1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * scan.c - support for transforming the ACPI namespace into individual objects
4 */
5
6 #define pr_fmt(fmt) "ACPI: " fmt
7
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22
23 #include "internal.h"
24
25 extern struct acpi_device *acpi_root;
26
27 #define ACPI_BUS_CLASS "system_bus"
28 #define ACPI_BUS_HID "LNXSYBUS"
29 #define ACPI_BUS_DEVICE_NAME "System Bus"
30
31 #define ACPI_IS_ROOT_DEVICE(device) (!(device)->parent)
32
33 #define INVALID_ACPI_HANDLE ((acpi_handle)empty_zero_page)
34
35 static const char *dummy_hid = "device";
36
37 static LIST_HEAD(acpi_dep_list);
38 static DEFINE_MUTEX(acpi_dep_list_lock);
39 LIST_HEAD(acpi_bus_id_list);
40 static DEFINE_MUTEX(acpi_scan_lock);
41 static LIST_HEAD(acpi_scan_handlers_list);
42 DEFINE_MUTEX(acpi_device_lock);
43 LIST_HEAD(acpi_wakeup_device_list);
44 static DEFINE_MUTEX(acpi_hp_context_lock);
45
46 /*
47 * The UART device described by the SPCR table is the only object which needs
48 * special-casing. Everything else is covered by ACPI namespace paths in STAO
49 * table.
50 */
51 static u64 spcr_uart_addr;
52
acpi_scan_lock_acquire(void)53 void acpi_scan_lock_acquire(void)
54 {
55 mutex_lock(&acpi_scan_lock);
56 }
57 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
58
acpi_scan_lock_release(void)59 void acpi_scan_lock_release(void)
60 {
61 mutex_unlock(&acpi_scan_lock);
62 }
63 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
64
acpi_lock_hp_context(void)65 void acpi_lock_hp_context(void)
66 {
67 mutex_lock(&acpi_hp_context_lock);
68 }
69
acpi_unlock_hp_context(void)70 void acpi_unlock_hp_context(void)
71 {
72 mutex_unlock(&acpi_hp_context_lock);
73 }
74
acpi_initialize_hp_context(struct acpi_device * adev,struct acpi_hotplug_context * hp,int (* notify)(struct acpi_device *,u32),void (* uevent)(struct acpi_device *,u32))75 void acpi_initialize_hp_context(struct acpi_device *adev,
76 struct acpi_hotplug_context *hp,
77 int (*notify)(struct acpi_device *, u32),
78 void (*uevent)(struct acpi_device *, u32))
79 {
80 acpi_lock_hp_context();
81 hp->notify = notify;
82 hp->uevent = uevent;
83 acpi_set_hp_context(adev, hp);
84 acpi_unlock_hp_context();
85 }
86 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
87
acpi_scan_add_handler(struct acpi_scan_handler * handler)88 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
89 {
90 if (!handler)
91 return -EINVAL;
92
93 list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
94 return 0;
95 }
96
acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler * handler,const char * hotplug_profile_name)97 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
98 const char *hotplug_profile_name)
99 {
100 int error;
101
102 error = acpi_scan_add_handler(handler);
103 if (error)
104 return error;
105
106 acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
107 return 0;
108 }
109
acpi_scan_is_offline(struct acpi_device * adev,bool uevent)110 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
111 {
112 struct acpi_device_physical_node *pn;
113 bool offline = true;
114 char *envp[] = { "EVENT=offline", NULL };
115
116 /*
117 * acpi_container_offline() calls this for all of the container's
118 * children under the container's physical_node_lock lock.
119 */
120 mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
121
122 list_for_each_entry(pn, &adev->physical_node_list, node)
123 if (device_supports_offline(pn->dev) && !pn->dev->offline) {
124 if (uevent)
125 kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
126
127 offline = false;
128 break;
129 }
130
131 mutex_unlock(&adev->physical_node_lock);
132 return offline;
133 }
134
acpi_bus_offline(acpi_handle handle,u32 lvl,void * data,void ** ret_p)135 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
136 void **ret_p)
137 {
138 struct acpi_device *device = NULL;
139 struct acpi_device_physical_node *pn;
140 bool second_pass = (bool)data;
141 acpi_status status = AE_OK;
142
143 if (acpi_bus_get_device(handle, &device))
144 return AE_OK;
145
146 if (device->handler && !device->handler->hotplug.enabled) {
147 *ret_p = &device->dev;
148 return AE_SUPPORT;
149 }
150
151 mutex_lock(&device->physical_node_lock);
152
153 list_for_each_entry(pn, &device->physical_node_list, node) {
154 int ret;
155
156 if (second_pass) {
157 /* Skip devices offlined by the first pass. */
158 if (pn->put_online)
159 continue;
160 } else {
161 pn->put_online = false;
162 }
163 ret = device_offline(pn->dev);
164 if (ret >= 0) {
165 pn->put_online = !ret;
166 } else {
167 *ret_p = pn->dev;
168 if (second_pass) {
169 status = AE_ERROR;
170 break;
171 }
172 }
173 }
174
175 mutex_unlock(&device->physical_node_lock);
176
177 return status;
178 }
179
acpi_bus_online(acpi_handle handle,u32 lvl,void * data,void ** ret_p)180 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
181 void **ret_p)
182 {
183 struct acpi_device *device = NULL;
184 struct acpi_device_physical_node *pn;
185
186 if (acpi_bus_get_device(handle, &device))
187 return AE_OK;
188
189 mutex_lock(&device->physical_node_lock);
190
191 list_for_each_entry(pn, &device->physical_node_list, node)
192 if (pn->put_online) {
193 device_online(pn->dev);
194 pn->put_online = false;
195 }
196
197 mutex_unlock(&device->physical_node_lock);
198
199 return AE_OK;
200 }
201
acpi_scan_try_to_offline(struct acpi_device * device)202 static int acpi_scan_try_to_offline(struct acpi_device *device)
203 {
204 acpi_handle handle = device->handle;
205 struct device *errdev = NULL;
206 acpi_status status;
207
208 /*
209 * Carry out two passes here and ignore errors in the first pass,
210 * because if the devices in question are memory blocks and
211 * CONFIG_MEMCG is set, one of the blocks may hold data structures
212 * that the other blocks depend on, but it is not known in advance which
213 * block holds them.
214 *
215 * If the first pass is successful, the second one isn't needed, though.
216 */
217 status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
218 NULL, acpi_bus_offline, (void *)false,
219 (void **)&errdev);
220 if (status == AE_SUPPORT) {
221 dev_warn(errdev, "Offline disabled.\n");
222 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
223 acpi_bus_online, NULL, NULL, NULL);
224 return -EPERM;
225 }
226 acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
227 if (errdev) {
228 errdev = NULL;
229 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
230 NULL, acpi_bus_offline, (void *)true,
231 (void **)&errdev);
232 if (!errdev)
233 acpi_bus_offline(handle, 0, (void *)true,
234 (void **)&errdev);
235
236 if (errdev) {
237 dev_warn(errdev, "Offline failed.\n");
238 acpi_bus_online(handle, 0, NULL, NULL);
239 acpi_walk_namespace(ACPI_TYPE_ANY, handle,
240 ACPI_UINT32_MAX, acpi_bus_online,
241 NULL, NULL, NULL);
242 return -EBUSY;
243 }
244 }
245 return 0;
246 }
247
acpi_scan_hot_remove(struct acpi_device * device)248 static int acpi_scan_hot_remove(struct acpi_device *device)
249 {
250 acpi_handle handle = device->handle;
251 unsigned long long sta;
252 acpi_status status;
253
254 if (device->handler && device->handler->hotplug.demand_offline) {
255 if (!acpi_scan_is_offline(device, true))
256 return -EBUSY;
257 } else {
258 int error = acpi_scan_try_to_offline(device);
259 if (error)
260 return error;
261 }
262
263 acpi_handle_debug(handle, "Ejecting\n");
264
265 acpi_bus_trim(device);
266
267 acpi_evaluate_lck(handle, 0);
268 /*
269 * TBD: _EJD support.
270 */
271 status = acpi_evaluate_ej0(handle);
272 if (status == AE_NOT_FOUND)
273 return -ENODEV;
274 else if (ACPI_FAILURE(status))
275 return -EIO;
276
277 /*
278 * Verify if eject was indeed successful. If not, log an error
279 * message. No need to call _OST since _EJ0 call was made OK.
280 */
281 status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
282 if (ACPI_FAILURE(status)) {
283 acpi_handle_warn(handle,
284 "Status check after eject failed (0x%x)\n", status);
285 } else if (sta & ACPI_STA_DEVICE_ENABLED) {
286 acpi_handle_warn(handle,
287 "Eject incomplete - status 0x%llx\n", sta);
288 }
289
290 return 0;
291 }
292
acpi_scan_device_not_present(struct acpi_device * adev)293 static int acpi_scan_device_not_present(struct acpi_device *adev)
294 {
295 if (!acpi_device_enumerated(adev)) {
296 dev_warn(&adev->dev, "Still not present\n");
297 return -EALREADY;
298 }
299 acpi_bus_trim(adev);
300 return 0;
301 }
302
acpi_scan_device_check(struct acpi_device * adev)303 static int acpi_scan_device_check(struct acpi_device *adev)
304 {
305 int error;
306
307 acpi_bus_get_status(adev);
308 if (adev->status.present || adev->status.functional) {
309 /*
310 * This function is only called for device objects for which
311 * matching scan handlers exist. The only situation in which
312 * the scan handler is not attached to this device object yet
313 * is when the device has just appeared (either it wasn't
314 * present at all before or it was removed and then added
315 * again).
316 */
317 if (adev->handler) {
318 dev_warn(&adev->dev, "Already enumerated\n");
319 return -EALREADY;
320 }
321 error = acpi_bus_scan(adev->handle);
322 if (error) {
323 dev_warn(&adev->dev, "Namespace scan failure\n");
324 return error;
325 }
326 if (!adev->handler) {
327 dev_warn(&adev->dev, "Enumeration failure\n");
328 error = -ENODEV;
329 }
330 } else {
331 error = acpi_scan_device_not_present(adev);
332 }
333 return error;
334 }
335
acpi_scan_bus_check(struct acpi_device * adev)336 static int acpi_scan_bus_check(struct acpi_device *adev)
337 {
338 struct acpi_scan_handler *handler = adev->handler;
339 struct acpi_device *child;
340 int error;
341
342 acpi_bus_get_status(adev);
343 if (!(adev->status.present || adev->status.functional)) {
344 acpi_scan_device_not_present(adev);
345 return 0;
346 }
347 if (handler && handler->hotplug.scan_dependent)
348 return handler->hotplug.scan_dependent(adev);
349
350 error = acpi_bus_scan(adev->handle);
351 if (error) {
352 dev_warn(&adev->dev, "Namespace scan failure\n");
353 return error;
354 }
355 list_for_each_entry(child, &adev->children, node) {
356 error = acpi_scan_bus_check(child);
357 if (error)
358 return error;
359 }
360 return 0;
361 }
362
acpi_generic_hotplug_event(struct acpi_device * adev,u32 type)363 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
364 {
365 switch (type) {
366 case ACPI_NOTIFY_BUS_CHECK:
367 return acpi_scan_bus_check(adev);
368 case ACPI_NOTIFY_DEVICE_CHECK:
369 return acpi_scan_device_check(adev);
370 case ACPI_NOTIFY_EJECT_REQUEST:
371 case ACPI_OST_EC_OSPM_EJECT:
372 if (adev->handler && !adev->handler->hotplug.enabled) {
373 dev_info(&adev->dev, "Eject disabled\n");
374 return -EPERM;
375 }
376 acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
377 ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
378 return acpi_scan_hot_remove(adev);
379 }
380 return -EINVAL;
381 }
382
acpi_device_hotplug(struct acpi_device * adev,u32 src)383 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
384 {
385 u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
386 int error = -ENODEV;
387
388 lock_device_hotplug();
389 mutex_lock(&acpi_scan_lock);
390
391 /*
392 * The device object's ACPI handle cannot become invalid as long as we
393 * are holding acpi_scan_lock, but it might have become invalid before
394 * that lock was acquired.
395 */
396 if (adev->handle == INVALID_ACPI_HANDLE)
397 goto err_out;
398
399 if (adev->flags.is_dock_station) {
400 error = dock_notify(adev, src);
401 } else if (adev->flags.hotplug_notify) {
402 error = acpi_generic_hotplug_event(adev, src);
403 } else {
404 int (*notify)(struct acpi_device *, u32);
405
406 acpi_lock_hp_context();
407 notify = adev->hp ? adev->hp->notify : NULL;
408 acpi_unlock_hp_context();
409 /*
410 * There may be additional notify handlers for device objects
411 * without the .event() callback, so ignore them here.
412 */
413 if (notify)
414 error = notify(adev, src);
415 else
416 goto out;
417 }
418 switch (error) {
419 case 0:
420 ost_code = ACPI_OST_SC_SUCCESS;
421 break;
422 case -EPERM:
423 ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
424 break;
425 case -EBUSY:
426 ost_code = ACPI_OST_SC_DEVICE_BUSY;
427 break;
428 default:
429 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
430 break;
431 }
432
433 err_out:
434 acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
435
436 out:
437 acpi_bus_put_acpi_device(adev);
438 mutex_unlock(&acpi_scan_lock);
439 unlock_device_hotplug();
440 }
441
acpi_free_power_resources_lists(struct acpi_device * device)442 static void acpi_free_power_resources_lists(struct acpi_device *device)
443 {
444 int i;
445
446 if (device->wakeup.flags.valid)
447 acpi_power_resources_list_free(&device->wakeup.resources);
448
449 if (!device->power.flags.power_resources)
450 return;
451
452 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
453 struct acpi_device_power_state *ps = &device->power.states[i];
454 acpi_power_resources_list_free(&ps->resources);
455 }
456 }
457
acpi_device_release(struct device * dev)458 static void acpi_device_release(struct device *dev)
459 {
460 struct acpi_device *acpi_dev = to_acpi_device(dev);
461
462 acpi_free_properties(acpi_dev);
463 acpi_free_pnp_ids(&acpi_dev->pnp);
464 acpi_free_power_resources_lists(acpi_dev);
465 kfree(acpi_dev);
466 }
467
acpi_device_del(struct acpi_device * device)468 static void acpi_device_del(struct acpi_device *device)
469 {
470 struct acpi_device_bus_id *acpi_device_bus_id;
471
472 mutex_lock(&acpi_device_lock);
473 if (device->parent)
474 list_del(&device->node);
475
476 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
477 if (!strcmp(acpi_device_bus_id->bus_id,
478 acpi_device_hid(device))) {
479 ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no);
480 if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
481 list_del(&acpi_device_bus_id->node);
482 kfree_const(acpi_device_bus_id->bus_id);
483 kfree(acpi_device_bus_id);
484 }
485 break;
486 }
487
488 list_del(&device->wakeup_list);
489 mutex_unlock(&acpi_device_lock);
490
491 acpi_power_add_remove_device(device, false);
492 acpi_device_remove_files(device);
493 if (device->remove)
494 device->remove(device);
495
496 device_del(&device->dev);
497 }
498
499 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
500
501 static LIST_HEAD(acpi_device_del_list);
502 static DEFINE_MUTEX(acpi_device_del_lock);
503
acpi_device_del_work_fn(struct work_struct * work_not_used)504 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
505 {
506 for (;;) {
507 struct acpi_device *adev;
508
509 mutex_lock(&acpi_device_del_lock);
510
511 if (list_empty(&acpi_device_del_list)) {
512 mutex_unlock(&acpi_device_del_lock);
513 break;
514 }
515 adev = list_first_entry(&acpi_device_del_list,
516 struct acpi_device, del_list);
517 list_del(&adev->del_list);
518
519 mutex_unlock(&acpi_device_del_lock);
520
521 blocking_notifier_call_chain(&acpi_reconfig_chain,
522 ACPI_RECONFIG_DEVICE_REMOVE, adev);
523
524 acpi_device_del(adev);
525 /*
526 * Drop references to all power resources that might have been
527 * used by the device.
528 */
529 acpi_power_transition(adev, ACPI_STATE_D3_COLD);
530 acpi_dev_put(adev);
531 }
532 }
533
534 /**
535 * acpi_scan_drop_device - Drop an ACPI device object.
536 * @handle: Handle of an ACPI namespace node, not used.
537 * @context: Address of the ACPI device object to drop.
538 *
539 * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
540 * namespace node the device object pointed to by @context is attached to.
541 *
542 * The unregistration is carried out asynchronously to avoid running
543 * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
544 * ensure the correct ordering (the device objects must be unregistered in the
545 * same order in which the corresponding namespace nodes are deleted).
546 */
acpi_scan_drop_device(acpi_handle handle,void * context)547 static void acpi_scan_drop_device(acpi_handle handle, void *context)
548 {
549 static DECLARE_WORK(work, acpi_device_del_work_fn);
550 struct acpi_device *adev = context;
551
552 mutex_lock(&acpi_device_del_lock);
553
554 /*
555 * Use the ACPI hotplug workqueue which is ordered, so this work item
556 * won't run after any hotplug work items submitted subsequently. That
557 * prevents attempts to register device objects identical to those being
558 * deleted from happening concurrently (such attempts result from
559 * hotplug events handled via the ACPI hotplug workqueue). It also will
560 * run after all of the work items submitted previously, which helps
561 * those work items to ensure that they are not accessing stale device
562 * objects.
563 */
564 if (list_empty(&acpi_device_del_list))
565 acpi_queue_hotplug_work(&work);
566
567 list_add_tail(&adev->del_list, &acpi_device_del_list);
568 /* Make acpi_ns_validate_handle() return NULL for this handle. */
569 adev->handle = INVALID_ACPI_HANDLE;
570
571 mutex_unlock(&acpi_device_del_lock);
572 }
573
handle_to_device(acpi_handle handle,void (* callback)(void *))574 static struct acpi_device *handle_to_device(acpi_handle handle,
575 void (*callback)(void *))
576 {
577 struct acpi_device *adev = NULL;
578 acpi_status status;
579
580 status = acpi_get_data_full(handle, acpi_scan_drop_device,
581 (void **)&adev, callback);
582 if (ACPI_FAILURE(status) || !adev) {
583 acpi_handle_debug(handle, "No context!\n");
584 return NULL;
585 }
586 return adev;
587 }
588
acpi_bus_get_device(acpi_handle handle,struct acpi_device ** device)589 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device)
590 {
591 if (!device)
592 return -EINVAL;
593
594 *device = handle_to_device(handle, NULL);
595 if (!*device)
596 return -ENODEV;
597
598 return 0;
599 }
600 EXPORT_SYMBOL(acpi_bus_get_device);
601
get_acpi_device(void * dev)602 static void get_acpi_device(void *dev)
603 {
604 acpi_dev_get(dev);
605 }
606
acpi_bus_get_acpi_device(acpi_handle handle)607 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
608 {
609 return handle_to_device(handle, get_acpi_device);
610 }
611
acpi_device_bus_id_match(const char * dev_id)612 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
613 {
614 struct acpi_device_bus_id *acpi_device_bus_id;
615
616 /* Find suitable bus_id and instance number in acpi_bus_id_list. */
617 list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
618 if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
619 return acpi_device_bus_id;
620 }
621 return NULL;
622 }
623
acpi_device_set_name(struct acpi_device * device,struct acpi_device_bus_id * acpi_device_bus_id)624 static int acpi_device_set_name(struct acpi_device *device,
625 struct acpi_device_bus_id *acpi_device_bus_id)
626 {
627 struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
628 int result;
629
630 result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL);
631 if (result < 0)
632 return result;
633
634 device->pnp.instance_no = result;
635 dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
636 return 0;
637 }
638
acpi_tie_acpi_dev(struct acpi_device * adev)639 static int acpi_tie_acpi_dev(struct acpi_device *adev)
640 {
641 acpi_handle handle = adev->handle;
642 acpi_status status;
643
644 if (!handle)
645 return 0;
646
647 status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
648 if (ACPI_FAILURE(status)) {
649 acpi_handle_err(handle, "Unable to attach device data\n");
650 return -ENODEV;
651 }
652
653 return 0;
654 }
655
__acpi_device_add(struct acpi_device * device,void (* release)(struct device *))656 static int __acpi_device_add(struct acpi_device *device,
657 void (*release)(struct device *))
658 {
659 struct acpi_device_bus_id *acpi_device_bus_id;
660 int result;
661
662 /*
663 * Linkage
664 * -------
665 * Link this device to its parent and siblings.
666 */
667 INIT_LIST_HEAD(&device->children);
668 INIT_LIST_HEAD(&device->node);
669 INIT_LIST_HEAD(&device->wakeup_list);
670 INIT_LIST_HEAD(&device->physical_node_list);
671 INIT_LIST_HEAD(&device->del_list);
672 mutex_init(&device->physical_node_lock);
673
674 mutex_lock(&acpi_device_lock);
675
676 acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
677 if (acpi_device_bus_id) {
678 result = acpi_device_set_name(device, acpi_device_bus_id);
679 if (result)
680 goto err_unlock;
681 } else {
682 acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
683 GFP_KERNEL);
684 if (!acpi_device_bus_id) {
685 result = -ENOMEM;
686 goto err_unlock;
687 }
688 acpi_device_bus_id->bus_id =
689 kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
690 if (!acpi_device_bus_id->bus_id) {
691 kfree(acpi_device_bus_id);
692 result = -ENOMEM;
693 goto err_unlock;
694 }
695
696 ida_init(&acpi_device_bus_id->instance_ida);
697
698 result = acpi_device_set_name(device, acpi_device_bus_id);
699 if (result) {
700 kfree_const(acpi_device_bus_id->bus_id);
701 kfree(acpi_device_bus_id);
702 goto err_unlock;
703 }
704
705 list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
706 }
707
708 if (device->parent)
709 list_add_tail(&device->node, &device->parent->children);
710
711 if (device->wakeup.flags.valid)
712 list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
713
714 mutex_unlock(&acpi_device_lock);
715
716 if (device->parent)
717 device->dev.parent = &device->parent->dev;
718
719 device->dev.bus = &acpi_bus_type;
720 device->dev.release = release;
721 result = device_add(&device->dev);
722 if (result) {
723 dev_err(&device->dev, "Error registering device\n");
724 goto err;
725 }
726
727 result = acpi_device_setup_files(device);
728 if (result)
729 pr_err("Error creating sysfs interface for device %s\n",
730 dev_name(&device->dev));
731
732 return 0;
733
734 err:
735 mutex_lock(&acpi_device_lock);
736
737 if (device->parent)
738 list_del(&device->node);
739
740 list_del(&device->wakeup_list);
741
742 err_unlock:
743 mutex_unlock(&acpi_device_lock);
744
745 acpi_detach_data(device->handle, acpi_scan_drop_device);
746
747 return result;
748 }
749
acpi_device_add(struct acpi_device * adev,void (* release)(struct device *))750 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *))
751 {
752 int ret;
753
754 ret = acpi_tie_acpi_dev(adev);
755 if (ret)
756 return ret;
757
758 return __acpi_device_add(adev, release);
759 }
760
761 /* --------------------------------------------------------------------------
762 Device Enumeration
763 -------------------------------------------------------------------------- */
acpi_info_matches_ids(struct acpi_device_info * info,const char * const ids[])764 static bool acpi_info_matches_ids(struct acpi_device_info *info,
765 const char * const ids[])
766 {
767 struct acpi_pnp_device_id_list *cid_list = NULL;
768 int i, index;
769
770 if (!(info->valid & ACPI_VALID_HID))
771 return false;
772
773 index = match_string(ids, -1, info->hardware_id.string);
774 if (index >= 0)
775 return true;
776
777 if (info->valid & ACPI_VALID_CID)
778 cid_list = &info->compatible_id_list;
779
780 if (!cid_list)
781 return false;
782
783 for (i = 0; i < cid_list->count; i++) {
784 index = match_string(ids, -1, cid_list->ids[i].string);
785 if (index >= 0)
786 return true;
787 }
788
789 return false;
790 }
791
792 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
793 static const char * const acpi_ignore_dep_ids[] = {
794 "PNP0D80", /* Windows-compatible System Power Management Controller */
795 "INT33BD", /* Intel Baytrail Mailbox Device */
796 "LATT2021", /* Lattice FW Update Client Driver */
797 NULL
798 };
799
acpi_bus_get_parent(acpi_handle handle)800 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
801 {
802 struct acpi_device *device = NULL;
803 acpi_status status;
804
805 /*
806 * Fixed hardware devices do not appear in the namespace and do not
807 * have handles, but we fabricate acpi_devices for them, so we have
808 * to deal with them specially.
809 */
810 if (!handle)
811 return acpi_root;
812
813 do {
814 status = acpi_get_parent(handle, &handle);
815 if (ACPI_FAILURE(status))
816 return status == AE_NULL_ENTRY ? NULL : acpi_root;
817 } while (acpi_bus_get_device(handle, &device));
818 return device;
819 }
820
821 acpi_status
acpi_bus_get_ejd(acpi_handle handle,acpi_handle * ejd)822 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
823 {
824 acpi_status status;
825 acpi_handle tmp;
826 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
827 union acpi_object *obj;
828
829 status = acpi_get_handle(handle, "_EJD", &tmp);
830 if (ACPI_FAILURE(status))
831 return status;
832
833 status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
834 if (ACPI_SUCCESS(status)) {
835 obj = buffer.pointer;
836 status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
837 ejd);
838 kfree(buffer.pointer);
839 }
840 return status;
841 }
842 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
843
acpi_bus_extract_wakeup_device_power_package(struct acpi_device * dev)844 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
845 {
846 acpi_handle handle = dev->handle;
847 struct acpi_device_wakeup *wakeup = &dev->wakeup;
848 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
849 union acpi_object *package = NULL;
850 union acpi_object *element = NULL;
851 acpi_status status;
852 int err = -ENODATA;
853
854 INIT_LIST_HEAD(&wakeup->resources);
855
856 /* _PRW */
857 status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
858 if (ACPI_FAILURE(status)) {
859 acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
860 acpi_format_exception(status));
861 return err;
862 }
863
864 package = (union acpi_object *)buffer.pointer;
865
866 if (!package || package->package.count < 2)
867 goto out;
868
869 element = &(package->package.elements[0]);
870 if (!element)
871 goto out;
872
873 if (element->type == ACPI_TYPE_PACKAGE) {
874 if ((element->package.count < 2) ||
875 (element->package.elements[0].type !=
876 ACPI_TYPE_LOCAL_REFERENCE)
877 || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
878 goto out;
879
880 wakeup->gpe_device =
881 element->package.elements[0].reference.handle;
882 wakeup->gpe_number =
883 (u32) element->package.elements[1].integer.value;
884 } else if (element->type == ACPI_TYPE_INTEGER) {
885 wakeup->gpe_device = NULL;
886 wakeup->gpe_number = element->integer.value;
887 } else {
888 goto out;
889 }
890
891 element = &(package->package.elements[1]);
892 if (element->type != ACPI_TYPE_INTEGER)
893 goto out;
894
895 wakeup->sleep_state = element->integer.value;
896
897 err = acpi_extract_power_resources(package, 2, &wakeup->resources);
898 if (err)
899 goto out;
900
901 if (!list_empty(&wakeup->resources)) {
902 int sleep_state;
903
904 err = acpi_power_wakeup_list_init(&wakeup->resources,
905 &sleep_state);
906 if (err) {
907 acpi_handle_warn(handle, "Retrieving current states "
908 "of wakeup power resources failed\n");
909 acpi_power_resources_list_free(&wakeup->resources);
910 goto out;
911 }
912 if (sleep_state < wakeup->sleep_state) {
913 acpi_handle_warn(handle, "Overriding _PRW sleep state "
914 "(S%d) by S%d from power resources\n",
915 (int)wakeup->sleep_state, sleep_state);
916 wakeup->sleep_state = sleep_state;
917 }
918 }
919
920 out:
921 kfree(buffer.pointer);
922 return err;
923 }
924
acpi_wakeup_gpe_init(struct acpi_device * device)925 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
926 {
927 static const struct acpi_device_id button_device_ids[] = {
928 {"PNP0C0C", 0}, /* Power button */
929 {"PNP0C0D", 0}, /* Lid */
930 {"PNP0C0E", 0}, /* Sleep button */
931 {"", 0},
932 };
933 struct acpi_device_wakeup *wakeup = &device->wakeup;
934 acpi_status status;
935
936 wakeup->flags.notifier_present = 0;
937
938 /* Power button, Lid switch always enable wakeup */
939 if (!acpi_match_device_ids(device, button_device_ids)) {
940 if (!acpi_match_device_ids(device, &button_device_ids[1])) {
941 /* Do not use Lid/sleep button for S5 wakeup */
942 if (wakeup->sleep_state == ACPI_STATE_S5)
943 wakeup->sleep_state = ACPI_STATE_S4;
944 }
945 acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
946 device_set_wakeup_capable(&device->dev, true);
947 return true;
948 }
949
950 status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
951 wakeup->gpe_number);
952 return ACPI_SUCCESS(status);
953 }
954
acpi_bus_get_wakeup_device_flags(struct acpi_device * device)955 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
956 {
957 int err;
958
959 /* Presence of _PRW indicates wake capable */
960 if (!acpi_has_method(device->handle, "_PRW"))
961 return;
962
963 err = acpi_bus_extract_wakeup_device_power_package(device);
964 if (err) {
965 dev_err(&device->dev, "Unable to extract wakeup power resources");
966 return;
967 }
968
969 device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
970 device->wakeup.prepare_count = 0;
971 /*
972 * Call _PSW/_DSW object to disable its ability to wake the sleeping
973 * system for the ACPI device with the _PRW object.
974 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
975 * So it is necessary to call _DSW object first. Only when it is not
976 * present will the _PSW object used.
977 */
978 err = acpi_device_sleep_wake(device, 0, 0, 0);
979 if (err)
980 pr_debug("error in _DSW or _PSW evaluation\n");
981 }
982
acpi_bus_init_power_state(struct acpi_device * device,int state)983 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
984 {
985 struct acpi_device_power_state *ps = &device->power.states[state];
986 char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
987 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
988 acpi_status status;
989
990 INIT_LIST_HEAD(&ps->resources);
991
992 /* Evaluate "_PRx" to get referenced power resources */
993 status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
994 if (ACPI_SUCCESS(status)) {
995 union acpi_object *package = buffer.pointer;
996
997 if (buffer.length && package
998 && package->type == ACPI_TYPE_PACKAGE
999 && package->package.count)
1000 acpi_extract_power_resources(package, 0, &ps->resources);
1001
1002 ACPI_FREE(buffer.pointer);
1003 }
1004
1005 /* Evaluate "_PSx" to see if we can do explicit sets */
1006 pathname[2] = 'S';
1007 if (acpi_has_method(device->handle, pathname))
1008 ps->flags.explicit_set = 1;
1009
1010 /* State is valid if there are means to put the device into it. */
1011 if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1012 ps->flags.valid = 1;
1013
1014 ps->power = -1; /* Unknown - driver assigned */
1015 ps->latency = -1; /* Unknown - driver assigned */
1016 }
1017
acpi_bus_get_power_flags(struct acpi_device * device)1018 static void acpi_bus_get_power_flags(struct acpi_device *device)
1019 {
1020 u32 i;
1021
1022 /* Presence of _PS0|_PR0 indicates 'power manageable' */
1023 if (!acpi_has_method(device->handle, "_PS0") &&
1024 !acpi_has_method(device->handle, "_PR0"))
1025 return;
1026
1027 device->flags.power_manageable = 1;
1028
1029 /*
1030 * Power Management Flags
1031 */
1032 if (acpi_has_method(device->handle, "_PSC"))
1033 device->power.flags.explicit_get = 1;
1034
1035 if (acpi_has_method(device->handle, "_IRC"))
1036 device->power.flags.inrush_current = 1;
1037
1038 if (acpi_has_method(device->handle, "_DSW"))
1039 device->power.flags.dsw_present = 1;
1040
1041 /*
1042 * Enumerate supported power management states
1043 */
1044 for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1045 acpi_bus_init_power_state(device, i);
1046
1047 INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1048
1049 /* Set the defaults for D0 and D3hot (always supported). */
1050 device->power.states[ACPI_STATE_D0].flags.valid = 1;
1051 device->power.states[ACPI_STATE_D0].power = 100;
1052 device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1053
1054 /*
1055 * Use power resources only if the D0 list of them is populated, because
1056 * some platforms may provide _PR3 only to indicate D3cold support and
1057 * in those cases the power resources list returned by it may be bogus.
1058 */
1059 if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1060 device->power.flags.power_resources = 1;
1061 /*
1062 * D3cold is supported if the D3hot list of power resources is
1063 * not empty.
1064 */
1065 if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1066 device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1067 }
1068
1069 if (acpi_bus_init_power(device))
1070 device->flags.power_manageable = 0;
1071 }
1072
acpi_bus_get_flags(struct acpi_device * device)1073 static void acpi_bus_get_flags(struct acpi_device *device)
1074 {
1075 /* Presence of _STA indicates 'dynamic_status' */
1076 if (acpi_has_method(device->handle, "_STA"))
1077 device->flags.dynamic_status = 1;
1078
1079 /* Presence of _RMV indicates 'removable' */
1080 if (acpi_has_method(device->handle, "_RMV"))
1081 device->flags.removable = 1;
1082
1083 /* Presence of _EJD|_EJ0 indicates 'ejectable' */
1084 if (acpi_has_method(device->handle, "_EJD") ||
1085 acpi_has_method(device->handle, "_EJ0"))
1086 device->flags.ejectable = 1;
1087 }
1088
acpi_device_get_busid(struct acpi_device * device)1089 static void acpi_device_get_busid(struct acpi_device *device)
1090 {
1091 char bus_id[5] = { '?', 0 };
1092 struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1093 int i = 0;
1094
1095 /*
1096 * Bus ID
1097 * ------
1098 * The device's Bus ID is simply the object name.
1099 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1100 */
1101 if (ACPI_IS_ROOT_DEVICE(device)) {
1102 strcpy(device->pnp.bus_id, "ACPI");
1103 return;
1104 }
1105
1106 switch (device->device_type) {
1107 case ACPI_BUS_TYPE_POWER_BUTTON:
1108 strcpy(device->pnp.bus_id, "PWRF");
1109 break;
1110 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1111 strcpy(device->pnp.bus_id, "SLPF");
1112 break;
1113 case ACPI_BUS_TYPE_ECDT_EC:
1114 strcpy(device->pnp.bus_id, "ECDT");
1115 break;
1116 default:
1117 acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1118 /* Clean up trailing underscores (if any) */
1119 for (i = 3; i > 1; i--) {
1120 if (bus_id[i] == '_')
1121 bus_id[i] = '\0';
1122 else
1123 break;
1124 }
1125 strcpy(device->pnp.bus_id, bus_id);
1126 break;
1127 }
1128 }
1129
1130 /*
1131 * acpi_ata_match - see if an acpi object is an ATA device
1132 *
1133 * If an acpi object has one of the ACPI ATA methods defined,
1134 * then we can safely call it an ATA device.
1135 */
acpi_ata_match(acpi_handle handle)1136 bool acpi_ata_match(acpi_handle handle)
1137 {
1138 return acpi_has_method(handle, "_GTF") ||
1139 acpi_has_method(handle, "_GTM") ||
1140 acpi_has_method(handle, "_STM") ||
1141 acpi_has_method(handle, "_SDD");
1142 }
1143
1144 /*
1145 * acpi_bay_match - see if an acpi object is an ejectable driver bay
1146 *
1147 * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1148 * then we can safely call it an ejectable drive bay
1149 */
acpi_bay_match(acpi_handle handle)1150 bool acpi_bay_match(acpi_handle handle)
1151 {
1152 acpi_handle phandle;
1153
1154 if (!acpi_has_method(handle, "_EJ0"))
1155 return false;
1156 if (acpi_ata_match(handle))
1157 return true;
1158 if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1159 return false;
1160
1161 return acpi_ata_match(phandle);
1162 }
1163
acpi_device_is_battery(struct acpi_device * adev)1164 bool acpi_device_is_battery(struct acpi_device *adev)
1165 {
1166 struct acpi_hardware_id *hwid;
1167
1168 list_for_each_entry(hwid, &adev->pnp.ids, list)
1169 if (!strcmp("PNP0C0A", hwid->id))
1170 return true;
1171
1172 return false;
1173 }
1174
is_ejectable_bay(struct acpi_device * adev)1175 static bool is_ejectable_bay(struct acpi_device *adev)
1176 {
1177 acpi_handle handle = adev->handle;
1178
1179 if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1180 return true;
1181
1182 return acpi_bay_match(handle);
1183 }
1184
1185 /*
1186 * acpi_dock_match - see if an acpi object has a _DCK method
1187 */
acpi_dock_match(acpi_handle handle)1188 bool acpi_dock_match(acpi_handle handle)
1189 {
1190 return acpi_has_method(handle, "_DCK");
1191 }
1192
1193 static acpi_status
acpi_backlight_cap_match(acpi_handle handle,u32 level,void * context,void ** return_value)1194 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1195 void **return_value)
1196 {
1197 long *cap = context;
1198
1199 if (acpi_has_method(handle, "_BCM") &&
1200 acpi_has_method(handle, "_BCL")) {
1201 acpi_handle_debug(handle, "Found generic backlight support\n");
1202 *cap |= ACPI_VIDEO_BACKLIGHT;
1203 /* We have backlight support, no need to scan further */
1204 return AE_CTRL_TERMINATE;
1205 }
1206 return 0;
1207 }
1208
1209 /* Returns true if the ACPI object is a video device which can be
1210 * handled by video.ko.
1211 * The device will get a Linux specific CID added in scan.c to
1212 * identify the device as an ACPI graphics device
1213 * Be aware that the graphics device may not be physically present
1214 * Use acpi_video_get_capabilities() to detect general ACPI video
1215 * capabilities of present cards
1216 */
acpi_is_video_device(acpi_handle handle)1217 long acpi_is_video_device(acpi_handle handle)
1218 {
1219 long video_caps = 0;
1220
1221 /* Is this device able to support video switching ? */
1222 if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1223 video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1224
1225 /* Is this device able to retrieve a video ROM ? */
1226 if (acpi_has_method(handle, "_ROM"))
1227 video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1228
1229 /* Is this device able to configure which video head to be POSTed ? */
1230 if (acpi_has_method(handle, "_VPO") &&
1231 acpi_has_method(handle, "_GPD") &&
1232 acpi_has_method(handle, "_SPD"))
1233 video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1234
1235 /* Only check for backlight functionality if one of the above hit. */
1236 if (video_caps)
1237 acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1238 ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1239 &video_caps, NULL);
1240
1241 return video_caps;
1242 }
1243 EXPORT_SYMBOL(acpi_is_video_device);
1244
acpi_device_hid(struct acpi_device * device)1245 const char *acpi_device_hid(struct acpi_device *device)
1246 {
1247 struct acpi_hardware_id *hid;
1248
1249 if (list_empty(&device->pnp.ids))
1250 return dummy_hid;
1251
1252 hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1253 return hid->id;
1254 }
1255 EXPORT_SYMBOL(acpi_device_hid);
1256
acpi_add_id(struct acpi_device_pnp * pnp,const char * dev_id)1257 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1258 {
1259 struct acpi_hardware_id *id;
1260
1261 id = kmalloc(sizeof(*id), GFP_KERNEL);
1262 if (!id)
1263 return;
1264
1265 id->id = kstrdup_const(dev_id, GFP_KERNEL);
1266 if (!id->id) {
1267 kfree(id);
1268 return;
1269 }
1270
1271 list_add_tail(&id->list, &pnp->ids);
1272 pnp->type.hardware_id = 1;
1273 }
1274
1275 /*
1276 * Old IBM workstations have a DSDT bug wherein the SMBus object
1277 * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1278 * prefix. Work around this.
1279 */
acpi_ibm_smbus_match(acpi_handle handle)1280 static bool acpi_ibm_smbus_match(acpi_handle handle)
1281 {
1282 char node_name[ACPI_PATH_SEGMENT_LENGTH];
1283 struct acpi_buffer path = { sizeof(node_name), node_name };
1284
1285 if (!dmi_name_in_vendors("IBM"))
1286 return false;
1287
1288 /* Look for SMBS object */
1289 if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1290 strcmp("SMBS", path.pointer))
1291 return false;
1292
1293 /* Does it have the necessary (but misnamed) methods? */
1294 if (acpi_has_method(handle, "SBI") &&
1295 acpi_has_method(handle, "SBR") &&
1296 acpi_has_method(handle, "SBW"))
1297 return true;
1298
1299 return false;
1300 }
1301
acpi_object_is_system_bus(acpi_handle handle)1302 static bool acpi_object_is_system_bus(acpi_handle handle)
1303 {
1304 acpi_handle tmp;
1305
1306 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1307 tmp == handle)
1308 return true;
1309 if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1310 tmp == handle)
1311 return true;
1312
1313 return false;
1314 }
1315
acpi_set_pnp_ids(acpi_handle handle,struct acpi_device_pnp * pnp,int device_type)1316 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1317 int device_type)
1318 {
1319 struct acpi_device_info *info = NULL;
1320 struct acpi_pnp_device_id_list *cid_list;
1321 int i;
1322
1323 switch (device_type) {
1324 case ACPI_BUS_TYPE_DEVICE:
1325 if (handle == ACPI_ROOT_OBJECT) {
1326 acpi_add_id(pnp, ACPI_SYSTEM_HID);
1327 break;
1328 }
1329
1330 acpi_get_object_info(handle, &info);
1331 if (!info) {
1332 pr_err("%s: Error reading device info\n", __func__);
1333 return;
1334 }
1335
1336 if (info->valid & ACPI_VALID_HID) {
1337 acpi_add_id(pnp, info->hardware_id.string);
1338 pnp->type.platform_id = 1;
1339 }
1340 if (info->valid & ACPI_VALID_CID) {
1341 cid_list = &info->compatible_id_list;
1342 for (i = 0; i < cid_list->count; i++)
1343 acpi_add_id(pnp, cid_list->ids[i].string);
1344 }
1345 if (info->valid & ACPI_VALID_ADR) {
1346 pnp->bus_address = info->address;
1347 pnp->type.bus_address = 1;
1348 }
1349 if (info->valid & ACPI_VALID_UID)
1350 pnp->unique_id = kstrdup(info->unique_id.string,
1351 GFP_KERNEL);
1352 if (info->valid & ACPI_VALID_CLS)
1353 acpi_add_id(pnp, info->class_code.string);
1354
1355 kfree(info);
1356
1357 /*
1358 * Some devices don't reliably have _HIDs & _CIDs, so add
1359 * synthetic HIDs to make sure drivers can find them.
1360 */
1361 if (acpi_is_video_device(handle))
1362 acpi_add_id(pnp, ACPI_VIDEO_HID);
1363 else if (acpi_bay_match(handle))
1364 acpi_add_id(pnp, ACPI_BAY_HID);
1365 else if (acpi_dock_match(handle))
1366 acpi_add_id(pnp, ACPI_DOCK_HID);
1367 else if (acpi_ibm_smbus_match(handle))
1368 acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1369 else if (list_empty(&pnp->ids) &&
1370 acpi_object_is_system_bus(handle)) {
1371 /* \_SB, \_TZ, LNXSYBUS */
1372 acpi_add_id(pnp, ACPI_BUS_HID);
1373 strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1374 strcpy(pnp->device_class, ACPI_BUS_CLASS);
1375 }
1376
1377 break;
1378 case ACPI_BUS_TYPE_POWER:
1379 acpi_add_id(pnp, ACPI_POWER_HID);
1380 break;
1381 case ACPI_BUS_TYPE_PROCESSOR:
1382 acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1383 break;
1384 case ACPI_BUS_TYPE_THERMAL:
1385 acpi_add_id(pnp, ACPI_THERMAL_HID);
1386 break;
1387 case ACPI_BUS_TYPE_POWER_BUTTON:
1388 acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1389 break;
1390 case ACPI_BUS_TYPE_SLEEP_BUTTON:
1391 acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1392 break;
1393 case ACPI_BUS_TYPE_ECDT_EC:
1394 acpi_add_id(pnp, ACPI_ECDT_HID);
1395 break;
1396 }
1397 }
1398
acpi_free_pnp_ids(struct acpi_device_pnp * pnp)1399 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1400 {
1401 struct acpi_hardware_id *id, *tmp;
1402
1403 list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1404 kfree_const(id->id);
1405 kfree(id);
1406 }
1407 kfree(pnp->unique_id);
1408 }
1409
1410 /**
1411 * acpi_dma_supported - Check DMA support for the specified device.
1412 * @adev: The pointer to acpi device
1413 *
1414 * Return false if DMA is not supported. Otherwise, return true
1415 */
acpi_dma_supported(const struct acpi_device * adev)1416 bool acpi_dma_supported(const struct acpi_device *adev)
1417 {
1418 if (!adev)
1419 return false;
1420
1421 if (adev->flags.cca_seen)
1422 return true;
1423
1424 /*
1425 * Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1426 * DMA on "Intel platforms". Presumably that includes all x86 and
1427 * ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1428 */
1429 if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1430 return true;
1431
1432 return false;
1433 }
1434
1435 /**
1436 * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1437 * @adev: The pointer to acpi device
1438 *
1439 * Return enum dev_dma_attr.
1440 */
acpi_get_dma_attr(struct acpi_device * adev)1441 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1442 {
1443 if (!acpi_dma_supported(adev))
1444 return DEV_DMA_NOT_SUPPORTED;
1445
1446 if (adev->flags.coherent_dma)
1447 return DEV_DMA_COHERENT;
1448 else
1449 return DEV_DMA_NON_COHERENT;
1450 }
1451
1452 /**
1453 * acpi_dma_get_range() - Get device DMA parameters.
1454 *
1455 * @dev: device to configure
1456 * @dma_addr: pointer device DMA address result
1457 * @offset: pointer to the DMA offset result
1458 * @size: pointer to DMA range size result
1459 *
1460 * Evaluate DMA regions and return respectively DMA region start, offset
1461 * and size in dma_addr, offset and size on parsing success; it does not
1462 * update the passed in values on failure.
1463 *
1464 * Return 0 on success, < 0 on failure.
1465 */
acpi_dma_get_range(struct device * dev,u64 * dma_addr,u64 * offset,u64 * size)1466 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1467 u64 *size)
1468 {
1469 struct acpi_device *adev;
1470 LIST_HEAD(list);
1471 struct resource_entry *rentry;
1472 int ret;
1473 struct device *dma_dev = dev;
1474 u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1475
1476 /*
1477 * Walk the device tree chasing an ACPI companion with a _DMA
1478 * object while we go. Stop if we find a device with an ACPI
1479 * companion containing a _DMA method.
1480 */
1481 do {
1482 adev = ACPI_COMPANION(dma_dev);
1483 if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1484 break;
1485
1486 dma_dev = dma_dev->parent;
1487 } while (dma_dev);
1488
1489 if (!dma_dev)
1490 return -ENODEV;
1491
1492 if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1493 acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1494 return -EINVAL;
1495 }
1496
1497 ret = acpi_dev_get_dma_resources(adev, &list);
1498 if (ret > 0) {
1499 list_for_each_entry(rentry, &list, node) {
1500 if (dma_offset && rentry->offset != dma_offset) {
1501 ret = -EINVAL;
1502 dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1503 goto out;
1504 }
1505 dma_offset = rentry->offset;
1506
1507 /* Take lower and upper limits */
1508 if (rentry->res->start < dma_start)
1509 dma_start = rentry->res->start;
1510 if (rentry->res->end > dma_end)
1511 dma_end = rentry->res->end;
1512 }
1513
1514 if (dma_start >= dma_end) {
1515 ret = -EINVAL;
1516 dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1517 goto out;
1518 }
1519
1520 *dma_addr = dma_start - dma_offset;
1521 len = dma_end - dma_start;
1522 *size = max(len, len + 1);
1523 *offset = dma_offset;
1524 }
1525 out:
1526 acpi_dev_free_resource_list(&list);
1527
1528 return ret >= 0 ? 0 : ret;
1529 }
1530
1531 #ifdef CONFIG_IOMMU_API
acpi_iommu_fwspec_init(struct device * dev,u32 id,struct fwnode_handle * fwnode,const struct iommu_ops * ops)1532 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1533 struct fwnode_handle *fwnode,
1534 const struct iommu_ops *ops)
1535 {
1536 int ret = iommu_fwspec_init(dev, fwnode, ops);
1537
1538 if (!ret)
1539 ret = iommu_fwspec_add_ids(dev, &id, 1);
1540
1541 return ret;
1542 }
1543
acpi_iommu_fwspec_ops(struct device * dev)1544 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1545 {
1546 struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1547
1548 return fwspec ? fwspec->ops : NULL;
1549 }
1550
acpi_iommu_configure_id(struct device * dev,const u32 * id_in)1551 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1552 const u32 *id_in)
1553 {
1554 int err;
1555 const struct iommu_ops *ops;
1556
1557 /* Serialise to make dev->iommu stable under our potential fwspec */
1558 mutex_lock(&iommu_probe_device_lock);
1559 /*
1560 * If we already translated the fwspec there is nothing left to do,
1561 * return the iommu_ops.
1562 */
1563 ops = acpi_iommu_fwspec_ops(dev);
1564 if (ops) {
1565 mutex_unlock(&iommu_probe_device_lock);
1566 return ops;
1567 }
1568
1569 err = iort_iommu_configure_id(dev, id_in);
1570 if (err && err != -EPROBE_DEFER)
1571 err = viot_iommu_configure(dev);
1572 mutex_unlock(&iommu_probe_device_lock);
1573
1574 /*
1575 * If we have reason to believe the IOMMU driver missed the initial
1576 * iommu_probe_device() call for dev, replay it to get things in order.
1577 */
1578 if (!err && dev->bus && !device_iommu_mapped(dev))
1579 err = iommu_probe_device(dev);
1580
1581 /* Ignore all other errors apart from EPROBE_DEFER */
1582 if (err == -EPROBE_DEFER) {
1583 return ERR_PTR(err);
1584 } else if (err) {
1585 dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1586 return NULL;
1587 }
1588 return acpi_iommu_fwspec_ops(dev);
1589 }
1590
1591 #else /* !CONFIG_IOMMU_API */
1592
acpi_iommu_fwspec_init(struct device * dev,u32 id,struct fwnode_handle * fwnode,const struct iommu_ops * ops)1593 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1594 struct fwnode_handle *fwnode,
1595 const struct iommu_ops *ops)
1596 {
1597 return -ENODEV;
1598 }
1599
acpi_iommu_configure_id(struct device * dev,const u32 * id_in)1600 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1601 const u32 *id_in)
1602 {
1603 return NULL;
1604 }
1605
1606 #endif /* !CONFIG_IOMMU_API */
1607
1608 /**
1609 * acpi_dma_configure_id - Set-up DMA configuration for the device.
1610 * @dev: The pointer to the device
1611 * @attr: device dma attributes
1612 * @input_id: input device id const value pointer
1613 */
acpi_dma_configure_id(struct device * dev,enum dev_dma_attr attr,const u32 * input_id)1614 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1615 const u32 *input_id)
1616 {
1617 const struct iommu_ops *iommu;
1618 u64 dma_addr = 0, size = 0;
1619
1620 if (attr == DEV_DMA_NOT_SUPPORTED) {
1621 set_dma_ops(dev, &dma_dummy_ops);
1622 return 0;
1623 }
1624
1625 acpi_arch_dma_setup(dev, &dma_addr, &size);
1626
1627 iommu = acpi_iommu_configure_id(dev, input_id);
1628 if (PTR_ERR(iommu) == -EPROBE_DEFER)
1629 return -EPROBE_DEFER;
1630
1631 arch_setup_dma_ops(dev, dma_addr, size,
1632 iommu, attr == DEV_DMA_COHERENT);
1633
1634 return 0;
1635 }
1636 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1637
acpi_init_coherency(struct acpi_device * adev)1638 static void acpi_init_coherency(struct acpi_device *adev)
1639 {
1640 unsigned long long cca = 0;
1641 acpi_status status;
1642 struct acpi_device *parent = adev->parent;
1643
1644 if (parent && parent->flags.cca_seen) {
1645 /*
1646 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1647 * already saw one.
1648 */
1649 adev->flags.cca_seen = 1;
1650 cca = parent->flags.coherent_dma;
1651 } else {
1652 status = acpi_evaluate_integer(adev->handle, "_CCA",
1653 NULL, &cca);
1654 if (ACPI_SUCCESS(status))
1655 adev->flags.cca_seen = 1;
1656 else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1657 /*
1658 * If architecture does not specify that _CCA is
1659 * required for DMA-able devices (e.g. x86),
1660 * we default to _CCA=1.
1661 */
1662 cca = 1;
1663 else
1664 acpi_handle_debug(adev->handle,
1665 "ACPI device is missing _CCA.\n");
1666 }
1667
1668 adev->flags.coherent_dma = cca;
1669 }
1670
acpi_check_serial_bus_slave(struct acpi_resource * ares,void * data)1671 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1672 {
1673 bool *is_serial_bus_slave_p = data;
1674
1675 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1676 return 1;
1677
1678 *is_serial_bus_slave_p = true;
1679
1680 /* no need to do more checking */
1681 return -1;
1682 }
1683
acpi_is_indirect_io_slave(struct acpi_device * device)1684 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1685 {
1686 struct acpi_device *parent = device->parent;
1687 static const struct acpi_device_id indirect_io_hosts[] = {
1688 {"HISI0191", 0},
1689 {}
1690 };
1691
1692 return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1693 }
1694
acpi_device_enumeration_by_parent(struct acpi_device * device)1695 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1696 {
1697 struct list_head resource_list;
1698 bool is_serial_bus_slave = false;
1699 static const struct acpi_device_id ignore_serial_bus_ids[] = {
1700 /*
1701 * These devices have multiple I2cSerialBus resources and an i2c-client
1702 * must be instantiated for each, each with its own i2c_device_id.
1703 * Normally we only instantiate an i2c-client for the first resource,
1704 * using the ACPI HID as id. These special cases are handled by the
1705 * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows
1706 * which i2c_device_id to use for each resource.
1707 */
1708 {"BSG1160", },
1709 {"BSG2150", },
1710 {"INT33FE", },
1711 {"INT3515", },
1712 /*
1713 * HIDs of device with an UartSerialBusV2 resource for which userspace
1714 * expects a regular tty cdev to be created (instead of the in kernel
1715 * serdev) and which have a kernel driver which expects a platform_dev
1716 * such as the rfkill-gpio driver.
1717 */
1718 {"BCM4752", },
1719 {"LNV4752", },
1720 {}
1721 };
1722
1723 if (acpi_is_indirect_io_slave(device))
1724 return true;
1725
1726 /* Macs use device properties in lieu of _CRS resources */
1727 if (x86_apple_machine &&
1728 (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1729 fwnode_property_present(&device->fwnode, "i2cAddress") ||
1730 fwnode_property_present(&device->fwnode, "baud")))
1731 return true;
1732
1733 if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1734 return false;
1735
1736 INIT_LIST_HEAD(&resource_list);
1737 acpi_dev_get_resources(device, &resource_list,
1738 acpi_check_serial_bus_slave,
1739 &is_serial_bus_slave);
1740 acpi_dev_free_resource_list(&resource_list);
1741
1742 return is_serial_bus_slave;
1743 }
1744
acpi_init_device_object(struct acpi_device * device,acpi_handle handle,int type)1745 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1746 int type)
1747 {
1748 INIT_LIST_HEAD(&device->pnp.ids);
1749 device->device_type = type;
1750 device->handle = handle;
1751 device->parent = acpi_bus_get_parent(handle);
1752 fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1753 acpi_set_device_status(device, ACPI_STA_DEFAULT);
1754 acpi_device_get_busid(device);
1755 acpi_set_pnp_ids(handle, &device->pnp, type);
1756 acpi_init_properties(device);
1757 acpi_bus_get_flags(device);
1758 device->flags.match_driver = false;
1759 device->flags.initialized = true;
1760 device->flags.enumeration_by_parent =
1761 acpi_device_enumeration_by_parent(device);
1762 acpi_device_clear_enumerated(device);
1763 device_initialize(&device->dev);
1764 dev_set_uevent_suppress(&device->dev, true);
1765 acpi_init_coherency(device);
1766 }
1767
acpi_scan_dep_init(struct acpi_device * adev)1768 static void acpi_scan_dep_init(struct acpi_device *adev)
1769 {
1770 struct acpi_dep_data *dep;
1771
1772 list_for_each_entry(dep, &acpi_dep_list, node) {
1773 if (dep->consumer == adev->handle)
1774 adev->dep_unmet++;
1775 }
1776 }
1777
acpi_device_add_finalize(struct acpi_device * device)1778 void acpi_device_add_finalize(struct acpi_device *device)
1779 {
1780 dev_set_uevent_suppress(&device->dev, false);
1781 kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1782 }
1783
acpi_scan_init_status(struct acpi_device * adev)1784 static void acpi_scan_init_status(struct acpi_device *adev)
1785 {
1786 if (acpi_bus_get_status(adev))
1787 acpi_set_device_status(adev, 0);
1788 }
1789
acpi_add_single_object(struct acpi_device ** child,acpi_handle handle,int type,bool dep_init)1790 static int acpi_add_single_object(struct acpi_device **child,
1791 acpi_handle handle, int type, bool dep_init)
1792 {
1793 struct acpi_device *device;
1794 bool release_dep_lock = false;
1795 int result;
1796
1797 device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1798 if (!device)
1799 return -ENOMEM;
1800
1801 acpi_init_device_object(device, handle, type);
1802 /*
1803 * Getting the status is delayed till here so that we can call
1804 * acpi_bus_get_status() and use its quirk handling. Note that
1805 * this must be done before the get power-/wakeup_dev-flags calls.
1806 */
1807 if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1808 if (dep_init) {
1809 mutex_lock(&acpi_dep_list_lock);
1810 /*
1811 * Hold the lock until the acpi_tie_acpi_dev() call
1812 * below to prevent concurrent acpi_scan_clear_dep()
1813 * from deleting a dependency list entry without
1814 * updating dep_unmet for the device.
1815 */
1816 release_dep_lock = true;
1817 acpi_scan_dep_init(device);
1818 }
1819 acpi_scan_init_status(device);
1820 }
1821
1822 acpi_bus_get_power_flags(device);
1823 acpi_bus_get_wakeup_device_flags(device);
1824
1825 result = acpi_tie_acpi_dev(device);
1826
1827 if (release_dep_lock)
1828 mutex_unlock(&acpi_dep_list_lock);
1829
1830 if (!result)
1831 result = __acpi_device_add(device, acpi_device_release);
1832
1833 if (result) {
1834 acpi_device_release(&device->dev);
1835 return result;
1836 }
1837
1838 acpi_power_add_remove_device(device, true);
1839 acpi_device_add_finalize(device);
1840
1841 acpi_handle_debug(handle, "Added as %s, parent %s\n",
1842 dev_name(&device->dev), device->parent ?
1843 dev_name(&device->parent->dev) : "(null)");
1844
1845 *child = device;
1846 return 0;
1847 }
1848
acpi_get_resource_memory(struct acpi_resource * ares,void * context)1849 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1850 void *context)
1851 {
1852 struct resource *res = context;
1853
1854 if (acpi_dev_resource_memory(ares, res))
1855 return AE_CTRL_TERMINATE;
1856
1857 return AE_OK;
1858 }
1859
acpi_device_should_be_hidden(acpi_handle handle)1860 static bool acpi_device_should_be_hidden(acpi_handle handle)
1861 {
1862 acpi_status status;
1863 struct resource res;
1864
1865 /* Check if it should ignore the UART device */
1866 if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1867 return false;
1868
1869 /*
1870 * The UART device described in SPCR table is assumed to have only one
1871 * memory resource present. So we only look for the first one here.
1872 */
1873 status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1874 acpi_get_resource_memory, &res);
1875 if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1876 return false;
1877
1878 acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1879 &res.start);
1880
1881 return true;
1882 }
1883
acpi_device_is_present(const struct acpi_device * adev)1884 bool acpi_device_is_present(const struct acpi_device *adev)
1885 {
1886 return adev->status.present || adev->status.functional;
1887 }
1888
acpi_scan_handler_matching(struct acpi_scan_handler * handler,const char * idstr,const struct acpi_device_id ** matchid)1889 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1890 const char *idstr,
1891 const struct acpi_device_id **matchid)
1892 {
1893 const struct acpi_device_id *devid;
1894
1895 if (handler->match)
1896 return handler->match(idstr, matchid);
1897
1898 for (devid = handler->ids; devid->id[0]; devid++)
1899 if (!strcmp((char *)devid->id, idstr)) {
1900 if (matchid)
1901 *matchid = devid;
1902
1903 return true;
1904 }
1905
1906 return false;
1907 }
1908
acpi_scan_match_handler(const char * idstr,const struct acpi_device_id ** matchid)1909 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1910 const struct acpi_device_id **matchid)
1911 {
1912 struct acpi_scan_handler *handler;
1913
1914 list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1915 if (acpi_scan_handler_matching(handler, idstr, matchid))
1916 return handler;
1917
1918 return NULL;
1919 }
1920
acpi_scan_hotplug_enabled(struct acpi_hotplug_profile * hotplug,bool val)1921 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1922 {
1923 if (!!hotplug->enabled == !!val)
1924 return;
1925
1926 mutex_lock(&acpi_scan_lock);
1927
1928 hotplug->enabled = val;
1929
1930 mutex_unlock(&acpi_scan_lock);
1931 }
1932
acpi_scan_init_hotplug(struct acpi_device * adev)1933 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1934 {
1935 struct acpi_hardware_id *hwid;
1936
1937 if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1938 acpi_dock_add(adev);
1939 return;
1940 }
1941 list_for_each_entry(hwid, &adev->pnp.ids, list) {
1942 struct acpi_scan_handler *handler;
1943
1944 handler = acpi_scan_match_handler(hwid->id, NULL);
1945 if (handler) {
1946 adev->flags.hotplug_notify = true;
1947 break;
1948 }
1949 }
1950 }
1951
acpi_scan_check_dep(acpi_handle handle,bool check_dep)1952 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1953 {
1954 struct acpi_handle_list dep_devices;
1955 acpi_status status;
1956 u32 count;
1957 int i;
1958
1959 /*
1960 * Check for _HID here to avoid deferring the enumeration of:
1961 * 1. PCI devices.
1962 * 2. ACPI nodes describing USB ports.
1963 * Still, checking for _HID catches more then just these cases ...
1964 */
1965 if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1966 !acpi_has_method(handle, "_HID"))
1967 return 0;
1968
1969 status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1970 if (ACPI_FAILURE(status)) {
1971 acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1972 return 0;
1973 }
1974
1975 for (count = 0, i = 0; i < dep_devices.count; i++) {
1976 struct acpi_device_info *info;
1977 struct acpi_dep_data *dep;
1978 bool skip;
1979
1980 status = acpi_get_object_info(dep_devices.handles[i], &info);
1981 if (ACPI_FAILURE(status)) {
1982 acpi_handle_debug(handle, "Error reading _DEP device info\n");
1983 continue;
1984 }
1985
1986 skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
1987 kfree(info);
1988
1989 if (skip)
1990 continue;
1991
1992 dep = kzalloc(sizeof(*dep), GFP_KERNEL);
1993 if (!dep)
1994 continue;
1995
1996 count++;
1997
1998 dep->supplier = dep_devices.handles[i];
1999 dep->consumer = handle;
2000
2001 mutex_lock(&acpi_dep_list_lock);
2002 list_add_tail(&dep->node , &acpi_dep_list);
2003 mutex_unlock(&acpi_dep_list_lock);
2004 }
2005
2006 return count;
2007 }
2008
2009 static bool acpi_bus_scan_second_pass;
2010
acpi_bus_check_add(acpi_handle handle,bool check_dep,struct acpi_device ** adev_p)2011 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2012 struct acpi_device **adev_p)
2013 {
2014 struct acpi_device *device = NULL;
2015 acpi_object_type acpi_type;
2016 int type;
2017
2018 acpi_bus_get_device(handle, &device);
2019 if (device)
2020 goto out;
2021
2022 if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2023 return AE_OK;
2024
2025 switch (acpi_type) {
2026 case ACPI_TYPE_DEVICE:
2027 if (acpi_device_should_be_hidden(handle))
2028 return AE_OK;
2029
2030 /* Bail out if there are dependencies. */
2031 if (acpi_scan_check_dep(handle, check_dep) > 0) {
2032 acpi_bus_scan_second_pass = true;
2033 return AE_CTRL_DEPTH;
2034 }
2035
2036 fallthrough;
2037 case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
2038 type = ACPI_BUS_TYPE_DEVICE;
2039 break;
2040
2041 case ACPI_TYPE_PROCESSOR:
2042 type = ACPI_BUS_TYPE_PROCESSOR;
2043 break;
2044
2045 case ACPI_TYPE_THERMAL:
2046 type = ACPI_BUS_TYPE_THERMAL;
2047 break;
2048
2049 case ACPI_TYPE_POWER:
2050 acpi_add_power_resource(handle);
2051 fallthrough;
2052 default:
2053 return AE_OK;
2054 }
2055
2056 /*
2057 * If check_dep is true at this point, the device has no dependencies,
2058 * or the creation of the device object would have been postponed above.
2059 */
2060 acpi_add_single_object(&device, handle, type, !check_dep);
2061 if (!device)
2062 return AE_CTRL_DEPTH;
2063
2064 acpi_scan_init_hotplug(device);
2065
2066 out:
2067 if (!*adev_p)
2068 *adev_p = device;
2069
2070 return AE_OK;
2071 }
2072
acpi_bus_check_add_1(acpi_handle handle,u32 lvl_not_used,void * not_used,void ** ret_p)2073 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2074 void *not_used, void **ret_p)
2075 {
2076 return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2077 }
2078
acpi_bus_check_add_2(acpi_handle handle,u32 lvl_not_used,void * not_used,void ** ret_p)2079 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2080 void *not_used, void **ret_p)
2081 {
2082 return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2083 }
2084
acpi_default_enumeration(struct acpi_device * device)2085 static void acpi_default_enumeration(struct acpi_device *device)
2086 {
2087 /*
2088 * Do not enumerate devices with enumeration_by_parent flag set as
2089 * they will be enumerated by their respective parents.
2090 */
2091 if (!device->flags.enumeration_by_parent) {
2092 acpi_create_platform_device(device, NULL);
2093 acpi_device_set_enumerated(device);
2094 } else {
2095 blocking_notifier_call_chain(&acpi_reconfig_chain,
2096 ACPI_RECONFIG_DEVICE_ADD, device);
2097 }
2098 }
2099
2100 static const struct acpi_device_id generic_device_ids[] = {
2101 {ACPI_DT_NAMESPACE_HID, },
2102 {"", },
2103 };
2104
acpi_generic_device_attach(struct acpi_device * adev,const struct acpi_device_id * not_used)2105 static int acpi_generic_device_attach(struct acpi_device *adev,
2106 const struct acpi_device_id *not_used)
2107 {
2108 /*
2109 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2110 * below can be unconditional.
2111 */
2112 if (adev->data.of_compatible)
2113 acpi_default_enumeration(adev);
2114
2115 return 1;
2116 }
2117
2118 static struct acpi_scan_handler generic_device_handler = {
2119 .ids = generic_device_ids,
2120 .attach = acpi_generic_device_attach,
2121 };
2122
acpi_scan_attach_handler(struct acpi_device * device)2123 static int acpi_scan_attach_handler(struct acpi_device *device)
2124 {
2125 struct acpi_hardware_id *hwid;
2126 int ret = 0;
2127
2128 list_for_each_entry(hwid, &device->pnp.ids, list) {
2129 const struct acpi_device_id *devid;
2130 struct acpi_scan_handler *handler;
2131
2132 handler = acpi_scan_match_handler(hwid->id, &devid);
2133 if (handler) {
2134 if (!handler->attach) {
2135 device->pnp.type.platform_id = 0;
2136 continue;
2137 }
2138 device->handler = handler;
2139 ret = handler->attach(device, devid);
2140 if (ret > 0)
2141 break;
2142
2143 device->handler = NULL;
2144 if (ret < 0)
2145 break;
2146 }
2147 }
2148
2149 return ret;
2150 }
2151
acpi_bus_attach(struct acpi_device * device,bool first_pass)2152 static void acpi_bus_attach(struct acpi_device *device, bool first_pass)
2153 {
2154 struct acpi_device *child;
2155 bool skip = !first_pass && device->flags.visited;
2156 acpi_handle ejd;
2157 int ret;
2158
2159 if (skip)
2160 goto ok;
2161
2162 if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2163 register_dock_dependent_device(device, ejd);
2164
2165 acpi_bus_get_status(device);
2166 /* Skip devices that are not present. */
2167 if (!acpi_device_is_present(device)) {
2168 device->flags.initialized = false;
2169 acpi_device_clear_enumerated(device);
2170 device->flags.power_manageable = 0;
2171 return;
2172 }
2173 if (device->handler)
2174 goto ok;
2175
2176 if (!device->flags.initialized) {
2177 device->flags.power_manageable =
2178 device->power.states[ACPI_STATE_D0].flags.valid;
2179 if (acpi_bus_init_power(device))
2180 device->flags.power_manageable = 0;
2181
2182 device->flags.initialized = true;
2183 } else if (device->flags.visited) {
2184 goto ok;
2185 }
2186
2187 ret = acpi_scan_attach_handler(device);
2188 if (ret < 0)
2189 return;
2190
2191 device->flags.match_driver = true;
2192 if (ret > 0 && !device->flags.enumeration_by_parent) {
2193 acpi_device_set_enumerated(device);
2194 goto ok;
2195 }
2196
2197 ret = device_attach(&device->dev);
2198 if (ret < 0)
2199 return;
2200
2201 if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2202 acpi_default_enumeration(device);
2203 else
2204 acpi_device_set_enumerated(device);
2205
2206 ok:
2207 list_for_each_entry(child, &device->children, node)
2208 acpi_bus_attach(child, first_pass);
2209
2210 if (!skip && device->handler && device->handler->hotplug.notify_online)
2211 device->handler->hotplug.notify_online(device);
2212 }
2213
acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data * dep,void * data)2214 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2215 {
2216 struct acpi_device *adev;
2217
2218 adev = acpi_bus_get_acpi_device(dep->consumer);
2219 if (adev) {
2220 *(struct acpi_device **)data = adev;
2221 return 1;
2222 }
2223 /* Continue parsing if the device object is not present. */
2224 return 0;
2225 }
2226
2227 struct acpi_scan_clear_dep_work {
2228 struct work_struct work;
2229 struct acpi_device *adev;
2230 };
2231
acpi_scan_clear_dep_fn(struct work_struct * work)2232 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2233 {
2234 struct acpi_scan_clear_dep_work *cdw;
2235
2236 cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2237
2238 acpi_scan_lock_acquire();
2239 acpi_bus_attach(cdw->adev, true);
2240 acpi_scan_lock_release();
2241
2242 acpi_dev_put(cdw->adev);
2243 kfree(cdw);
2244 }
2245
acpi_scan_clear_dep_queue(struct acpi_device * adev)2246 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2247 {
2248 struct acpi_scan_clear_dep_work *cdw;
2249
2250 if (adev->dep_unmet)
2251 return false;
2252
2253 cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2254 if (!cdw)
2255 return false;
2256
2257 cdw->adev = adev;
2258 INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2259 /*
2260 * Since the work function may block on the lock until the entire
2261 * initial enumeration of devices is complete, put it into the unbound
2262 * workqueue.
2263 */
2264 queue_work(system_unbound_wq, &cdw->work);
2265
2266 return true;
2267 }
2268
acpi_scan_clear_dep(struct acpi_dep_data * dep,void * data)2269 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2270 {
2271 struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer);
2272
2273 if (adev) {
2274 adev->dep_unmet--;
2275 if (!acpi_scan_clear_dep_queue(adev))
2276 acpi_dev_put(adev);
2277 }
2278
2279 list_del(&dep->node);
2280 kfree(dep);
2281
2282 return 0;
2283 }
2284
2285 /**
2286 * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2287 * @handle: The ACPI handle of the supplier device
2288 * @callback: Pointer to the callback function to apply
2289 * @data: Pointer to some data to pass to the callback
2290 *
2291 * The return value of the callback determines this function's behaviour. If 0
2292 * is returned we continue to iterate over acpi_dep_list. If a positive value
2293 * is returned then the loop is broken but this function returns 0. If a
2294 * negative value is returned by the callback then the loop is broken and that
2295 * value is returned as the final error.
2296 */
acpi_walk_dep_device_list(acpi_handle handle,int (* callback)(struct acpi_dep_data *,void *),void * data)2297 static int acpi_walk_dep_device_list(acpi_handle handle,
2298 int (*callback)(struct acpi_dep_data *, void *),
2299 void *data)
2300 {
2301 struct acpi_dep_data *dep, *tmp;
2302 int ret = 0;
2303
2304 mutex_lock(&acpi_dep_list_lock);
2305 list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2306 if (dep->supplier == handle) {
2307 ret = callback(dep, data);
2308 if (ret)
2309 break;
2310 }
2311 }
2312 mutex_unlock(&acpi_dep_list_lock);
2313
2314 return ret > 0 ? 0 : ret;
2315 }
2316
2317 /**
2318 * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2319 * @supplier: Pointer to the supplier &struct acpi_device
2320 *
2321 * Clear dependencies on the given device.
2322 */
acpi_dev_clear_dependencies(struct acpi_device * supplier)2323 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2324 {
2325 acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2326 }
2327 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2328
2329 /**
2330 * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier
2331 * @supplier: Pointer to the dependee device
2332 *
2333 * Returns the first &struct acpi_device which declares itself dependent on
2334 * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2335 *
2336 * The caller is responsible for putting the reference to adev when it is no
2337 * longer needed.
2338 */
acpi_dev_get_first_consumer_dev(struct acpi_device * supplier)2339 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier)
2340 {
2341 struct acpi_device *adev = NULL;
2342
2343 acpi_walk_dep_device_list(supplier->handle,
2344 acpi_dev_get_first_consumer_dev_cb, &adev);
2345
2346 return adev;
2347 }
2348 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev);
2349
2350 /**
2351 * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2352 * @handle: Root of the namespace scope to scan.
2353 *
2354 * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2355 * found devices.
2356 *
2357 * If no devices were found, -ENODEV is returned, but it does not mean that
2358 * there has been a real error. There just have been no suitable ACPI objects
2359 * in the table trunk from which the kernel could create a device and add an
2360 * appropriate driver.
2361 *
2362 * Must be called under acpi_scan_lock.
2363 */
acpi_bus_scan(acpi_handle handle)2364 int acpi_bus_scan(acpi_handle handle)
2365 {
2366 struct acpi_device *device = NULL;
2367
2368 acpi_bus_scan_second_pass = false;
2369
2370 /* Pass 1: Avoid enumerating devices with missing dependencies. */
2371
2372 if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2373 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2374 acpi_bus_check_add_1, NULL, NULL,
2375 (void **)&device);
2376
2377 if (!device)
2378 return -ENODEV;
2379
2380 acpi_bus_attach(device, true);
2381
2382 if (!acpi_bus_scan_second_pass)
2383 return 0;
2384
2385 /* Pass 2: Enumerate all of the remaining devices. */
2386
2387 device = NULL;
2388
2389 if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2390 acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2391 acpi_bus_check_add_2, NULL, NULL,
2392 (void **)&device);
2393
2394 acpi_bus_attach(device, false);
2395
2396 return 0;
2397 }
2398 EXPORT_SYMBOL(acpi_bus_scan);
2399
2400 /**
2401 * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2402 * @adev: Root of the ACPI namespace scope to walk.
2403 *
2404 * Must be called under acpi_scan_lock.
2405 */
acpi_bus_trim(struct acpi_device * adev)2406 void acpi_bus_trim(struct acpi_device *adev)
2407 {
2408 struct acpi_scan_handler *handler = adev->handler;
2409 struct acpi_device *child;
2410
2411 list_for_each_entry_reverse(child, &adev->children, node)
2412 acpi_bus_trim(child);
2413
2414 adev->flags.match_driver = false;
2415 if (handler) {
2416 if (handler->detach)
2417 handler->detach(adev);
2418
2419 adev->handler = NULL;
2420 } else {
2421 device_release_driver(&adev->dev);
2422 }
2423 /*
2424 * Most likely, the device is going away, so put it into D3cold before
2425 * that.
2426 */
2427 acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2428 adev->flags.initialized = false;
2429 acpi_device_clear_enumerated(adev);
2430 }
2431 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2432
acpi_bus_register_early_device(int type)2433 int acpi_bus_register_early_device(int type)
2434 {
2435 struct acpi_device *device = NULL;
2436 int result;
2437
2438 result = acpi_add_single_object(&device, NULL, type, false);
2439 if (result)
2440 return result;
2441
2442 device->flags.match_driver = true;
2443 return device_attach(&device->dev);
2444 }
2445 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2446
acpi_bus_scan_fixed(void)2447 static int acpi_bus_scan_fixed(void)
2448 {
2449 int result = 0;
2450
2451 /*
2452 * Enumerate all fixed-feature devices.
2453 */
2454 if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2455 struct acpi_device *device = NULL;
2456
2457 result = acpi_add_single_object(&device, NULL,
2458 ACPI_BUS_TYPE_POWER_BUTTON, false);
2459 if (result)
2460 return result;
2461
2462 device->flags.match_driver = true;
2463 result = device_attach(&device->dev);
2464 if (result < 0)
2465 return result;
2466
2467 device_init_wakeup(&device->dev, true);
2468 }
2469
2470 if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2471 struct acpi_device *device = NULL;
2472
2473 result = acpi_add_single_object(&device, NULL,
2474 ACPI_BUS_TYPE_SLEEP_BUTTON, false);
2475 if (result)
2476 return result;
2477
2478 device->flags.match_driver = true;
2479 result = device_attach(&device->dev);
2480 }
2481
2482 return result < 0 ? result : 0;
2483 }
2484
acpi_get_spcr_uart_addr(void)2485 static void __init acpi_get_spcr_uart_addr(void)
2486 {
2487 acpi_status status;
2488 struct acpi_table_spcr *spcr_ptr;
2489
2490 status = acpi_get_table(ACPI_SIG_SPCR, 0,
2491 (struct acpi_table_header **)&spcr_ptr);
2492 if (ACPI_FAILURE(status)) {
2493 pr_warn("STAO table present, but SPCR is missing\n");
2494 return;
2495 }
2496
2497 spcr_uart_addr = spcr_ptr->serial_port.address;
2498 acpi_put_table((struct acpi_table_header *)spcr_ptr);
2499 }
2500
2501 static bool acpi_scan_initialized;
2502
acpi_scan_init(void)2503 int __init acpi_scan_init(void)
2504 {
2505 int result;
2506 acpi_status status;
2507 struct acpi_table_stao *stao_ptr;
2508
2509 acpi_pci_root_init();
2510 acpi_pci_link_init();
2511 acpi_processor_init();
2512 acpi_platform_init();
2513 acpi_lpss_init();
2514 acpi_apd_init();
2515 acpi_cmos_rtc_init();
2516 acpi_container_init();
2517 acpi_memory_hotplug_init();
2518 acpi_watchdog_init();
2519 acpi_pnp_init();
2520 acpi_int340x_thermal_init();
2521 acpi_amba_init();
2522 acpi_init_lpit();
2523
2524 acpi_scan_add_handler(&generic_device_handler);
2525
2526 /*
2527 * If there is STAO table, check whether it needs to ignore the UART
2528 * device in SPCR table.
2529 */
2530 status = acpi_get_table(ACPI_SIG_STAO, 0,
2531 (struct acpi_table_header **)&stao_ptr);
2532 if (ACPI_SUCCESS(status)) {
2533 if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2534 pr_info("STAO Name List not yet supported.\n");
2535
2536 if (stao_ptr->ignore_uart)
2537 acpi_get_spcr_uart_addr();
2538
2539 acpi_put_table((struct acpi_table_header *)stao_ptr);
2540 }
2541
2542 acpi_gpe_apply_masked_gpes();
2543 acpi_update_all_gpes();
2544
2545 /*
2546 * Although we call __add_memory() that is documented to require the
2547 * device_hotplug_lock, it is not necessary here because this is an
2548 * early code when userspace or any other code path cannot trigger
2549 * hotplug/hotunplug operations.
2550 */
2551 mutex_lock(&acpi_scan_lock);
2552 /*
2553 * Enumerate devices in the ACPI namespace.
2554 */
2555 result = acpi_bus_scan(ACPI_ROOT_OBJECT);
2556 if (result)
2557 goto out;
2558
2559 result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root);
2560 if (result)
2561 goto out;
2562
2563 /* Fixed feature devices do not exist on HW-reduced platform */
2564 if (!acpi_gbl_reduced_hardware) {
2565 result = acpi_bus_scan_fixed();
2566 if (result) {
2567 acpi_detach_data(acpi_root->handle,
2568 acpi_scan_drop_device);
2569 acpi_device_del(acpi_root);
2570 acpi_bus_put_acpi_device(acpi_root);
2571 goto out;
2572 }
2573 }
2574
2575 acpi_turn_off_unused_power_resources();
2576
2577 acpi_scan_initialized = true;
2578
2579 out:
2580 mutex_unlock(&acpi_scan_lock);
2581 return result;
2582 }
2583
2584 static struct acpi_probe_entry *ape;
2585 static int acpi_probe_count;
2586 static DEFINE_MUTEX(acpi_probe_mutex);
2587
acpi_match_madt(union acpi_subtable_headers * header,const unsigned long end)2588 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2589 const unsigned long end)
2590 {
2591 if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2592 if (!ape->probe_subtbl(header, end))
2593 acpi_probe_count++;
2594
2595 return 0;
2596 }
2597
__acpi_probe_device_table(struct acpi_probe_entry * ap_head,int nr)2598 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2599 {
2600 int count = 0;
2601
2602 if (acpi_disabled)
2603 return 0;
2604
2605 mutex_lock(&acpi_probe_mutex);
2606 for (ape = ap_head; nr; ape++, nr--) {
2607 if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2608 acpi_probe_count = 0;
2609 acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2610 count += acpi_probe_count;
2611 } else {
2612 int res;
2613 res = acpi_table_parse(ape->id, ape->probe_table);
2614 if (!res)
2615 count++;
2616 }
2617 }
2618 mutex_unlock(&acpi_probe_mutex);
2619
2620 return count;
2621 }
2622
acpi_table_events_fn(struct work_struct * work)2623 static void acpi_table_events_fn(struct work_struct *work)
2624 {
2625 acpi_scan_lock_acquire();
2626 acpi_bus_scan(ACPI_ROOT_OBJECT);
2627 acpi_scan_lock_release();
2628
2629 kfree(work);
2630 }
2631
acpi_scan_table_notify(void)2632 void acpi_scan_table_notify(void)
2633 {
2634 struct work_struct *work;
2635
2636 if (!acpi_scan_initialized)
2637 return;
2638
2639 work = kmalloc(sizeof(*work), GFP_KERNEL);
2640 if (!work)
2641 return;
2642
2643 INIT_WORK(work, acpi_table_events_fn);
2644 schedule_work(work);
2645 }
2646
acpi_reconfig_notifier_register(struct notifier_block * nb)2647 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2648 {
2649 return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2650 }
2651 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2652
acpi_reconfig_notifier_unregister(struct notifier_block * nb)2653 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2654 {
2655 return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2656 }
2657 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2658