1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef BLK_INTERNAL_H
3 #define BLK_INTERNAL_H
4
5 #include <linux/idr.h>
6 #include <linux/blk-mq.h>
7 #include <linux/part_stat.h>
8 #include <linux/blk-crypto.h>
9 #include <linux/memblock.h> /* for max_pfn/max_low_pfn */
10 #include <xen/xen.h>
11 #include "blk-crypto-internal.h"
12 #include "blk-mq.h"
13 #include "blk-mq-sched.h"
14
15 /* Max future timer expiry for timeouts */
16 #define BLK_MAX_TIMEOUT (5 * HZ)
17
18 extern struct dentry *blk_debugfs_root;
19
20 struct blk_flush_queue {
21 unsigned int flush_pending_idx:1;
22 unsigned int flush_running_idx:1;
23 blk_status_t rq_status;
24 unsigned long flush_pending_since;
25 struct list_head flush_queue[2];
26 struct list_head flush_data_in_flight;
27 struct request *flush_rq;
28
29 spinlock_t mq_flush_lock;
30 };
31
32 extern struct kmem_cache *blk_requestq_cachep;
33 extern struct kobj_type blk_queue_ktype;
34 extern struct ida blk_queue_ida;
35
36 static inline struct blk_flush_queue *
blk_get_flush_queue(struct request_queue * q,struct blk_mq_ctx * ctx)37 blk_get_flush_queue(struct request_queue *q, struct blk_mq_ctx *ctx)
38 {
39 return blk_mq_map_queue(q, REQ_OP_FLUSH, ctx)->fq;
40 }
41
__blk_get_queue(struct request_queue * q)42 static inline void __blk_get_queue(struct request_queue *q)
43 {
44 kobject_get(&q->kobj);
45 }
46
47 bool is_flush_rq(struct request *req);
48
49 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
50 gfp_t flags);
51 void blk_free_flush_queue(struct blk_flush_queue *q);
52
53 void blk_freeze_queue(struct request_queue *q);
54 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic);
55 void blk_queue_start_drain(struct request_queue *q);
56
57 #define BIO_INLINE_VECS 4
58 struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
59 gfp_t gfp_mask);
60 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs);
61
biovec_phys_mergeable(struct request_queue * q,struct bio_vec * vec1,struct bio_vec * vec2)62 static inline bool biovec_phys_mergeable(struct request_queue *q,
63 struct bio_vec *vec1, struct bio_vec *vec2)
64 {
65 unsigned long mask = queue_segment_boundary(q);
66 phys_addr_t addr1 = page_to_phys(vec1->bv_page) + vec1->bv_offset;
67 phys_addr_t addr2 = page_to_phys(vec2->bv_page) + vec2->bv_offset;
68
69 if (addr1 + vec1->bv_len != addr2)
70 return false;
71 if (xen_domain() && !xen_biovec_phys_mergeable(vec1, vec2->bv_page))
72 return false;
73 if ((addr1 | mask) != ((addr2 + vec2->bv_len - 1) | mask))
74 return false;
75 return true;
76 }
77
__bvec_gap_to_prev(struct request_queue * q,struct bio_vec * bprv,unsigned int offset)78 static inline bool __bvec_gap_to_prev(struct request_queue *q,
79 struct bio_vec *bprv, unsigned int offset)
80 {
81 return (offset & queue_virt_boundary(q)) ||
82 ((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
83 }
84
85 /*
86 * Check if adding a bio_vec after bprv with offset would create a gap in
87 * the SG list. Most drivers don't care about this, but some do.
88 */
bvec_gap_to_prev(struct request_queue * q,struct bio_vec * bprv,unsigned int offset)89 static inline bool bvec_gap_to_prev(struct request_queue *q,
90 struct bio_vec *bprv, unsigned int offset)
91 {
92 if (!queue_virt_boundary(q))
93 return false;
94 return __bvec_gap_to_prev(q, bprv, offset);
95 }
96
97 #ifdef CONFIG_BLK_DEV_INTEGRITY
98 void blk_flush_integrity(void);
99 bool __bio_integrity_endio(struct bio *);
100 void bio_integrity_free(struct bio *bio);
bio_integrity_endio(struct bio * bio)101 static inline bool bio_integrity_endio(struct bio *bio)
102 {
103 if (bio_integrity(bio))
104 return __bio_integrity_endio(bio);
105 return true;
106 }
107
108 bool blk_integrity_merge_rq(struct request_queue *, struct request *,
109 struct request *);
110 bool blk_integrity_merge_bio(struct request_queue *, struct request *,
111 struct bio *);
112
integrity_req_gap_back_merge(struct request * req,struct bio * next)113 static inline bool integrity_req_gap_back_merge(struct request *req,
114 struct bio *next)
115 {
116 struct bio_integrity_payload *bip = bio_integrity(req->bio);
117 struct bio_integrity_payload *bip_next = bio_integrity(next);
118
119 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
120 bip_next->bip_vec[0].bv_offset);
121 }
122
integrity_req_gap_front_merge(struct request * req,struct bio * bio)123 static inline bool integrity_req_gap_front_merge(struct request *req,
124 struct bio *bio)
125 {
126 struct bio_integrity_payload *bip = bio_integrity(bio);
127 struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
128
129 return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
130 bip_next->bip_vec[0].bv_offset);
131 }
132
133 int blk_integrity_add(struct gendisk *disk);
134 void blk_integrity_del(struct gendisk *);
135 #else /* CONFIG_BLK_DEV_INTEGRITY */
blk_integrity_merge_rq(struct request_queue * rq,struct request * r1,struct request * r2)136 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
137 struct request *r1, struct request *r2)
138 {
139 return true;
140 }
blk_integrity_merge_bio(struct request_queue * rq,struct request * r,struct bio * b)141 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
142 struct request *r, struct bio *b)
143 {
144 return true;
145 }
integrity_req_gap_back_merge(struct request * req,struct bio * next)146 static inline bool integrity_req_gap_back_merge(struct request *req,
147 struct bio *next)
148 {
149 return false;
150 }
integrity_req_gap_front_merge(struct request * req,struct bio * bio)151 static inline bool integrity_req_gap_front_merge(struct request *req,
152 struct bio *bio)
153 {
154 return false;
155 }
156
blk_flush_integrity(void)157 static inline void blk_flush_integrity(void)
158 {
159 }
bio_integrity_endio(struct bio * bio)160 static inline bool bio_integrity_endio(struct bio *bio)
161 {
162 return true;
163 }
bio_integrity_free(struct bio * bio)164 static inline void bio_integrity_free(struct bio *bio)
165 {
166 }
blk_integrity_add(struct gendisk * disk)167 static inline int blk_integrity_add(struct gendisk *disk)
168 {
169 return 0;
170 }
blk_integrity_del(struct gendisk * disk)171 static inline void blk_integrity_del(struct gendisk *disk)
172 {
173 }
174 #endif /* CONFIG_BLK_DEV_INTEGRITY */
175
176 unsigned long blk_rq_timeout(unsigned long timeout);
177 void blk_add_timer(struct request *req);
178
179 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
180 unsigned int nr_segs, struct request **same_queue_rq);
181 bool blk_bio_list_merge(struct request_queue *q, struct list_head *list,
182 struct bio *bio, unsigned int nr_segs);
183
184 void blk_account_io_start(struct request *req);
185 void blk_account_io_done(struct request *req, u64 now);
186
187 /*
188 * Plug flush limits
189 */
190 #define BLK_MAX_REQUEST_COUNT 32
191 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
192
193 /*
194 * Internal elevator interface
195 */
196 #define ELV_ON_HASH(rq) ((rq)->rq_flags & RQF_HASHED)
197
198 void blk_insert_flush(struct request *rq);
199
200 int elevator_switch_mq(struct request_queue *q,
201 struct elevator_type *new_e);
202 void __elevator_exit(struct request_queue *, struct elevator_queue *);
203 int elv_register_queue(struct request_queue *q, bool uevent);
204 void elv_unregister_queue(struct request_queue *q);
205
elevator_exit(struct request_queue * q,struct elevator_queue * e)206 static inline void elevator_exit(struct request_queue *q,
207 struct elevator_queue *e)
208 {
209 lockdep_assert_held(&q->sysfs_lock);
210
211 blk_mq_sched_free_requests(q);
212 __elevator_exit(q, e);
213 }
214
215 ssize_t part_size_show(struct device *dev, struct device_attribute *attr,
216 char *buf);
217 ssize_t part_stat_show(struct device *dev, struct device_attribute *attr,
218 char *buf);
219 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
220 char *buf);
221 ssize_t part_fail_show(struct device *dev, struct device_attribute *attr,
222 char *buf);
223 ssize_t part_fail_store(struct device *dev, struct device_attribute *attr,
224 const char *buf, size_t count);
225 ssize_t part_timeout_show(struct device *, struct device_attribute *, char *);
226 ssize_t part_timeout_store(struct device *, struct device_attribute *,
227 const char *, size_t);
228
229 void __blk_queue_split(struct bio **bio, unsigned int *nr_segs);
230 int ll_back_merge_fn(struct request *req, struct bio *bio,
231 unsigned int nr_segs);
232 bool blk_attempt_req_merge(struct request_queue *q, struct request *rq,
233 struct request *next);
234 unsigned int blk_recalc_rq_segments(struct request *rq);
235 void blk_rq_set_mixed_merge(struct request *rq);
236 bool blk_rq_merge_ok(struct request *rq, struct bio *bio);
237 enum elv_merge blk_try_merge(struct request *rq, struct bio *bio);
238
239 int blk_dev_init(void);
240
241 /*
242 * Contribute to IO statistics IFF:
243 *
244 * a) it's attached to a gendisk, and
245 * b) the queue had IO stats enabled when this request was started
246 */
blk_do_io_stat(struct request * rq)247 static inline bool blk_do_io_stat(struct request *rq)
248 {
249 return rq->rq_disk && (rq->rq_flags & RQF_IO_STAT);
250 }
251
req_set_nomerge(struct request_queue * q,struct request * req)252 static inline void req_set_nomerge(struct request_queue *q, struct request *req)
253 {
254 req->cmd_flags |= REQ_NOMERGE;
255 if (req == q->last_merge)
256 q->last_merge = NULL;
257 }
258
259 /*
260 * The max size one bio can handle is UINT_MAX becasue bvec_iter.bi_size
261 * is defined as 'unsigned int', meantime it has to aligned to with logical
262 * block size which is the minimum accepted unit by hardware.
263 */
bio_allowed_max_sectors(struct request_queue * q)264 static inline unsigned int bio_allowed_max_sectors(struct request_queue *q)
265 {
266 return round_down(UINT_MAX, queue_logical_block_size(q)) >> 9;
267 }
268
269 /*
270 * The max bio size which is aligned to q->limits.discard_granularity. This
271 * is a hint to split large discard bio in generic block layer, then if device
272 * driver needs to split the discard bio into smaller ones, their bi_size can
273 * be very probably and easily aligned to discard_granularity of the device's
274 * queue.
275 */
bio_aligned_discard_max_sectors(struct request_queue * q)276 static inline unsigned int bio_aligned_discard_max_sectors(
277 struct request_queue *q)
278 {
279 return round_down(UINT_MAX, q->limits.discard_granularity) >>
280 SECTOR_SHIFT;
281 }
282
283 /*
284 * Internal io_context interface
285 */
286 void get_io_context(struct io_context *ioc);
287 struct io_cq *ioc_lookup_icq(struct io_context *ioc, struct request_queue *q);
288 struct io_cq *ioc_create_icq(struct io_context *ioc, struct request_queue *q,
289 gfp_t gfp_mask);
290 void ioc_clear_queue(struct request_queue *q);
291
292 int create_task_io_context(struct task_struct *task, gfp_t gfp_mask, int node);
293
294 /*
295 * Internal throttling interface
296 */
297 #ifdef CONFIG_BLK_DEV_THROTTLING
298 extern int blk_throtl_init(struct request_queue *q);
299 extern void blk_throtl_exit(struct request_queue *q);
300 extern void blk_throtl_register_queue(struct request_queue *q);
301 extern void blk_throtl_charge_bio_split(struct bio *bio);
302 bool blk_throtl_bio(struct bio *bio);
303 #else /* CONFIG_BLK_DEV_THROTTLING */
blk_throtl_init(struct request_queue * q)304 static inline int blk_throtl_init(struct request_queue *q) { return 0; }
blk_throtl_exit(struct request_queue * q)305 static inline void blk_throtl_exit(struct request_queue *q) { }
blk_throtl_register_queue(struct request_queue * q)306 static inline void blk_throtl_register_queue(struct request_queue *q) { }
blk_throtl_charge_bio_split(struct bio * bio)307 static inline void blk_throtl_charge_bio_split(struct bio *bio) { }
blk_throtl_bio(struct bio * bio)308 static inline bool blk_throtl_bio(struct bio *bio) { return false; }
309 #endif /* CONFIG_BLK_DEV_THROTTLING */
310 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
311 extern ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page);
312 extern ssize_t blk_throtl_sample_time_store(struct request_queue *q,
313 const char *page, size_t count);
314 extern void blk_throtl_bio_endio(struct bio *bio);
315 extern void blk_throtl_stat_add(struct request *rq, u64 time);
316 #else
blk_throtl_bio_endio(struct bio * bio)317 static inline void blk_throtl_bio_endio(struct bio *bio) { }
blk_throtl_stat_add(struct request * rq,u64 time)318 static inline void blk_throtl_stat_add(struct request *rq, u64 time) { }
319 #endif
320
321 void __blk_queue_bounce(struct request_queue *q, struct bio **bio);
322
blk_queue_may_bounce(struct request_queue * q)323 static inline bool blk_queue_may_bounce(struct request_queue *q)
324 {
325 return IS_ENABLED(CONFIG_BOUNCE) &&
326 q->limits.bounce == BLK_BOUNCE_HIGH &&
327 max_low_pfn >= max_pfn;
328 }
329
blk_queue_bounce(struct request_queue * q,struct bio ** bio)330 static inline void blk_queue_bounce(struct request_queue *q, struct bio **bio)
331 {
332 if (unlikely(blk_queue_may_bounce(q) && bio_has_data(*bio)))
333 __blk_queue_bounce(q, bio);
334 }
335
336 #ifdef CONFIG_BLK_CGROUP_IOLATENCY
337 extern int blk_iolatency_init(struct request_queue *q);
338 #else
blk_iolatency_init(struct request_queue * q)339 static inline int blk_iolatency_init(struct request_queue *q) { return 0; }
340 #endif
341
342 struct bio *blk_next_bio(struct bio *bio, unsigned int nr_pages, gfp_t gfp);
343
344 #ifdef CONFIG_BLK_DEV_ZONED
345 void blk_queue_free_zone_bitmaps(struct request_queue *q);
346 void blk_queue_clear_zone_settings(struct request_queue *q);
347 #else
blk_queue_free_zone_bitmaps(struct request_queue * q)348 static inline void blk_queue_free_zone_bitmaps(struct request_queue *q) {}
blk_queue_clear_zone_settings(struct request_queue * q)349 static inline void blk_queue_clear_zone_settings(struct request_queue *q) {}
350 #endif
351
352 int blk_alloc_ext_minor(void);
353 void blk_free_ext_minor(unsigned int minor);
354 #define ADDPART_FLAG_NONE 0
355 #define ADDPART_FLAG_RAID 1
356 #define ADDPART_FLAG_WHOLEDISK 2
357 int bdev_add_partition(struct gendisk *disk, int partno, sector_t start,
358 sector_t length);
359 int bdev_del_partition(struct gendisk *disk, int partno);
360 int bdev_resize_partition(struct gendisk *disk, int partno, sector_t start,
361 sector_t length);
362
363 int bio_add_hw_page(struct request_queue *q, struct bio *bio,
364 struct page *page, unsigned int len, unsigned int offset,
365 unsigned int max_sectors, bool *same_page);
366
367 struct request_queue *blk_alloc_queue(int node_id);
368
369 int disk_alloc_events(struct gendisk *disk);
370 void disk_add_events(struct gendisk *disk);
371 void disk_del_events(struct gendisk *disk);
372 void disk_release_events(struct gendisk *disk);
373 extern struct device_attribute dev_attr_events;
374 extern struct device_attribute dev_attr_events_async;
375 extern struct device_attribute dev_attr_events_poll_msecs;
376
bio_clear_hipri(struct bio * bio)377 static inline void bio_clear_hipri(struct bio *bio)
378 {
379 /* can't support alloc cache if we turn off polling */
380 bio_clear_flag(bio, BIO_PERCPU_CACHE);
381 bio->bi_opf &= ~REQ_HIPRI;
382 }
383
384 extern const struct address_space_operations def_blk_aops;
385
386 #endif /* BLK_INTERNAL_H */
387