• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * DRBG: Deterministic Random Bits Generator
3  *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
4  *       properties:
5  *		* CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6  *		* Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7  *		* HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8  *		* with and without prediction resistance
9  *
10  * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  *
44  * DRBG Usage
45  * ==========
46  * The SP 800-90A DRBG allows the user to specify a personalization string
47  * for initialization as well as an additional information string for each
48  * random number request. The following code fragments show how a caller
49  * uses the kernel crypto API to use the full functionality of the DRBG.
50  *
51  * Usage without any additional data
52  * ---------------------------------
53  * struct crypto_rng *drng;
54  * int err;
55  * char data[DATALEN];
56  *
57  * drng = crypto_alloc_rng(drng_name, 0, 0);
58  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59  * crypto_free_rng(drng);
60  *
61  *
62  * Usage with personalization string during initialization
63  * -------------------------------------------------------
64  * struct crypto_rng *drng;
65  * int err;
66  * char data[DATALEN];
67  * struct drbg_string pers;
68  * char personalization[11] = "some-string";
69  *
70  * drbg_string_fill(&pers, personalization, strlen(personalization));
71  * drng = crypto_alloc_rng(drng_name, 0, 0);
72  * // The reset completely re-initializes the DRBG with the provided
73  * // personalization string
74  * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75  * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76  * crypto_free_rng(drng);
77  *
78  *
79  * Usage with additional information string during random number request
80  * ---------------------------------------------------------------------
81  * struct crypto_rng *drng;
82  * int err;
83  * char data[DATALEN];
84  * char addtl_string[11] = "some-string";
85  * string drbg_string addtl;
86  *
87  * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88  * drng = crypto_alloc_rng(drng_name, 0, 0);
89  * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90  * // the same error codes.
91  * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92  * crypto_free_rng(drng);
93  *
94  *
95  * Usage with personalization and additional information strings
96  * -------------------------------------------------------------
97  * Just mix both scenarios above.
98  */
99 
100 #include <crypto/drbg.h>
101 #include <crypto/internal/cipher.h>
102 #include <linux/kernel.h>
103 
104 /***************************************************************
105  * Backend cipher definitions available to DRBG
106  ***************************************************************/
107 
108 /*
109  * The order of the DRBG definitions here matter: every DRBG is registered
110  * as stdrng. Each DRBG receives an increasing cra_priority values the later
111  * they are defined in this array (see drbg_fill_array).
112  *
113  * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
114  * the SHA256 / AES 256 over other ciphers. Thus, the favored
115  * DRBGs are the latest entries in this array.
116  */
117 static const struct drbg_core drbg_cores[] = {
118 #ifdef CONFIG_CRYPTO_DRBG_CTR
119 	{
120 		.flags = DRBG_CTR | DRBG_STRENGTH128,
121 		.statelen = 32, /* 256 bits as defined in 10.2.1 */
122 		.blocklen_bytes = 16,
123 		.cra_name = "ctr_aes128",
124 		.backend_cra_name = "aes",
125 	}, {
126 		.flags = DRBG_CTR | DRBG_STRENGTH192,
127 		.statelen = 40, /* 320 bits as defined in 10.2.1 */
128 		.blocklen_bytes = 16,
129 		.cra_name = "ctr_aes192",
130 		.backend_cra_name = "aes",
131 	}, {
132 		.flags = DRBG_CTR | DRBG_STRENGTH256,
133 		.statelen = 48, /* 384 bits as defined in 10.2.1 */
134 		.blocklen_bytes = 16,
135 		.cra_name = "ctr_aes256",
136 		.backend_cra_name = "aes",
137 	},
138 #endif /* CONFIG_CRYPTO_DRBG_CTR */
139 #ifdef CONFIG_CRYPTO_DRBG_HASH
140 	{
141 		.flags = DRBG_HASH | DRBG_STRENGTH128,
142 		.statelen = 55, /* 440 bits */
143 		.blocklen_bytes = 20,
144 		.cra_name = "sha1",
145 		.backend_cra_name = "sha1",
146 	}, {
147 		.flags = DRBG_HASH | DRBG_STRENGTH256,
148 		.statelen = 111, /* 888 bits */
149 		.blocklen_bytes = 48,
150 		.cra_name = "sha384",
151 		.backend_cra_name = "sha384",
152 	}, {
153 		.flags = DRBG_HASH | DRBG_STRENGTH256,
154 		.statelen = 111, /* 888 bits */
155 		.blocklen_bytes = 64,
156 		.cra_name = "sha512",
157 		.backend_cra_name = "sha512",
158 	}, {
159 		.flags = DRBG_HASH | DRBG_STRENGTH256,
160 		.statelen = 55, /* 440 bits */
161 		.blocklen_bytes = 32,
162 		.cra_name = "sha256",
163 		.backend_cra_name = "sha256",
164 	},
165 #endif /* CONFIG_CRYPTO_DRBG_HASH */
166 #ifdef CONFIG_CRYPTO_DRBG_HMAC
167 	{
168 		.flags = DRBG_HMAC | DRBG_STRENGTH128,
169 		.statelen = 20, /* block length of cipher */
170 		.blocklen_bytes = 20,
171 		.cra_name = "hmac_sha1",
172 		.backend_cra_name = "hmac(sha1)",
173 	}, {
174 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
175 		.statelen = 48, /* block length of cipher */
176 		.blocklen_bytes = 48,
177 		.cra_name = "hmac_sha384",
178 		.backend_cra_name = "hmac(sha384)",
179 	}, {
180 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
181 		.statelen = 32, /* block length of cipher */
182 		.blocklen_bytes = 32,
183 		.cra_name = "hmac_sha256",
184 		.backend_cra_name = "hmac(sha256)",
185 	}, {
186 		.flags = DRBG_HMAC | DRBG_STRENGTH256,
187 		.statelen = 64, /* block length of cipher */
188 		.blocklen_bytes = 64,
189 		.cra_name = "hmac_sha512",
190 		.backend_cra_name = "hmac(sha512)",
191 	},
192 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
193 };
194 
195 static int drbg_uninstantiate(struct drbg_state *drbg);
196 
197 /******************************************************************
198  * Generic helper functions
199  ******************************************************************/
200 
201 /*
202  * Return strength of DRBG according to SP800-90A section 8.4
203  *
204  * @flags DRBG flags reference
205  *
206  * Return: normalized strength in *bytes* value or 32 as default
207  *	   to counter programming errors
208  */
drbg_sec_strength(drbg_flag_t flags)209 static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
210 {
211 	switch (flags & DRBG_STRENGTH_MASK) {
212 	case DRBG_STRENGTH128:
213 		return 16;
214 	case DRBG_STRENGTH192:
215 		return 24;
216 	case DRBG_STRENGTH256:
217 		return 32;
218 	default:
219 		return 32;
220 	}
221 }
222 
223 /*
224  * FIPS 140-2 continuous self test for the noise source
225  * The test is performed on the noise source input data. Thus, the function
226  * implicitly knows the size of the buffer to be equal to the security
227  * strength.
228  *
229  * Note, this function disregards the nonce trailing the entropy data during
230  * initial seeding.
231  *
232  * drbg->drbg_mutex must have been taken.
233  *
234  * @drbg DRBG handle
235  * @entropy buffer of seed data to be checked
236  *
237  * return:
238  *	0 on success
239  *	-EAGAIN on when the CTRNG is not yet primed
240  *	< 0 on error
241  */
drbg_fips_continuous_test(struct drbg_state * drbg,const unsigned char * entropy)242 static int drbg_fips_continuous_test(struct drbg_state *drbg,
243 				     const unsigned char *entropy)
244 {
245 	unsigned short entropylen = drbg_sec_strength(drbg->core->flags);
246 	int ret = 0;
247 
248 	if (!IS_ENABLED(CONFIG_CRYPTO_FIPS))
249 		return 0;
250 
251 	/* skip test if we test the overall system */
252 	if (list_empty(&drbg->test_data.list))
253 		return 0;
254 	/* only perform test in FIPS mode */
255 	if (!fips_enabled)
256 		return 0;
257 
258 	if (!drbg->fips_primed) {
259 		/* Priming of FIPS test */
260 		memcpy(drbg->prev, entropy, entropylen);
261 		drbg->fips_primed = true;
262 		/* priming: another round is needed */
263 		return -EAGAIN;
264 	}
265 	ret = memcmp(drbg->prev, entropy, entropylen);
266 	if (!ret)
267 		panic("DRBG continuous self test failed\n");
268 	memcpy(drbg->prev, entropy, entropylen);
269 
270 	/* the test shall pass when the two values are not equal */
271 	return 0;
272 }
273 
274 /*
275  * Convert an integer into a byte representation of this integer.
276  * The byte representation is big-endian
277  *
278  * @val value to be converted
279  * @buf buffer holding the converted integer -- caller must ensure that
280  *      buffer size is at least 32 bit
281  */
282 #if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
drbg_cpu_to_be32(__u32 val,unsigned char * buf)283 static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
284 {
285 	struct s {
286 		__be32 conv;
287 	};
288 	struct s *conversion = (struct s *) buf;
289 
290 	conversion->conv = cpu_to_be32(val);
291 }
292 #endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
293 
294 /******************************************************************
295  * CTR DRBG callback functions
296  ******************************************************************/
297 
298 #ifdef CONFIG_CRYPTO_DRBG_CTR
299 #define CRYPTO_DRBG_CTR_STRING "CTR "
300 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
301 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
302 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
303 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
304 MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
305 MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
306 
307 static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
308 				 const unsigned char *key);
309 static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
310 			  const struct drbg_string *in);
311 static int drbg_init_sym_kernel(struct drbg_state *drbg);
312 static int drbg_fini_sym_kernel(struct drbg_state *drbg);
313 static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
314 			      u8 *inbuf, u32 inbuflen,
315 			      u8 *outbuf, u32 outlen);
316 #define DRBG_OUTSCRATCHLEN 256
317 
318 /* BCC function for CTR DRBG as defined in 10.4.3 */
drbg_ctr_bcc(struct drbg_state * drbg,unsigned char * out,const unsigned char * key,struct list_head * in)319 static int drbg_ctr_bcc(struct drbg_state *drbg,
320 			unsigned char *out, const unsigned char *key,
321 			struct list_head *in)
322 {
323 	int ret = 0;
324 	struct drbg_string *curr = NULL;
325 	struct drbg_string data;
326 	short cnt = 0;
327 
328 	drbg_string_fill(&data, out, drbg_blocklen(drbg));
329 
330 	/* 10.4.3 step 2 / 4 */
331 	drbg_kcapi_symsetkey(drbg, key);
332 	list_for_each_entry(curr, in, list) {
333 		const unsigned char *pos = curr->buf;
334 		size_t len = curr->len;
335 		/* 10.4.3 step 4.1 */
336 		while (len) {
337 			/* 10.4.3 step 4.2 */
338 			if (drbg_blocklen(drbg) == cnt) {
339 				cnt = 0;
340 				ret = drbg_kcapi_sym(drbg, out, &data);
341 				if (ret)
342 					return ret;
343 			}
344 			out[cnt] ^= *pos;
345 			pos++;
346 			cnt++;
347 			len--;
348 		}
349 	}
350 	/* 10.4.3 step 4.2 for last block */
351 	if (cnt)
352 		ret = drbg_kcapi_sym(drbg, out, &data);
353 
354 	return ret;
355 }
356 
357 /*
358  * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
359  * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
360  * the scratchpad is used as follows:
361  * drbg_ctr_update:
362  *	temp
363  *		start: drbg->scratchpad
364  *		length: drbg_statelen(drbg) + drbg_blocklen(drbg)
365  *			note: the cipher writing into this variable works
366  *			blocklen-wise. Now, when the statelen is not a multiple
367  *			of blocklen, the generateion loop below "spills over"
368  *			by at most blocklen. Thus, we need to give sufficient
369  *			memory.
370  *	df_data
371  *		start: drbg->scratchpad +
372  *				drbg_statelen(drbg) + drbg_blocklen(drbg)
373  *		length: drbg_statelen(drbg)
374  *
375  * drbg_ctr_df:
376  *	pad
377  *		start: df_data + drbg_statelen(drbg)
378  *		length: drbg_blocklen(drbg)
379  *	iv
380  *		start: pad + drbg_blocklen(drbg)
381  *		length: drbg_blocklen(drbg)
382  *	temp
383  *		start: iv + drbg_blocklen(drbg)
384  *		length: drbg_satelen(drbg) + drbg_blocklen(drbg)
385  *			note: temp is the buffer that the BCC function operates
386  *			on. BCC operates blockwise. drbg_statelen(drbg)
387  *			is sufficient when the DRBG state length is a multiple
388  *			of the block size. For AES192 (and maybe other ciphers)
389  *			this is not correct and the length for temp is
390  *			insufficient (yes, that also means for such ciphers,
391  *			the final output of all BCC rounds are truncated).
392  *			Therefore, add drbg_blocklen(drbg) to cover all
393  *			possibilities.
394  */
395 
396 /* Derivation Function for CTR DRBG as defined in 10.4.2 */
drbg_ctr_df(struct drbg_state * drbg,unsigned char * df_data,size_t bytes_to_return,struct list_head * seedlist)397 static int drbg_ctr_df(struct drbg_state *drbg,
398 		       unsigned char *df_data, size_t bytes_to_return,
399 		       struct list_head *seedlist)
400 {
401 	int ret = -EFAULT;
402 	unsigned char L_N[8];
403 	/* S3 is input */
404 	struct drbg_string S1, S2, S4, cipherin;
405 	LIST_HEAD(bcc_list);
406 	unsigned char *pad = df_data + drbg_statelen(drbg);
407 	unsigned char *iv = pad + drbg_blocklen(drbg);
408 	unsigned char *temp = iv + drbg_blocklen(drbg);
409 	size_t padlen = 0;
410 	unsigned int templen = 0;
411 	/* 10.4.2 step 7 */
412 	unsigned int i = 0;
413 	/* 10.4.2 step 8 */
414 	const unsigned char *K = (unsigned char *)
415 			   "\x00\x01\x02\x03\x04\x05\x06\x07"
416 			   "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
417 			   "\x10\x11\x12\x13\x14\x15\x16\x17"
418 			   "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
419 	unsigned char *X;
420 	size_t generated_len = 0;
421 	size_t inputlen = 0;
422 	struct drbg_string *seed = NULL;
423 
424 	memset(pad, 0, drbg_blocklen(drbg));
425 	memset(iv, 0, drbg_blocklen(drbg));
426 
427 	/* 10.4.2 step 1 is implicit as we work byte-wise */
428 
429 	/* 10.4.2 step 2 */
430 	if ((512/8) < bytes_to_return)
431 		return -EINVAL;
432 
433 	/* 10.4.2 step 2 -- calculate the entire length of all input data */
434 	list_for_each_entry(seed, seedlist, list)
435 		inputlen += seed->len;
436 	drbg_cpu_to_be32(inputlen, &L_N[0]);
437 
438 	/* 10.4.2 step 3 */
439 	drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
440 
441 	/* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
442 	padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
443 	/* wrap the padlen appropriately */
444 	if (padlen)
445 		padlen = drbg_blocklen(drbg) - padlen;
446 	/*
447 	 * pad / padlen contains the 0x80 byte and the following zero bytes.
448 	 * As the calculated padlen value only covers the number of zero
449 	 * bytes, this value has to be incremented by one for the 0x80 byte.
450 	 */
451 	padlen++;
452 	pad[0] = 0x80;
453 
454 	/* 10.4.2 step 4 -- first fill the linked list and then order it */
455 	drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
456 	list_add_tail(&S1.list, &bcc_list);
457 	drbg_string_fill(&S2, L_N, sizeof(L_N));
458 	list_add_tail(&S2.list, &bcc_list);
459 	list_splice_tail(seedlist, &bcc_list);
460 	drbg_string_fill(&S4, pad, padlen);
461 	list_add_tail(&S4.list, &bcc_list);
462 
463 	/* 10.4.2 step 9 */
464 	while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
465 		/*
466 		 * 10.4.2 step 9.1 - the padding is implicit as the buffer
467 		 * holds zeros after allocation -- even the increment of i
468 		 * is irrelevant as the increment remains within length of i
469 		 */
470 		drbg_cpu_to_be32(i, iv);
471 		/* 10.4.2 step 9.2 -- BCC and concatenation with temp */
472 		ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
473 		if (ret)
474 			goto out;
475 		/* 10.4.2 step 9.3 */
476 		i++;
477 		templen += drbg_blocklen(drbg);
478 	}
479 
480 	/* 10.4.2 step 11 */
481 	X = temp + (drbg_keylen(drbg));
482 	drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
483 
484 	/* 10.4.2 step 12: overwriting of outval is implemented in next step */
485 
486 	/* 10.4.2 step 13 */
487 	drbg_kcapi_symsetkey(drbg, temp);
488 	while (generated_len < bytes_to_return) {
489 		short blocklen = 0;
490 		/*
491 		 * 10.4.2 step 13.1: the truncation of the key length is
492 		 * implicit as the key is only drbg_blocklen in size based on
493 		 * the implementation of the cipher function callback
494 		 */
495 		ret = drbg_kcapi_sym(drbg, X, &cipherin);
496 		if (ret)
497 			goto out;
498 		blocklen = (drbg_blocklen(drbg) <
499 				(bytes_to_return - generated_len)) ?
500 			    drbg_blocklen(drbg) :
501 				(bytes_to_return - generated_len);
502 		/* 10.4.2 step 13.2 and 14 */
503 		memcpy(df_data + generated_len, X, blocklen);
504 		generated_len += blocklen;
505 	}
506 
507 	ret = 0;
508 
509 out:
510 	memset(iv, 0, drbg_blocklen(drbg));
511 	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
512 	memset(pad, 0, drbg_blocklen(drbg));
513 	return ret;
514 }
515 
516 /*
517  * update function of CTR DRBG as defined in 10.2.1.2
518  *
519  * The reseed variable has an enhanced meaning compared to the update
520  * functions of the other DRBGs as follows:
521  * 0 => initial seed from initialization
522  * 1 => reseed via drbg_seed
523  * 2 => first invocation from drbg_ctr_update when addtl is present. In
524  *      this case, the df_data scratchpad is not deleted so that it is
525  *      available for another calls to prevent calling the DF function
526  *      again.
527  * 3 => second invocation from drbg_ctr_update. When the update function
528  *      was called with addtl, the df_data memory already contains the
529  *      DFed addtl information and we do not need to call DF again.
530  */
drbg_ctr_update(struct drbg_state * drbg,struct list_head * seed,int reseed)531 static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
532 			   int reseed)
533 {
534 	int ret = -EFAULT;
535 	/* 10.2.1.2 step 1 */
536 	unsigned char *temp = drbg->scratchpad;
537 	unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
538 				 drbg_blocklen(drbg);
539 
540 	if (3 > reseed)
541 		memset(df_data, 0, drbg_statelen(drbg));
542 
543 	if (!reseed) {
544 		/*
545 		 * The DRBG uses the CTR mode of the underlying AES cipher. The
546 		 * CTR mode increments the counter value after the AES operation
547 		 * but SP800-90A requires that the counter is incremented before
548 		 * the AES operation. Hence, we increment it at the time we set
549 		 * it by one.
550 		 */
551 		crypto_inc(drbg->V, drbg_blocklen(drbg));
552 
553 		ret = crypto_skcipher_setkey(drbg->ctr_handle, drbg->C,
554 					     drbg_keylen(drbg));
555 		if (ret)
556 			goto out;
557 	}
558 
559 	/* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
560 	if (seed) {
561 		ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
562 		if (ret)
563 			goto out;
564 	}
565 
566 	ret = drbg_kcapi_sym_ctr(drbg, df_data, drbg_statelen(drbg),
567 				 temp, drbg_statelen(drbg));
568 	if (ret)
569 		return ret;
570 
571 	/* 10.2.1.2 step 5 */
572 	ret = crypto_skcipher_setkey(drbg->ctr_handle, temp,
573 				     drbg_keylen(drbg));
574 	if (ret)
575 		goto out;
576 	/* 10.2.1.2 step 6 */
577 	memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
578 	/* See above: increment counter by one to compensate timing of CTR op */
579 	crypto_inc(drbg->V, drbg_blocklen(drbg));
580 	ret = 0;
581 
582 out:
583 	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
584 	if (2 != reseed)
585 		memset(df_data, 0, drbg_statelen(drbg));
586 	return ret;
587 }
588 
589 /*
590  * scratchpad use: drbg_ctr_update is called independently from
591  * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
592  */
593 /* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
drbg_ctr_generate(struct drbg_state * drbg,unsigned char * buf,unsigned int buflen,struct list_head * addtl)594 static int drbg_ctr_generate(struct drbg_state *drbg,
595 			     unsigned char *buf, unsigned int buflen,
596 			     struct list_head *addtl)
597 {
598 	int ret;
599 	int len = min_t(int, buflen, INT_MAX);
600 
601 	/* 10.2.1.5.2 step 2 */
602 	if (addtl && !list_empty(addtl)) {
603 		ret = drbg_ctr_update(drbg, addtl, 2);
604 		if (ret)
605 			return 0;
606 	}
607 
608 	/* 10.2.1.5.2 step 4.1 */
609 	ret = drbg_kcapi_sym_ctr(drbg, NULL, 0, buf, len);
610 	if (ret)
611 		return ret;
612 
613 	/* 10.2.1.5.2 step 6 */
614 	ret = drbg_ctr_update(drbg, NULL, 3);
615 	if (ret)
616 		len = ret;
617 
618 	return len;
619 }
620 
621 static const struct drbg_state_ops drbg_ctr_ops = {
622 	.update		= drbg_ctr_update,
623 	.generate	= drbg_ctr_generate,
624 	.crypto_init	= drbg_init_sym_kernel,
625 	.crypto_fini	= drbg_fini_sym_kernel,
626 };
627 #endif /* CONFIG_CRYPTO_DRBG_CTR */
628 
629 /******************************************************************
630  * HMAC DRBG callback functions
631  ******************************************************************/
632 
633 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
634 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
635 			   const struct list_head *in);
636 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
637 				  const unsigned char *key);
638 static int drbg_init_hash_kernel(struct drbg_state *drbg);
639 static int drbg_fini_hash_kernel(struct drbg_state *drbg);
640 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
641 
642 #ifdef CONFIG_CRYPTO_DRBG_HMAC
643 #define CRYPTO_DRBG_HMAC_STRING "HMAC "
644 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
645 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
646 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
647 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
648 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
649 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
650 MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
651 MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
652 
653 /* update function of HMAC DRBG as defined in 10.1.2.2 */
drbg_hmac_update(struct drbg_state * drbg,struct list_head * seed,int reseed)654 static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
655 			    int reseed)
656 {
657 	int ret = -EFAULT;
658 	int i = 0;
659 	struct drbg_string seed1, seed2, vdata;
660 	LIST_HEAD(seedlist);
661 	LIST_HEAD(vdatalist);
662 
663 	if (!reseed) {
664 		/* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
665 		memset(drbg->V, 1, drbg_statelen(drbg));
666 		drbg_kcapi_hmacsetkey(drbg, drbg->C);
667 	}
668 
669 	drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
670 	list_add_tail(&seed1.list, &seedlist);
671 	/* buffer of seed2 will be filled in for loop below with one byte */
672 	drbg_string_fill(&seed2, NULL, 1);
673 	list_add_tail(&seed2.list, &seedlist);
674 	/* input data of seed is allowed to be NULL at this point */
675 	if (seed)
676 		list_splice_tail(seed, &seedlist);
677 
678 	drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
679 	list_add_tail(&vdata.list, &vdatalist);
680 	for (i = 2; 0 < i; i--) {
681 		/* first round uses 0x0, second 0x1 */
682 		unsigned char prefix = DRBG_PREFIX0;
683 		if (1 == i)
684 			prefix = DRBG_PREFIX1;
685 		/* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
686 		seed2.buf = &prefix;
687 		ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist);
688 		if (ret)
689 			return ret;
690 		drbg_kcapi_hmacsetkey(drbg, drbg->C);
691 
692 		/* 10.1.2.2 step 2 and 5 -- HMAC for V */
693 		ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist);
694 		if (ret)
695 			return ret;
696 
697 		/* 10.1.2.2 step 3 */
698 		if (!seed)
699 			return ret;
700 	}
701 
702 	return 0;
703 }
704 
705 /* generate function of HMAC DRBG as defined in 10.1.2.5 */
drbg_hmac_generate(struct drbg_state * drbg,unsigned char * buf,unsigned int buflen,struct list_head * addtl)706 static int drbg_hmac_generate(struct drbg_state *drbg,
707 			      unsigned char *buf,
708 			      unsigned int buflen,
709 			      struct list_head *addtl)
710 {
711 	int len = 0;
712 	int ret = 0;
713 	struct drbg_string data;
714 	LIST_HEAD(datalist);
715 
716 	/* 10.1.2.5 step 2 */
717 	if (addtl && !list_empty(addtl)) {
718 		ret = drbg_hmac_update(drbg, addtl, 1);
719 		if (ret)
720 			return ret;
721 	}
722 
723 	drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
724 	list_add_tail(&data.list, &datalist);
725 	while (len < buflen) {
726 		unsigned int outlen = 0;
727 		/* 10.1.2.5 step 4.1 */
728 		ret = drbg_kcapi_hash(drbg, drbg->V, &datalist);
729 		if (ret)
730 			return ret;
731 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
732 			  drbg_blocklen(drbg) : (buflen - len);
733 
734 		/* 10.1.2.5 step 4.2 */
735 		memcpy(buf + len, drbg->V, outlen);
736 		len += outlen;
737 	}
738 
739 	/* 10.1.2.5 step 6 */
740 	if (addtl && !list_empty(addtl))
741 		ret = drbg_hmac_update(drbg, addtl, 1);
742 	else
743 		ret = drbg_hmac_update(drbg, NULL, 1);
744 	if (ret)
745 		return ret;
746 
747 	return len;
748 }
749 
750 static const struct drbg_state_ops drbg_hmac_ops = {
751 	.update		= drbg_hmac_update,
752 	.generate	= drbg_hmac_generate,
753 	.crypto_init	= drbg_init_hash_kernel,
754 	.crypto_fini	= drbg_fini_hash_kernel,
755 };
756 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
757 
758 /******************************************************************
759  * Hash DRBG callback functions
760  ******************************************************************/
761 
762 #ifdef CONFIG_CRYPTO_DRBG_HASH
763 #define CRYPTO_DRBG_HASH_STRING "HASH "
764 MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
765 MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
766 MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
767 MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
768 MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
769 MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
770 MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
771 MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
772 
773 /*
774  * Increment buffer
775  *
776  * @dst buffer to increment
777  * @add value to add
778  */
drbg_add_buf(unsigned char * dst,size_t dstlen,const unsigned char * add,size_t addlen)779 static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
780 				const unsigned char *add, size_t addlen)
781 {
782 	/* implied: dstlen > addlen */
783 	unsigned char *dstptr;
784 	const unsigned char *addptr;
785 	unsigned int remainder = 0;
786 	size_t len = addlen;
787 
788 	dstptr = dst + (dstlen-1);
789 	addptr = add + (addlen-1);
790 	while (len) {
791 		remainder += *dstptr + *addptr;
792 		*dstptr = remainder & 0xff;
793 		remainder >>= 8;
794 		len--; dstptr--; addptr--;
795 	}
796 	len = dstlen - addlen;
797 	while (len && remainder > 0) {
798 		remainder = *dstptr + 1;
799 		*dstptr = remainder & 0xff;
800 		remainder >>= 8;
801 		len--; dstptr--;
802 	}
803 }
804 
805 /*
806  * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
807  * interlinked, the scratchpad is used as follows:
808  * drbg_hash_update
809  *	start: drbg->scratchpad
810  *	length: drbg_statelen(drbg)
811  * drbg_hash_df:
812  *	start: drbg->scratchpad + drbg_statelen(drbg)
813  *	length: drbg_blocklen(drbg)
814  *
815  * drbg_hash_process_addtl uses the scratchpad, but fully completes
816  * before either of the functions mentioned before are invoked. Therefore,
817  * drbg_hash_process_addtl does not need to be specifically considered.
818  */
819 
820 /* Derivation Function for Hash DRBG as defined in 10.4.1 */
drbg_hash_df(struct drbg_state * drbg,unsigned char * outval,size_t outlen,struct list_head * entropylist)821 static int drbg_hash_df(struct drbg_state *drbg,
822 			unsigned char *outval, size_t outlen,
823 			struct list_head *entropylist)
824 {
825 	int ret = 0;
826 	size_t len = 0;
827 	unsigned char input[5];
828 	unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
829 	struct drbg_string data;
830 
831 	/* 10.4.1 step 3 */
832 	input[0] = 1;
833 	drbg_cpu_to_be32((outlen * 8), &input[1]);
834 
835 	/* 10.4.1 step 4.1 -- concatenation of data for input into hash */
836 	drbg_string_fill(&data, input, 5);
837 	list_add(&data.list, entropylist);
838 
839 	/* 10.4.1 step 4 */
840 	while (len < outlen) {
841 		short blocklen = 0;
842 		/* 10.4.1 step 4.1 */
843 		ret = drbg_kcapi_hash(drbg, tmp, entropylist);
844 		if (ret)
845 			goto out;
846 		/* 10.4.1 step 4.2 */
847 		input[0]++;
848 		blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
849 			    drbg_blocklen(drbg) : (outlen - len);
850 		memcpy(outval + len, tmp, blocklen);
851 		len += blocklen;
852 	}
853 
854 out:
855 	memset(tmp, 0, drbg_blocklen(drbg));
856 	return ret;
857 }
858 
859 /* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
drbg_hash_update(struct drbg_state * drbg,struct list_head * seed,int reseed)860 static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
861 			    int reseed)
862 {
863 	int ret = 0;
864 	struct drbg_string data1, data2;
865 	LIST_HEAD(datalist);
866 	LIST_HEAD(datalist2);
867 	unsigned char *V = drbg->scratchpad;
868 	unsigned char prefix = DRBG_PREFIX1;
869 
870 	if (!seed)
871 		return -EINVAL;
872 
873 	if (reseed) {
874 		/* 10.1.1.3 step 1 */
875 		memcpy(V, drbg->V, drbg_statelen(drbg));
876 		drbg_string_fill(&data1, &prefix, 1);
877 		list_add_tail(&data1.list, &datalist);
878 		drbg_string_fill(&data2, V, drbg_statelen(drbg));
879 		list_add_tail(&data2.list, &datalist);
880 	}
881 	list_splice_tail(seed, &datalist);
882 
883 	/* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
884 	ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
885 	if (ret)
886 		goto out;
887 
888 	/* 10.1.1.2 / 10.1.1.3 step 4  */
889 	prefix = DRBG_PREFIX0;
890 	drbg_string_fill(&data1, &prefix, 1);
891 	list_add_tail(&data1.list, &datalist2);
892 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
893 	list_add_tail(&data2.list, &datalist2);
894 	/* 10.1.1.2 / 10.1.1.3 step 4 */
895 	ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
896 
897 out:
898 	memset(drbg->scratchpad, 0, drbg_statelen(drbg));
899 	return ret;
900 }
901 
902 /* processing of additional information string for Hash DRBG */
drbg_hash_process_addtl(struct drbg_state * drbg,struct list_head * addtl)903 static int drbg_hash_process_addtl(struct drbg_state *drbg,
904 				   struct list_head *addtl)
905 {
906 	int ret = 0;
907 	struct drbg_string data1, data2;
908 	LIST_HEAD(datalist);
909 	unsigned char prefix = DRBG_PREFIX2;
910 
911 	/* 10.1.1.4 step 2 */
912 	if (!addtl || list_empty(addtl))
913 		return 0;
914 
915 	/* 10.1.1.4 step 2a */
916 	drbg_string_fill(&data1, &prefix, 1);
917 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
918 	list_add_tail(&data1.list, &datalist);
919 	list_add_tail(&data2.list, &datalist);
920 	list_splice_tail(addtl, &datalist);
921 	ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
922 	if (ret)
923 		goto out;
924 
925 	/* 10.1.1.4 step 2b */
926 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
927 		     drbg->scratchpad, drbg_blocklen(drbg));
928 
929 out:
930 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
931 	return ret;
932 }
933 
934 /* Hashgen defined in 10.1.1.4 */
drbg_hash_hashgen(struct drbg_state * drbg,unsigned char * buf,unsigned int buflen)935 static int drbg_hash_hashgen(struct drbg_state *drbg,
936 			     unsigned char *buf,
937 			     unsigned int buflen)
938 {
939 	int len = 0;
940 	int ret = 0;
941 	unsigned char *src = drbg->scratchpad;
942 	unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
943 	struct drbg_string data;
944 	LIST_HEAD(datalist);
945 
946 	/* 10.1.1.4 step hashgen 2 */
947 	memcpy(src, drbg->V, drbg_statelen(drbg));
948 
949 	drbg_string_fill(&data, src, drbg_statelen(drbg));
950 	list_add_tail(&data.list, &datalist);
951 	while (len < buflen) {
952 		unsigned int outlen = 0;
953 		/* 10.1.1.4 step hashgen 4.1 */
954 		ret = drbg_kcapi_hash(drbg, dst, &datalist);
955 		if (ret) {
956 			len = ret;
957 			goto out;
958 		}
959 		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
960 			  drbg_blocklen(drbg) : (buflen - len);
961 		/* 10.1.1.4 step hashgen 4.2 */
962 		memcpy(buf + len, dst, outlen);
963 		len += outlen;
964 		/* 10.1.1.4 hashgen step 4.3 */
965 		if (len < buflen)
966 			crypto_inc(src, drbg_statelen(drbg));
967 	}
968 
969 out:
970 	memset(drbg->scratchpad, 0,
971 	       (drbg_statelen(drbg) + drbg_blocklen(drbg)));
972 	return len;
973 }
974 
975 /* generate function for Hash DRBG as defined in  10.1.1.4 */
drbg_hash_generate(struct drbg_state * drbg,unsigned char * buf,unsigned int buflen,struct list_head * addtl)976 static int drbg_hash_generate(struct drbg_state *drbg,
977 			      unsigned char *buf, unsigned int buflen,
978 			      struct list_head *addtl)
979 {
980 	int len = 0;
981 	int ret = 0;
982 	union {
983 		unsigned char req[8];
984 		__be64 req_int;
985 	} u;
986 	unsigned char prefix = DRBG_PREFIX3;
987 	struct drbg_string data1, data2;
988 	LIST_HEAD(datalist);
989 
990 	/* 10.1.1.4 step 2 */
991 	ret = drbg_hash_process_addtl(drbg, addtl);
992 	if (ret)
993 		return ret;
994 	/* 10.1.1.4 step 3 */
995 	len = drbg_hash_hashgen(drbg, buf, buflen);
996 
997 	/* this is the value H as documented in 10.1.1.4 */
998 	/* 10.1.1.4 step 4 */
999 	drbg_string_fill(&data1, &prefix, 1);
1000 	list_add_tail(&data1.list, &datalist);
1001 	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
1002 	list_add_tail(&data2.list, &datalist);
1003 	ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
1004 	if (ret) {
1005 		len = ret;
1006 		goto out;
1007 	}
1008 
1009 	/* 10.1.1.4 step 5 */
1010 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1011 		     drbg->scratchpad, drbg_blocklen(drbg));
1012 	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1013 		     drbg->C, drbg_statelen(drbg));
1014 	u.req_int = cpu_to_be64(drbg->reseed_ctr);
1015 	drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1016 
1017 out:
1018 	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1019 	return len;
1020 }
1021 
1022 /*
1023  * scratchpad usage: as update and generate are used isolated, both
1024  * can use the scratchpad
1025  */
1026 static const struct drbg_state_ops drbg_hash_ops = {
1027 	.update		= drbg_hash_update,
1028 	.generate	= drbg_hash_generate,
1029 	.crypto_init	= drbg_init_hash_kernel,
1030 	.crypto_fini	= drbg_fini_hash_kernel,
1031 };
1032 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1033 
1034 /******************************************************************
1035  * Functions common for DRBG implementations
1036  ******************************************************************/
1037 
__drbg_seed(struct drbg_state * drbg,struct list_head * seed,int reseed,enum drbg_seed_state new_seed_state)1038 static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
1039 			      int reseed, enum drbg_seed_state new_seed_state)
1040 {
1041 	int ret = drbg->d_ops->update(drbg, seed, reseed);
1042 
1043 	if (ret)
1044 		return ret;
1045 
1046 	drbg->seeded = new_seed_state;
1047 	/* 10.1.1.2 / 10.1.1.3 step 5 */
1048 	drbg->reseed_ctr = 1;
1049 
1050 	switch (drbg->seeded) {
1051 	case DRBG_SEED_STATE_UNSEEDED:
1052 		/* Impossible, but handle it to silence compiler warnings. */
1053 		fallthrough;
1054 	case DRBG_SEED_STATE_PARTIAL:
1055 		/*
1056 		 * Require frequent reseeds until the seed source is
1057 		 * fully initialized.
1058 		 */
1059 		drbg->reseed_threshold = 50;
1060 		break;
1061 
1062 	case DRBG_SEED_STATE_FULL:
1063 		/*
1064 		 * Seed source has become fully initialized, frequent
1065 		 * reseeds no longer required.
1066 		 */
1067 		drbg->reseed_threshold = drbg_max_requests(drbg);
1068 		break;
1069 	}
1070 
1071 	return ret;
1072 }
1073 
drbg_get_random_bytes(struct drbg_state * drbg,unsigned char * entropy,unsigned int entropylen)1074 static inline int drbg_get_random_bytes(struct drbg_state *drbg,
1075 					unsigned char *entropy,
1076 					unsigned int entropylen)
1077 {
1078 	int ret;
1079 
1080 	do {
1081 		get_random_bytes(entropy, entropylen);
1082 		ret = drbg_fips_continuous_test(drbg, entropy);
1083 		if (ret && ret != -EAGAIN)
1084 			return ret;
1085 	} while (ret);
1086 
1087 	return 0;
1088 }
1089 
drbg_seed_from_random(struct drbg_state * drbg)1090 static int drbg_seed_from_random(struct drbg_state *drbg)
1091 {
1092 	struct drbg_string data;
1093 	LIST_HEAD(seedlist);
1094 	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1095 	unsigned char entropy[32];
1096 	int ret;
1097 
1098 	BUG_ON(!entropylen);
1099 	BUG_ON(entropylen > sizeof(entropy));
1100 
1101 	drbg_string_fill(&data, entropy, entropylen);
1102 	list_add_tail(&data.list, &seedlist);
1103 
1104 	ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1105 	if (ret)
1106 		goto out;
1107 
1108 	ret = __drbg_seed(drbg, &seedlist, true, DRBG_SEED_STATE_FULL);
1109 
1110 out:
1111 	memzero_explicit(entropy, entropylen);
1112 	return ret;
1113 }
1114 
1115 /*
1116  * Seeding or reseeding of the DRBG
1117  *
1118  * @drbg: DRBG state struct
1119  * @pers: personalization / additional information buffer
1120  * @reseed: 0 for initial seed process, 1 for reseeding
1121  *
1122  * return:
1123  *	0 on success
1124  *	error value otherwise
1125  */
drbg_seed(struct drbg_state * drbg,struct drbg_string * pers,bool reseed)1126 static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1127 		     bool reseed)
1128 {
1129 	int ret;
1130 	unsigned char entropy[((32 + 16) * 2)];
1131 	unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1132 	struct drbg_string data1;
1133 	LIST_HEAD(seedlist);
1134 	enum drbg_seed_state new_seed_state = DRBG_SEED_STATE_FULL;
1135 
1136 	/* 9.1 / 9.2 / 9.3.1 step 3 */
1137 	if (pers && pers->len > (drbg_max_addtl(drbg))) {
1138 		pr_devel("DRBG: personalization string too long %zu\n",
1139 			 pers->len);
1140 		return -EINVAL;
1141 	}
1142 
1143 	if (list_empty(&drbg->test_data.list)) {
1144 		drbg_string_fill(&data1, drbg->test_data.buf,
1145 				 drbg->test_data.len);
1146 		pr_devel("DRBG: using test entropy\n");
1147 	} else {
1148 		/*
1149 		 * Gather entropy equal to the security strength of the DRBG.
1150 		 * With a derivation function, a nonce is required in addition
1151 		 * to the entropy. A nonce must be at least 1/2 of the security
1152 		 * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1153 		 * of the strength. The consideration of a nonce is only
1154 		 * applicable during initial seeding.
1155 		 */
1156 		BUG_ON(!entropylen);
1157 		if (!reseed)
1158 			entropylen = ((entropylen + 1) / 2) * 3;
1159 		BUG_ON((entropylen * 2) > sizeof(entropy));
1160 
1161 		/* Get seed from in-kernel /dev/urandom */
1162 		if (!rng_is_initialized())
1163 			new_seed_state = DRBG_SEED_STATE_PARTIAL;
1164 
1165 		ret = drbg_get_random_bytes(drbg, entropy, entropylen);
1166 		if (ret)
1167 			goto out;
1168 
1169 		if (!drbg->jent) {
1170 			drbg_string_fill(&data1, entropy, entropylen);
1171 			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1172 				 entropylen);
1173 		} else {
1174 			/* Get seed from Jitter RNG */
1175 			ret = crypto_rng_get_bytes(drbg->jent,
1176 						   entropy + entropylen,
1177 						   entropylen);
1178 			if (ret) {
1179 				pr_devel("DRBG: jent failed with %d\n", ret);
1180 
1181 				/*
1182 				 * Do not treat the transient failure of the
1183 				 * Jitter RNG as an error that needs to be
1184 				 * reported. The combined number of the
1185 				 * maximum reseed threshold times the maximum
1186 				 * number of Jitter RNG transient errors is
1187 				 * less than the reseed threshold required by
1188 				 * SP800-90A allowing us to treat the
1189 				 * transient errors as such.
1190 				 *
1191 				 * However, we mandate that at least the first
1192 				 * seeding operation must succeed with the
1193 				 * Jitter RNG.
1194 				 */
1195 				if (!reseed || ret != -EAGAIN)
1196 					goto out;
1197 			}
1198 
1199 			drbg_string_fill(&data1, entropy, entropylen * 2);
1200 			pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1201 				 entropylen * 2);
1202 		}
1203 	}
1204 	list_add_tail(&data1.list, &seedlist);
1205 
1206 	/*
1207 	 * concatenation of entropy with personalization str / addtl input)
1208 	 * the variable pers is directly handed in by the caller, so check its
1209 	 * contents whether it is appropriate
1210 	 */
1211 	if (pers && pers->buf && 0 < pers->len) {
1212 		list_add_tail(&pers->list, &seedlist);
1213 		pr_devel("DRBG: using personalization string\n");
1214 	}
1215 
1216 	if (!reseed) {
1217 		memset(drbg->V, 0, drbg_statelen(drbg));
1218 		memset(drbg->C, 0, drbg_statelen(drbg));
1219 	}
1220 
1221 	ret = __drbg_seed(drbg, &seedlist, reseed, new_seed_state);
1222 
1223 out:
1224 	memzero_explicit(entropy, entropylen * 2);
1225 
1226 	return ret;
1227 }
1228 
1229 /* Free all substructures in a DRBG state without the DRBG state structure */
drbg_dealloc_state(struct drbg_state * drbg)1230 static inline void drbg_dealloc_state(struct drbg_state *drbg)
1231 {
1232 	if (!drbg)
1233 		return;
1234 	kfree_sensitive(drbg->Vbuf);
1235 	drbg->Vbuf = NULL;
1236 	drbg->V = NULL;
1237 	kfree_sensitive(drbg->Cbuf);
1238 	drbg->Cbuf = NULL;
1239 	drbg->C = NULL;
1240 	kfree_sensitive(drbg->scratchpadbuf);
1241 	drbg->scratchpadbuf = NULL;
1242 	drbg->reseed_ctr = 0;
1243 	drbg->d_ops = NULL;
1244 	drbg->core = NULL;
1245 	if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1246 		kfree_sensitive(drbg->prev);
1247 		drbg->prev = NULL;
1248 		drbg->fips_primed = false;
1249 	}
1250 }
1251 
1252 /*
1253  * Allocate all sub-structures for a DRBG state.
1254  * The DRBG state structure must already be allocated.
1255  */
drbg_alloc_state(struct drbg_state * drbg)1256 static inline int drbg_alloc_state(struct drbg_state *drbg)
1257 {
1258 	int ret = -ENOMEM;
1259 	unsigned int sb_size = 0;
1260 
1261 	switch (drbg->core->flags & DRBG_TYPE_MASK) {
1262 #ifdef CONFIG_CRYPTO_DRBG_HMAC
1263 	case DRBG_HMAC:
1264 		drbg->d_ops = &drbg_hmac_ops;
1265 		break;
1266 #endif /* CONFIG_CRYPTO_DRBG_HMAC */
1267 #ifdef CONFIG_CRYPTO_DRBG_HASH
1268 	case DRBG_HASH:
1269 		drbg->d_ops = &drbg_hash_ops;
1270 		break;
1271 #endif /* CONFIG_CRYPTO_DRBG_HASH */
1272 #ifdef CONFIG_CRYPTO_DRBG_CTR
1273 	case DRBG_CTR:
1274 		drbg->d_ops = &drbg_ctr_ops;
1275 		break;
1276 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1277 	default:
1278 		ret = -EOPNOTSUPP;
1279 		goto err;
1280 	}
1281 
1282 	ret = drbg->d_ops->crypto_init(drbg);
1283 	if (ret < 0)
1284 		goto err;
1285 
1286 	drbg->Vbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1287 	if (!drbg->Vbuf) {
1288 		ret = -ENOMEM;
1289 		goto fini;
1290 	}
1291 	drbg->V = PTR_ALIGN(drbg->Vbuf, ret + 1);
1292 	drbg->Cbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1293 	if (!drbg->Cbuf) {
1294 		ret = -ENOMEM;
1295 		goto fini;
1296 	}
1297 	drbg->C = PTR_ALIGN(drbg->Cbuf, ret + 1);
1298 	/* scratchpad is only generated for CTR and Hash */
1299 	if (drbg->core->flags & DRBG_HMAC)
1300 		sb_size = 0;
1301 	else if (drbg->core->flags & DRBG_CTR)
1302 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1303 			  drbg_statelen(drbg) +	/* df_data */
1304 			  drbg_blocklen(drbg) +	/* pad */
1305 			  drbg_blocklen(drbg) +	/* iv */
1306 			  drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1307 	else
1308 		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1309 
1310 	if (0 < sb_size) {
1311 		drbg->scratchpadbuf = kzalloc(sb_size + ret, GFP_KERNEL);
1312 		if (!drbg->scratchpadbuf) {
1313 			ret = -ENOMEM;
1314 			goto fini;
1315 		}
1316 		drbg->scratchpad = PTR_ALIGN(drbg->scratchpadbuf, ret + 1);
1317 	}
1318 
1319 	if (IS_ENABLED(CONFIG_CRYPTO_FIPS)) {
1320 		drbg->prev = kzalloc(drbg_sec_strength(drbg->core->flags),
1321 				     GFP_KERNEL);
1322 		if (!drbg->prev) {
1323 			ret = -ENOMEM;
1324 			goto fini;
1325 		}
1326 		drbg->fips_primed = false;
1327 	}
1328 
1329 	return 0;
1330 
1331 fini:
1332 	drbg->d_ops->crypto_fini(drbg);
1333 err:
1334 	drbg_dealloc_state(drbg);
1335 	return ret;
1336 }
1337 
1338 /*************************************************************************
1339  * DRBG interface functions
1340  *************************************************************************/
1341 
1342 /*
1343  * DRBG generate function as required by SP800-90A - this function
1344  * generates random numbers
1345  *
1346  * @drbg DRBG state handle
1347  * @buf Buffer where to store the random numbers -- the buffer must already
1348  *      be pre-allocated by caller
1349  * @buflen Length of output buffer - this value defines the number of random
1350  *	   bytes pulled from DRBG
1351  * @addtl Additional input that is mixed into state, may be NULL -- note
1352  *	  the entropy is pulled by the DRBG internally unconditionally
1353  *	  as defined in SP800-90A. The additional input is mixed into
1354  *	  the state in addition to the pulled entropy.
1355  *
1356  * return: 0 when all bytes are generated; < 0 in case of an error
1357  */
drbg_generate(struct drbg_state * drbg,unsigned char * buf,unsigned int buflen,struct drbg_string * addtl)1358 static int drbg_generate(struct drbg_state *drbg,
1359 			 unsigned char *buf, unsigned int buflen,
1360 			 struct drbg_string *addtl)
1361 {
1362 	int len = 0;
1363 	LIST_HEAD(addtllist);
1364 
1365 	if (!drbg->core) {
1366 		pr_devel("DRBG: not yet seeded\n");
1367 		return -EINVAL;
1368 	}
1369 	if (0 == buflen || !buf) {
1370 		pr_devel("DRBG: no output buffer provided\n");
1371 		return -EINVAL;
1372 	}
1373 	if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1374 		pr_devel("DRBG: wrong format of additional information\n");
1375 		return -EINVAL;
1376 	}
1377 
1378 	/* 9.3.1 step 2 */
1379 	len = -EINVAL;
1380 	if (buflen > (drbg_max_request_bytes(drbg))) {
1381 		pr_devel("DRBG: requested random numbers too large %u\n",
1382 			 buflen);
1383 		goto err;
1384 	}
1385 
1386 	/* 9.3.1 step 3 is implicit with the chosen DRBG */
1387 
1388 	/* 9.3.1 step 4 */
1389 	if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1390 		pr_devel("DRBG: additional information string too long %zu\n",
1391 			 addtl->len);
1392 		goto err;
1393 	}
1394 	/* 9.3.1 step 5 is implicit with the chosen DRBG */
1395 
1396 	/*
1397 	 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1398 	 * here. The spec is a bit convoluted here, we make it simpler.
1399 	 */
1400 	if (drbg->reseed_threshold < drbg->reseed_ctr)
1401 		drbg->seeded = DRBG_SEED_STATE_UNSEEDED;
1402 
1403 	if (drbg->pr || drbg->seeded == DRBG_SEED_STATE_UNSEEDED) {
1404 		pr_devel("DRBG: reseeding before generation (prediction "
1405 			 "resistance: %s, state %s)\n",
1406 			 drbg->pr ? "true" : "false",
1407 			 (drbg->seeded ==  DRBG_SEED_STATE_FULL ?
1408 			  "seeded" : "unseeded"));
1409 		/* 9.3.1 steps 7.1 through 7.3 */
1410 		len = drbg_seed(drbg, addtl, true);
1411 		if (len)
1412 			goto err;
1413 		/* 9.3.1 step 7.4 */
1414 		addtl = NULL;
1415 	} else if (rng_is_initialized() &&
1416 		   drbg->seeded == DRBG_SEED_STATE_PARTIAL) {
1417 		len = drbg_seed_from_random(drbg);
1418 		if (len)
1419 			goto err;
1420 	}
1421 
1422 	if (addtl && 0 < addtl->len)
1423 		list_add_tail(&addtl->list, &addtllist);
1424 	/* 9.3.1 step 8 and 10 */
1425 	len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1426 
1427 	/* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1428 	drbg->reseed_ctr++;
1429 	if (0 >= len)
1430 		goto err;
1431 
1432 	/*
1433 	 * Section 11.3.3 requires to re-perform self tests after some
1434 	 * generated random numbers. The chosen value after which self
1435 	 * test is performed is arbitrary, but it should be reasonable.
1436 	 * However, we do not perform the self tests because of the following
1437 	 * reasons: it is mathematically impossible that the initial self tests
1438 	 * were successfully and the following are not. If the initial would
1439 	 * pass and the following would not, the kernel integrity is violated.
1440 	 * In this case, the entire kernel operation is questionable and it
1441 	 * is unlikely that the integrity violation only affects the
1442 	 * correct operation of the DRBG.
1443 	 *
1444 	 * Albeit the following code is commented out, it is provided in
1445 	 * case somebody has a need to implement the test of 11.3.3.
1446 	 */
1447 #if 0
1448 	if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1449 		int err = 0;
1450 		pr_devel("DRBG: start to perform self test\n");
1451 		if (drbg->core->flags & DRBG_HMAC)
1452 			err = alg_test("drbg_pr_hmac_sha256",
1453 				       "drbg_pr_hmac_sha256", 0, 0);
1454 		else if (drbg->core->flags & DRBG_CTR)
1455 			err = alg_test("drbg_pr_ctr_aes128",
1456 				       "drbg_pr_ctr_aes128", 0, 0);
1457 		else
1458 			err = alg_test("drbg_pr_sha256",
1459 				       "drbg_pr_sha256", 0, 0);
1460 		if (err) {
1461 			pr_err("DRBG: periodical self test failed\n");
1462 			/*
1463 			 * uninstantiate implies that from now on, only errors
1464 			 * are returned when reusing this DRBG cipher handle
1465 			 */
1466 			drbg_uninstantiate(drbg);
1467 			return 0;
1468 		} else {
1469 			pr_devel("DRBG: self test successful\n");
1470 		}
1471 	}
1472 #endif
1473 
1474 	/*
1475 	 * All operations were successful, return 0 as mandated by
1476 	 * the kernel crypto API interface.
1477 	 */
1478 	len = 0;
1479 err:
1480 	return len;
1481 }
1482 
1483 /*
1484  * Wrapper around drbg_generate which can pull arbitrary long strings
1485  * from the DRBG without hitting the maximum request limitation.
1486  *
1487  * Parameters: see drbg_generate
1488  * Return codes: see drbg_generate -- if one drbg_generate request fails,
1489  *		 the entire drbg_generate_long request fails
1490  */
drbg_generate_long(struct drbg_state * drbg,unsigned char * buf,unsigned int buflen,struct drbg_string * addtl)1491 static int drbg_generate_long(struct drbg_state *drbg,
1492 			      unsigned char *buf, unsigned int buflen,
1493 			      struct drbg_string *addtl)
1494 {
1495 	unsigned int len = 0;
1496 	unsigned int slice = 0;
1497 	do {
1498 		int err = 0;
1499 		unsigned int chunk = 0;
1500 		slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1501 		chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1502 		mutex_lock(&drbg->drbg_mutex);
1503 		err = drbg_generate(drbg, buf + len, chunk, addtl);
1504 		mutex_unlock(&drbg->drbg_mutex);
1505 		if (0 > err)
1506 			return err;
1507 		len += chunk;
1508 	} while (slice > 0 && (len < buflen));
1509 	return 0;
1510 }
1511 
drbg_prepare_hrng(struct drbg_state * drbg)1512 static int drbg_prepare_hrng(struct drbg_state *drbg)
1513 {
1514 	/* We do not need an HRNG in test mode. */
1515 	if (list_empty(&drbg->test_data.list))
1516 		return 0;
1517 
1518 	drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1519 	if (IS_ERR(drbg->jent)) {
1520 		const int err = PTR_ERR(drbg->jent);
1521 
1522 		drbg->jent = NULL;
1523 		if (fips_enabled)
1524 			return err;
1525 		pr_info("DRBG: Continuing without Jitter RNG\n");
1526 	}
1527 
1528 	return 0;
1529 }
1530 
1531 /*
1532  * DRBG instantiation function as required by SP800-90A - this function
1533  * sets up the DRBG handle, performs the initial seeding and all sanity
1534  * checks required by SP800-90A
1535  *
1536  * @drbg memory of state -- if NULL, new memory is allocated
1537  * @pers Personalization string that is mixed into state, may be NULL -- note
1538  *	 the entropy is pulled by the DRBG internally unconditionally
1539  *	 as defined in SP800-90A. The additional input is mixed into
1540  *	 the state in addition to the pulled entropy.
1541  * @coreref reference to core
1542  * @pr prediction resistance enabled
1543  *
1544  * return
1545  *	0 on success
1546  *	error value otherwise
1547  */
drbg_instantiate(struct drbg_state * drbg,struct drbg_string * pers,int coreref,bool pr)1548 static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1549 			    int coreref, bool pr)
1550 {
1551 	int ret;
1552 	bool reseed = true;
1553 
1554 	pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1555 		 "%s\n", coreref, pr ? "enabled" : "disabled");
1556 	mutex_lock(&drbg->drbg_mutex);
1557 
1558 	/* 9.1 step 1 is implicit with the selected DRBG type */
1559 
1560 	/*
1561 	 * 9.1 step 2 is implicit as caller can select prediction resistance
1562 	 * and the flag is copied into drbg->flags --
1563 	 * all DRBG types support prediction resistance
1564 	 */
1565 
1566 	/* 9.1 step 4 is implicit in  drbg_sec_strength */
1567 
1568 	if (!drbg->core) {
1569 		drbg->core = &drbg_cores[coreref];
1570 		drbg->pr = pr;
1571 		drbg->seeded = DRBG_SEED_STATE_UNSEEDED;
1572 		drbg->reseed_threshold = drbg_max_requests(drbg);
1573 
1574 		ret = drbg_alloc_state(drbg);
1575 		if (ret)
1576 			goto unlock;
1577 
1578 		ret = drbg_prepare_hrng(drbg);
1579 		if (ret)
1580 			goto free_everything;
1581 
1582 		reseed = false;
1583 	}
1584 
1585 	ret = drbg_seed(drbg, pers, reseed);
1586 
1587 	if (ret && !reseed)
1588 		goto free_everything;
1589 
1590 	mutex_unlock(&drbg->drbg_mutex);
1591 	return ret;
1592 
1593 unlock:
1594 	mutex_unlock(&drbg->drbg_mutex);
1595 	return ret;
1596 
1597 free_everything:
1598 	mutex_unlock(&drbg->drbg_mutex);
1599 	drbg_uninstantiate(drbg);
1600 	return ret;
1601 }
1602 
1603 /*
1604  * DRBG uninstantiate function as required by SP800-90A - this function
1605  * frees all buffers and the DRBG handle
1606  *
1607  * @drbg DRBG state handle
1608  *
1609  * return
1610  *	0 on success
1611  */
drbg_uninstantiate(struct drbg_state * drbg)1612 static int drbg_uninstantiate(struct drbg_state *drbg)
1613 {
1614 	if (!IS_ERR_OR_NULL(drbg->jent))
1615 		crypto_free_rng(drbg->jent);
1616 	drbg->jent = NULL;
1617 
1618 	if (drbg->d_ops)
1619 		drbg->d_ops->crypto_fini(drbg);
1620 	drbg_dealloc_state(drbg);
1621 	/* no scrubbing of test_data -- this shall survive an uninstantiate */
1622 	return 0;
1623 }
1624 
1625 /*
1626  * Helper function for setting the test data in the DRBG
1627  *
1628  * @drbg DRBG state handle
1629  * @data test data
1630  * @len test data length
1631  */
drbg_kcapi_set_entropy(struct crypto_rng * tfm,const u8 * data,unsigned int len)1632 static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1633 				   const u8 *data, unsigned int len)
1634 {
1635 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1636 
1637 	mutex_lock(&drbg->drbg_mutex);
1638 	drbg_string_fill(&drbg->test_data, data, len);
1639 	mutex_unlock(&drbg->drbg_mutex);
1640 }
1641 
1642 /***************************************************************
1643  * Kernel crypto API cipher invocations requested by DRBG
1644  ***************************************************************/
1645 
1646 #if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1647 struct sdesc {
1648 	struct shash_desc shash;
1649 	char ctx[];
1650 };
1651 
drbg_init_hash_kernel(struct drbg_state * drbg)1652 static int drbg_init_hash_kernel(struct drbg_state *drbg)
1653 {
1654 	struct sdesc *sdesc;
1655 	struct crypto_shash *tfm;
1656 
1657 	tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1658 	if (IS_ERR(tfm)) {
1659 		pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1660 				drbg->core->backend_cra_name);
1661 		return PTR_ERR(tfm);
1662 	}
1663 	BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1664 	sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1665 			GFP_KERNEL);
1666 	if (!sdesc) {
1667 		crypto_free_shash(tfm);
1668 		return -ENOMEM;
1669 	}
1670 
1671 	sdesc->shash.tfm = tfm;
1672 	drbg->priv_data = sdesc;
1673 
1674 	return crypto_shash_alignmask(tfm);
1675 }
1676 
drbg_fini_hash_kernel(struct drbg_state * drbg)1677 static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1678 {
1679 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1680 	if (sdesc) {
1681 		crypto_free_shash(sdesc->shash.tfm);
1682 		kfree_sensitive(sdesc);
1683 	}
1684 	drbg->priv_data = NULL;
1685 	return 0;
1686 }
1687 
drbg_kcapi_hmacsetkey(struct drbg_state * drbg,const unsigned char * key)1688 static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
1689 				  const unsigned char *key)
1690 {
1691 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1692 
1693 	crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1694 }
1695 
drbg_kcapi_hash(struct drbg_state * drbg,unsigned char * outval,const struct list_head * in)1696 static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
1697 			   const struct list_head *in)
1698 {
1699 	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1700 	struct drbg_string *input = NULL;
1701 
1702 	crypto_shash_init(&sdesc->shash);
1703 	list_for_each_entry(input, in, list)
1704 		crypto_shash_update(&sdesc->shash, input->buf, input->len);
1705 	return crypto_shash_final(&sdesc->shash, outval);
1706 }
1707 #endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1708 
1709 #ifdef CONFIG_CRYPTO_DRBG_CTR
drbg_fini_sym_kernel(struct drbg_state * drbg)1710 static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1711 {
1712 	struct crypto_cipher *tfm =
1713 		(struct crypto_cipher *)drbg->priv_data;
1714 	if (tfm)
1715 		crypto_free_cipher(tfm);
1716 	drbg->priv_data = NULL;
1717 
1718 	if (drbg->ctr_handle)
1719 		crypto_free_skcipher(drbg->ctr_handle);
1720 	drbg->ctr_handle = NULL;
1721 
1722 	if (drbg->ctr_req)
1723 		skcipher_request_free(drbg->ctr_req);
1724 	drbg->ctr_req = NULL;
1725 
1726 	kfree(drbg->outscratchpadbuf);
1727 	drbg->outscratchpadbuf = NULL;
1728 
1729 	return 0;
1730 }
1731 
drbg_init_sym_kernel(struct drbg_state * drbg)1732 static int drbg_init_sym_kernel(struct drbg_state *drbg)
1733 {
1734 	struct crypto_cipher *tfm;
1735 	struct crypto_skcipher *sk_tfm;
1736 	struct skcipher_request *req;
1737 	unsigned int alignmask;
1738 	char ctr_name[CRYPTO_MAX_ALG_NAME];
1739 
1740 	tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1741 	if (IS_ERR(tfm)) {
1742 		pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1743 				drbg->core->backend_cra_name);
1744 		return PTR_ERR(tfm);
1745 	}
1746 	BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1747 	drbg->priv_data = tfm;
1748 
1749 	if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
1750 	    drbg->core->backend_cra_name) >= CRYPTO_MAX_ALG_NAME) {
1751 		drbg_fini_sym_kernel(drbg);
1752 		return -EINVAL;
1753 	}
1754 	sk_tfm = crypto_alloc_skcipher(ctr_name, 0, 0);
1755 	if (IS_ERR(sk_tfm)) {
1756 		pr_info("DRBG: could not allocate CTR cipher TFM handle: %s\n",
1757 				ctr_name);
1758 		drbg_fini_sym_kernel(drbg);
1759 		return PTR_ERR(sk_tfm);
1760 	}
1761 	drbg->ctr_handle = sk_tfm;
1762 	crypto_init_wait(&drbg->ctr_wait);
1763 
1764 	req = skcipher_request_alloc(sk_tfm, GFP_KERNEL);
1765 	if (!req) {
1766 		pr_info("DRBG: could not allocate request queue\n");
1767 		drbg_fini_sym_kernel(drbg);
1768 		return -ENOMEM;
1769 	}
1770 	drbg->ctr_req = req;
1771 	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
1772 						CRYPTO_TFM_REQ_MAY_SLEEP,
1773 					crypto_req_done, &drbg->ctr_wait);
1774 
1775 	alignmask = crypto_skcipher_alignmask(sk_tfm);
1776 	drbg->outscratchpadbuf = kmalloc(DRBG_OUTSCRATCHLEN + alignmask,
1777 					 GFP_KERNEL);
1778 	if (!drbg->outscratchpadbuf) {
1779 		drbg_fini_sym_kernel(drbg);
1780 		return -ENOMEM;
1781 	}
1782 	drbg->outscratchpad = (u8 *)PTR_ALIGN(drbg->outscratchpadbuf,
1783 					      alignmask + 1);
1784 
1785 	sg_init_table(&drbg->sg_in, 1);
1786 	sg_init_one(&drbg->sg_out, drbg->outscratchpad, DRBG_OUTSCRATCHLEN);
1787 
1788 	return alignmask;
1789 }
1790 
drbg_kcapi_symsetkey(struct drbg_state * drbg,const unsigned char * key)1791 static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
1792 				 const unsigned char *key)
1793 {
1794 	struct crypto_cipher *tfm =
1795 		(struct crypto_cipher *)drbg->priv_data;
1796 
1797 	crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1798 }
1799 
drbg_kcapi_sym(struct drbg_state * drbg,unsigned char * outval,const struct drbg_string * in)1800 static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
1801 			  const struct drbg_string *in)
1802 {
1803 	struct crypto_cipher *tfm =
1804 		(struct crypto_cipher *)drbg->priv_data;
1805 
1806 	/* there is only component in *in */
1807 	BUG_ON(in->len < drbg_blocklen(drbg));
1808 	crypto_cipher_encrypt_one(tfm, outval, in->buf);
1809 	return 0;
1810 }
1811 
drbg_kcapi_sym_ctr(struct drbg_state * drbg,u8 * inbuf,u32 inlen,u8 * outbuf,u32 outlen)1812 static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
1813 			      u8 *inbuf, u32 inlen,
1814 			      u8 *outbuf, u32 outlen)
1815 {
1816 	struct scatterlist *sg_in = &drbg->sg_in, *sg_out = &drbg->sg_out;
1817 	u32 scratchpad_use = min_t(u32, outlen, DRBG_OUTSCRATCHLEN);
1818 	int ret;
1819 
1820 	if (inbuf) {
1821 		/* Use caller-provided input buffer */
1822 		sg_set_buf(sg_in, inbuf, inlen);
1823 	} else {
1824 		/* Use scratchpad for in-place operation */
1825 		inlen = scratchpad_use;
1826 		memset(drbg->outscratchpad, 0, scratchpad_use);
1827 		sg_set_buf(sg_in, drbg->outscratchpad, scratchpad_use);
1828 	}
1829 
1830 	while (outlen) {
1831 		u32 cryptlen = min3(inlen, outlen, (u32)DRBG_OUTSCRATCHLEN);
1832 
1833 		/* Output buffer may not be valid for SGL, use scratchpad */
1834 		skcipher_request_set_crypt(drbg->ctr_req, sg_in, sg_out,
1835 					   cryptlen, drbg->V);
1836 		ret = crypto_wait_req(crypto_skcipher_encrypt(drbg->ctr_req),
1837 					&drbg->ctr_wait);
1838 		if (ret)
1839 			goto out;
1840 
1841 		crypto_init_wait(&drbg->ctr_wait);
1842 
1843 		memcpy(outbuf, drbg->outscratchpad, cryptlen);
1844 		memzero_explicit(drbg->outscratchpad, cryptlen);
1845 
1846 		outlen -= cryptlen;
1847 		outbuf += cryptlen;
1848 	}
1849 	ret = 0;
1850 
1851 out:
1852 	return ret;
1853 }
1854 #endif /* CONFIG_CRYPTO_DRBG_CTR */
1855 
1856 /***************************************************************
1857  * Kernel crypto API interface to register DRBG
1858  ***************************************************************/
1859 
1860 /*
1861  * Look up the DRBG flags by given kernel crypto API cra_name
1862  * The code uses the drbg_cores definition to do this
1863  *
1864  * @cra_name kernel crypto API cra_name
1865  * @coreref reference to integer which is filled with the pointer to
1866  *  the applicable core
1867  * @pr reference for setting prediction resistance
1868  *
1869  * return: flags
1870  */
drbg_convert_tfm_core(const char * cra_driver_name,int * coreref,bool * pr)1871 static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1872 					 int *coreref, bool *pr)
1873 {
1874 	int i = 0;
1875 	size_t start = 0;
1876 	int len = 0;
1877 
1878 	*pr = true;
1879 	/* disassemble the names */
1880 	if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1881 		start = 10;
1882 		*pr = false;
1883 	} else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1884 		start = 8;
1885 	} else {
1886 		return;
1887 	}
1888 
1889 	/* remove the first part */
1890 	len = strlen(cra_driver_name) - start;
1891 	for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1892 		if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1893 			    len)) {
1894 			*coreref = i;
1895 			return;
1896 		}
1897 	}
1898 }
1899 
drbg_kcapi_init(struct crypto_tfm * tfm)1900 static int drbg_kcapi_init(struct crypto_tfm *tfm)
1901 {
1902 	struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1903 
1904 	mutex_init(&drbg->drbg_mutex);
1905 
1906 	return 0;
1907 }
1908 
drbg_kcapi_cleanup(struct crypto_tfm * tfm)1909 static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1910 {
1911 	drbg_uninstantiate(crypto_tfm_ctx(tfm));
1912 }
1913 
1914 /*
1915  * Generate random numbers invoked by the kernel crypto API:
1916  * The API of the kernel crypto API is extended as follows:
1917  *
1918  * src is additional input supplied to the RNG.
1919  * slen is the length of src.
1920  * dst is the output buffer where random data is to be stored.
1921  * dlen is the length of dst.
1922  */
drbg_kcapi_random(struct crypto_rng * tfm,const u8 * src,unsigned int slen,u8 * dst,unsigned int dlen)1923 static int drbg_kcapi_random(struct crypto_rng *tfm,
1924 			     const u8 *src, unsigned int slen,
1925 			     u8 *dst, unsigned int dlen)
1926 {
1927 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1928 	struct drbg_string *addtl = NULL;
1929 	struct drbg_string string;
1930 
1931 	if (slen) {
1932 		/* linked list variable is now local to allow modification */
1933 		drbg_string_fill(&string, src, slen);
1934 		addtl = &string;
1935 	}
1936 
1937 	return drbg_generate_long(drbg, dst, dlen, addtl);
1938 }
1939 
1940 /*
1941  * Seed the DRBG invoked by the kernel crypto API
1942  */
drbg_kcapi_seed(struct crypto_rng * tfm,const u8 * seed,unsigned int slen)1943 static int drbg_kcapi_seed(struct crypto_rng *tfm,
1944 			   const u8 *seed, unsigned int slen)
1945 {
1946 	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1947 	struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1948 	bool pr = false;
1949 	struct drbg_string string;
1950 	struct drbg_string *seed_string = NULL;
1951 	int coreref = 0;
1952 
1953 	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1954 			      &pr);
1955 	if (0 < slen) {
1956 		drbg_string_fill(&string, seed, slen);
1957 		seed_string = &string;
1958 	}
1959 
1960 	return drbg_instantiate(drbg, seed_string, coreref, pr);
1961 }
1962 
1963 /***************************************************************
1964  * Kernel module: code to load the module
1965  ***************************************************************/
1966 
1967 /*
1968  * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1969  * of the error handling.
1970  *
1971  * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1972  * as seed source of get_random_bytes does not fail.
1973  *
1974  * Note 2: There is no sensible way of testing the reseed counter
1975  * enforcement, so skip it.
1976  */
drbg_healthcheck_sanity(void)1977 static inline int __init drbg_healthcheck_sanity(void)
1978 {
1979 	int len = 0;
1980 #define OUTBUFLEN 16
1981 	unsigned char buf[OUTBUFLEN];
1982 	struct drbg_state *drbg = NULL;
1983 	int ret = -EFAULT;
1984 	int rc = -EFAULT;
1985 	bool pr = false;
1986 	int coreref = 0;
1987 	struct drbg_string addtl;
1988 	size_t max_addtllen, max_request_bytes;
1989 
1990 	/* only perform test in FIPS mode */
1991 	if (!fips_enabled)
1992 		return 0;
1993 
1994 #ifdef CONFIG_CRYPTO_DRBG_CTR
1995 	drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
1996 #elif defined CONFIG_CRYPTO_DRBG_HASH
1997 	drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
1998 #else
1999 	drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
2000 #endif
2001 
2002 	drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
2003 	if (!drbg)
2004 		return -ENOMEM;
2005 
2006 	mutex_init(&drbg->drbg_mutex);
2007 	drbg->core = &drbg_cores[coreref];
2008 	drbg->reseed_threshold = drbg_max_requests(drbg);
2009 
2010 	/*
2011 	 * if the following tests fail, it is likely that there is a buffer
2012 	 * overflow as buf is much smaller than the requested or provided
2013 	 * string lengths -- in case the error handling does not succeed
2014 	 * we may get an OOPS. And we want to get an OOPS as this is a
2015 	 * grave bug.
2016 	 */
2017 
2018 	max_addtllen = drbg_max_addtl(drbg);
2019 	max_request_bytes = drbg_max_request_bytes(drbg);
2020 	drbg_string_fill(&addtl, buf, max_addtllen + 1);
2021 	/* overflow addtllen with additonal info string */
2022 	len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
2023 	BUG_ON(0 < len);
2024 	/* overflow max_bits */
2025 	len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
2026 	BUG_ON(0 < len);
2027 
2028 	/* overflow max addtllen with personalization string */
2029 	ret = drbg_seed(drbg, &addtl, false);
2030 	BUG_ON(0 == ret);
2031 	/* all tests passed */
2032 	rc = 0;
2033 
2034 	pr_devel("DRBG: Sanity tests for failure code paths successfully "
2035 		 "completed\n");
2036 
2037 	kfree(drbg);
2038 	return rc;
2039 }
2040 
2041 static struct rng_alg drbg_algs[22];
2042 
2043 /*
2044  * Fill the array drbg_algs used to register the different DRBGs
2045  * with the kernel crypto API. To fill the array, the information
2046  * from drbg_cores[] is used.
2047  */
drbg_fill_array(struct rng_alg * alg,const struct drbg_core * core,int pr)2048 static inline void __init drbg_fill_array(struct rng_alg *alg,
2049 					  const struct drbg_core *core, int pr)
2050 {
2051 	int pos = 0;
2052 	static int priority = 200;
2053 
2054 	memcpy(alg->base.cra_name, "stdrng", 6);
2055 	if (pr) {
2056 		memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
2057 		pos = 8;
2058 	} else {
2059 		memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
2060 		pos = 10;
2061 	}
2062 	memcpy(alg->base.cra_driver_name + pos, core->cra_name,
2063 	       strlen(core->cra_name));
2064 
2065 	alg->base.cra_priority = priority;
2066 	priority++;
2067 	/*
2068 	 * If FIPS mode enabled, the selected DRBG shall have the
2069 	 * highest cra_priority over other stdrng instances to ensure
2070 	 * it is selected.
2071 	 */
2072 	if (fips_enabled)
2073 		alg->base.cra_priority += 200;
2074 
2075 	alg->base.cra_ctxsize 	= sizeof(struct drbg_state);
2076 	alg->base.cra_module	= THIS_MODULE;
2077 	alg->base.cra_init	= drbg_kcapi_init;
2078 	alg->base.cra_exit	= drbg_kcapi_cleanup;
2079 	alg->generate		= drbg_kcapi_random;
2080 	alg->seed		= drbg_kcapi_seed;
2081 	alg->set_ent		= drbg_kcapi_set_entropy;
2082 	alg->seedsize		= 0;
2083 }
2084 
drbg_init(void)2085 static int __init drbg_init(void)
2086 {
2087 	unsigned int i = 0; /* pointer to drbg_algs */
2088 	unsigned int j = 0; /* pointer to drbg_cores */
2089 	int ret;
2090 
2091 	ret = drbg_healthcheck_sanity();
2092 	if (ret)
2093 		return ret;
2094 
2095 	if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
2096 		pr_info("DRBG: Cannot register all DRBG types"
2097 			"(slots needed: %zu, slots available: %zu)\n",
2098 			ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
2099 		return -EFAULT;
2100 	}
2101 
2102 	/*
2103 	 * each DRBG definition can be used with PR and without PR, thus
2104 	 * we instantiate each DRBG in drbg_cores[] twice.
2105 	 *
2106 	 * As the order of placing them into the drbg_algs array matters
2107 	 * (the later DRBGs receive a higher cra_priority) we register the
2108 	 * prediction resistance DRBGs first as the should not be too
2109 	 * interesting.
2110 	 */
2111 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2112 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
2113 	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2114 		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
2115 	return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2116 }
2117 
drbg_exit(void)2118 static void __exit drbg_exit(void)
2119 {
2120 	crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2121 }
2122 
2123 subsys_initcall(drbg_init);
2124 module_exit(drbg_exit);
2125 #ifndef CRYPTO_DRBG_HASH_STRING
2126 #define CRYPTO_DRBG_HASH_STRING ""
2127 #endif
2128 #ifndef CRYPTO_DRBG_HMAC_STRING
2129 #define CRYPTO_DRBG_HMAC_STRING ""
2130 #endif
2131 #ifndef CRYPTO_DRBG_CTR_STRING
2132 #define CRYPTO_DRBG_CTR_STRING ""
2133 #endif
2134 MODULE_LICENSE("GPL");
2135 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
2136 MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2137 		   "using following cores: "
2138 		   CRYPTO_DRBG_HASH_STRING
2139 		   CRYPTO_DRBG_HMAC_STRING
2140 		   CRYPTO_DRBG_CTR_STRING);
2141 MODULE_ALIAS_CRYPTO("stdrng");
2142 MODULE_IMPORT_NS(CRYPTO_INTERNAL);
2143