• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * blk-mq scheduling framework
4  *
5  * Copyright (C) 2016 Jens Axboe
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
10 #include <linux/list_sort.h>
11 
12 #include <trace/events/block.h>
13 
14 #include "blk.h"
15 #include "blk-mq.h"
16 #include "blk-mq-debugfs.h"
17 #include "blk-mq-sched.h"
18 #include "blk-mq-tag.h"
19 #include "blk-wbt.h"
20 
blk_mq_sched_assign_ioc(struct request * rq)21 void blk_mq_sched_assign_ioc(struct request *rq)
22 {
23 	struct request_queue *q = rq->q;
24 	struct io_context *ioc;
25 	struct io_cq *icq;
26 
27 	/*
28 	 * May not have an IO context if it's a passthrough request
29 	 */
30 	ioc = current->io_context;
31 	if (!ioc)
32 		return;
33 
34 	spin_lock_irq(&q->queue_lock);
35 	icq = ioc_lookup_icq(ioc, q);
36 	spin_unlock_irq(&q->queue_lock);
37 
38 	if (!icq) {
39 		icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
40 		if (!icq)
41 			return;
42 	}
43 	get_io_context(icq->ioc);
44 	rq->elv.icq = icq;
45 }
46 
47 /*
48  * Mark a hardware queue as needing a restart.
49  */
blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx * hctx)50 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
51 {
52 	if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
53 		return;
54 
55 	set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
56 }
57 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
58 
blk_mq_sched_restart(struct blk_mq_hw_ctx * hctx)59 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
60 {
61 	if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
62 		return;
63 	clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
64 
65 	/*
66 	 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
67 	 * in blk_mq_run_hw_queue(). Its pair is the barrier in
68 	 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
69 	 * meantime new request added to hctx->dispatch is missed to check in
70 	 * blk_mq_run_hw_queue().
71 	 */
72 	smp_mb();
73 
74 	blk_mq_run_hw_queue(hctx, true);
75 }
76 
sched_rq_cmp(void * priv,const struct list_head * a,const struct list_head * b)77 static int sched_rq_cmp(void *priv, const struct list_head *a,
78 			const struct list_head *b)
79 {
80 	struct request *rqa = container_of(a, struct request, queuelist);
81 	struct request *rqb = container_of(b, struct request, queuelist);
82 
83 	return rqa->mq_hctx > rqb->mq_hctx;
84 }
85 
blk_mq_dispatch_hctx_list(struct list_head * rq_list)86 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
87 {
88 	struct blk_mq_hw_ctx *hctx =
89 		list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
90 	struct request *rq;
91 	LIST_HEAD(hctx_list);
92 	unsigned int count = 0;
93 
94 	list_for_each_entry(rq, rq_list, queuelist) {
95 		if (rq->mq_hctx != hctx) {
96 			list_cut_before(&hctx_list, rq_list, &rq->queuelist);
97 			goto dispatch;
98 		}
99 		count++;
100 	}
101 	list_splice_tail_init(rq_list, &hctx_list);
102 
103 dispatch:
104 	return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
105 }
106 
107 #define BLK_MQ_BUDGET_DELAY	3		/* ms units */
108 
109 /*
110  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
111  * its queue by itself in its completion handler, so we don't need to
112  * restart queue if .get_budget() fails to get the budget.
113  *
114  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
115  * be run again.  This is necessary to avoid starving flushes.
116  */
__blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)117 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
118 {
119 	struct request_queue *q = hctx->queue;
120 	struct elevator_queue *e = q->elevator;
121 	bool multi_hctxs = false, run_queue = false;
122 	bool dispatched = false, busy = false;
123 	unsigned int max_dispatch;
124 	LIST_HEAD(rq_list);
125 	int count = 0;
126 
127 	if (hctx->dispatch_busy)
128 		max_dispatch = 1;
129 	else
130 		max_dispatch = hctx->queue->nr_requests;
131 
132 	do {
133 		struct request *rq;
134 		int budget_token;
135 
136 		if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
137 			break;
138 
139 		if (!list_empty_careful(&hctx->dispatch)) {
140 			busy = true;
141 			break;
142 		}
143 
144 		budget_token = blk_mq_get_dispatch_budget(q);
145 		if (budget_token < 0)
146 			break;
147 
148 		rq = e->type->ops.dispatch_request(hctx);
149 		if (!rq) {
150 			blk_mq_put_dispatch_budget(q, budget_token);
151 			/*
152 			 * We're releasing without dispatching. Holding the
153 			 * budget could have blocked any "hctx"s with the
154 			 * same queue and if we didn't dispatch then there's
155 			 * no guarantee anyone will kick the queue.  Kick it
156 			 * ourselves.
157 			 */
158 			run_queue = true;
159 			break;
160 		}
161 
162 		blk_mq_set_rq_budget_token(rq, budget_token);
163 
164 		/*
165 		 * Now this rq owns the budget which has to be released
166 		 * if this rq won't be queued to driver via .queue_rq()
167 		 * in blk_mq_dispatch_rq_list().
168 		 */
169 		list_add_tail(&rq->queuelist, &rq_list);
170 		count++;
171 		if (rq->mq_hctx != hctx)
172 			multi_hctxs = true;
173 
174 		/*
175 		 * If we cannot get tag for the request, stop dequeueing
176 		 * requests from the IO scheduler. We are unlikely to be able
177 		 * to submit them anyway and it creates false impression for
178 		 * scheduling heuristics that the device can take more IO.
179 		 */
180 		if (!blk_mq_get_driver_tag(rq))
181 			break;
182 	} while (count < max_dispatch);
183 
184 	if (!count) {
185 		if (run_queue)
186 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
187 	} else if (multi_hctxs) {
188 		/*
189 		 * Requests from different hctx may be dequeued from some
190 		 * schedulers, such as bfq and deadline.
191 		 *
192 		 * Sort the requests in the list according to their hctx,
193 		 * dispatch batching requests from same hctx at a time.
194 		 */
195 		list_sort(NULL, &rq_list, sched_rq_cmp);
196 		do {
197 			dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
198 		} while (!list_empty(&rq_list));
199 	} else {
200 		dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
201 	}
202 
203 	if (busy)
204 		return -EAGAIN;
205 	return !!dispatched;
206 }
207 
blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)208 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
209 {
210 	unsigned long end = jiffies + HZ;
211 	int ret;
212 
213 	do {
214 		ret = __blk_mq_do_dispatch_sched(hctx);
215 		if (ret != 1)
216 			break;
217 		if (need_resched() || time_is_before_jiffies(end)) {
218 			blk_mq_delay_run_hw_queue(hctx, 0);
219 			break;
220 		}
221 	} while (1);
222 
223 	return ret;
224 }
225 
blk_mq_next_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)226 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
227 					  struct blk_mq_ctx *ctx)
228 {
229 	unsigned short idx = ctx->index_hw[hctx->type];
230 
231 	if (++idx == hctx->nr_ctx)
232 		idx = 0;
233 
234 	return hctx->ctxs[idx];
235 }
236 
237 /*
238  * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
239  * its queue by itself in its completion handler, so we don't need to
240  * restart queue if .get_budget() fails to get the budget.
241  *
242  * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
243  * be run again.  This is necessary to avoid starving flushes.
244  */
blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx * hctx)245 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
246 {
247 	struct request_queue *q = hctx->queue;
248 	LIST_HEAD(rq_list);
249 	struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
250 	int ret = 0;
251 	struct request *rq;
252 
253 	do {
254 		int budget_token;
255 
256 		if (!list_empty_careful(&hctx->dispatch)) {
257 			ret = -EAGAIN;
258 			break;
259 		}
260 
261 		if (!sbitmap_any_bit_set(&hctx->ctx_map))
262 			break;
263 
264 		budget_token = blk_mq_get_dispatch_budget(q);
265 		if (budget_token < 0)
266 			break;
267 
268 		rq = blk_mq_dequeue_from_ctx(hctx, ctx);
269 		if (!rq) {
270 			blk_mq_put_dispatch_budget(q, budget_token);
271 			/*
272 			 * We're releasing without dispatching. Holding the
273 			 * budget could have blocked any "hctx"s with the
274 			 * same queue and if we didn't dispatch then there's
275 			 * no guarantee anyone will kick the queue.  Kick it
276 			 * ourselves.
277 			 */
278 			blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
279 			break;
280 		}
281 
282 		blk_mq_set_rq_budget_token(rq, budget_token);
283 
284 		/*
285 		 * Now this rq owns the budget which has to be released
286 		 * if this rq won't be queued to driver via .queue_rq()
287 		 * in blk_mq_dispatch_rq_list().
288 		 */
289 		list_add(&rq->queuelist, &rq_list);
290 
291 		/* round robin for fair dispatch */
292 		ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
293 
294 	} while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
295 
296 	WRITE_ONCE(hctx->dispatch_from, ctx);
297 	return ret;
298 }
299 
__blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)300 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
301 {
302 	struct request_queue *q = hctx->queue;
303 	const bool has_sched = q->elevator;
304 	int ret = 0;
305 	LIST_HEAD(rq_list);
306 
307 	/*
308 	 * If we have previous entries on our dispatch list, grab them first for
309 	 * more fair dispatch.
310 	 */
311 	if (!list_empty_careful(&hctx->dispatch)) {
312 		spin_lock(&hctx->lock);
313 		if (!list_empty(&hctx->dispatch))
314 			list_splice_init(&hctx->dispatch, &rq_list);
315 		spin_unlock(&hctx->lock);
316 	}
317 
318 	/*
319 	 * Only ask the scheduler for requests, if we didn't have residual
320 	 * requests from the dispatch list. This is to avoid the case where
321 	 * we only ever dispatch a fraction of the requests available because
322 	 * of low device queue depth. Once we pull requests out of the IO
323 	 * scheduler, we can no longer merge or sort them. So it's best to
324 	 * leave them there for as long as we can. Mark the hw queue as
325 	 * needing a restart in that case.
326 	 *
327 	 * We want to dispatch from the scheduler if there was nothing
328 	 * on the dispatch list or we were able to dispatch from the
329 	 * dispatch list.
330 	 */
331 	if (!list_empty(&rq_list)) {
332 		blk_mq_sched_mark_restart_hctx(hctx);
333 		if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
334 			if (has_sched)
335 				ret = blk_mq_do_dispatch_sched(hctx);
336 			else
337 				ret = blk_mq_do_dispatch_ctx(hctx);
338 		}
339 	} else if (has_sched) {
340 		ret = blk_mq_do_dispatch_sched(hctx);
341 	} else if (hctx->dispatch_busy) {
342 		/* dequeue request one by one from sw queue if queue is busy */
343 		ret = blk_mq_do_dispatch_ctx(hctx);
344 	} else {
345 		blk_mq_flush_busy_ctxs(hctx, &rq_list);
346 		blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
347 	}
348 
349 	return ret;
350 }
351 
blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)352 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
353 {
354 	struct request_queue *q = hctx->queue;
355 
356 	/* RCU or SRCU read lock is needed before checking quiesced flag */
357 	if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
358 		return;
359 
360 	hctx->run++;
361 
362 	/*
363 	 * A return of -EAGAIN is an indication that hctx->dispatch is not
364 	 * empty and we must run again in order to avoid starving flushes.
365 	 */
366 	if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
367 		if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
368 			blk_mq_run_hw_queue(hctx, true);
369 	}
370 }
371 
__blk_mq_sched_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)372 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
373 		unsigned int nr_segs)
374 {
375 	struct elevator_queue *e = q->elevator;
376 	struct blk_mq_ctx *ctx;
377 	struct blk_mq_hw_ctx *hctx;
378 	bool ret = false;
379 	enum hctx_type type;
380 
381 	if (e && e->type->ops.bio_merge)
382 		return e->type->ops.bio_merge(q, bio, nr_segs);
383 
384 	ctx = blk_mq_get_ctx(q);
385 	hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
386 	type = hctx->type;
387 	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
388 	    list_empty_careful(&ctx->rq_lists[type]))
389 		return false;
390 
391 	/* default per sw-queue merge */
392 	spin_lock(&ctx->lock);
393 	/*
394 	 * Reverse check our software queue for entries that we could
395 	 * potentially merge with. Currently includes a hand-wavy stop
396 	 * count of 8, to not spend too much time checking for merges.
397 	 */
398 	if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
399 		ctx->rq_merged++;
400 		ret = true;
401 	}
402 
403 	spin_unlock(&ctx->lock);
404 
405 	return ret;
406 }
407 
blk_mq_sched_try_insert_merge(struct request_queue * q,struct request * rq,struct list_head * free)408 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
409 				   struct list_head *free)
410 {
411 	return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
412 }
413 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
414 
blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx * hctx,struct request * rq)415 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
416 				       struct request *rq)
417 {
418 	/*
419 	 * dispatch flush and passthrough rq directly
420 	 *
421 	 * passthrough request has to be added to hctx->dispatch directly.
422 	 * For some reason, device may be in one situation which can't
423 	 * handle FS request, so STS_RESOURCE is always returned and the
424 	 * FS request will be added to hctx->dispatch. However passthrough
425 	 * request may be required at that time for fixing the problem. If
426 	 * passthrough request is added to scheduler queue, there isn't any
427 	 * chance to dispatch it given we prioritize requests in hctx->dispatch.
428 	 */
429 	if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
430 		return true;
431 
432 	return false;
433 }
434 
blk_mq_sched_insert_request(struct request * rq,bool at_head,bool run_queue,bool async)435 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
436 				 bool run_queue, bool async)
437 {
438 	struct request_queue *q = rq->q;
439 	struct elevator_queue *e = q->elevator;
440 	struct blk_mq_ctx *ctx = rq->mq_ctx;
441 	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
442 
443 	WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
444 
445 	if (blk_mq_sched_bypass_insert(hctx, rq)) {
446 		/*
447 		 * Firstly normal IO request is inserted to scheduler queue or
448 		 * sw queue, meantime we add flush request to dispatch queue(
449 		 * hctx->dispatch) directly and there is at most one in-flight
450 		 * flush request for each hw queue, so it doesn't matter to add
451 		 * flush request to tail or front of the dispatch queue.
452 		 *
453 		 * Secondly in case of NCQ, flush request belongs to non-NCQ
454 		 * command, and queueing it will fail when there is any
455 		 * in-flight normal IO request(NCQ command). When adding flush
456 		 * rq to the front of hctx->dispatch, it is easier to introduce
457 		 * extra time to flush rq's latency because of S_SCHED_RESTART
458 		 * compared with adding to the tail of dispatch queue, then
459 		 * chance of flush merge is increased, and less flush requests
460 		 * will be issued to controller. It is observed that ~10% time
461 		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
462 		 * drive when adding flush rq to the front of hctx->dispatch.
463 		 *
464 		 * Simply queue flush rq to the front of hctx->dispatch so that
465 		 * intensive flush workloads can benefit in case of NCQ HW.
466 		 */
467 		at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
468 		blk_mq_request_bypass_insert(rq, at_head, false);
469 		goto run;
470 	}
471 
472 	if (e) {
473 		LIST_HEAD(list);
474 
475 		list_add(&rq->queuelist, &list);
476 		e->type->ops.insert_requests(hctx, &list, at_head);
477 	} else {
478 		spin_lock(&ctx->lock);
479 		__blk_mq_insert_request(hctx, rq, at_head);
480 		spin_unlock(&ctx->lock);
481 	}
482 
483 run:
484 	if (run_queue)
485 		blk_mq_run_hw_queue(hctx, async);
486 }
487 
blk_mq_sched_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)488 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
489 				  struct blk_mq_ctx *ctx,
490 				  struct list_head *list, bool run_queue_async)
491 {
492 	struct elevator_queue *e;
493 	struct request_queue *q = hctx->queue;
494 
495 	/*
496 	 * blk_mq_sched_insert_requests() is called from flush plug
497 	 * context only, and hold one usage counter to prevent queue
498 	 * from being released.
499 	 */
500 	percpu_ref_get(&q->q_usage_counter);
501 
502 	e = hctx->queue->elevator;
503 	if (e) {
504 		e->type->ops.insert_requests(hctx, list, false);
505 	} else {
506 		/*
507 		 * try to issue requests directly if the hw queue isn't
508 		 * busy in case of 'none' scheduler, and this way may save
509 		 * us one extra enqueue & dequeue to sw queue.
510 		 */
511 		if (!hctx->dispatch_busy && !e && !run_queue_async) {
512 			blk_mq_try_issue_list_directly(hctx, list);
513 			if (list_empty(list))
514 				goto out;
515 		}
516 		blk_mq_insert_requests(hctx, ctx, list);
517 	}
518 
519 	blk_mq_run_hw_queue(hctx, run_queue_async);
520  out:
521 	percpu_ref_put(&q->q_usage_counter);
522 }
523 
blk_mq_sched_alloc_tags(struct request_queue * q,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)524 static int blk_mq_sched_alloc_tags(struct request_queue *q,
525 				   struct blk_mq_hw_ctx *hctx,
526 				   unsigned int hctx_idx)
527 {
528 	struct blk_mq_tag_set *set = q->tag_set;
529 	int ret;
530 
531 	hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
532 					       set->reserved_tags, set->flags);
533 	if (!hctx->sched_tags)
534 		return -ENOMEM;
535 
536 	ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
537 	if (ret) {
538 		blk_mq_free_rq_map(hctx->sched_tags, set->flags);
539 		hctx->sched_tags = NULL;
540 	}
541 
542 	return ret;
543 }
544 
545 /* called in queue's release handler, tagset has gone away */
blk_mq_sched_tags_teardown(struct request_queue * q)546 static void blk_mq_sched_tags_teardown(struct request_queue *q)
547 {
548 	struct blk_mq_hw_ctx *hctx;
549 	int i;
550 
551 	queue_for_each_hw_ctx(q, hctx, i) {
552 		if (hctx->sched_tags) {
553 			blk_mq_free_rq_map(hctx->sched_tags, hctx->flags);
554 			hctx->sched_tags = NULL;
555 		}
556 	}
557 }
558 
blk_mq_init_sched_shared_sbitmap(struct request_queue * queue)559 static int blk_mq_init_sched_shared_sbitmap(struct request_queue *queue)
560 {
561 	struct blk_mq_tag_set *set = queue->tag_set;
562 	int alloc_policy = BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags);
563 	struct blk_mq_hw_ctx *hctx;
564 	int ret, i;
565 
566 	/*
567 	 * Set initial depth at max so that we don't need to reallocate for
568 	 * updating nr_requests.
569 	 */
570 	ret = blk_mq_init_bitmaps(&queue->sched_bitmap_tags,
571 				  &queue->sched_breserved_tags,
572 				  MAX_SCHED_RQ, set->reserved_tags,
573 				  set->numa_node, alloc_policy);
574 	if (ret)
575 		return ret;
576 
577 	queue_for_each_hw_ctx(queue, hctx, i) {
578 		hctx->sched_tags->bitmap_tags =
579 					&queue->sched_bitmap_tags;
580 		hctx->sched_tags->breserved_tags =
581 					&queue->sched_breserved_tags;
582 	}
583 
584 	sbitmap_queue_resize(&queue->sched_bitmap_tags,
585 			     queue->nr_requests - set->reserved_tags);
586 
587 	return 0;
588 }
589 
blk_mq_exit_sched_shared_sbitmap(struct request_queue * queue)590 static void blk_mq_exit_sched_shared_sbitmap(struct request_queue *queue)
591 {
592 	sbitmap_queue_free(&queue->sched_bitmap_tags);
593 	sbitmap_queue_free(&queue->sched_breserved_tags);
594 }
595 
blk_mq_init_sched(struct request_queue * q,struct elevator_type * e)596 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
597 {
598 	struct blk_mq_hw_ctx *hctx;
599 	struct elevator_queue *eq;
600 	unsigned int i;
601 	int ret;
602 
603 	if (!e) {
604 		q->elevator = NULL;
605 		q->nr_requests = q->tag_set->queue_depth;
606 		return 0;
607 	}
608 
609 	/*
610 	 * Default to double of smaller one between hw queue_depth and 128,
611 	 * since we don't split into sync/async like the old code did.
612 	 * Additionally, this is a per-hw queue depth.
613 	 */
614 	q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
615 				   BLKDEV_MAX_RQ);
616 
617 	queue_for_each_hw_ctx(q, hctx, i) {
618 		ret = blk_mq_sched_alloc_tags(q, hctx, i);
619 		if (ret)
620 			goto err_free_tags;
621 	}
622 
623 	if (blk_mq_is_sbitmap_shared(q->tag_set->flags)) {
624 		ret = blk_mq_init_sched_shared_sbitmap(q);
625 		if (ret)
626 			goto err_free_tags;
627 	}
628 
629 	ret = e->ops.init_sched(q, e);
630 	if (ret)
631 		goto err_free_sbitmap;
632 
633 	blk_mq_debugfs_register_sched(q);
634 
635 	queue_for_each_hw_ctx(q, hctx, i) {
636 		if (e->ops.init_hctx) {
637 			ret = e->ops.init_hctx(hctx, i);
638 			if (ret) {
639 				eq = q->elevator;
640 				blk_mq_sched_free_requests(q);
641 				blk_mq_exit_sched(q, eq);
642 				kobject_put(&eq->kobj);
643 				return ret;
644 			}
645 		}
646 		blk_mq_debugfs_register_sched_hctx(q, hctx);
647 	}
648 
649 	return 0;
650 
651 err_free_sbitmap:
652 	if (blk_mq_is_sbitmap_shared(q->tag_set->flags))
653 		blk_mq_exit_sched_shared_sbitmap(q);
654 err_free_tags:
655 	blk_mq_sched_free_requests(q);
656 	blk_mq_sched_tags_teardown(q);
657 	q->elevator = NULL;
658 	return ret;
659 }
660 
661 /*
662  * called in either blk_queue_cleanup or elevator_switch, tagset
663  * is required for freeing requests
664  */
blk_mq_sched_free_requests(struct request_queue * q)665 void blk_mq_sched_free_requests(struct request_queue *q)
666 {
667 	struct blk_mq_hw_ctx *hctx;
668 	int i;
669 
670 	queue_for_each_hw_ctx(q, hctx, i) {
671 		if (hctx->sched_tags)
672 			blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
673 	}
674 }
675 
blk_mq_exit_sched(struct request_queue * q,struct elevator_queue * e)676 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
677 {
678 	struct blk_mq_hw_ctx *hctx;
679 	unsigned int i;
680 	unsigned int flags = 0;
681 
682 	queue_for_each_hw_ctx(q, hctx, i) {
683 		blk_mq_debugfs_unregister_sched_hctx(hctx);
684 		if (e->type->ops.exit_hctx && hctx->sched_data) {
685 			e->type->ops.exit_hctx(hctx, i);
686 			hctx->sched_data = NULL;
687 		}
688 		flags = hctx->flags;
689 	}
690 	blk_mq_debugfs_unregister_sched(q);
691 	if (e->type->ops.exit_sched)
692 		e->type->ops.exit_sched(e);
693 	blk_mq_sched_tags_teardown(q);
694 	if (blk_mq_is_sbitmap_shared(flags))
695 		blk_mq_exit_sched_shared_sbitmap(q);
696 	q->elevator = NULL;
697 }
698