576 		}
577 		done += bv.bv_len;
578 	}
579 
580  exit:
581 	/*
582 	 * Don't touch bvec table here and make it really immutable, since
583 	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
584 	 * in its .end_bio() callback.
585 	 *
586 	 * It is enough to truncate bio by updating .bi_size since we can make
587 	 * correct bvec with the updated .bi_size for drivers.
588 	 */
589 	bio->bi_iter.bi_size = new_size;
590 }
591 
592 /**
593  * guard_bio_eod - truncate a BIO to fit the block device
594  * @bio:	bio to truncate
595  *
596  * This allows us to do IO even on the odd last sectors of a device, even if the
597  * block size is some multiple of the physical sector size.
598  *
599  * We'll just truncate the bio to the size of the device, and clear the end of
600  * the buffer head manually.  Truly out-of-range accesses will turn into actual
601  * I/O errors, this only handles the "we need to be able to do I/O at the final
602  * sector" case.
603  */
guard_bio_eod(struct bio * bio)604 void guard_bio_eod(struct bio *bio)
605 {
606 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
607 
608 	if (!maxsector)
609 		return;
610 
611 	/*
612 	 * If the *whole* IO is past the end of the device,
613 	 * let it through, and the IO layer will turn it into
614 	 * an EIO.
615 	 */
616 	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
617 		return;
618 
619 	maxsector -= bio->bi_iter.bi_sector;
620 	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
621 		return;
622 
623 	bio_truncate(bio, maxsector << 9);
624 }
625 
626 #define ALLOC_CACHE_MAX		512
627 #define ALLOC_CACHE_SLACK	 64
628 
bio_alloc_cache_prune(struct bio_alloc_cache * cache,unsigned int nr)629 static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
630 				  unsigned int nr)
631 {
632 	unsigned int i = 0;
633 	struct bio *bio;
634 
635 	while ((bio = bio_list_pop(&cache->free_list)) != NULL) {
636 		cache->nr--;
637 		bio_free(bio);
638 		if (++i == nr)
639 			break;
640 	}
641 }
642 
bio_cpu_dead(unsigned int cpu,struct hlist_node * node)643 static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
644 {
645 	struct bio_set *bs;
646 
647 	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
648 	if (bs->cache) {
649 		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
650 
651 		bio_alloc_cache_prune(cache, -1U);
652 	}
653 	return 0;
654 }
655 
bio_alloc_cache_destroy(struct bio_set * bs)656 static void bio_alloc_cache_destroy(struct bio_set *bs)
657 {
658 	int cpu;
659 
660 	if (!bs->cache)
661 		return;
662 
663 	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
664 	for_each_possible_cpu(cpu) {
665 		struct bio_alloc_cache *cache;
666 
667 		cache = per_cpu_ptr(bs->cache, cpu);
668 		bio_alloc_cache_prune(cache, -1U);
669 	}
670 	free_percpu(bs->cache);
671 	bs->cache = NULL;
672 }
673 
674 /**
675  * bio_put - release a reference to a bio
676  * @bio:   bio to release reference to
677  *
678  * Description:
679  *   Put a reference to a &struct bio, either one you have gotten with
680  *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
681  **/
bio_put(struct bio * bio)682 void bio_put(struct bio *bio)
683 {
684 	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
685 		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
686 		if (!atomic_dec_and_test(&bio->__bi_cnt))
687 			return;
688 	}
689 
690 	if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
691 		struct bio_alloc_cache *cache;
692 
693 		bio_uninit(bio);
694 		cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
695 		bio_list_add_head(&cache->free_list, bio);
696 		if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
697 			bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
698 		put_cpu();
699 	} else {
700 		bio_free(bio);
701 	}
702 }
703 EXPORT_SYMBOL(bio_put);
704 
705 /**
706  * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
707  * 	@bio: destination bio
708  * 	@bio_src: bio to clone
709  *
710  *	Clone a &bio. Caller will own the returned bio, but not
711  *	the actual data it points to. Reference count of returned
712  * 	bio will be one.
713  *
714  * 	Caller must ensure that @bio_src is not freed before @bio.
715  */
__bio_clone_fast(struct bio * bio,struct bio * bio_src)716 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
717 {
718 	WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
719 
720 	/*
721 	 * most users will be overriding ->bi_bdev with a new target,
722 	 * so we don't set nor calculate new physical/hw segment counts here
723 	 */
724 	bio->bi_bdev = bio_src->bi_bdev;
725 	bio_set_flag(bio, BIO_CLONED);
726 	if (bio_flagged(bio_src, BIO_THROTTLED))
727 		bio_set_flag(bio, BIO_THROTTLED);
728 	if (bio_flagged(bio_src, BIO_REMAPPED))
729 		bio_set_flag(bio, BIO_REMAPPED);
730 	bio->bi_opf = bio_src->bi_opf;
731 	bio->bi_ioprio = bio_src->bi_ioprio;
732 	bio->bi_write_hint = bio_src->bi_write_hint;
733 	bio->bi_iter = bio_src->bi_iter;
734 	bio->bi_io_vec = bio_src->bi_io_vec;
735 
736 	bio_clone_blkg_association(bio, bio_src);
737 	blkcg_bio_issue_init(bio);
738 }
739 EXPORT_SYMBOL(__bio_clone_fast);
740 
741 /**
742  *	bio_clone_fast - clone a bio that shares the original bio's biovec
743  *	@bio: bio to clone
744  *	@gfp_mask: allocation priority
745  *	@bs: bio_set to allocate from
746  *
747  * 	Like __bio_clone_fast, only also allocates the returned bio
748  */
bio_clone_fast(struct bio * bio,gfp_t gfp_mask,struct bio_set * bs)749 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
750 {
751 	struct bio *b;
752 
753 	b = bio_alloc_bioset(gfp_mask, 0, bs);
754 	if (!b)
755 		return NULL;
756 
757 	__bio_clone_fast(b, bio);
758 
759 	if (bio_crypt_clone(b, bio, gfp_mask) < 0)
760 		goto err_put;
761 
762 	if (bio_integrity(bio) &&
763 	    bio_integrity_clone(b, bio, gfp_mask) < 0)
764 		goto err_put;
765 
766 	return b;
767 
768 err_put:
769 	bio_put(b);
770 	return NULL;
771 }
772 EXPORT_SYMBOL(bio_clone_fast);
773 
bio_devname(struct bio * bio,char * buf)774 const char *bio_devname(struct bio *bio, char *buf)
775 {
776 	return bdevname(bio->bi_bdev, buf);
777 }
778 EXPORT_SYMBOL(bio_devname);
779 
page_is_mergeable(const struct bio_vec * bv,struct page * page,unsigned int len,unsigned int off,bool * same_page)780 static inline bool page_is_mergeable(const struct bio_vec *bv,
781 		struct page *page, unsigned int len, unsigned int off,
782 		bool *same_page)
783 {
784 	size_t bv_end = bv->bv_offset + bv->bv_len;
785 	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
786 	phys_addr_t page_addr = page_to_phys(page);
787 
788 	if (vec_end_addr + 1 != page_addr + off)
789 		return false;
790 	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
791 		return false;
792 
793 	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
794 	if (*same_page)
795 		return true;
796 	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
797 }
798 
799 /*
800  * Try to merge a page into a segment, while obeying the hardware segment
801  * size limit.  This is not for normal read/write bios, but for passthrough
802  * or Zone Append operations that we can't split.
803  */
bio_try_merge_hw_seg(struct request_queue * q,struct bio * bio,struct page * page,unsigned len,unsigned offset,bool * same_page)804 static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
805 				 struct page *page, unsigned len,
806 				 unsigned offset, bool *same_page)
807 {
808 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
809 	unsigned long mask = queue_segment_boundary(q);
810 	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
811 	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
812 
813 	if ((addr1 | mask) != (addr2 | mask))
814 		return false;
815 	if (len > queue_max_segment_size(q) - bv->bv_len)
816 		return false;
817 	return __bio_try_merge_page(bio, page, len, offset, same_page);
818 }
819 
820 /**
821  * bio_add_hw_page - attempt to add a page to a bio with hw constraints
822  * @q: the target queue
823  * @bio: destination bio
824  * @page: page to add
825  * @len: vec entry length
826  * @offset: vec entry offset
827  * @max_sectors: maximum number of sectors that can be added
828  * @same_page: return if the segment has been merged inside the same page
829  *
830  * Add a page to a bio while respecting the hardware max_sectors, max_segment
831  * and gap limitations.
832  */
bio_add_hw_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset,unsigned int max_sectors,bool * same_page)833 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
834 		struct page *page, unsigned int len, unsigned int offset,
835 		unsigned int max_sectors, bool *same_page)
836 {
837 	struct bio_vec *bvec;
838 
839 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
840 		return 0;
841 
842 	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
843 		return 0;
844 
845 	if (bio->bi_vcnt > 0) {
846 		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
847 			return len;
848 
849 		/*
850 		 * If the queue doesn't support SG gaps and adding this segment
851 		 * would create a gap, disallow it.
852 		 */
853 		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
854 		if (bvec_gap_to_prev(q, bvec, offset))
855 			return 0;
856 	}
857 
858 	if (bio_full(bio, len))
859 		return 0;
860 
861 	if (bio->bi_vcnt >= queue_max_segments(q))
862 		return 0;
863 
864 	bvec = &bio->bi_io_vec[bio->bi_vcnt];
865 	bvec->bv_page = page;
866 	bvec->bv_len = len;
867 	bvec->bv_offset = offset;
868 	bio->bi_vcnt++;
869 	bio->bi_iter.bi_size += len;
870 	return len;
871 }
872 
873 /**
874  * bio_add_pc_page	- attempt to add page to passthrough bio
875  * @q: the target queue
876  * @bio: destination bio
877  * @page: page to add
878  * @len: vec entry length
879  * @offset: vec entry offset
880  *
881  * Attempt to add a page to the bio_vec maplist. This can fail for a
882  * number of reasons, such as the bio being full or target block device
883  * limitations. The target block device must allow bio's up to PAGE_SIZE,
884  * so it is always possible to add a single page to an empty bio.
885  *
886  * This should only be used by passthrough bios.
887  */
bio_add_pc_page(struct request_queue * q,struct bio * bio,struct page * page,unsigned int len,unsigned int offset)888 int bio_add_pc_page(struct request_queue *q, struct bio *bio,
889 		struct page *page, unsigned int len, unsigned int offset)
890 {
891 	bool same_page = false;
892 	return bio_add_hw_page(q, bio, page, len, offset,
893 			queue_max_hw_sectors(q), &same_page);
894 }
895 EXPORT_SYMBOL(bio_add_pc_page);
896 
897 /**
898  * bio_add_zone_append_page - attempt to add page to zone-append bio
899  * @bio: destination bio
900  * @page: page to add
901  * @len: vec entry length
902  * @offset: vec entry offset
903  *
904  * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
905  * for a zone-append request. This can fail for a number of reasons, such as the
906  * bio being full or the target block device is not a zoned block device or
907  * other limitations of the target block device. The target block device must
908  * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
909  * to an empty bio.
910  *
911  * Returns: number of bytes added to the bio, or 0 in case of a failure.
912  */
bio_add_zone_append_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)913 int bio_add_zone_append_page(struct bio *bio, struct page *page,
914 			     unsigned int len, unsigned int offset)
915 {
916 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
917 	bool same_page = false;
918 
919 	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
920 		return 0;
921 
922 	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
923 		return 0;
924 
925 	return bio_add_hw_page(q, bio, page, len, offset,
926 			       queue_max_zone_append_sectors(q), &same_page);
927 }
928 EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
929 
930 /**
931  * __bio_try_merge_page - try appending data to an existing bvec.
932  * @bio: destination bio
933  * @page: start page to add
934  * @len: length of the data to add
935  * @off: offset of the data relative to @page
936  * @same_page: return if the segment has been merged inside the same page
937  *
938  * Try to add the data at @page + @off to the last bvec of @bio.  This is a
939  * useful optimisation for file systems with a block size smaller than the
940  * page size.
941  *
942  * Warn if (@len, @off) crosses pages in case that @same_page is true.
943  *
944  * Return %true on success or %false on failure.
945  */
__bio_try_merge_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off,bool * same_page)946 bool __bio_try_merge_page(struct bio *bio, struct page *page,
947 		unsigned int len, unsigned int off, bool *same_page)
948 {
949 	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
950 		return false;
951 
952 	if (bio->bi_vcnt > 0) {
953 		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
954 
955 		if (page_is_mergeable(bv, page, len, off, same_page)) {
956 			if (bio->bi_iter.bi_size > UINT_MAX - len) {
957 				*same_page = false;
958 				return false;
959 			}
960 			bv->bv_len += len;
961 			bio->bi_iter.bi_size += len;
962 			return true;
963 		}
964 	}
965 	return false;
966 }
967 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
968 
969 /**
970  * __bio_add_page - add page(s) to a bio in a new segment
971  * @bio: destination bio
972  * @page: start page to add
973  * @len: length of the data to add, may cross pages
974  * @off: offset of the data relative to @page, may cross pages
975  *
976  * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
977  * that @bio has space for another bvec.
978  */
__bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int off)979 void __bio_add_page(struct bio *bio, struct page *page,
980 		unsigned int len, unsigned int off)
981 {
982 	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
983 
984 	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
985 	WARN_ON_ONCE(bio_full(bio, len));
986 
987 	bv->bv_page = page;
988 	bv->bv_offset = off;
989 	bv->bv_len = len;
990 
991 	bio->bi_iter.bi_size += len;
992 	bio->bi_vcnt++;
993 
994 	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
995 		bio_set_flag(bio, BIO_WORKINGSET);
996 }
997 EXPORT_SYMBOL_GPL(__bio_add_page);
998 
999 /**
1000  *	bio_add_page	-	attempt to add page(s) to bio
1001  *	@bio: destination bio
1002  *	@page: start page to add
1003  *	@len: vec entry length, may cross pages
1004  *	@offset: vec entry offset relative to @page, may cross pages
1005  *
1006  *	Attempt to add page(s) to the bio_vec maplist. This will only fail
1007  *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1008  */
bio_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1009 int bio_add_page(struct bio *bio, struct page *page,
1010 		 unsigned int len, unsigned int offset)
1011 {
1012 	bool same_page = false;
1013 
1014 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1015 		if (bio_full(bio, len))
1016 			return 0;
1017 		__bio_add_page(bio, page, len, offset);
1018 	}
1019 	return len;
1020 }
1021 EXPORT_SYMBOL(bio_add_page);
1022 
bio_release_pages(struct bio * bio,bool mark_dirty)1023 void bio_release_pages(struct bio *bio, bool mark_dirty)
1024 {
1025 	struct bvec_iter_all iter_all;
1026 	struct bio_vec *bvec;
1027 
1028 	if (bio_flagged(bio, BIO_NO_PAGE_REF))
1029 		return;
1030 
1031 	bio_for_each_segment_all(bvec, bio, iter_all) {
1032 		if (mark_dirty)
1033 			set_page_dirty_lock(bvec->bv_page);
1034 		put_page(bvec->bv_page);
1035 	}
1036 }
1037 EXPORT_SYMBOL_GPL(bio_release_pages);
1038 
__bio_iov_bvec_set(struct bio * bio,struct iov_iter * iter)1039 static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1040 {
1041 	WARN_ON_ONCE(bio->bi_max_vecs);
1042 
1043 	bio->bi_vcnt = iter->nr_segs;
1044 	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1045 	bio->bi_iter.bi_bvec_done = iter->iov_offset;
1046 	bio->bi_iter.bi_size = iter->count;
1047 	bio_set_flag(bio, BIO_NO_PAGE_REF);
1048 	bio_set_flag(bio, BIO_CLONED);
1049 }
1050 
bio_iov_bvec_set(struct bio * bio,struct iov_iter * iter)1051 static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1052 {
1053 	__bio_iov_bvec_set(bio, iter);
1054 	iov_iter_advance(iter, iter->count);
1055 	return 0;
1056 }
1057 
bio_iov_bvec_set_append(struct bio * bio,struct iov_iter * iter)1058 static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
1059 {
1060 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1061 	struct iov_iter i = *iter;
1062 
1063 	iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
1064 	__bio_iov_bvec_set(bio, &i);
1065 	iov_iter_advance(iter, i.count);
1066 	return 0;
1067 }
1068 
bio_put_pages(struct page ** pages,size_t size,size_t off)1069 static void bio_put_pages(struct page **pages, size_t size, size_t off)
1070 {
1071 	size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1072 
1073 	for (i = 0; i < nr; i++)
1074 		put_page(pages[i]);
1075 }
1076 
bio_iov_add_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1077 static int bio_iov_add_page(struct bio *bio, struct page *page,
1078 		unsigned int len, unsigned int offset)
1079 {
1080 	bool same_page = false;
1081 
1082 	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1083 		if (WARN_ON_ONCE(bio_full(bio, len)))
1084 			return -EINVAL;
1085 		__bio_add_page(bio, page, len, offset);
1086 		return 0;
1087 	}
1088 
1089 	if (same_page)
1090 		put_page(page);
1091 	return 0;
1092 }
1093 
bio_iov_add_zone_append_page(struct bio * bio,struct page * page,unsigned int len,unsigned int offset)1094 static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
1095 		unsigned int len, unsigned int offset)
1096 {
1097 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1098 	bool same_page = false;
1099 
1100 	if (bio_add_hw_page(q, bio, page, len, offset,
1101 			queue_max_zone_append_sectors(q), &same_page) != len)
1102 		return -EINVAL;
1103 	if (same_page)
1104 		put_page(page);
1105 	return 0;
1106 }
1107 
1108 #define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
1109 
1110 /**
1111  * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
1112  * @bio: bio to add pages to
1113  * @iter: iov iterator describing the region to be mapped
1114  *
1115  * Pins pages from *iter and appends them to @bio's bvec array. The
1116  * pages will have to be released using put_page() when done.
1117  * For multi-segment *iter, this function only adds pages from the
1118  * next non-empty segment of the iov iterator.
1119  */
__bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1120 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1121 {
1122 	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1123 	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1124 	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1125 	struct page **pages = (struct page **)bv;
1126 	ssize_t size, left;
1127 	unsigned len, i;
1128 	size_t offset;
1129 	int ret = 0;
1130 
1131 	/*
1132 	 * Move page array up in the allocated memory for the bio vecs as far as
1133 	 * possible so that we can start filling biovecs from the beginning
1134 	 * without overwriting the temporary page array.
1135 	 */
1136 	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1137 	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1138 
1139 	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1140 	if (unlikely(size <= 0))
1141 		return size ? size : -EFAULT;
1142 
1143 	for (left = size, i = 0; left > 0; left -= len, i++) {
1144 		struct page *page = pages[i];
1145 
1146 		len = min_t(size_t, PAGE_SIZE - offset, left);
1147 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1148 			ret = bio_iov_add_zone_append_page(bio, page, len,
1149 					offset);
1150 		else
1151 			ret = bio_iov_add_page(bio, page, len, offset);
1152 
1153 		if (ret) {
1154 			bio_put_pages(pages + i, left, offset);
1155 			break;
1156 		}
1157 		offset = 0;
1158 	}
1159 
1160 	iov_iter_advance(iter, size - left);
1161 	return ret;
1162 }
1163 
1164 /**
1165  * bio_iov_iter_get_pages - add user or kernel pages to a bio
1166  * @bio: bio to add pages to
1167  * @iter: iov iterator describing the region to be added
1168  *
1169  * This takes either an iterator pointing to user memory, or one pointing to
1170  * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1171  * map them into the kernel. On IO completion, the caller should put those
1172  * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1173  * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1174  * to ensure the bvecs and pages stay referenced until the submitted I/O is
1175  * completed by a call to ->ki_complete() or returns with an error other than
1176  * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1177  * on IO completion. If it isn't, then pages should be released.
1178  *
1179  * The function tries, but does not guarantee, to pin as many pages as
1180  * fit into the bio, or are requested in @iter, whatever is smaller. If
1181  * MM encounters an error pinning the requested pages, it stops. Error
1182  * is returned only if 0 pages could be pinned.
1183  *
1184  * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1185  * responsible for setting BIO_WORKINGSET if necessary.
1186  */
bio_iov_iter_get_pages(struct bio * bio,struct iov_iter * iter)1187 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1188 {
1189 	int ret = 0;
1190 
1191 	if (iov_iter_is_bvec(iter)) {
1192 		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1193 			return bio_iov_bvec_set_append(bio, iter);
1194 		return bio_iov_bvec_set(bio, iter);
1195 	}
1196 
1197 	do {
1198 		ret = __bio_iov_iter_get_pages(bio, iter);
1199 	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
1200 
1201 	/* don't account direct I/O as memory stall */
1202 	bio_clear_flag(bio, BIO_WORKINGSET);
1203 	return bio->bi_vcnt ? 0 : ret;
1204 }
1205 EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
1206 
submit_bio_wait_endio(struct bio * bio)1207 static void submit_bio_wait_endio(struct bio *bio)
1208 {
1209 	complete(bio->bi_private);
1210 }
1211 
1212 /**
1213  * submit_bio_wait - submit a bio, and wait until it completes
1214  * @bio: The &struct bio which describes the I/O
1215  *
1216  * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1217  * bio_endio() on failure.
1218  *
1219  * WARNING: Unlike to how submit_bio() is usually used, this function does not
1220  * result in bio reference to be consumed. The caller must drop the reference
1221  * on his own.
1222  */
submit_bio_wait(struct bio * bio)1223 int submit_bio_wait(struct bio *bio)
1224 {
1225 	DECLARE_COMPLETION_ONSTACK_MAP(done,
1226 			bio->bi_bdev->bd_disk->lockdep_map);
1227 	unsigned long hang_check;
1228 
1229 	bio->bi_private = &done;
1230 	bio->bi_end_io = submit_bio_wait_endio;
1231 	bio->bi_opf |= REQ_SYNC;
1232 	submit_bio(bio);
1233 
1234 	/* Prevent hang_check timer from firing at us during very long I/O */
1235 	hang_check = sysctl_hung_task_timeout_secs;
1236 	if (hang_check)
1237 		while (!wait_for_completion_io_timeout(&done,
1238 					hang_check * (HZ/2)))
1239 			;
1240 	else
1241 		wait_for_completion_io(&done);
1242 
1243 	return blk_status_to_errno(bio->bi_status);
1244 }
1245 EXPORT_SYMBOL(submit_bio_wait);
1246 
1247 /**
1248  * bio_advance - increment/complete a bio by some number of bytes
1249  * @bio:	bio to advance
1250  * @bytes:	number of bytes to complete
1251  *
1252  * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1253  * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1254  * be updated on the last bvec as well.
1255  *
1256  * @bio will then represent the remaining, uncompleted portion of the io.
1257  */
bio_advance(struct bio * bio,unsigned bytes)1258 void bio_advance(struct bio *bio, unsigned bytes)
1259 {
1260 	if (bio_integrity(bio))
1261 		bio_integrity_advance(bio, bytes);
1262 
1263 	bio_crypt_advance(bio, bytes);
1264 	bio_advance_iter(bio, &bio->bi_iter, bytes);
1265 }
1266 EXPORT_SYMBOL(bio_advance);
1267 
bio_copy_data_iter(struct bio * dst,struct bvec_iter * dst_iter,struct bio * src,struct bvec_iter * src_iter)1268 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1269 			struct bio *src, struct bvec_iter *src_iter)
1270 {
1271 	while (src_iter->bi_size && dst_iter->bi_size) {
1272 		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1273 		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1274 		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1275 		void *src_buf = bvec_kmap_local(&src_bv);
1276 		void *dst_buf = bvec_kmap_local(&dst_bv);
1277 
1278 		memcpy(dst_buf, src_buf, bytes);
1279 
1280 		kunmap_local(dst_buf);
1281 		kunmap_local(src_buf);
1282 
1283 		bio_advance_iter_single(src, src_iter, bytes);
1284 		bio_advance_iter_single(dst, dst_iter, bytes);
1285 	}
1286 }
1287 EXPORT_SYMBOL(bio_copy_data_iter);
1288 
1289 /**
1290  * bio_copy_data - copy contents of data buffers from one bio to another
1291  * @src: source bio
1292  * @dst: destination bio
1293  *
1294  * Stops when it reaches the end of either @src or @dst - that is, copies
1295  * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1296  */
bio_copy_data(struct bio * dst,struct bio * src)1297 void bio_copy_data(struct bio *dst, struct bio *src)
1298 {
1299 	struct bvec_iter src_iter = src->bi_iter;
1300 	struct bvec_iter dst_iter = dst->bi_iter;
1301 
1302 	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1303 }
1304 EXPORT_SYMBOL(bio_copy_data);
1305 
bio_free_pages(struct bio * bio)1306 void bio_free_pages(struct bio *bio)
1307 {
1308 	struct bio_vec *bvec;
1309 	struct bvec_iter_all iter_all;
1310 
1311 	bio_for_each_segment_all(bvec, bio, iter_all)
1312 		__free_page(bvec->bv_page);
1313 }
1314 EXPORT_SYMBOL(bio_free_pages);
1315 
1316 /*
1317  * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1318  * for performing direct-IO in BIOs.
1319  *
1320  * The problem is that we cannot run set_page_dirty() from interrupt context
1321  * because the required locks are not interrupt-safe.  So what we can do is to
1322  * mark the pages dirty _before_ performing IO.  And in interrupt context,
1323  * check that the pages are still dirty.   If so, fine.  If not, redirty them
1324  * in process context.
1325  *
1326  * We special-case compound pages here: normally this means reads into hugetlb
1327  * pages.  The logic in here doesn't really work right for compound pages
1328  * because the VM does not uniformly chase down the head page in all cases.
1329  * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1330  * handle them at all.  So we skip compound pages here at an early stage.
1331  *
1332  * Note that this code is very hard to test under normal circumstances because
1333  * direct-io pins the pages with get_user_pages().  This makes
1334  * is_page_cache_freeable return false, and the VM will not clean the pages.
1335  * But other code (eg, flusher threads) could clean the pages if they are mapped
1336  * pagecache.
1337  *
1338  * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1339  * deferred bio dirtying paths.
1340  */
1341 
1342 /*
1343  * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1344  */
bio_set_pages_dirty(struct bio * bio)1345 void bio_set_pages_dirty(struct bio *bio)
1346 {
1347 	struct bio_vec *bvec;
1348 	struct bvec_iter_all iter_all;
1349 
1350 	bio_for_each_segment_all(bvec, bio, iter_all) {
1351 		set_page_dirty_lock(bvec->bv_page);
1352 	}
1353 }
1354 
1355 /*
1356  * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1357  * If they are, then fine.  If, however, some pages are clean then they must
1358  * have been written out during the direct-IO read.  So we take another ref on
1359  * the BIO and re-dirty the pages in process context.
1360  *
1361  * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1362  * here on.  It will run one put_page() against each page and will run one
1363  * bio_put() against the BIO.
1364  */
1365 
1366 static void bio_dirty_fn(struct work_struct *work);
1367 
1368 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1369 static DEFINE_SPINLOCK(bio_dirty_lock);
1370 static struct bio *bio_dirty_list;
1371 
1372 /*
1373  * This runs in process context
1374  */
bio_dirty_fn(struct work_struct * work)1375 static void bio_dirty_fn(struct work_struct *work)
1376 {
1377 	struct bio *bio, *next;
1378 
1379 	spin_lock_irq(&bio_dirty_lock);
1380 	next = bio_dirty_list;
1381 	bio_dirty_list = NULL;
1382 	spin_unlock_irq(&bio_dirty_lock);
1383 
1384 	while ((bio = next) != NULL) {
1385 		next = bio->bi_private;
1386 
1387 		bio_release_pages(bio, true);
1388 		bio_put(bio);
1389 	}
1390 }
1391 
bio_check_pages_dirty(struct bio * bio)1392 void bio_check_pages_dirty(struct bio *bio)
1393 {
1394 	struct bio_vec *bvec;
1395 	unsigned long flags;
1396 	struct bvec_iter_all iter_all;
1397 
1398 	bio_for_each_segment_all(bvec, bio, iter_all) {
1399 		if (!PageDirty(bvec->bv_page))
1400 			goto defer;
1401 	}
1402 
1403 	bio_release_pages(bio, false);
1404 	bio_put(bio);
1405 	return;
1406 defer:
1407 	spin_lock_irqsave(&bio_dirty_lock, flags);
1408 	bio->bi_private = bio_dirty_list;
1409 	bio_dirty_list = bio;
1410 	spin_unlock_irqrestore(&bio_dirty_lock, flags);
1411 	schedule_work(&bio_dirty_work);
1412 }
1413 
bio_remaining_done(struct bio * bio)1414 static inline bool bio_remaining_done(struct bio *bio)
1415 {
1416 	/*
1417 	 * If we're not chaining, then ->__bi_remaining is always 1 and
1418 	 * we always end io on the first invocation.
1419 	 */
1420 	if (!bio_flagged(bio, BIO_CHAIN))
1421 		return true;
1422 
1423 	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1424 
1425 	if (atomic_dec_and_test(&bio->__bi_remaining)) {
1426 		bio_clear_flag(bio, BIO_CHAIN);
1427 		return true;
1428 	}
1429 
1430 	return false;
1431 }
1432 
1433 /**
1434  * bio_endio - end I/O on a bio
1435  * @bio:	bio
1436  *
1437  * Description:
1438  *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1439  *   way to end I/O on a bio. No one should call bi_end_io() directly on a
1440  *   bio unless they own it and thus know that it has an end_io function.
1441  *
1442  *   bio_endio() can be called several times on a bio that has been chained
1443  *   using bio_chain().  The ->bi_end_io() function will only be called the
1444  *   last time.
1445  **/
bio_endio(struct bio * bio)1446 void bio_endio(struct bio *bio)
1447 {
1448 again:
1449 	if (!bio_remaining_done(bio))
1450 		return;
1451 	if (!bio_integrity_endio(bio))
1452 		return;
1453 
1454 	rq_qos_done_bio(bio);
1455 
1456 	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1457 		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
1458 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1459 	}
1460 
1461 	/*
1462 	 * Need to have a real endio function for chained bios, otherwise
1463 	 * various corner cases will break (like stacking block devices that
1464 	 * save/restore bi_end_io) - however, we want to avoid unbounded
1465 	 * recursion and blowing the stack. Tail call optimization would
1466 	 * handle this, but compiling with frame pointers also disables
1467 	 * gcc's sibling call optimization.
1468 	 */
1469 	if (bio->bi_end_io == bio_chain_endio) {
1470 		bio = __bio_chain_endio(bio);
1471 		goto again;
1472 	}
1473 
1474 	blk_throtl_bio_endio(bio);
1475 	/* release cgroup info */
1476 	bio_uninit(bio);
1477 	if (bio->bi_end_io)
1478 		bio->bi_end_io(bio);
1479 }
1480 EXPORT_SYMBOL(bio_endio);
1481 
1482 /**
1483  * bio_split - split a bio
1484  * @bio:	bio to split
1485  * @sectors:	number of sectors to split from the front of @bio
1486  * @gfp:	gfp mask
1487  * @bs:		bio set to allocate from
1488  *
1489  * Allocates and returns a new bio which represents @sectors from the start of
1490  * @bio, and updates @bio to represent the remaining sectors.
1491  *
1492  * Unless this is a discard request the newly allocated bio will point
1493  * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1494  * neither @bio nor @bs are freed before the split bio.
1495  */
bio_split(struct bio * bio,int sectors,gfp_t gfp,struct bio_set * bs)1496 struct bio *bio_split(struct bio *bio, int sectors,
1497 		      gfp_t gfp, struct bio_set *bs)
1498 {
1499 	struct bio *split;
1500 
1501 	BUG_ON(sectors <= 0);
1502 	BUG_ON(sectors >= bio_sectors(bio));
1503 
1504 	/* Zone append commands cannot be split */
1505 	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1506 		return NULL;
1507 
1508 	split = bio_clone_fast(bio, gfp, bs);
1509 	if (!split)
1510 		return NULL;
1511 
1512 	split->bi_iter.bi_size = sectors << 9;
1513 
1514 	if (bio_integrity(split))
1515 		bio_integrity_trim(split);
1516 
1517 	bio_advance(bio, split->bi_iter.bi_size);
1518 
1519 	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1520 		bio_set_flag(split, BIO_TRACE_COMPLETION);
1521 
1522 	return split;
1523 }
1524 EXPORT_SYMBOL(bio_split);
1525 
1526 /**
1527  * bio_trim - trim a bio
1528  * @bio:	bio to trim
1529  * @offset:	number of sectors to trim from the front of @bio
1530  * @size:	size we want to trim @bio to, in sectors
1531  *
1532  * This function is typically used for bios that are cloned and submitted
1533  * to the underlying device in parts.
1534  */
bio_trim(struct bio * bio,sector_t offset,sector_t size)1535 void bio_trim(struct bio *bio, sector_t offset, sector_t size)
1536 {
1537 	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1538 			 offset + size > bio_sectors(bio)))
1539 		return;
1540 
1541 	size <<= 9;
1542 	if (offset == 0 && size == bio->bi_iter.bi_size)
1543 		return;
1544 
1545 	bio_advance(bio, offset << 9);
1546 	bio->bi_iter.bi_size = size;
1547 
1548 	if (bio_integrity(bio))
1549 		bio_integrity_trim(bio);
1550 }
1551 EXPORT_SYMBOL_GPL(bio_trim);
1552 
1553 /*
1554  * create memory pools for biovec's in a bio_set.
1555  * use the global biovec slabs created for general use.
1556  */
biovec_init_pool(mempool_t * pool,int pool_entries)1557 int biovec_init_pool(mempool_t *pool, int pool_entries)
1558 {
1559 	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1560 
1561 	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1562 }
1563 
1564 /*
1565  * bioset_exit - exit a bioset initialized with bioset_init()
1566  *
1567  * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1568  * kzalloc()).
1569  */
bioset_exit(struct bio_set * bs)1570 void bioset_exit(struct bio_set *bs)
1571 {
1572 	bio_alloc_cache_destroy(bs);
1573 	if (bs->rescue_workqueue)
1574 		destroy_workqueue(bs->rescue_workqueue);
1575 	bs->rescue_workqueue = NULL;
1576 
1577 	mempool_exit(&bs->bio_pool);
1578 	mempool_exit(&bs->bvec_pool);
1579 
1580 	bioset_integrity_free(bs);
1581 	if (bs->bio_slab)
1582 		bio_put_slab(bs);
1583 	bs->bio_slab = NULL;
1584 }
1585 EXPORT_SYMBOL(bioset_exit);
1586 
1587 /**
1588  * bioset_init - Initialize a bio_set
1589  * @bs:		pool to initialize
1590  * @pool_size:	Number of bio and bio_vecs to cache in the mempool
1591  * @front_pad:	Number of bytes to allocate in front of the returned bio
1592  * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
1593  *              and %BIOSET_NEED_RESCUER
1594  *
1595  * Description:
1596  *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1597  *    to ask for a number of bytes to be allocated in front of the bio.
1598  *    Front pad allocation is useful for embedding the bio inside
1599  *    another structure, to avoid allocating extra data to go with the bio.
1600  *    Note that the bio must be embedded at the END of that structure always,
1601  *    or things will break badly.
1602  *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1603  *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
1604  *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1605  *    dispatch queued requests when the mempool runs out of space.
1606  *
1607  */
bioset_init(struct bio_set * bs,unsigned int pool_size,unsigned int front_pad,int flags)1608 int bioset_init(struct bio_set *bs,
1609 		unsigned int pool_size,
1610 		unsigned int front_pad,
1611 		int flags)
1612 {
1613 	bs->front_pad = front_pad;
1614 	if (flags & BIOSET_NEED_BVECS)
1615 		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1616 	else
1617 		bs->back_pad = 0;
1618 
1619 	spin_lock_init(&bs->rescue_lock);
1620 	bio_list_init(&bs->rescue_list);
1621 	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1622 
1623 	bs->bio_slab = bio_find_or_create_slab(bs);
1624 	if (!bs->bio_slab)
1625 		return -ENOMEM;
1626 
1627 	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1628 		goto bad;
1629 
1630 	if ((flags & BIOSET_NEED_BVECS) &&
1631 	    biovec_init_pool(&bs->bvec_pool, pool_size))
1632 		goto bad;
1633 
1634 	if (flags & BIOSET_NEED_RESCUER) {
1635 		bs->rescue_workqueue = alloc_workqueue("bioset",
1636 							WQ_MEM_RECLAIM, 0);
1637 		if (!bs->rescue_workqueue)
1638 			goto bad;
1639 	}
1640 	if (flags & BIOSET_PERCPU_CACHE) {
1641 		bs->cache = alloc_percpu(struct bio_alloc_cache);
1642 		if (!bs->cache)
1643 			goto bad;
1644 		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1645 	}
1646 
1647 	return 0;
1648 bad:
1649 	bioset_exit(bs);
1650 	return -ENOMEM;
1651 }
1652 EXPORT_SYMBOL(bioset_init);
1653 
1654 /*
1655  * Initialize and setup a new bio_set, based on the settings from
1656  * another bio_set.
1657  */
bioset_init_from_src(struct bio_set * bs,struct bio_set * src)1658 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1659 {
1660 	int flags;
1661 
1662 	flags = 0;
1663 	if (src->bvec_pool.min_nr)
1664 		flags |= BIOSET_NEED_BVECS;
1665 	if (src->rescue_workqueue)
1666 		flags |= BIOSET_NEED_RESCUER;
1667 
1668 	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1669 }
1670 EXPORT_SYMBOL(bioset_init_from_src);
1671 
1672 /**
1673  * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1674  * @kiocb:	kiocb describing the IO
1675  * @nr_vecs:	number of iovecs to pre-allocate
1676  * @bs:		bio_set to allocate from
1677  *
1678  * Description:
1679  *    Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1680  *    used to check if we should dip into the per-cpu bio_set allocation
1681  *    cache. The allocation uses GFP_KERNEL internally. On return, the
1682  *    bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1683  *    MUST be done from process context, not hard/soft IRQ.
1684  *
1685  */
bio_alloc_kiocb(struct kiocb * kiocb,unsigned short nr_vecs,struct bio_set * bs)1686 struct bio *bio_alloc_kiocb(struct kiocb *kiocb, unsigned short nr_vecs,
1687 			    struct bio_set *bs)
1688 {
1689 	struct bio_alloc_cache *cache;
1690 	struct bio *bio;
1691 
1692 	if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1693 		return bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1694 
1695 	cache = per_cpu_ptr(bs->cache, get_cpu());
1696 	bio = bio_list_pop(&cache->free_list);
1697 	if (bio) {
1698 		cache->nr--;
1699 		put_cpu();
1700 		bio_init(bio, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs);
1701 		bio->bi_pool = bs;
1702 		bio_set_flag(bio, BIO_PERCPU_CACHE);
1703 		return bio;
1704 	}
1705 	put_cpu();
1706 	bio = bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1707 	bio_set_flag(bio, BIO_PERCPU_CACHE);
1708 	return bio;
1709 }
1710 EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1711 
init_bio(void)1712 static int __init init_bio(void)
1713 {
1714 	int i;
1715 
1716 	bio_integrity_init();
1717 
1718 	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1719 		struct biovec_slab *bvs = bvec_slabs + i;
1720 
1721 		bvs->slab = kmem_cache_create(bvs->name,
1722 				bvs->nr_vecs * sizeof(struct bio_vec), 0,
1723 				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1724 	}
1725 
1726 	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1727 					bio_cpu_dead);
1728 
1729 	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1730 		panic("bio: can't allocate bios\n");
1731 
1732 	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
1733 		panic("bio: can't create integrity pool\n");
1734 
1735 	return 0;
1736 }
1737 subsys_initcall(init_bio);
1738