1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * blk-mq scheduling framework
4 *
5 * Copyright (C) 2016 Jens Axboe
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
10 #include <linux/list_sort.h>
11
12 #include <trace/events/block.h>
13
14 #include "blk.h"
15 #include "blk-mq.h"
16 #include "blk-mq-debugfs.h"
17 #include "blk-mq-sched.h"
18 #include "blk-mq-tag.h"
19 #include "blk-wbt.h"
20
blk_mq_sched_assign_ioc(struct request * rq)21 void blk_mq_sched_assign_ioc(struct request *rq)
22 {
23 struct request_queue *q = rq->q;
24 struct io_context *ioc;
25 struct io_cq *icq;
26
27 /*
28 * May not have an IO context if it's a passthrough request
29 */
30 ioc = current->io_context;
31 if (!ioc)
32 return;
33
34 spin_lock_irq(&q->queue_lock);
35 icq = ioc_lookup_icq(ioc, q);
36 spin_unlock_irq(&q->queue_lock);
37
38 if (!icq) {
39 icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
40 if (!icq)
41 return;
42 }
43 get_io_context(icq->ioc);
44 rq->elv.icq = icq;
45 }
46
47 /*
48 * Mark a hardware queue as needing a restart.
49 */
blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx * hctx)50 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx *hctx)
51 {
52 if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
53 return;
54
55 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
56 }
57 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx);
58
blk_mq_sched_restart(struct blk_mq_hw_ctx * hctx)59 void blk_mq_sched_restart(struct blk_mq_hw_ctx *hctx)
60 {
61 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
62 return;
63 clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
64
65 /*
66 * Order clearing SCHED_RESTART and list_empty_careful(&hctx->dispatch)
67 * in blk_mq_run_hw_queue(). Its pair is the barrier in
68 * blk_mq_dispatch_rq_list(). So dispatch code won't see SCHED_RESTART,
69 * meantime new request added to hctx->dispatch is missed to check in
70 * blk_mq_run_hw_queue().
71 */
72 smp_mb();
73
74 blk_mq_run_hw_queue(hctx, true);
75 }
76
sched_rq_cmp(void * priv,const struct list_head * a,const struct list_head * b)77 static int sched_rq_cmp(void *priv, const struct list_head *a,
78 const struct list_head *b)
79 {
80 struct request *rqa = container_of(a, struct request, queuelist);
81 struct request *rqb = container_of(b, struct request, queuelist);
82
83 return rqa->mq_hctx > rqb->mq_hctx;
84 }
85
blk_mq_dispatch_hctx_list(struct list_head * rq_list)86 static bool blk_mq_dispatch_hctx_list(struct list_head *rq_list)
87 {
88 struct blk_mq_hw_ctx *hctx =
89 list_first_entry(rq_list, struct request, queuelist)->mq_hctx;
90 struct request *rq;
91 LIST_HEAD(hctx_list);
92 unsigned int count = 0;
93
94 list_for_each_entry(rq, rq_list, queuelist) {
95 if (rq->mq_hctx != hctx) {
96 list_cut_before(&hctx_list, rq_list, &rq->queuelist);
97 goto dispatch;
98 }
99 count++;
100 }
101 list_splice_tail_init(rq_list, &hctx_list);
102
103 dispatch:
104 return blk_mq_dispatch_rq_list(hctx, &hctx_list, count);
105 }
106
107 #define BLK_MQ_BUDGET_DELAY 3 /* ms units */
108
109 /*
110 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
111 * its queue by itself in its completion handler, so we don't need to
112 * restart queue if .get_budget() fails to get the budget.
113 *
114 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
115 * be run again. This is necessary to avoid starving flushes.
116 */
__blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)117 static int __blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
118 {
119 struct request_queue *q = hctx->queue;
120 struct elevator_queue *e = q->elevator;
121 bool multi_hctxs = false, run_queue = false;
122 bool dispatched = false, busy = false;
123 unsigned int max_dispatch;
124 LIST_HEAD(rq_list);
125 int count = 0;
126
127 if (hctx->dispatch_busy)
128 max_dispatch = 1;
129 else
130 max_dispatch = hctx->queue->nr_requests;
131
132 do {
133 struct request *rq;
134 int budget_token;
135
136 if (e->type->ops.has_work && !e->type->ops.has_work(hctx))
137 break;
138
139 if (!list_empty_careful(&hctx->dispatch)) {
140 busy = true;
141 break;
142 }
143
144 budget_token = blk_mq_get_dispatch_budget(q);
145 if (budget_token < 0)
146 break;
147
148 rq = e->type->ops.dispatch_request(hctx);
149 if (!rq) {
150 blk_mq_put_dispatch_budget(q, budget_token);
151 /*
152 * We're releasing without dispatching. Holding the
153 * budget could have blocked any "hctx"s with the
154 * same queue and if we didn't dispatch then there's
155 * no guarantee anyone will kick the queue. Kick it
156 * ourselves.
157 */
158 run_queue = true;
159 break;
160 }
161
162 blk_mq_set_rq_budget_token(rq, budget_token);
163
164 /*
165 * Now this rq owns the budget which has to be released
166 * if this rq won't be queued to driver via .queue_rq()
167 * in blk_mq_dispatch_rq_list().
168 */
169 list_add_tail(&rq->queuelist, &rq_list);
170 count++;
171 if (rq->mq_hctx != hctx)
172 multi_hctxs = true;
173
174 /*
175 * If we cannot get tag for the request, stop dequeueing
176 * requests from the IO scheduler. We are unlikely to be able
177 * to submit them anyway and it creates false impression for
178 * scheduling heuristics that the device can take more IO.
179 */
180 if (!blk_mq_get_driver_tag(rq))
181 break;
182 } while (count < max_dispatch);
183
184 if (!count) {
185 if (run_queue)
186 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
187 } else if (multi_hctxs) {
188 /*
189 * Requests from different hctx may be dequeued from some
190 * schedulers, such as bfq and deadline.
191 *
192 * Sort the requests in the list according to their hctx,
193 * dispatch batching requests from same hctx at a time.
194 */
195 list_sort(NULL, &rq_list, sched_rq_cmp);
196 do {
197 dispatched |= blk_mq_dispatch_hctx_list(&rq_list);
198 } while (!list_empty(&rq_list));
199 } else {
200 dispatched = blk_mq_dispatch_rq_list(hctx, &rq_list, count);
201 }
202
203 if (busy)
204 return -EAGAIN;
205 return !!dispatched;
206 }
207
blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx * hctx)208 static int blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx *hctx)
209 {
210 unsigned long end = jiffies + HZ;
211 int ret;
212
213 do {
214 ret = __blk_mq_do_dispatch_sched(hctx);
215 if (ret != 1)
216 break;
217 if (need_resched() || time_is_before_jiffies(end)) {
218 blk_mq_delay_run_hw_queue(hctx, 0);
219 break;
220 }
221 } while (1);
222
223 return ret;
224 }
225
blk_mq_next_ctx(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx)226 static struct blk_mq_ctx *blk_mq_next_ctx(struct blk_mq_hw_ctx *hctx,
227 struct blk_mq_ctx *ctx)
228 {
229 unsigned short idx = ctx->index_hw[hctx->type];
230
231 if (++idx == hctx->nr_ctx)
232 idx = 0;
233
234 return hctx->ctxs[idx];
235 }
236
237 /*
238 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
239 * its queue by itself in its completion handler, so we don't need to
240 * restart queue if .get_budget() fails to get the budget.
241 *
242 * Returns -EAGAIN if hctx->dispatch was found non-empty and run_work has to
243 * be run again. This is necessary to avoid starving flushes.
244 */
blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx * hctx)245 static int blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx *hctx)
246 {
247 struct request_queue *q = hctx->queue;
248 LIST_HEAD(rq_list);
249 struct blk_mq_ctx *ctx = READ_ONCE(hctx->dispatch_from);
250 int ret = 0;
251 struct request *rq;
252
253 do {
254 int budget_token;
255
256 if (!list_empty_careful(&hctx->dispatch)) {
257 ret = -EAGAIN;
258 break;
259 }
260
261 if (!sbitmap_any_bit_set(&hctx->ctx_map))
262 break;
263
264 budget_token = blk_mq_get_dispatch_budget(q);
265 if (budget_token < 0)
266 break;
267
268 rq = blk_mq_dequeue_from_ctx(hctx, ctx);
269 if (!rq) {
270 blk_mq_put_dispatch_budget(q, budget_token);
271 /*
272 * We're releasing without dispatching. Holding the
273 * budget could have blocked any "hctx"s with the
274 * same queue and if we didn't dispatch then there's
275 * no guarantee anyone will kick the queue. Kick it
276 * ourselves.
277 */
278 blk_mq_delay_run_hw_queues(q, BLK_MQ_BUDGET_DELAY);
279 break;
280 }
281
282 blk_mq_set_rq_budget_token(rq, budget_token);
283
284 /*
285 * Now this rq owns the budget which has to be released
286 * if this rq won't be queued to driver via .queue_rq()
287 * in blk_mq_dispatch_rq_list().
288 */
289 list_add(&rq->queuelist, &rq_list);
290
291 /* round robin for fair dispatch */
292 ctx = blk_mq_next_ctx(hctx, rq->mq_ctx);
293
294 } while (blk_mq_dispatch_rq_list(rq->mq_hctx, &rq_list, 1));
295
296 WRITE_ONCE(hctx->dispatch_from, ctx);
297 return ret;
298 }
299
__blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)300 static int __blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
301 {
302 struct request_queue *q = hctx->queue;
303 const bool has_sched = q->elevator;
304 int ret = 0;
305 LIST_HEAD(rq_list);
306
307 /*
308 * If we have previous entries on our dispatch list, grab them first for
309 * more fair dispatch.
310 */
311 if (!list_empty_careful(&hctx->dispatch)) {
312 spin_lock(&hctx->lock);
313 if (!list_empty(&hctx->dispatch))
314 list_splice_init(&hctx->dispatch, &rq_list);
315 spin_unlock(&hctx->lock);
316 }
317
318 /*
319 * Only ask the scheduler for requests, if we didn't have residual
320 * requests from the dispatch list. This is to avoid the case where
321 * we only ever dispatch a fraction of the requests available because
322 * of low device queue depth. Once we pull requests out of the IO
323 * scheduler, we can no longer merge or sort them. So it's best to
324 * leave them there for as long as we can. Mark the hw queue as
325 * needing a restart in that case.
326 *
327 * We want to dispatch from the scheduler if there was nothing
328 * on the dispatch list or we were able to dispatch from the
329 * dispatch list.
330 */
331 if (!list_empty(&rq_list)) {
332 blk_mq_sched_mark_restart_hctx(hctx);
333 if (blk_mq_dispatch_rq_list(hctx, &rq_list, 0)) {
334 if (has_sched)
335 ret = blk_mq_do_dispatch_sched(hctx);
336 else
337 ret = blk_mq_do_dispatch_ctx(hctx);
338 }
339 } else if (has_sched) {
340 ret = blk_mq_do_dispatch_sched(hctx);
341 } else if (hctx->dispatch_busy) {
342 /* dequeue request one by one from sw queue if queue is busy */
343 ret = blk_mq_do_dispatch_ctx(hctx);
344 } else {
345 blk_mq_flush_busy_ctxs(hctx, &rq_list);
346 blk_mq_dispatch_rq_list(hctx, &rq_list, 0);
347 }
348
349 return ret;
350 }
351
blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx * hctx)352 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
353 {
354 struct request_queue *q = hctx->queue;
355
356 /* RCU or SRCU read lock is needed before checking quiesced flag */
357 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)))
358 return;
359
360 hctx->run++;
361
362 /*
363 * A return of -EAGAIN is an indication that hctx->dispatch is not
364 * empty and we must run again in order to avoid starving flushes.
365 */
366 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN) {
367 if (__blk_mq_sched_dispatch_requests(hctx) == -EAGAIN)
368 blk_mq_run_hw_queue(hctx, true);
369 }
370 }
371
__blk_mq_sched_bio_merge(struct request_queue * q,struct bio * bio,unsigned int nr_segs)372 bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio,
373 unsigned int nr_segs)
374 {
375 struct elevator_queue *e = q->elevator;
376 struct blk_mq_ctx *ctx;
377 struct blk_mq_hw_ctx *hctx;
378 bool ret = false;
379 enum hctx_type type;
380
381 if (e && e->type->ops.bio_merge)
382 return e->type->ops.bio_merge(q, bio, nr_segs);
383
384 ctx = blk_mq_get_ctx(q);
385 hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
386 type = hctx->type;
387 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE) ||
388 list_empty_careful(&ctx->rq_lists[type]))
389 return false;
390
391 /* default per sw-queue merge */
392 spin_lock(&ctx->lock);
393 /*
394 * Reverse check our software queue for entries that we could
395 * potentially merge with. Currently includes a hand-wavy stop
396 * count of 8, to not spend too much time checking for merges.
397 */
398 if (blk_bio_list_merge(q, &ctx->rq_lists[type], bio, nr_segs)) {
399 ctx->rq_merged++;
400 ret = true;
401 }
402
403 spin_unlock(&ctx->lock);
404
405 return ret;
406 }
407
blk_mq_sched_try_insert_merge(struct request_queue * q,struct request * rq,struct list_head * free)408 bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq,
409 struct list_head *free)
410 {
411 return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq, free);
412 }
413 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
414
blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx * hctx,struct request * rq)415 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
416 struct request *rq)
417 {
418 /*
419 * dispatch flush and passthrough rq directly
420 *
421 * passthrough request has to be added to hctx->dispatch directly.
422 * For some reason, device may be in one situation which can't
423 * handle FS request, so STS_RESOURCE is always returned and the
424 * FS request will be added to hctx->dispatch. However passthrough
425 * request may be required at that time for fixing the problem. If
426 * passthrough request is added to scheduler queue, there isn't any
427 * chance to dispatch it given we prioritize requests in hctx->dispatch.
428 */
429 if ((rq->rq_flags & RQF_FLUSH_SEQ) || blk_rq_is_passthrough(rq))
430 return true;
431
432 return false;
433 }
434
blk_mq_sched_insert_request(struct request * rq,bool at_head,bool run_queue,bool async)435 void blk_mq_sched_insert_request(struct request *rq, bool at_head,
436 bool run_queue, bool async)
437 {
438 struct request_queue *q = rq->q;
439 struct elevator_queue *e = q->elevator;
440 struct blk_mq_ctx *ctx = rq->mq_ctx;
441 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
442
443 WARN_ON(e && (rq->tag != BLK_MQ_NO_TAG));
444
445 if (blk_mq_sched_bypass_insert(hctx, rq)) {
446 /*
447 * Firstly normal IO request is inserted to scheduler queue or
448 * sw queue, meantime we add flush request to dispatch queue(
449 * hctx->dispatch) directly and there is at most one in-flight
450 * flush request for each hw queue, so it doesn't matter to add
451 * flush request to tail or front of the dispatch queue.
452 *
453 * Secondly in case of NCQ, flush request belongs to non-NCQ
454 * command, and queueing it will fail when there is any
455 * in-flight normal IO request(NCQ command). When adding flush
456 * rq to the front of hctx->dispatch, it is easier to introduce
457 * extra time to flush rq's latency because of S_SCHED_RESTART
458 * compared with adding to the tail of dispatch queue, then
459 * chance of flush merge is increased, and less flush requests
460 * will be issued to controller. It is observed that ~10% time
461 * is saved in blktests block/004 on disk attached to AHCI/NCQ
462 * drive when adding flush rq to the front of hctx->dispatch.
463 *
464 * Simply queue flush rq to the front of hctx->dispatch so that
465 * intensive flush workloads can benefit in case of NCQ HW.
466 */
467 at_head = (rq->rq_flags & RQF_FLUSH_SEQ) ? true : at_head;
468 blk_mq_request_bypass_insert(rq, at_head, false);
469 goto run;
470 }
471
472 if (e) {
473 LIST_HEAD(list);
474
475 list_add(&rq->queuelist, &list);
476 e->type->ops.insert_requests(hctx, &list, at_head);
477 } else {
478 spin_lock(&ctx->lock);
479 __blk_mq_insert_request(hctx, rq, at_head);
480 spin_unlock(&ctx->lock);
481 }
482
483 run:
484 if (run_queue)
485 blk_mq_run_hw_queue(hctx, async);
486 }
487
blk_mq_sched_insert_requests(struct blk_mq_hw_ctx * hctx,struct blk_mq_ctx * ctx,struct list_head * list,bool run_queue_async)488 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx *hctx,
489 struct blk_mq_ctx *ctx,
490 struct list_head *list, bool run_queue_async)
491 {
492 struct elevator_queue *e;
493 struct request_queue *q = hctx->queue;
494
495 /*
496 * blk_mq_sched_insert_requests() is called from flush plug
497 * context only, and hold one usage counter to prevent queue
498 * from being released.
499 */
500 percpu_ref_get(&q->q_usage_counter);
501
502 e = hctx->queue->elevator;
503 if (e) {
504 e->type->ops.insert_requests(hctx, list, false);
505 } else {
506 /*
507 * try to issue requests directly if the hw queue isn't
508 * busy in case of 'none' scheduler, and this way may save
509 * us one extra enqueue & dequeue to sw queue.
510 */
511 if (!hctx->dispatch_busy && !e && !run_queue_async) {
512 blk_mq_try_issue_list_directly(hctx, list);
513 if (list_empty(list))
514 goto out;
515 }
516 blk_mq_insert_requests(hctx, ctx, list);
517 }
518
519 blk_mq_run_hw_queue(hctx, run_queue_async);
520 out:
521 percpu_ref_put(&q->q_usage_counter);
522 }
523
blk_mq_sched_alloc_tags(struct request_queue * q,struct blk_mq_hw_ctx * hctx,unsigned int hctx_idx)524 static int blk_mq_sched_alloc_tags(struct request_queue *q,
525 struct blk_mq_hw_ctx *hctx,
526 unsigned int hctx_idx)
527 {
528 struct blk_mq_tag_set *set = q->tag_set;
529 int ret;
530
531 hctx->sched_tags = blk_mq_alloc_rq_map(set, hctx_idx, q->nr_requests,
532 set->reserved_tags, set->flags);
533 if (!hctx->sched_tags)
534 return -ENOMEM;
535
536 ret = blk_mq_alloc_rqs(set, hctx->sched_tags, hctx_idx, q->nr_requests);
537 if (ret) {
538 blk_mq_free_rq_map(hctx->sched_tags, set->flags);
539 hctx->sched_tags = NULL;
540 }
541
542 return ret;
543 }
544
545 /* called in queue's release handler, tagset has gone away */
blk_mq_sched_tags_teardown(struct request_queue * q)546 static void blk_mq_sched_tags_teardown(struct request_queue *q)
547 {
548 struct blk_mq_hw_ctx *hctx;
549 int i;
550
551 queue_for_each_hw_ctx(q, hctx, i) {
552 if (hctx->sched_tags) {
553 blk_mq_free_rq_map(hctx->sched_tags, hctx->flags);
554 hctx->sched_tags = NULL;
555 }
556 }
557 }
558
blk_mq_init_sched_shared_sbitmap(struct request_queue * queue)559 static int blk_mq_init_sched_shared_sbitmap(struct request_queue *queue)
560 {
561 struct blk_mq_tag_set *set = queue->tag_set;
562 int alloc_policy = BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags);
563 struct blk_mq_hw_ctx *hctx;
564 int ret, i;
565
566 /*
567 * Set initial depth at max so that we don't need to reallocate for
568 * updating nr_requests.
569 */
570 ret = blk_mq_init_bitmaps(&queue->sched_bitmap_tags,
571 &queue->sched_breserved_tags,
572 MAX_SCHED_RQ, set->reserved_tags,
573 set->numa_node, alloc_policy);
574 if (ret)
575 return ret;
576
577 queue_for_each_hw_ctx(queue, hctx, i) {
578 hctx->sched_tags->bitmap_tags =
579 &queue->sched_bitmap_tags;
580 hctx->sched_tags->breserved_tags =
581 &queue->sched_breserved_tags;
582 }
583
584 sbitmap_queue_resize(&queue->sched_bitmap_tags,
585 queue->nr_requests - set->reserved_tags);
586
587 return 0;
588 }
589
blk_mq_exit_sched_shared_sbitmap(struct request_queue * queue)590 static void blk_mq_exit_sched_shared_sbitmap(struct request_queue *queue)
591 {
592 sbitmap_queue_free(&queue->sched_bitmap_tags);
593 sbitmap_queue_free(&queue->sched_breserved_tags);
594 }
595
blk_mq_init_sched(struct request_queue * q,struct elevator_type * e)596 int blk_mq_init_sched(struct request_queue *q, struct elevator_type *e)
597 {
598 struct blk_mq_hw_ctx *hctx;
599 struct elevator_queue *eq;
600 unsigned int i;
601 int ret;
602
603 if (!e) {
604 q->elevator = NULL;
605 q->nr_requests = q->tag_set->queue_depth;
606 return 0;
607 }
608
609 /*
610 * Default to double of smaller one between hw queue_depth and 128,
611 * since we don't split into sync/async like the old code did.
612 * Additionally, this is a per-hw queue depth.
613 */
614 q->nr_requests = 2 * min_t(unsigned int, q->tag_set->queue_depth,
615 BLKDEV_MAX_RQ);
616
617 queue_for_each_hw_ctx(q, hctx, i) {
618 ret = blk_mq_sched_alloc_tags(q, hctx, i);
619 if (ret)
620 goto err_free_tags;
621 }
622
623 if (blk_mq_is_sbitmap_shared(q->tag_set->flags)) {
624 ret = blk_mq_init_sched_shared_sbitmap(q);
625 if (ret)
626 goto err_free_tags;
627 }
628
629 ret = e->ops.init_sched(q, e);
630 if (ret)
631 goto err_free_sbitmap;
632
633 blk_mq_debugfs_register_sched(q);
634
635 queue_for_each_hw_ctx(q, hctx, i) {
636 if (e->ops.init_hctx) {
637 ret = e->ops.init_hctx(hctx, i);
638 if (ret) {
639 eq = q->elevator;
640 blk_mq_sched_free_requests(q);
641 blk_mq_exit_sched(q, eq);
642 kobject_put(&eq->kobj);
643 return ret;
644 }
645 }
646 blk_mq_debugfs_register_sched_hctx(q, hctx);
647 }
648
649 return 0;
650
651 err_free_sbitmap:
652 if (blk_mq_is_sbitmap_shared(q->tag_set->flags))
653 blk_mq_exit_sched_shared_sbitmap(q);
654 err_free_tags:
655 blk_mq_sched_free_requests(q);
656 blk_mq_sched_tags_teardown(q);
657 q->elevator = NULL;
658 return ret;
659 }
660
661 /*
662 * called in either blk_queue_cleanup or elevator_switch, tagset
663 * is required for freeing requests
664 */
blk_mq_sched_free_requests(struct request_queue * q)665 void blk_mq_sched_free_requests(struct request_queue *q)
666 {
667 struct blk_mq_hw_ctx *hctx;
668 int i;
669
670 queue_for_each_hw_ctx(q, hctx, i) {
671 if (hctx->sched_tags)
672 blk_mq_free_rqs(q->tag_set, hctx->sched_tags, i);
673 }
674 }
675
blk_mq_exit_sched(struct request_queue * q,struct elevator_queue * e)676 void blk_mq_exit_sched(struct request_queue *q, struct elevator_queue *e)
677 {
678 struct blk_mq_hw_ctx *hctx;
679 unsigned int i;
680 unsigned int flags = 0;
681
682 queue_for_each_hw_ctx(q, hctx, i) {
683 blk_mq_debugfs_unregister_sched_hctx(hctx);
684 if (e->type->ops.exit_hctx && hctx->sched_data) {
685 e->type->ops.exit_hctx(hctx, i);
686 hctx->sched_data = NULL;
687 }
688 flags = hctx->flags;
689 }
690 blk_mq_debugfs_unregister_sched(q);
691 if (e->type->ops.exit_sched)
692 e->type->ops.exit_sched(e);
693 blk_mq_sched_tags_teardown(q);
694 if (blk_mq_is_sbitmap_shared(flags))
695 blk_mq_exit_sched_shared_sbitmap(q);
696 q->elevator = NULL;
697 }
698