• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * scan.c - support for transforming the ACPI namespace into individual objects
4  */
5 
6 #define pr_fmt(fmt) "ACPI: " fmt
7 
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/slab.h>
11 #include <linux/kernel.h>
12 #include <linux/acpi.h>
13 #include <linux/acpi_iort.h>
14 #include <linux/acpi_viot.h>
15 #include <linux/iommu.h>
16 #include <linux/signal.h>
17 #include <linux/kthread.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-map-ops.h>
20 #include <linux/platform_data/x86/apple.h>
21 #include <linux/pgtable.h>
22 
23 #include "internal.h"
24 
25 extern struct acpi_device *acpi_root;
26 
27 #define ACPI_BUS_CLASS			"system_bus"
28 #define ACPI_BUS_HID			"LNXSYBUS"
29 #define ACPI_BUS_DEVICE_NAME		"System Bus"
30 
31 #define ACPI_IS_ROOT_DEVICE(device)    (!(device)->parent)
32 
33 #define INVALID_ACPI_HANDLE	((acpi_handle)empty_zero_page)
34 
35 static const char *dummy_hid = "device";
36 
37 static LIST_HEAD(acpi_dep_list);
38 static DEFINE_MUTEX(acpi_dep_list_lock);
39 LIST_HEAD(acpi_bus_id_list);
40 static DEFINE_MUTEX(acpi_scan_lock);
41 static LIST_HEAD(acpi_scan_handlers_list);
42 DEFINE_MUTEX(acpi_device_lock);
43 LIST_HEAD(acpi_wakeup_device_list);
44 static DEFINE_MUTEX(acpi_hp_context_lock);
45 
46 /*
47  * The UART device described by the SPCR table is the only object which needs
48  * special-casing. Everything else is covered by ACPI namespace paths in STAO
49  * table.
50  */
51 static u64 spcr_uart_addr;
52 
acpi_scan_lock_acquire(void)53 void acpi_scan_lock_acquire(void)
54 {
55 	mutex_lock(&acpi_scan_lock);
56 }
57 EXPORT_SYMBOL_GPL(acpi_scan_lock_acquire);
58 
acpi_scan_lock_release(void)59 void acpi_scan_lock_release(void)
60 {
61 	mutex_unlock(&acpi_scan_lock);
62 }
63 EXPORT_SYMBOL_GPL(acpi_scan_lock_release);
64 
acpi_lock_hp_context(void)65 void acpi_lock_hp_context(void)
66 {
67 	mutex_lock(&acpi_hp_context_lock);
68 }
69 
acpi_unlock_hp_context(void)70 void acpi_unlock_hp_context(void)
71 {
72 	mutex_unlock(&acpi_hp_context_lock);
73 }
74 
acpi_initialize_hp_context(struct acpi_device * adev,struct acpi_hotplug_context * hp,int (* notify)(struct acpi_device *,u32),void (* uevent)(struct acpi_device *,u32))75 void acpi_initialize_hp_context(struct acpi_device *adev,
76 				struct acpi_hotplug_context *hp,
77 				int (*notify)(struct acpi_device *, u32),
78 				void (*uevent)(struct acpi_device *, u32))
79 {
80 	acpi_lock_hp_context();
81 	hp->notify = notify;
82 	hp->uevent = uevent;
83 	acpi_set_hp_context(adev, hp);
84 	acpi_unlock_hp_context();
85 }
86 EXPORT_SYMBOL_GPL(acpi_initialize_hp_context);
87 
acpi_scan_add_handler(struct acpi_scan_handler * handler)88 int acpi_scan_add_handler(struct acpi_scan_handler *handler)
89 {
90 	if (!handler)
91 		return -EINVAL;
92 
93 	list_add_tail(&handler->list_node, &acpi_scan_handlers_list);
94 	return 0;
95 }
96 
acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler * handler,const char * hotplug_profile_name)97 int acpi_scan_add_handler_with_hotplug(struct acpi_scan_handler *handler,
98 				       const char *hotplug_profile_name)
99 {
100 	int error;
101 
102 	error = acpi_scan_add_handler(handler);
103 	if (error)
104 		return error;
105 
106 	acpi_sysfs_add_hotplug_profile(&handler->hotplug, hotplug_profile_name);
107 	return 0;
108 }
109 
acpi_scan_is_offline(struct acpi_device * adev,bool uevent)110 bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent)
111 {
112 	struct acpi_device_physical_node *pn;
113 	bool offline = true;
114 	char *envp[] = { "EVENT=offline", NULL };
115 
116 	/*
117 	 * acpi_container_offline() calls this for all of the container's
118 	 * children under the container's physical_node_lock lock.
119 	 */
120 	mutex_lock_nested(&adev->physical_node_lock, SINGLE_DEPTH_NESTING);
121 
122 	list_for_each_entry(pn, &adev->physical_node_list, node)
123 		if (device_supports_offline(pn->dev) && !pn->dev->offline) {
124 			if (uevent)
125 				kobject_uevent_env(&pn->dev->kobj, KOBJ_CHANGE, envp);
126 
127 			offline = false;
128 			break;
129 		}
130 
131 	mutex_unlock(&adev->physical_node_lock);
132 	return offline;
133 }
134 
acpi_bus_offline(acpi_handle handle,u32 lvl,void * data,void ** ret_p)135 static acpi_status acpi_bus_offline(acpi_handle handle, u32 lvl, void *data,
136 				    void **ret_p)
137 {
138 	struct acpi_device *device = NULL;
139 	struct acpi_device_physical_node *pn;
140 	bool second_pass = (bool)data;
141 	acpi_status status = AE_OK;
142 
143 	if (acpi_bus_get_device(handle, &device))
144 		return AE_OK;
145 
146 	if (device->handler && !device->handler->hotplug.enabled) {
147 		*ret_p = &device->dev;
148 		return AE_SUPPORT;
149 	}
150 
151 	mutex_lock(&device->physical_node_lock);
152 
153 	list_for_each_entry(pn, &device->physical_node_list, node) {
154 		int ret;
155 
156 		if (second_pass) {
157 			/* Skip devices offlined by the first pass. */
158 			if (pn->put_online)
159 				continue;
160 		} else {
161 			pn->put_online = false;
162 		}
163 		ret = device_offline(pn->dev);
164 		if (ret >= 0) {
165 			pn->put_online = !ret;
166 		} else {
167 			*ret_p = pn->dev;
168 			if (second_pass) {
169 				status = AE_ERROR;
170 				break;
171 			}
172 		}
173 	}
174 
175 	mutex_unlock(&device->physical_node_lock);
176 
177 	return status;
178 }
179 
acpi_bus_online(acpi_handle handle,u32 lvl,void * data,void ** ret_p)180 static acpi_status acpi_bus_online(acpi_handle handle, u32 lvl, void *data,
181 				   void **ret_p)
182 {
183 	struct acpi_device *device = NULL;
184 	struct acpi_device_physical_node *pn;
185 
186 	if (acpi_bus_get_device(handle, &device))
187 		return AE_OK;
188 
189 	mutex_lock(&device->physical_node_lock);
190 
191 	list_for_each_entry(pn, &device->physical_node_list, node)
192 		if (pn->put_online) {
193 			device_online(pn->dev);
194 			pn->put_online = false;
195 		}
196 
197 	mutex_unlock(&device->physical_node_lock);
198 
199 	return AE_OK;
200 }
201 
acpi_scan_try_to_offline(struct acpi_device * device)202 static int acpi_scan_try_to_offline(struct acpi_device *device)
203 {
204 	acpi_handle handle = device->handle;
205 	struct device *errdev = NULL;
206 	acpi_status status;
207 
208 	/*
209 	 * Carry out two passes here and ignore errors in the first pass,
210 	 * because if the devices in question are memory blocks and
211 	 * CONFIG_MEMCG is set, one of the blocks may hold data structures
212 	 * that the other blocks depend on, but it is not known in advance which
213 	 * block holds them.
214 	 *
215 	 * If the first pass is successful, the second one isn't needed, though.
216 	 */
217 	status = acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
218 				     NULL, acpi_bus_offline, (void *)false,
219 				     (void **)&errdev);
220 	if (status == AE_SUPPORT) {
221 		dev_warn(errdev, "Offline disabled.\n");
222 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
223 				    acpi_bus_online, NULL, NULL, NULL);
224 		return -EPERM;
225 	}
226 	acpi_bus_offline(handle, 0, (void *)false, (void **)&errdev);
227 	if (errdev) {
228 		errdev = NULL;
229 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
230 				    NULL, acpi_bus_offline, (void *)true,
231 				    (void **)&errdev);
232 		if (!errdev)
233 			acpi_bus_offline(handle, 0, (void *)true,
234 					 (void **)&errdev);
235 
236 		if (errdev) {
237 			dev_warn(errdev, "Offline failed.\n");
238 			acpi_bus_online(handle, 0, NULL, NULL);
239 			acpi_walk_namespace(ACPI_TYPE_ANY, handle,
240 					    ACPI_UINT32_MAX, acpi_bus_online,
241 					    NULL, NULL, NULL);
242 			return -EBUSY;
243 		}
244 	}
245 	return 0;
246 }
247 
acpi_scan_hot_remove(struct acpi_device * device)248 static int acpi_scan_hot_remove(struct acpi_device *device)
249 {
250 	acpi_handle handle = device->handle;
251 	unsigned long long sta;
252 	acpi_status status;
253 
254 	if (device->handler && device->handler->hotplug.demand_offline) {
255 		if (!acpi_scan_is_offline(device, true))
256 			return -EBUSY;
257 	} else {
258 		int error = acpi_scan_try_to_offline(device);
259 		if (error)
260 			return error;
261 	}
262 
263 	acpi_handle_debug(handle, "Ejecting\n");
264 
265 	acpi_bus_trim(device);
266 
267 	acpi_evaluate_lck(handle, 0);
268 	/*
269 	 * TBD: _EJD support.
270 	 */
271 	status = acpi_evaluate_ej0(handle);
272 	if (status == AE_NOT_FOUND)
273 		return -ENODEV;
274 	else if (ACPI_FAILURE(status))
275 		return -EIO;
276 
277 	/*
278 	 * Verify if eject was indeed successful.  If not, log an error
279 	 * message.  No need to call _OST since _EJ0 call was made OK.
280 	 */
281 	status = acpi_evaluate_integer(handle, "_STA", NULL, &sta);
282 	if (ACPI_FAILURE(status)) {
283 		acpi_handle_warn(handle,
284 			"Status check after eject failed (0x%x)\n", status);
285 	} else if (sta & ACPI_STA_DEVICE_ENABLED) {
286 		acpi_handle_warn(handle,
287 			"Eject incomplete - status 0x%llx\n", sta);
288 	}
289 
290 	return 0;
291 }
292 
acpi_scan_device_not_present(struct acpi_device * adev)293 static int acpi_scan_device_not_present(struct acpi_device *adev)
294 {
295 	if (!acpi_device_enumerated(adev)) {
296 		dev_warn(&adev->dev, "Still not present\n");
297 		return -EALREADY;
298 	}
299 	acpi_bus_trim(adev);
300 	return 0;
301 }
302 
acpi_scan_device_check(struct acpi_device * adev)303 static int acpi_scan_device_check(struct acpi_device *adev)
304 {
305 	int error;
306 
307 	acpi_bus_get_status(adev);
308 	if (adev->status.present || adev->status.functional) {
309 		/*
310 		 * This function is only called for device objects for which
311 		 * matching scan handlers exist.  The only situation in which
312 		 * the scan handler is not attached to this device object yet
313 		 * is when the device has just appeared (either it wasn't
314 		 * present at all before or it was removed and then added
315 		 * again).
316 		 */
317 		if (adev->handler) {
318 			dev_warn(&adev->dev, "Already enumerated\n");
319 			return -EALREADY;
320 		}
321 		error = acpi_bus_scan(adev->handle);
322 		if (error) {
323 			dev_warn(&adev->dev, "Namespace scan failure\n");
324 			return error;
325 		}
326 		if (!adev->handler) {
327 			dev_warn(&adev->dev, "Enumeration failure\n");
328 			error = -ENODEV;
329 		}
330 	} else {
331 		error = acpi_scan_device_not_present(adev);
332 	}
333 	return error;
334 }
335 
acpi_scan_bus_check(struct acpi_device * adev)336 static int acpi_scan_bus_check(struct acpi_device *adev)
337 {
338 	struct acpi_scan_handler *handler = adev->handler;
339 	struct acpi_device *child;
340 	int error;
341 
342 	acpi_bus_get_status(adev);
343 	if (!(adev->status.present || adev->status.functional)) {
344 		acpi_scan_device_not_present(adev);
345 		return 0;
346 	}
347 	if (handler && handler->hotplug.scan_dependent)
348 		return handler->hotplug.scan_dependent(adev);
349 
350 	error = acpi_bus_scan(adev->handle);
351 	if (error) {
352 		dev_warn(&adev->dev, "Namespace scan failure\n");
353 		return error;
354 	}
355 	list_for_each_entry(child, &adev->children, node) {
356 		error = acpi_scan_bus_check(child);
357 		if (error)
358 			return error;
359 	}
360 	return 0;
361 }
362 
acpi_generic_hotplug_event(struct acpi_device * adev,u32 type)363 static int acpi_generic_hotplug_event(struct acpi_device *adev, u32 type)
364 {
365 	switch (type) {
366 	case ACPI_NOTIFY_BUS_CHECK:
367 		return acpi_scan_bus_check(adev);
368 	case ACPI_NOTIFY_DEVICE_CHECK:
369 		return acpi_scan_device_check(adev);
370 	case ACPI_NOTIFY_EJECT_REQUEST:
371 	case ACPI_OST_EC_OSPM_EJECT:
372 		if (adev->handler && !adev->handler->hotplug.enabled) {
373 			dev_info(&adev->dev, "Eject disabled\n");
374 			return -EPERM;
375 		}
376 		acpi_evaluate_ost(adev->handle, ACPI_NOTIFY_EJECT_REQUEST,
377 				  ACPI_OST_SC_EJECT_IN_PROGRESS, NULL);
378 		return acpi_scan_hot_remove(adev);
379 	}
380 	return -EINVAL;
381 }
382 
acpi_device_hotplug(struct acpi_device * adev,u32 src)383 void acpi_device_hotplug(struct acpi_device *adev, u32 src)
384 {
385 	u32 ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
386 	int error = -ENODEV;
387 
388 	lock_device_hotplug();
389 	mutex_lock(&acpi_scan_lock);
390 
391 	/*
392 	 * The device object's ACPI handle cannot become invalid as long as we
393 	 * are holding acpi_scan_lock, but it might have become invalid before
394 	 * that lock was acquired.
395 	 */
396 	if (adev->handle == INVALID_ACPI_HANDLE)
397 		goto err_out;
398 
399 	if (adev->flags.is_dock_station) {
400 		error = dock_notify(adev, src);
401 	} else if (adev->flags.hotplug_notify) {
402 		error = acpi_generic_hotplug_event(adev, src);
403 	} else {
404 		int (*notify)(struct acpi_device *, u32);
405 
406 		acpi_lock_hp_context();
407 		notify = adev->hp ? adev->hp->notify : NULL;
408 		acpi_unlock_hp_context();
409 		/*
410 		 * There may be additional notify handlers for device objects
411 		 * without the .event() callback, so ignore them here.
412 		 */
413 		if (notify)
414 			error = notify(adev, src);
415 		else
416 			goto out;
417 	}
418 	switch (error) {
419 	case 0:
420 		ost_code = ACPI_OST_SC_SUCCESS;
421 		break;
422 	case -EPERM:
423 		ost_code = ACPI_OST_SC_EJECT_NOT_SUPPORTED;
424 		break;
425 	case -EBUSY:
426 		ost_code = ACPI_OST_SC_DEVICE_BUSY;
427 		break;
428 	default:
429 		ost_code = ACPI_OST_SC_NON_SPECIFIC_FAILURE;
430 		break;
431 	}
432 
433  err_out:
434 	acpi_evaluate_ost(adev->handle, src, ost_code, NULL);
435 
436  out:
437 	acpi_bus_put_acpi_device(adev);
438 	mutex_unlock(&acpi_scan_lock);
439 	unlock_device_hotplug();
440 }
441 
acpi_free_power_resources_lists(struct acpi_device * device)442 static void acpi_free_power_resources_lists(struct acpi_device *device)
443 {
444 	int i;
445 
446 	if (device->wakeup.flags.valid)
447 		acpi_power_resources_list_free(&device->wakeup.resources);
448 
449 	if (!device->power.flags.power_resources)
450 		return;
451 
452 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) {
453 		struct acpi_device_power_state *ps = &device->power.states[i];
454 		acpi_power_resources_list_free(&ps->resources);
455 	}
456 }
457 
acpi_device_release(struct device * dev)458 static void acpi_device_release(struct device *dev)
459 {
460 	struct acpi_device *acpi_dev = to_acpi_device(dev);
461 
462 	acpi_free_properties(acpi_dev);
463 	acpi_free_pnp_ids(&acpi_dev->pnp);
464 	acpi_free_power_resources_lists(acpi_dev);
465 	kfree(acpi_dev);
466 }
467 
acpi_device_del(struct acpi_device * device)468 static void acpi_device_del(struct acpi_device *device)
469 {
470 	struct acpi_device_bus_id *acpi_device_bus_id;
471 
472 	mutex_lock(&acpi_device_lock);
473 	if (device->parent)
474 		list_del(&device->node);
475 
476 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node)
477 		if (!strcmp(acpi_device_bus_id->bus_id,
478 			    acpi_device_hid(device))) {
479 			ida_simple_remove(&acpi_device_bus_id->instance_ida, device->pnp.instance_no);
480 			if (ida_is_empty(&acpi_device_bus_id->instance_ida)) {
481 				list_del(&acpi_device_bus_id->node);
482 				kfree_const(acpi_device_bus_id->bus_id);
483 				kfree(acpi_device_bus_id);
484 			}
485 			break;
486 		}
487 
488 	list_del(&device->wakeup_list);
489 	mutex_unlock(&acpi_device_lock);
490 
491 	acpi_power_add_remove_device(device, false);
492 	acpi_device_remove_files(device);
493 	if (device->remove)
494 		device->remove(device);
495 
496 	device_del(&device->dev);
497 }
498 
499 static BLOCKING_NOTIFIER_HEAD(acpi_reconfig_chain);
500 
501 static LIST_HEAD(acpi_device_del_list);
502 static DEFINE_MUTEX(acpi_device_del_lock);
503 
acpi_device_del_work_fn(struct work_struct * work_not_used)504 static void acpi_device_del_work_fn(struct work_struct *work_not_used)
505 {
506 	for (;;) {
507 		struct acpi_device *adev;
508 
509 		mutex_lock(&acpi_device_del_lock);
510 
511 		if (list_empty(&acpi_device_del_list)) {
512 			mutex_unlock(&acpi_device_del_lock);
513 			break;
514 		}
515 		adev = list_first_entry(&acpi_device_del_list,
516 					struct acpi_device, del_list);
517 		list_del(&adev->del_list);
518 
519 		mutex_unlock(&acpi_device_del_lock);
520 
521 		blocking_notifier_call_chain(&acpi_reconfig_chain,
522 					     ACPI_RECONFIG_DEVICE_REMOVE, adev);
523 
524 		acpi_device_del(adev);
525 		/*
526 		 * Drop references to all power resources that might have been
527 		 * used by the device.
528 		 */
529 		acpi_power_transition(adev, ACPI_STATE_D3_COLD);
530 		acpi_dev_put(adev);
531 	}
532 }
533 
534 /**
535  * acpi_scan_drop_device - Drop an ACPI device object.
536  * @handle: Handle of an ACPI namespace node, not used.
537  * @context: Address of the ACPI device object to drop.
538  *
539  * This is invoked by acpi_ns_delete_node() during the removal of the ACPI
540  * namespace node the device object pointed to by @context is attached to.
541  *
542  * The unregistration is carried out asynchronously to avoid running
543  * acpi_device_del() under the ACPICA's namespace mutex and the list is used to
544  * ensure the correct ordering (the device objects must be unregistered in the
545  * same order in which the corresponding namespace nodes are deleted).
546  */
acpi_scan_drop_device(acpi_handle handle,void * context)547 static void acpi_scan_drop_device(acpi_handle handle, void *context)
548 {
549 	static DECLARE_WORK(work, acpi_device_del_work_fn);
550 	struct acpi_device *adev = context;
551 
552 	mutex_lock(&acpi_device_del_lock);
553 
554 	/*
555 	 * Use the ACPI hotplug workqueue which is ordered, so this work item
556 	 * won't run after any hotplug work items submitted subsequently.  That
557 	 * prevents attempts to register device objects identical to those being
558 	 * deleted from happening concurrently (such attempts result from
559 	 * hotplug events handled via the ACPI hotplug workqueue).  It also will
560 	 * run after all of the work items submitted previously, which helps
561 	 * those work items to ensure that they are not accessing stale device
562 	 * objects.
563 	 */
564 	if (list_empty(&acpi_device_del_list))
565 		acpi_queue_hotplug_work(&work);
566 
567 	list_add_tail(&adev->del_list, &acpi_device_del_list);
568 	/* Make acpi_ns_validate_handle() return NULL for this handle. */
569 	adev->handle = INVALID_ACPI_HANDLE;
570 
571 	mutex_unlock(&acpi_device_del_lock);
572 }
573 
handle_to_device(acpi_handle handle,void (* callback)(void *))574 static struct acpi_device *handle_to_device(acpi_handle handle,
575 					    void (*callback)(void *))
576 {
577 	struct acpi_device *adev = NULL;
578 	acpi_status status;
579 
580 	status = acpi_get_data_full(handle, acpi_scan_drop_device,
581 				    (void **)&adev, callback);
582 	if (ACPI_FAILURE(status) || !adev) {
583 		acpi_handle_debug(handle, "No context!\n");
584 		return NULL;
585 	}
586 	return adev;
587 }
588 
acpi_bus_get_device(acpi_handle handle,struct acpi_device ** device)589 int acpi_bus_get_device(acpi_handle handle, struct acpi_device **device)
590 {
591 	if (!device)
592 		return -EINVAL;
593 
594 	*device = handle_to_device(handle, NULL);
595 	if (!*device)
596 		return -ENODEV;
597 
598 	return 0;
599 }
600 EXPORT_SYMBOL(acpi_bus_get_device);
601 
get_acpi_device(void * dev)602 static void get_acpi_device(void *dev)
603 {
604 	acpi_dev_get(dev);
605 }
606 
acpi_bus_get_acpi_device(acpi_handle handle)607 struct acpi_device *acpi_bus_get_acpi_device(acpi_handle handle)
608 {
609 	return handle_to_device(handle, get_acpi_device);
610 }
611 
acpi_device_bus_id_match(const char * dev_id)612 static struct acpi_device_bus_id *acpi_device_bus_id_match(const char *dev_id)
613 {
614 	struct acpi_device_bus_id *acpi_device_bus_id;
615 
616 	/* Find suitable bus_id and instance number in acpi_bus_id_list. */
617 	list_for_each_entry(acpi_device_bus_id, &acpi_bus_id_list, node) {
618 		if (!strcmp(acpi_device_bus_id->bus_id, dev_id))
619 			return acpi_device_bus_id;
620 	}
621 	return NULL;
622 }
623 
acpi_device_set_name(struct acpi_device * device,struct acpi_device_bus_id * acpi_device_bus_id)624 static int acpi_device_set_name(struct acpi_device *device,
625 				struct acpi_device_bus_id *acpi_device_bus_id)
626 {
627 	struct ida *instance_ida = &acpi_device_bus_id->instance_ida;
628 	int result;
629 
630 	result = ida_simple_get(instance_ida, 0, ACPI_MAX_DEVICE_INSTANCES, GFP_KERNEL);
631 	if (result < 0)
632 		return result;
633 
634 	device->pnp.instance_no = result;
635 	dev_set_name(&device->dev, "%s:%02x", acpi_device_bus_id->bus_id, result);
636 	return 0;
637 }
638 
acpi_tie_acpi_dev(struct acpi_device * adev)639 static int acpi_tie_acpi_dev(struct acpi_device *adev)
640 {
641 	acpi_handle handle = adev->handle;
642 	acpi_status status;
643 
644 	if (!handle)
645 		return 0;
646 
647 	status = acpi_attach_data(handle, acpi_scan_drop_device, adev);
648 	if (ACPI_FAILURE(status)) {
649 		acpi_handle_err(handle, "Unable to attach device data\n");
650 		return -ENODEV;
651 	}
652 
653 	return 0;
654 }
655 
__acpi_device_add(struct acpi_device * device,void (* release)(struct device *))656 static int __acpi_device_add(struct acpi_device *device,
657 			     void (*release)(struct device *))
658 {
659 	struct acpi_device_bus_id *acpi_device_bus_id;
660 	int result;
661 
662 	/*
663 	 * Linkage
664 	 * -------
665 	 * Link this device to its parent and siblings.
666 	 */
667 	INIT_LIST_HEAD(&device->children);
668 	INIT_LIST_HEAD(&device->node);
669 	INIT_LIST_HEAD(&device->wakeup_list);
670 	INIT_LIST_HEAD(&device->physical_node_list);
671 	INIT_LIST_HEAD(&device->del_list);
672 	mutex_init(&device->physical_node_lock);
673 
674 	mutex_lock(&acpi_device_lock);
675 
676 	acpi_device_bus_id = acpi_device_bus_id_match(acpi_device_hid(device));
677 	if (acpi_device_bus_id) {
678 		result = acpi_device_set_name(device, acpi_device_bus_id);
679 		if (result)
680 			goto err_unlock;
681 	} else {
682 		acpi_device_bus_id = kzalloc(sizeof(*acpi_device_bus_id),
683 					     GFP_KERNEL);
684 		if (!acpi_device_bus_id) {
685 			result = -ENOMEM;
686 			goto err_unlock;
687 		}
688 		acpi_device_bus_id->bus_id =
689 			kstrdup_const(acpi_device_hid(device), GFP_KERNEL);
690 		if (!acpi_device_bus_id->bus_id) {
691 			kfree(acpi_device_bus_id);
692 			result = -ENOMEM;
693 			goto err_unlock;
694 		}
695 
696 		ida_init(&acpi_device_bus_id->instance_ida);
697 
698 		result = acpi_device_set_name(device, acpi_device_bus_id);
699 		if (result) {
700 			kfree_const(acpi_device_bus_id->bus_id);
701 			kfree(acpi_device_bus_id);
702 			goto err_unlock;
703 		}
704 
705 		list_add_tail(&acpi_device_bus_id->node, &acpi_bus_id_list);
706 	}
707 
708 	if (device->parent)
709 		list_add_tail(&device->node, &device->parent->children);
710 
711 	if (device->wakeup.flags.valid)
712 		list_add_tail(&device->wakeup_list, &acpi_wakeup_device_list);
713 
714 	mutex_unlock(&acpi_device_lock);
715 
716 	if (device->parent)
717 		device->dev.parent = &device->parent->dev;
718 
719 	device->dev.bus = &acpi_bus_type;
720 	device->dev.release = release;
721 	result = device_add(&device->dev);
722 	if (result) {
723 		dev_err(&device->dev, "Error registering device\n");
724 		goto err;
725 	}
726 
727 	result = acpi_device_setup_files(device);
728 	if (result)
729 		pr_err("Error creating sysfs interface for device %s\n",
730 		       dev_name(&device->dev));
731 
732 	return 0;
733 
734 err:
735 	mutex_lock(&acpi_device_lock);
736 
737 	if (device->parent)
738 		list_del(&device->node);
739 
740 	list_del(&device->wakeup_list);
741 
742 err_unlock:
743 	mutex_unlock(&acpi_device_lock);
744 
745 	acpi_detach_data(device->handle, acpi_scan_drop_device);
746 
747 	return result;
748 }
749 
acpi_device_add(struct acpi_device * adev,void (* release)(struct device *))750 int acpi_device_add(struct acpi_device *adev, void (*release)(struct device *))
751 {
752 	int ret;
753 
754 	ret = acpi_tie_acpi_dev(adev);
755 	if (ret)
756 		return ret;
757 
758 	return __acpi_device_add(adev, release);
759 }
760 
761 /* --------------------------------------------------------------------------
762                                  Device Enumeration
763    -------------------------------------------------------------------------- */
acpi_info_matches_ids(struct acpi_device_info * info,const char * const ids[])764 static bool acpi_info_matches_ids(struct acpi_device_info *info,
765 				  const char * const ids[])
766 {
767 	struct acpi_pnp_device_id_list *cid_list = NULL;
768 	int i, index;
769 
770 	if (!(info->valid & ACPI_VALID_HID))
771 		return false;
772 
773 	index = match_string(ids, -1, info->hardware_id.string);
774 	if (index >= 0)
775 		return true;
776 
777 	if (info->valid & ACPI_VALID_CID)
778 		cid_list = &info->compatible_id_list;
779 
780 	if (!cid_list)
781 		return false;
782 
783 	for (i = 0; i < cid_list->count; i++) {
784 		index = match_string(ids, -1, cid_list->ids[i].string);
785 		if (index >= 0)
786 			return true;
787 	}
788 
789 	return false;
790 }
791 
792 /* List of HIDs for which we ignore matching ACPI devices, when checking _DEP lists. */
793 static const char * const acpi_ignore_dep_ids[] = {
794 	"PNP0D80", /* Windows-compatible System Power Management Controller */
795 	"INT33BD", /* Intel Baytrail Mailbox Device */
796 	"LATT2021", /* Lattice FW Update Client Driver */
797 	NULL
798 };
799 
acpi_bus_get_parent(acpi_handle handle)800 static struct acpi_device *acpi_bus_get_parent(acpi_handle handle)
801 {
802 	struct acpi_device *device = NULL;
803 	acpi_status status;
804 
805 	/*
806 	 * Fixed hardware devices do not appear in the namespace and do not
807 	 * have handles, but we fabricate acpi_devices for them, so we have
808 	 * to deal with them specially.
809 	 */
810 	if (!handle)
811 		return acpi_root;
812 
813 	do {
814 		status = acpi_get_parent(handle, &handle);
815 		if (ACPI_FAILURE(status))
816 			return status == AE_NULL_ENTRY ? NULL : acpi_root;
817 	} while (acpi_bus_get_device(handle, &device));
818 	return device;
819 }
820 
821 acpi_status
acpi_bus_get_ejd(acpi_handle handle,acpi_handle * ejd)822 acpi_bus_get_ejd(acpi_handle handle, acpi_handle *ejd)
823 {
824 	acpi_status status;
825 	acpi_handle tmp;
826 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
827 	union acpi_object *obj;
828 
829 	status = acpi_get_handle(handle, "_EJD", &tmp);
830 	if (ACPI_FAILURE(status))
831 		return status;
832 
833 	status = acpi_evaluate_object(handle, "_EJD", NULL, &buffer);
834 	if (ACPI_SUCCESS(status)) {
835 		obj = buffer.pointer;
836 		status = acpi_get_handle(ACPI_ROOT_OBJECT, obj->string.pointer,
837 					 ejd);
838 		kfree(buffer.pointer);
839 	}
840 	return status;
841 }
842 EXPORT_SYMBOL_GPL(acpi_bus_get_ejd);
843 
acpi_bus_extract_wakeup_device_power_package(struct acpi_device * dev)844 static int acpi_bus_extract_wakeup_device_power_package(struct acpi_device *dev)
845 {
846 	acpi_handle handle = dev->handle;
847 	struct acpi_device_wakeup *wakeup = &dev->wakeup;
848 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
849 	union acpi_object *package = NULL;
850 	union acpi_object *element = NULL;
851 	acpi_status status;
852 	int err = -ENODATA;
853 
854 	INIT_LIST_HEAD(&wakeup->resources);
855 
856 	/* _PRW */
857 	status = acpi_evaluate_object(handle, "_PRW", NULL, &buffer);
858 	if (ACPI_FAILURE(status)) {
859 		acpi_handle_info(handle, "_PRW evaluation failed: %s\n",
860 				 acpi_format_exception(status));
861 		return err;
862 	}
863 
864 	package = (union acpi_object *)buffer.pointer;
865 
866 	if (!package || package->package.count < 2)
867 		goto out;
868 
869 	element = &(package->package.elements[0]);
870 	if (!element)
871 		goto out;
872 
873 	if (element->type == ACPI_TYPE_PACKAGE) {
874 		if ((element->package.count < 2) ||
875 		    (element->package.elements[0].type !=
876 		     ACPI_TYPE_LOCAL_REFERENCE)
877 		    || (element->package.elements[1].type != ACPI_TYPE_INTEGER))
878 			goto out;
879 
880 		wakeup->gpe_device =
881 		    element->package.elements[0].reference.handle;
882 		wakeup->gpe_number =
883 		    (u32) element->package.elements[1].integer.value;
884 	} else if (element->type == ACPI_TYPE_INTEGER) {
885 		wakeup->gpe_device = NULL;
886 		wakeup->gpe_number = element->integer.value;
887 	} else {
888 		goto out;
889 	}
890 
891 	element = &(package->package.elements[1]);
892 	if (element->type != ACPI_TYPE_INTEGER)
893 		goto out;
894 
895 	wakeup->sleep_state = element->integer.value;
896 
897 	err = acpi_extract_power_resources(package, 2, &wakeup->resources);
898 	if (err)
899 		goto out;
900 
901 	if (!list_empty(&wakeup->resources)) {
902 		int sleep_state;
903 
904 		err = acpi_power_wakeup_list_init(&wakeup->resources,
905 						  &sleep_state);
906 		if (err) {
907 			acpi_handle_warn(handle, "Retrieving current states "
908 					 "of wakeup power resources failed\n");
909 			acpi_power_resources_list_free(&wakeup->resources);
910 			goto out;
911 		}
912 		if (sleep_state < wakeup->sleep_state) {
913 			acpi_handle_warn(handle, "Overriding _PRW sleep state "
914 					 "(S%d) by S%d from power resources\n",
915 					 (int)wakeup->sleep_state, sleep_state);
916 			wakeup->sleep_state = sleep_state;
917 		}
918 	}
919 
920  out:
921 	kfree(buffer.pointer);
922 	return err;
923 }
924 
acpi_wakeup_gpe_init(struct acpi_device * device)925 static bool acpi_wakeup_gpe_init(struct acpi_device *device)
926 {
927 	static const struct acpi_device_id button_device_ids[] = {
928 		{"PNP0C0C", 0},		/* Power button */
929 		{"PNP0C0D", 0},		/* Lid */
930 		{"PNP0C0E", 0},		/* Sleep button */
931 		{"", 0},
932 	};
933 	struct acpi_device_wakeup *wakeup = &device->wakeup;
934 	acpi_status status;
935 
936 	wakeup->flags.notifier_present = 0;
937 
938 	/* Power button, Lid switch always enable wakeup */
939 	if (!acpi_match_device_ids(device, button_device_ids)) {
940 		if (!acpi_match_device_ids(device, &button_device_ids[1])) {
941 			/* Do not use Lid/sleep button for S5 wakeup */
942 			if (wakeup->sleep_state == ACPI_STATE_S5)
943 				wakeup->sleep_state = ACPI_STATE_S4;
944 		}
945 		acpi_mark_gpe_for_wake(wakeup->gpe_device, wakeup->gpe_number);
946 		device_set_wakeup_capable(&device->dev, true);
947 		return true;
948 	}
949 
950 	status = acpi_setup_gpe_for_wake(device->handle, wakeup->gpe_device,
951 					 wakeup->gpe_number);
952 	return ACPI_SUCCESS(status);
953 }
954 
acpi_bus_get_wakeup_device_flags(struct acpi_device * device)955 static void acpi_bus_get_wakeup_device_flags(struct acpi_device *device)
956 {
957 	int err;
958 
959 	/* Presence of _PRW indicates wake capable */
960 	if (!acpi_has_method(device->handle, "_PRW"))
961 		return;
962 
963 	err = acpi_bus_extract_wakeup_device_power_package(device);
964 	if (err) {
965 		dev_err(&device->dev, "Unable to extract wakeup power resources");
966 		return;
967 	}
968 
969 	device->wakeup.flags.valid = acpi_wakeup_gpe_init(device);
970 	device->wakeup.prepare_count = 0;
971 	/*
972 	 * Call _PSW/_DSW object to disable its ability to wake the sleeping
973 	 * system for the ACPI device with the _PRW object.
974 	 * The _PSW object is deprecated in ACPI 3.0 and is replaced by _DSW.
975 	 * So it is necessary to call _DSW object first. Only when it is not
976 	 * present will the _PSW object used.
977 	 */
978 	err = acpi_device_sleep_wake(device, 0, 0, 0);
979 	if (err)
980 		pr_debug("error in _DSW or _PSW evaluation\n");
981 }
982 
acpi_bus_init_power_state(struct acpi_device * device,int state)983 static void acpi_bus_init_power_state(struct acpi_device *device, int state)
984 {
985 	struct acpi_device_power_state *ps = &device->power.states[state];
986 	char pathname[5] = { '_', 'P', 'R', '0' + state, '\0' };
987 	struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
988 	acpi_status status;
989 
990 	INIT_LIST_HEAD(&ps->resources);
991 
992 	/* Evaluate "_PRx" to get referenced power resources */
993 	status = acpi_evaluate_object(device->handle, pathname, NULL, &buffer);
994 	if (ACPI_SUCCESS(status)) {
995 		union acpi_object *package = buffer.pointer;
996 
997 		if (buffer.length && package
998 		    && package->type == ACPI_TYPE_PACKAGE
999 		    && package->package.count)
1000 			acpi_extract_power_resources(package, 0, &ps->resources);
1001 
1002 		ACPI_FREE(buffer.pointer);
1003 	}
1004 
1005 	/* Evaluate "_PSx" to see if we can do explicit sets */
1006 	pathname[2] = 'S';
1007 	if (acpi_has_method(device->handle, pathname))
1008 		ps->flags.explicit_set = 1;
1009 
1010 	/* State is valid if there are means to put the device into it. */
1011 	if (!list_empty(&ps->resources) || ps->flags.explicit_set)
1012 		ps->flags.valid = 1;
1013 
1014 	ps->power = -1;		/* Unknown - driver assigned */
1015 	ps->latency = -1;	/* Unknown - driver assigned */
1016 }
1017 
acpi_bus_get_power_flags(struct acpi_device * device)1018 static void acpi_bus_get_power_flags(struct acpi_device *device)
1019 {
1020 	u32 i;
1021 
1022 	/* Presence of _PS0|_PR0 indicates 'power manageable' */
1023 	if (!acpi_has_method(device->handle, "_PS0") &&
1024 	    !acpi_has_method(device->handle, "_PR0"))
1025 		return;
1026 
1027 	device->flags.power_manageable = 1;
1028 
1029 	/*
1030 	 * Power Management Flags
1031 	 */
1032 	if (acpi_has_method(device->handle, "_PSC"))
1033 		device->power.flags.explicit_get = 1;
1034 
1035 	if (acpi_has_method(device->handle, "_IRC"))
1036 		device->power.flags.inrush_current = 1;
1037 
1038 	if (acpi_has_method(device->handle, "_DSW"))
1039 		device->power.flags.dsw_present = 1;
1040 
1041 	/*
1042 	 * Enumerate supported power management states
1043 	 */
1044 	for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++)
1045 		acpi_bus_init_power_state(device, i);
1046 
1047 	INIT_LIST_HEAD(&device->power.states[ACPI_STATE_D3_COLD].resources);
1048 
1049 	/* Set the defaults for D0 and D3hot (always supported). */
1050 	device->power.states[ACPI_STATE_D0].flags.valid = 1;
1051 	device->power.states[ACPI_STATE_D0].power = 100;
1052 	device->power.states[ACPI_STATE_D3_HOT].flags.valid = 1;
1053 
1054 	/*
1055 	 * Use power resources only if the D0 list of them is populated, because
1056 	 * some platforms may provide _PR3 only to indicate D3cold support and
1057 	 * in those cases the power resources list returned by it may be bogus.
1058 	 */
1059 	if (!list_empty(&device->power.states[ACPI_STATE_D0].resources)) {
1060 		device->power.flags.power_resources = 1;
1061 		/*
1062 		 * D3cold is supported if the D3hot list of power resources is
1063 		 * not empty.
1064 		 */
1065 		if (!list_empty(&device->power.states[ACPI_STATE_D3_HOT].resources))
1066 			device->power.states[ACPI_STATE_D3_COLD].flags.valid = 1;
1067 	}
1068 
1069 	if (acpi_bus_init_power(device))
1070 		device->flags.power_manageable = 0;
1071 }
1072 
acpi_bus_get_flags(struct acpi_device * device)1073 static void acpi_bus_get_flags(struct acpi_device *device)
1074 {
1075 	/* Presence of _STA indicates 'dynamic_status' */
1076 	if (acpi_has_method(device->handle, "_STA"))
1077 		device->flags.dynamic_status = 1;
1078 
1079 	/* Presence of _RMV indicates 'removable' */
1080 	if (acpi_has_method(device->handle, "_RMV"))
1081 		device->flags.removable = 1;
1082 
1083 	/* Presence of _EJD|_EJ0 indicates 'ejectable' */
1084 	if (acpi_has_method(device->handle, "_EJD") ||
1085 	    acpi_has_method(device->handle, "_EJ0"))
1086 		device->flags.ejectable = 1;
1087 }
1088 
acpi_device_get_busid(struct acpi_device * device)1089 static void acpi_device_get_busid(struct acpi_device *device)
1090 {
1091 	char bus_id[5] = { '?', 0 };
1092 	struct acpi_buffer buffer = { sizeof(bus_id), bus_id };
1093 	int i = 0;
1094 
1095 	/*
1096 	 * Bus ID
1097 	 * ------
1098 	 * The device's Bus ID is simply the object name.
1099 	 * TBD: Shouldn't this value be unique (within the ACPI namespace)?
1100 	 */
1101 	if (ACPI_IS_ROOT_DEVICE(device)) {
1102 		strcpy(device->pnp.bus_id, "ACPI");
1103 		return;
1104 	}
1105 
1106 	switch (device->device_type) {
1107 	case ACPI_BUS_TYPE_POWER_BUTTON:
1108 		strcpy(device->pnp.bus_id, "PWRF");
1109 		break;
1110 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1111 		strcpy(device->pnp.bus_id, "SLPF");
1112 		break;
1113 	case ACPI_BUS_TYPE_ECDT_EC:
1114 		strcpy(device->pnp.bus_id, "ECDT");
1115 		break;
1116 	default:
1117 		acpi_get_name(device->handle, ACPI_SINGLE_NAME, &buffer);
1118 		/* Clean up trailing underscores (if any) */
1119 		for (i = 3; i > 1; i--) {
1120 			if (bus_id[i] == '_')
1121 				bus_id[i] = '\0';
1122 			else
1123 				break;
1124 		}
1125 		strcpy(device->pnp.bus_id, bus_id);
1126 		break;
1127 	}
1128 }
1129 
1130 /*
1131  * acpi_ata_match - see if an acpi object is an ATA device
1132  *
1133  * If an acpi object has one of the ACPI ATA methods defined,
1134  * then we can safely call it an ATA device.
1135  */
acpi_ata_match(acpi_handle handle)1136 bool acpi_ata_match(acpi_handle handle)
1137 {
1138 	return acpi_has_method(handle, "_GTF") ||
1139 	       acpi_has_method(handle, "_GTM") ||
1140 	       acpi_has_method(handle, "_STM") ||
1141 	       acpi_has_method(handle, "_SDD");
1142 }
1143 
1144 /*
1145  * acpi_bay_match - see if an acpi object is an ejectable driver bay
1146  *
1147  * If an acpi object is ejectable and has one of the ACPI ATA methods defined,
1148  * then we can safely call it an ejectable drive bay
1149  */
acpi_bay_match(acpi_handle handle)1150 bool acpi_bay_match(acpi_handle handle)
1151 {
1152 	acpi_handle phandle;
1153 
1154 	if (!acpi_has_method(handle, "_EJ0"))
1155 		return false;
1156 	if (acpi_ata_match(handle))
1157 		return true;
1158 	if (ACPI_FAILURE(acpi_get_parent(handle, &phandle)))
1159 		return false;
1160 
1161 	return acpi_ata_match(phandle);
1162 }
1163 
acpi_device_is_battery(struct acpi_device * adev)1164 bool acpi_device_is_battery(struct acpi_device *adev)
1165 {
1166 	struct acpi_hardware_id *hwid;
1167 
1168 	list_for_each_entry(hwid, &adev->pnp.ids, list)
1169 		if (!strcmp("PNP0C0A", hwid->id))
1170 			return true;
1171 
1172 	return false;
1173 }
1174 
is_ejectable_bay(struct acpi_device * adev)1175 static bool is_ejectable_bay(struct acpi_device *adev)
1176 {
1177 	acpi_handle handle = adev->handle;
1178 
1179 	if (acpi_has_method(handle, "_EJ0") && acpi_device_is_battery(adev))
1180 		return true;
1181 
1182 	return acpi_bay_match(handle);
1183 }
1184 
1185 /*
1186  * acpi_dock_match - see if an acpi object has a _DCK method
1187  */
acpi_dock_match(acpi_handle handle)1188 bool acpi_dock_match(acpi_handle handle)
1189 {
1190 	return acpi_has_method(handle, "_DCK");
1191 }
1192 
1193 static acpi_status
acpi_backlight_cap_match(acpi_handle handle,u32 level,void * context,void ** return_value)1194 acpi_backlight_cap_match(acpi_handle handle, u32 level, void *context,
1195 			  void **return_value)
1196 {
1197 	long *cap = context;
1198 
1199 	if (acpi_has_method(handle, "_BCM") &&
1200 	    acpi_has_method(handle, "_BCL")) {
1201 		acpi_handle_debug(handle, "Found generic backlight support\n");
1202 		*cap |= ACPI_VIDEO_BACKLIGHT;
1203 		/* We have backlight support, no need to scan further */
1204 		return AE_CTRL_TERMINATE;
1205 	}
1206 	return 0;
1207 }
1208 
1209 /* Returns true if the ACPI object is a video device which can be
1210  * handled by video.ko.
1211  * The device will get a Linux specific CID added in scan.c to
1212  * identify the device as an ACPI graphics device
1213  * Be aware that the graphics device may not be physically present
1214  * Use acpi_video_get_capabilities() to detect general ACPI video
1215  * capabilities of present cards
1216  */
acpi_is_video_device(acpi_handle handle)1217 long acpi_is_video_device(acpi_handle handle)
1218 {
1219 	long video_caps = 0;
1220 
1221 	/* Is this device able to support video switching ? */
1222 	if (acpi_has_method(handle, "_DOD") || acpi_has_method(handle, "_DOS"))
1223 		video_caps |= ACPI_VIDEO_OUTPUT_SWITCHING;
1224 
1225 	/* Is this device able to retrieve a video ROM ? */
1226 	if (acpi_has_method(handle, "_ROM"))
1227 		video_caps |= ACPI_VIDEO_ROM_AVAILABLE;
1228 
1229 	/* Is this device able to configure which video head to be POSTed ? */
1230 	if (acpi_has_method(handle, "_VPO") &&
1231 	    acpi_has_method(handle, "_GPD") &&
1232 	    acpi_has_method(handle, "_SPD"))
1233 		video_caps |= ACPI_VIDEO_DEVICE_POSTING;
1234 
1235 	/* Only check for backlight functionality if one of the above hit. */
1236 	if (video_caps)
1237 		acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
1238 				    ACPI_UINT32_MAX, acpi_backlight_cap_match, NULL,
1239 				    &video_caps, NULL);
1240 
1241 	return video_caps;
1242 }
1243 EXPORT_SYMBOL(acpi_is_video_device);
1244 
acpi_device_hid(struct acpi_device * device)1245 const char *acpi_device_hid(struct acpi_device *device)
1246 {
1247 	struct acpi_hardware_id *hid;
1248 
1249 	if (list_empty(&device->pnp.ids))
1250 		return dummy_hid;
1251 
1252 	hid = list_first_entry(&device->pnp.ids, struct acpi_hardware_id, list);
1253 	return hid->id;
1254 }
1255 EXPORT_SYMBOL(acpi_device_hid);
1256 
acpi_add_id(struct acpi_device_pnp * pnp,const char * dev_id)1257 static void acpi_add_id(struct acpi_device_pnp *pnp, const char *dev_id)
1258 {
1259 	struct acpi_hardware_id *id;
1260 
1261 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1262 	if (!id)
1263 		return;
1264 
1265 	id->id = kstrdup_const(dev_id, GFP_KERNEL);
1266 	if (!id->id) {
1267 		kfree(id);
1268 		return;
1269 	}
1270 
1271 	list_add_tail(&id->list, &pnp->ids);
1272 	pnp->type.hardware_id = 1;
1273 }
1274 
1275 /*
1276  * Old IBM workstations have a DSDT bug wherein the SMBus object
1277  * lacks the SMBUS01 HID and the methods do not have the necessary "_"
1278  * prefix.  Work around this.
1279  */
acpi_ibm_smbus_match(acpi_handle handle)1280 static bool acpi_ibm_smbus_match(acpi_handle handle)
1281 {
1282 	char node_name[ACPI_PATH_SEGMENT_LENGTH];
1283 	struct acpi_buffer path = { sizeof(node_name), node_name };
1284 
1285 	if (!dmi_name_in_vendors("IBM"))
1286 		return false;
1287 
1288 	/* Look for SMBS object */
1289 	if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &path)) ||
1290 	    strcmp("SMBS", path.pointer))
1291 		return false;
1292 
1293 	/* Does it have the necessary (but misnamed) methods? */
1294 	if (acpi_has_method(handle, "SBI") &&
1295 	    acpi_has_method(handle, "SBR") &&
1296 	    acpi_has_method(handle, "SBW"))
1297 		return true;
1298 
1299 	return false;
1300 }
1301 
acpi_object_is_system_bus(acpi_handle handle)1302 static bool acpi_object_is_system_bus(acpi_handle handle)
1303 {
1304 	acpi_handle tmp;
1305 
1306 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_SB", &tmp)) &&
1307 	    tmp == handle)
1308 		return true;
1309 	if (ACPI_SUCCESS(acpi_get_handle(NULL, "\\_TZ", &tmp)) &&
1310 	    tmp == handle)
1311 		return true;
1312 
1313 	return false;
1314 }
1315 
acpi_set_pnp_ids(acpi_handle handle,struct acpi_device_pnp * pnp,int device_type)1316 static void acpi_set_pnp_ids(acpi_handle handle, struct acpi_device_pnp *pnp,
1317 			     int device_type)
1318 {
1319 	struct acpi_device_info *info = NULL;
1320 	struct acpi_pnp_device_id_list *cid_list;
1321 	int i;
1322 
1323 	switch (device_type) {
1324 	case ACPI_BUS_TYPE_DEVICE:
1325 		if (handle == ACPI_ROOT_OBJECT) {
1326 			acpi_add_id(pnp, ACPI_SYSTEM_HID);
1327 			break;
1328 		}
1329 
1330 		acpi_get_object_info(handle, &info);
1331 		if (!info) {
1332 			pr_err("%s: Error reading device info\n", __func__);
1333 			return;
1334 		}
1335 
1336 		if (info->valid & ACPI_VALID_HID) {
1337 			acpi_add_id(pnp, info->hardware_id.string);
1338 			pnp->type.platform_id = 1;
1339 		}
1340 		if (info->valid & ACPI_VALID_CID) {
1341 			cid_list = &info->compatible_id_list;
1342 			for (i = 0; i < cid_list->count; i++)
1343 				acpi_add_id(pnp, cid_list->ids[i].string);
1344 		}
1345 		if (info->valid & ACPI_VALID_ADR) {
1346 			pnp->bus_address = info->address;
1347 			pnp->type.bus_address = 1;
1348 		}
1349 		if (info->valid & ACPI_VALID_UID)
1350 			pnp->unique_id = kstrdup(info->unique_id.string,
1351 							GFP_KERNEL);
1352 		if (info->valid & ACPI_VALID_CLS)
1353 			acpi_add_id(pnp, info->class_code.string);
1354 
1355 		kfree(info);
1356 
1357 		/*
1358 		 * Some devices don't reliably have _HIDs & _CIDs, so add
1359 		 * synthetic HIDs to make sure drivers can find them.
1360 		 */
1361 		if (acpi_is_video_device(handle))
1362 			acpi_add_id(pnp, ACPI_VIDEO_HID);
1363 		else if (acpi_bay_match(handle))
1364 			acpi_add_id(pnp, ACPI_BAY_HID);
1365 		else if (acpi_dock_match(handle))
1366 			acpi_add_id(pnp, ACPI_DOCK_HID);
1367 		else if (acpi_ibm_smbus_match(handle))
1368 			acpi_add_id(pnp, ACPI_SMBUS_IBM_HID);
1369 		else if (list_empty(&pnp->ids) &&
1370 			 acpi_object_is_system_bus(handle)) {
1371 			/* \_SB, \_TZ, LNXSYBUS */
1372 			acpi_add_id(pnp, ACPI_BUS_HID);
1373 			strcpy(pnp->device_name, ACPI_BUS_DEVICE_NAME);
1374 			strcpy(pnp->device_class, ACPI_BUS_CLASS);
1375 		}
1376 
1377 		break;
1378 	case ACPI_BUS_TYPE_POWER:
1379 		acpi_add_id(pnp, ACPI_POWER_HID);
1380 		break;
1381 	case ACPI_BUS_TYPE_PROCESSOR:
1382 		acpi_add_id(pnp, ACPI_PROCESSOR_OBJECT_HID);
1383 		break;
1384 	case ACPI_BUS_TYPE_THERMAL:
1385 		acpi_add_id(pnp, ACPI_THERMAL_HID);
1386 		break;
1387 	case ACPI_BUS_TYPE_POWER_BUTTON:
1388 		acpi_add_id(pnp, ACPI_BUTTON_HID_POWERF);
1389 		break;
1390 	case ACPI_BUS_TYPE_SLEEP_BUTTON:
1391 		acpi_add_id(pnp, ACPI_BUTTON_HID_SLEEPF);
1392 		break;
1393 	case ACPI_BUS_TYPE_ECDT_EC:
1394 		acpi_add_id(pnp, ACPI_ECDT_HID);
1395 		break;
1396 	}
1397 }
1398 
acpi_free_pnp_ids(struct acpi_device_pnp * pnp)1399 void acpi_free_pnp_ids(struct acpi_device_pnp *pnp)
1400 {
1401 	struct acpi_hardware_id *id, *tmp;
1402 
1403 	list_for_each_entry_safe(id, tmp, &pnp->ids, list) {
1404 		kfree_const(id->id);
1405 		kfree(id);
1406 	}
1407 	kfree(pnp->unique_id);
1408 }
1409 
1410 /**
1411  * acpi_dma_supported - Check DMA support for the specified device.
1412  * @adev: The pointer to acpi device
1413  *
1414  * Return false if DMA is not supported. Otherwise, return true
1415  */
acpi_dma_supported(const struct acpi_device * adev)1416 bool acpi_dma_supported(const struct acpi_device *adev)
1417 {
1418 	if (!adev)
1419 		return false;
1420 
1421 	if (adev->flags.cca_seen)
1422 		return true;
1423 
1424 	/*
1425 	* Per ACPI 6.0 sec 6.2.17, assume devices can do cache-coherent
1426 	* DMA on "Intel platforms".  Presumably that includes all x86 and
1427 	* ia64, and other arches will set CONFIG_ACPI_CCA_REQUIRED=y.
1428 	*/
1429 	if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1430 		return true;
1431 
1432 	return false;
1433 }
1434 
1435 /**
1436  * acpi_get_dma_attr - Check the supported DMA attr for the specified device.
1437  * @adev: The pointer to acpi device
1438  *
1439  * Return enum dev_dma_attr.
1440  */
acpi_get_dma_attr(struct acpi_device * adev)1441 enum dev_dma_attr acpi_get_dma_attr(struct acpi_device *adev)
1442 {
1443 	if (!acpi_dma_supported(adev))
1444 		return DEV_DMA_NOT_SUPPORTED;
1445 
1446 	if (adev->flags.coherent_dma)
1447 		return DEV_DMA_COHERENT;
1448 	else
1449 		return DEV_DMA_NON_COHERENT;
1450 }
1451 
1452 /**
1453  * acpi_dma_get_range() - Get device DMA parameters.
1454  *
1455  * @dev: device to configure
1456  * @dma_addr: pointer device DMA address result
1457  * @offset: pointer to the DMA offset result
1458  * @size: pointer to DMA range size result
1459  *
1460  * Evaluate DMA regions and return respectively DMA region start, offset
1461  * and size in dma_addr, offset and size on parsing success; it does not
1462  * update the passed in values on failure.
1463  *
1464  * Return 0 on success, < 0 on failure.
1465  */
acpi_dma_get_range(struct device * dev,u64 * dma_addr,u64 * offset,u64 * size)1466 int acpi_dma_get_range(struct device *dev, u64 *dma_addr, u64 *offset,
1467 		       u64 *size)
1468 {
1469 	struct acpi_device *adev;
1470 	LIST_HEAD(list);
1471 	struct resource_entry *rentry;
1472 	int ret;
1473 	struct device *dma_dev = dev;
1474 	u64 len, dma_start = U64_MAX, dma_end = 0, dma_offset = 0;
1475 
1476 	/*
1477 	 * Walk the device tree chasing an ACPI companion with a _DMA
1478 	 * object while we go. Stop if we find a device with an ACPI
1479 	 * companion containing a _DMA method.
1480 	 */
1481 	do {
1482 		adev = ACPI_COMPANION(dma_dev);
1483 		if (adev && acpi_has_method(adev->handle, METHOD_NAME__DMA))
1484 			break;
1485 
1486 		dma_dev = dma_dev->parent;
1487 	} while (dma_dev);
1488 
1489 	if (!dma_dev)
1490 		return -ENODEV;
1491 
1492 	if (!acpi_has_method(adev->handle, METHOD_NAME__CRS)) {
1493 		acpi_handle_warn(adev->handle, "_DMA is valid only if _CRS is present\n");
1494 		return -EINVAL;
1495 	}
1496 
1497 	ret = acpi_dev_get_dma_resources(adev, &list);
1498 	if (ret > 0) {
1499 		list_for_each_entry(rentry, &list, node) {
1500 			if (dma_offset && rentry->offset != dma_offset) {
1501 				ret = -EINVAL;
1502 				dev_warn(dma_dev, "Can't handle multiple windows with different offsets\n");
1503 				goto out;
1504 			}
1505 			dma_offset = rentry->offset;
1506 
1507 			/* Take lower and upper limits */
1508 			if (rentry->res->start < dma_start)
1509 				dma_start = rentry->res->start;
1510 			if (rentry->res->end > dma_end)
1511 				dma_end = rentry->res->end;
1512 		}
1513 
1514 		if (dma_start >= dma_end) {
1515 			ret = -EINVAL;
1516 			dev_dbg(dma_dev, "Invalid DMA regions configuration\n");
1517 			goto out;
1518 		}
1519 
1520 		*dma_addr = dma_start - dma_offset;
1521 		len = dma_end - dma_start;
1522 		*size = max(len, len + 1);
1523 		*offset = dma_offset;
1524 	}
1525  out:
1526 	acpi_dev_free_resource_list(&list);
1527 
1528 	return ret >= 0 ? 0 : ret;
1529 }
1530 
1531 #ifdef CONFIG_IOMMU_API
acpi_iommu_fwspec_init(struct device * dev,u32 id,struct fwnode_handle * fwnode,const struct iommu_ops * ops)1532 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1533 			   struct fwnode_handle *fwnode,
1534 			   const struct iommu_ops *ops)
1535 {
1536 	int ret = iommu_fwspec_init(dev, fwnode, ops);
1537 
1538 	if (!ret)
1539 		ret = iommu_fwspec_add_ids(dev, &id, 1);
1540 
1541 	return ret;
1542 }
1543 
acpi_iommu_fwspec_ops(struct device * dev)1544 static inline const struct iommu_ops *acpi_iommu_fwspec_ops(struct device *dev)
1545 {
1546 	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1547 
1548 	return fwspec ? fwspec->ops : NULL;
1549 }
1550 
acpi_iommu_configure_id(struct device * dev,const u32 * id_in)1551 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1552 						       const u32 *id_in)
1553 {
1554 	int err;
1555 	const struct iommu_ops *ops;
1556 
1557 	/* Serialise to make dev->iommu stable under our potential fwspec */
1558 	mutex_lock(&iommu_probe_device_lock);
1559 	/*
1560 	 * If we already translated the fwspec there is nothing left to do,
1561 	 * return the iommu_ops.
1562 	 */
1563 	ops = acpi_iommu_fwspec_ops(dev);
1564 	if (ops) {
1565 		mutex_unlock(&iommu_probe_device_lock);
1566 		return ops;
1567 	}
1568 
1569 	err = iort_iommu_configure_id(dev, id_in);
1570 	if (err && err != -EPROBE_DEFER)
1571 		err = viot_iommu_configure(dev);
1572 	mutex_unlock(&iommu_probe_device_lock);
1573 
1574 	/*
1575 	 * If we have reason to believe the IOMMU driver missed the initial
1576 	 * iommu_probe_device() call for dev, replay it to get things in order.
1577 	 */
1578 	if (!err && dev->bus && !device_iommu_mapped(dev))
1579 		err = iommu_probe_device(dev);
1580 
1581 	/* Ignore all other errors apart from EPROBE_DEFER */
1582 	if (err == -EPROBE_DEFER) {
1583 		return ERR_PTR(err);
1584 	} else if (err) {
1585 		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1586 		return NULL;
1587 	}
1588 	return acpi_iommu_fwspec_ops(dev);
1589 }
1590 
1591 #else /* !CONFIG_IOMMU_API */
1592 
acpi_iommu_fwspec_init(struct device * dev,u32 id,struct fwnode_handle * fwnode,const struct iommu_ops * ops)1593 int acpi_iommu_fwspec_init(struct device *dev, u32 id,
1594 			   struct fwnode_handle *fwnode,
1595 			   const struct iommu_ops *ops)
1596 {
1597 	return -ENODEV;
1598 }
1599 
acpi_iommu_configure_id(struct device * dev,const u32 * id_in)1600 static const struct iommu_ops *acpi_iommu_configure_id(struct device *dev,
1601 						       const u32 *id_in)
1602 {
1603 	return NULL;
1604 }
1605 
1606 #endif /* !CONFIG_IOMMU_API */
1607 
1608 /**
1609  * acpi_dma_configure_id - Set-up DMA configuration for the device.
1610  * @dev: The pointer to the device
1611  * @attr: device dma attributes
1612  * @input_id: input device id const value pointer
1613  */
acpi_dma_configure_id(struct device * dev,enum dev_dma_attr attr,const u32 * input_id)1614 int acpi_dma_configure_id(struct device *dev, enum dev_dma_attr attr,
1615 			  const u32 *input_id)
1616 {
1617 	const struct iommu_ops *iommu;
1618 	u64 dma_addr = 0, size = 0;
1619 
1620 	if (attr == DEV_DMA_NOT_SUPPORTED) {
1621 		set_dma_ops(dev, &dma_dummy_ops);
1622 		return 0;
1623 	}
1624 
1625 	acpi_arch_dma_setup(dev, &dma_addr, &size);
1626 
1627 	iommu = acpi_iommu_configure_id(dev, input_id);
1628 	if (PTR_ERR(iommu) == -EPROBE_DEFER)
1629 		return -EPROBE_DEFER;
1630 
1631 	arch_setup_dma_ops(dev, dma_addr, size,
1632 				iommu, attr == DEV_DMA_COHERENT);
1633 
1634 	return 0;
1635 }
1636 EXPORT_SYMBOL_GPL(acpi_dma_configure_id);
1637 
acpi_init_coherency(struct acpi_device * adev)1638 static void acpi_init_coherency(struct acpi_device *adev)
1639 {
1640 	unsigned long long cca = 0;
1641 	acpi_status status;
1642 	struct acpi_device *parent = adev->parent;
1643 
1644 	if (parent && parent->flags.cca_seen) {
1645 		/*
1646 		 * From ACPI spec, OSPM will ignore _CCA if an ancestor
1647 		 * already saw one.
1648 		 */
1649 		adev->flags.cca_seen = 1;
1650 		cca = parent->flags.coherent_dma;
1651 	} else {
1652 		status = acpi_evaluate_integer(adev->handle, "_CCA",
1653 					       NULL, &cca);
1654 		if (ACPI_SUCCESS(status))
1655 			adev->flags.cca_seen = 1;
1656 		else if (!IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED))
1657 			/*
1658 			 * If architecture does not specify that _CCA is
1659 			 * required for DMA-able devices (e.g. x86),
1660 			 * we default to _CCA=1.
1661 			 */
1662 			cca = 1;
1663 		else
1664 			acpi_handle_debug(adev->handle,
1665 					  "ACPI device is missing _CCA.\n");
1666 	}
1667 
1668 	adev->flags.coherent_dma = cca;
1669 }
1670 
acpi_check_serial_bus_slave(struct acpi_resource * ares,void * data)1671 static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
1672 {
1673 	bool *is_serial_bus_slave_p = data;
1674 
1675 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
1676 		return 1;
1677 
1678 	*is_serial_bus_slave_p = true;
1679 
1680 	 /* no need to do more checking */
1681 	return -1;
1682 }
1683 
acpi_is_indirect_io_slave(struct acpi_device * device)1684 static bool acpi_is_indirect_io_slave(struct acpi_device *device)
1685 {
1686 	struct acpi_device *parent = device->parent;
1687 	static const struct acpi_device_id indirect_io_hosts[] = {
1688 		{"HISI0191", 0},
1689 		{}
1690 	};
1691 
1692 	return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
1693 }
1694 
acpi_device_enumeration_by_parent(struct acpi_device * device)1695 static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
1696 {
1697 	struct list_head resource_list;
1698 	bool is_serial_bus_slave = false;
1699 	static const struct acpi_device_id ignore_serial_bus_ids[] = {
1700 	/*
1701 	 * These devices have multiple I2cSerialBus resources and an i2c-client
1702 	 * must be instantiated for each, each with its own i2c_device_id.
1703 	 * Normally we only instantiate an i2c-client for the first resource,
1704 	 * using the ACPI HID as id. These special cases are handled by the
1705 	 * drivers/platform/x86/i2c-multi-instantiate.c driver, which knows
1706 	 * which i2c_device_id to use for each resource.
1707 	 */
1708 		{"BSG1160", },
1709 		{"BSG2150", },
1710 		{"INT33FE", },
1711 		{"INT3515", },
1712 	/*
1713 	 * HIDs of device with an UartSerialBusV2 resource for which userspace
1714 	 * expects a regular tty cdev to be created (instead of the in kernel
1715 	 * serdev) and which have a kernel driver which expects a platform_dev
1716 	 * such as the rfkill-gpio driver.
1717 	 */
1718 		{"BCM4752", },
1719 		{"LNV4752", },
1720 		{}
1721 	};
1722 
1723 	if (acpi_is_indirect_io_slave(device))
1724 		return true;
1725 
1726 	/* Macs use device properties in lieu of _CRS resources */
1727 	if (x86_apple_machine &&
1728 	    (fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
1729 	     fwnode_property_present(&device->fwnode, "i2cAddress") ||
1730 	     fwnode_property_present(&device->fwnode, "baud")))
1731 		return true;
1732 
1733 	if (!acpi_match_device_ids(device, ignore_serial_bus_ids))
1734 		return false;
1735 
1736 	INIT_LIST_HEAD(&resource_list);
1737 	acpi_dev_get_resources(device, &resource_list,
1738 			       acpi_check_serial_bus_slave,
1739 			       &is_serial_bus_slave);
1740 	acpi_dev_free_resource_list(&resource_list);
1741 
1742 	return is_serial_bus_slave;
1743 }
1744 
acpi_init_device_object(struct acpi_device * device,acpi_handle handle,int type)1745 void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
1746 			     int type)
1747 {
1748 	INIT_LIST_HEAD(&device->pnp.ids);
1749 	device->device_type = type;
1750 	device->handle = handle;
1751 	device->parent = acpi_bus_get_parent(handle);
1752 	fwnode_init(&device->fwnode, &acpi_device_fwnode_ops);
1753 	acpi_set_device_status(device, ACPI_STA_DEFAULT);
1754 	acpi_device_get_busid(device);
1755 	acpi_set_pnp_ids(handle, &device->pnp, type);
1756 	acpi_init_properties(device);
1757 	acpi_bus_get_flags(device);
1758 	device->flags.match_driver = false;
1759 	device->flags.initialized = true;
1760 	device->flags.enumeration_by_parent =
1761 		acpi_device_enumeration_by_parent(device);
1762 	acpi_device_clear_enumerated(device);
1763 	device_initialize(&device->dev);
1764 	dev_set_uevent_suppress(&device->dev, true);
1765 	acpi_init_coherency(device);
1766 }
1767 
acpi_scan_dep_init(struct acpi_device * adev)1768 static void acpi_scan_dep_init(struct acpi_device *adev)
1769 {
1770 	struct acpi_dep_data *dep;
1771 
1772 	list_for_each_entry(dep, &acpi_dep_list, node) {
1773 		if (dep->consumer == adev->handle)
1774 			adev->dep_unmet++;
1775 	}
1776 }
1777 
acpi_device_add_finalize(struct acpi_device * device)1778 void acpi_device_add_finalize(struct acpi_device *device)
1779 {
1780 	dev_set_uevent_suppress(&device->dev, false);
1781 	kobject_uevent(&device->dev.kobj, KOBJ_ADD);
1782 }
1783 
acpi_scan_init_status(struct acpi_device * adev)1784 static void acpi_scan_init_status(struct acpi_device *adev)
1785 {
1786 	if (acpi_bus_get_status(adev))
1787 		acpi_set_device_status(adev, 0);
1788 }
1789 
acpi_add_single_object(struct acpi_device ** child,acpi_handle handle,int type,bool dep_init)1790 static int acpi_add_single_object(struct acpi_device **child,
1791 				  acpi_handle handle, int type, bool dep_init)
1792 {
1793 	struct acpi_device *device;
1794 	bool release_dep_lock = false;
1795 	int result;
1796 
1797 	device = kzalloc(sizeof(struct acpi_device), GFP_KERNEL);
1798 	if (!device)
1799 		return -ENOMEM;
1800 
1801 	acpi_init_device_object(device, handle, type);
1802 	/*
1803 	 * Getting the status is delayed till here so that we can call
1804 	 * acpi_bus_get_status() and use its quirk handling.  Note that
1805 	 * this must be done before the get power-/wakeup_dev-flags calls.
1806 	 */
1807 	if (type == ACPI_BUS_TYPE_DEVICE || type == ACPI_BUS_TYPE_PROCESSOR) {
1808 		if (dep_init) {
1809 			mutex_lock(&acpi_dep_list_lock);
1810 			/*
1811 			 * Hold the lock until the acpi_tie_acpi_dev() call
1812 			 * below to prevent concurrent acpi_scan_clear_dep()
1813 			 * from deleting a dependency list entry without
1814 			 * updating dep_unmet for the device.
1815 			 */
1816 			release_dep_lock = true;
1817 			acpi_scan_dep_init(device);
1818 		}
1819 		acpi_scan_init_status(device);
1820 	}
1821 
1822 	acpi_bus_get_power_flags(device);
1823 	acpi_bus_get_wakeup_device_flags(device);
1824 
1825 	result = acpi_tie_acpi_dev(device);
1826 
1827 	if (release_dep_lock)
1828 		mutex_unlock(&acpi_dep_list_lock);
1829 
1830 	if (!result)
1831 		result = __acpi_device_add(device, acpi_device_release);
1832 
1833 	if (result) {
1834 		acpi_device_release(&device->dev);
1835 		return result;
1836 	}
1837 
1838 	acpi_power_add_remove_device(device, true);
1839 	acpi_device_add_finalize(device);
1840 
1841 	acpi_handle_debug(handle, "Added as %s, parent %s\n",
1842 			  dev_name(&device->dev), device->parent ?
1843 				dev_name(&device->parent->dev) : "(null)");
1844 
1845 	*child = device;
1846 	return 0;
1847 }
1848 
acpi_get_resource_memory(struct acpi_resource * ares,void * context)1849 static acpi_status acpi_get_resource_memory(struct acpi_resource *ares,
1850 					    void *context)
1851 {
1852 	struct resource *res = context;
1853 
1854 	if (acpi_dev_resource_memory(ares, res))
1855 		return AE_CTRL_TERMINATE;
1856 
1857 	return AE_OK;
1858 }
1859 
acpi_device_should_be_hidden(acpi_handle handle)1860 static bool acpi_device_should_be_hidden(acpi_handle handle)
1861 {
1862 	acpi_status status;
1863 	struct resource res;
1864 
1865 	/* Check if it should ignore the UART device */
1866 	if (!(spcr_uart_addr && acpi_has_method(handle, METHOD_NAME__CRS)))
1867 		return false;
1868 
1869 	/*
1870 	 * The UART device described in SPCR table is assumed to have only one
1871 	 * memory resource present. So we only look for the first one here.
1872 	 */
1873 	status = acpi_walk_resources(handle, METHOD_NAME__CRS,
1874 				     acpi_get_resource_memory, &res);
1875 	if (ACPI_FAILURE(status) || res.start != spcr_uart_addr)
1876 		return false;
1877 
1878 	acpi_handle_info(handle, "The UART device @%pa in SPCR table will be hidden\n",
1879 			 &res.start);
1880 
1881 	return true;
1882 }
1883 
acpi_device_is_present(const struct acpi_device * adev)1884 bool acpi_device_is_present(const struct acpi_device *adev)
1885 {
1886 	return adev->status.present || adev->status.functional;
1887 }
1888 
acpi_scan_handler_matching(struct acpi_scan_handler * handler,const char * idstr,const struct acpi_device_id ** matchid)1889 static bool acpi_scan_handler_matching(struct acpi_scan_handler *handler,
1890 				       const char *idstr,
1891 				       const struct acpi_device_id **matchid)
1892 {
1893 	const struct acpi_device_id *devid;
1894 
1895 	if (handler->match)
1896 		return handler->match(idstr, matchid);
1897 
1898 	for (devid = handler->ids; devid->id[0]; devid++)
1899 		if (!strcmp((char *)devid->id, idstr)) {
1900 			if (matchid)
1901 				*matchid = devid;
1902 
1903 			return true;
1904 		}
1905 
1906 	return false;
1907 }
1908 
acpi_scan_match_handler(const char * idstr,const struct acpi_device_id ** matchid)1909 static struct acpi_scan_handler *acpi_scan_match_handler(const char *idstr,
1910 					const struct acpi_device_id **matchid)
1911 {
1912 	struct acpi_scan_handler *handler;
1913 
1914 	list_for_each_entry(handler, &acpi_scan_handlers_list, list_node)
1915 		if (acpi_scan_handler_matching(handler, idstr, matchid))
1916 			return handler;
1917 
1918 	return NULL;
1919 }
1920 
acpi_scan_hotplug_enabled(struct acpi_hotplug_profile * hotplug,bool val)1921 void acpi_scan_hotplug_enabled(struct acpi_hotplug_profile *hotplug, bool val)
1922 {
1923 	if (!!hotplug->enabled == !!val)
1924 		return;
1925 
1926 	mutex_lock(&acpi_scan_lock);
1927 
1928 	hotplug->enabled = val;
1929 
1930 	mutex_unlock(&acpi_scan_lock);
1931 }
1932 
acpi_scan_init_hotplug(struct acpi_device * adev)1933 static void acpi_scan_init_hotplug(struct acpi_device *adev)
1934 {
1935 	struct acpi_hardware_id *hwid;
1936 
1937 	if (acpi_dock_match(adev->handle) || is_ejectable_bay(adev)) {
1938 		acpi_dock_add(adev);
1939 		return;
1940 	}
1941 	list_for_each_entry(hwid, &adev->pnp.ids, list) {
1942 		struct acpi_scan_handler *handler;
1943 
1944 		handler = acpi_scan_match_handler(hwid->id, NULL);
1945 		if (handler) {
1946 			adev->flags.hotplug_notify = true;
1947 			break;
1948 		}
1949 	}
1950 }
1951 
acpi_scan_check_dep(acpi_handle handle,bool check_dep)1952 static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
1953 {
1954 	struct acpi_handle_list dep_devices;
1955 	acpi_status status;
1956 	u32 count;
1957 	int i;
1958 
1959 	/*
1960 	 * Check for _HID here to avoid deferring the enumeration of:
1961 	 * 1. PCI devices.
1962 	 * 2. ACPI nodes describing USB ports.
1963 	 * Still, checking for _HID catches more then just these cases ...
1964 	 */
1965 	if (!check_dep || !acpi_has_method(handle, "_DEP") ||
1966 	    !acpi_has_method(handle, "_HID"))
1967 		return 0;
1968 
1969 	status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
1970 	if (ACPI_FAILURE(status)) {
1971 		acpi_handle_debug(handle, "Failed to evaluate _DEP.\n");
1972 		return 0;
1973 	}
1974 
1975 	for (count = 0, i = 0; i < dep_devices.count; i++) {
1976 		struct acpi_device_info *info;
1977 		struct acpi_dep_data *dep;
1978 		bool skip;
1979 
1980 		status = acpi_get_object_info(dep_devices.handles[i], &info);
1981 		if (ACPI_FAILURE(status)) {
1982 			acpi_handle_debug(handle, "Error reading _DEP device info\n");
1983 			continue;
1984 		}
1985 
1986 		skip = acpi_info_matches_ids(info, acpi_ignore_dep_ids);
1987 		kfree(info);
1988 
1989 		if (skip)
1990 			continue;
1991 
1992 		dep = kzalloc(sizeof(*dep), GFP_KERNEL);
1993 		if (!dep)
1994 			continue;
1995 
1996 		count++;
1997 
1998 		dep->supplier = dep_devices.handles[i];
1999 		dep->consumer = handle;
2000 
2001 		mutex_lock(&acpi_dep_list_lock);
2002 		list_add_tail(&dep->node , &acpi_dep_list);
2003 		mutex_unlock(&acpi_dep_list_lock);
2004 	}
2005 
2006 	return count;
2007 }
2008 
2009 static bool acpi_bus_scan_second_pass;
2010 
acpi_bus_check_add(acpi_handle handle,bool check_dep,struct acpi_device ** adev_p)2011 static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
2012 				      struct acpi_device **adev_p)
2013 {
2014 	struct acpi_device *device = NULL;
2015 	acpi_object_type acpi_type;
2016 	int type;
2017 
2018 	acpi_bus_get_device(handle, &device);
2019 	if (device)
2020 		goto out;
2021 
2022 	if (ACPI_FAILURE(acpi_get_type(handle, &acpi_type)))
2023 		return AE_OK;
2024 
2025 	switch (acpi_type) {
2026 	case ACPI_TYPE_DEVICE:
2027 		if (acpi_device_should_be_hidden(handle))
2028 			return AE_OK;
2029 
2030 		/* Bail out if there are dependencies. */
2031 		if (acpi_scan_check_dep(handle, check_dep) > 0) {
2032 			acpi_bus_scan_second_pass = true;
2033 			return AE_CTRL_DEPTH;
2034 		}
2035 
2036 		fallthrough;
2037 	case ACPI_TYPE_ANY:	/* for ACPI_ROOT_OBJECT */
2038 		type = ACPI_BUS_TYPE_DEVICE;
2039 		break;
2040 
2041 	case ACPI_TYPE_PROCESSOR:
2042 		type = ACPI_BUS_TYPE_PROCESSOR;
2043 		break;
2044 
2045 	case ACPI_TYPE_THERMAL:
2046 		type = ACPI_BUS_TYPE_THERMAL;
2047 		break;
2048 
2049 	case ACPI_TYPE_POWER:
2050 		acpi_add_power_resource(handle);
2051 		fallthrough;
2052 	default:
2053 		return AE_OK;
2054 	}
2055 
2056 	/*
2057 	 * If check_dep is true at this point, the device has no dependencies,
2058 	 * or the creation of the device object would have been postponed above.
2059 	 */
2060 	acpi_add_single_object(&device, handle, type, !check_dep);
2061 	if (!device)
2062 		return AE_CTRL_DEPTH;
2063 
2064 	acpi_scan_init_hotplug(device);
2065 
2066 out:
2067 	if (!*adev_p)
2068 		*adev_p = device;
2069 
2070 	return AE_OK;
2071 }
2072 
acpi_bus_check_add_1(acpi_handle handle,u32 lvl_not_used,void * not_used,void ** ret_p)2073 static acpi_status acpi_bus_check_add_1(acpi_handle handle, u32 lvl_not_used,
2074 					void *not_used, void **ret_p)
2075 {
2076 	return acpi_bus_check_add(handle, true, (struct acpi_device **)ret_p);
2077 }
2078 
acpi_bus_check_add_2(acpi_handle handle,u32 lvl_not_used,void * not_used,void ** ret_p)2079 static acpi_status acpi_bus_check_add_2(acpi_handle handle, u32 lvl_not_used,
2080 					void *not_used, void **ret_p)
2081 {
2082 	return acpi_bus_check_add(handle, false, (struct acpi_device **)ret_p);
2083 }
2084 
acpi_default_enumeration(struct acpi_device * device)2085 static void acpi_default_enumeration(struct acpi_device *device)
2086 {
2087 	/*
2088 	 * Do not enumerate devices with enumeration_by_parent flag set as
2089 	 * they will be enumerated by their respective parents.
2090 	 */
2091 	if (!device->flags.enumeration_by_parent) {
2092 		acpi_create_platform_device(device, NULL);
2093 		acpi_device_set_enumerated(device);
2094 	} else {
2095 		blocking_notifier_call_chain(&acpi_reconfig_chain,
2096 					     ACPI_RECONFIG_DEVICE_ADD, device);
2097 	}
2098 }
2099 
2100 static const struct acpi_device_id generic_device_ids[] = {
2101 	{ACPI_DT_NAMESPACE_HID, },
2102 	{"", },
2103 };
2104 
acpi_generic_device_attach(struct acpi_device * adev,const struct acpi_device_id * not_used)2105 static int acpi_generic_device_attach(struct acpi_device *adev,
2106 				      const struct acpi_device_id *not_used)
2107 {
2108 	/*
2109 	 * Since ACPI_DT_NAMESPACE_HID is the only ID handled here, the test
2110 	 * below can be unconditional.
2111 	 */
2112 	if (adev->data.of_compatible)
2113 		acpi_default_enumeration(adev);
2114 
2115 	return 1;
2116 }
2117 
2118 static struct acpi_scan_handler generic_device_handler = {
2119 	.ids = generic_device_ids,
2120 	.attach = acpi_generic_device_attach,
2121 };
2122 
acpi_scan_attach_handler(struct acpi_device * device)2123 static int acpi_scan_attach_handler(struct acpi_device *device)
2124 {
2125 	struct acpi_hardware_id *hwid;
2126 	int ret = 0;
2127 
2128 	list_for_each_entry(hwid, &device->pnp.ids, list) {
2129 		const struct acpi_device_id *devid;
2130 		struct acpi_scan_handler *handler;
2131 
2132 		handler = acpi_scan_match_handler(hwid->id, &devid);
2133 		if (handler) {
2134 			if (!handler->attach) {
2135 				device->pnp.type.platform_id = 0;
2136 				continue;
2137 			}
2138 			device->handler = handler;
2139 			ret = handler->attach(device, devid);
2140 			if (ret > 0)
2141 				break;
2142 
2143 			device->handler = NULL;
2144 			if (ret < 0)
2145 				break;
2146 		}
2147 	}
2148 
2149 	return ret;
2150 }
2151 
acpi_bus_attach(struct acpi_device * device,bool first_pass)2152 static void acpi_bus_attach(struct acpi_device *device, bool first_pass)
2153 {
2154 	struct acpi_device *child;
2155 	bool skip = !first_pass && device->flags.visited;
2156 	acpi_handle ejd;
2157 	int ret;
2158 
2159 	if (skip)
2160 		goto ok;
2161 
2162 	if (ACPI_SUCCESS(acpi_bus_get_ejd(device->handle, &ejd)))
2163 		register_dock_dependent_device(device, ejd);
2164 
2165 	acpi_bus_get_status(device);
2166 	/* Skip devices that are not present. */
2167 	if (!acpi_device_is_present(device)) {
2168 		device->flags.initialized = false;
2169 		acpi_device_clear_enumerated(device);
2170 		device->flags.power_manageable = 0;
2171 		return;
2172 	}
2173 	if (device->handler)
2174 		goto ok;
2175 
2176 	if (!device->flags.initialized) {
2177 		device->flags.power_manageable =
2178 			device->power.states[ACPI_STATE_D0].flags.valid;
2179 		if (acpi_bus_init_power(device))
2180 			device->flags.power_manageable = 0;
2181 
2182 		device->flags.initialized = true;
2183 	} else if (device->flags.visited) {
2184 		goto ok;
2185 	}
2186 
2187 	ret = acpi_scan_attach_handler(device);
2188 	if (ret < 0)
2189 		return;
2190 
2191 	device->flags.match_driver = true;
2192 	if (ret > 0 && !device->flags.enumeration_by_parent) {
2193 		acpi_device_set_enumerated(device);
2194 		goto ok;
2195 	}
2196 
2197 	ret = device_attach(&device->dev);
2198 	if (ret < 0)
2199 		return;
2200 
2201 	if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
2202 		acpi_default_enumeration(device);
2203 	else
2204 		acpi_device_set_enumerated(device);
2205 
2206  ok:
2207 	list_for_each_entry(child, &device->children, node)
2208 		acpi_bus_attach(child, first_pass);
2209 
2210 	if (!skip && device->handler && device->handler->hotplug.notify_online)
2211 		device->handler->hotplug.notify_online(device);
2212 }
2213 
acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data * dep,void * data)2214 static int acpi_dev_get_first_consumer_dev_cb(struct acpi_dep_data *dep, void *data)
2215 {
2216 	struct acpi_device *adev;
2217 
2218 	adev = acpi_bus_get_acpi_device(dep->consumer);
2219 	if (adev) {
2220 		*(struct acpi_device **)data = adev;
2221 		return 1;
2222 	}
2223 	/* Continue parsing if the device object is not present. */
2224 	return 0;
2225 }
2226 
2227 struct acpi_scan_clear_dep_work {
2228 	struct work_struct work;
2229 	struct acpi_device *adev;
2230 };
2231 
acpi_scan_clear_dep_fn(struct work_struct * work)2232 static void acpi_scan_clear_dep_fn(struct work_struct *work)
2233 {
2234 	struct acpi_scan_clear_dep_work *cdw;
2235 
2236 	cdw = container_of(work, struct acpi_scan_clear_dep_work, work);
2237 
2238 	acpi_scan_lock_acquire();
2239 	acpi_bus_attach(cdw->adev, true);
2240 	acpi_scan_lock_release();
2241 
2242 	acpi_dev_put(cdw->adev);
2243 	kfree(cdw);
2244 }
2245 
acpi_scan_clear_dep_queue(struct acpi_device * adev)2246 static bool acpi_scan_clear_dep_queue(struct acpi_device *adev)
2247 {
2248 	struct acpi_scan_clear_dep_work *cdw;
2249 
2250 	if (adev->dep_unmet)
2251 		return false;
2252 
2253 	cdw = kmalloc(sizeof(*cdw), GFP_KERNEL);
2254 	if (!cdw)
2255 		return false;
2256 
2257 	cdw->adev = adev;
2258 	INIT_WORK(&cdw->work, acpi_scan_clear_dep_fn);
2259 	/*
2260 	 * Since the work function may block on the lock until the entire
2261 	 * initial enumeration of devices is complete, put it into the unbound
2262 	 * workqueue.
2263 	 */
2264 	queue_work(system_unbound_wq, &cdw->work);
2265 
2266 	return true;
2267 }
2268 
acpi_scan_clear_dep(struct acpi_dep_data * dep,void * data)2269 static int acpi_scan_clear_dep(struct acpi_dep_data *dep, void *data)
2270 {
2271 	struct acpi_device *adev = acpi_bus_get_acpi_device(dep->consumer);
2272 
2273 	if (adev) {
2274 		adev->dep_unmet--;
2275 		if (!acpi_scan_clear_dep_queue(adev))
2276 			acpi_dev_put(adev);
2277 	}
2278 
2279 	list_del(&dep->node);
2280 	kfree(dep);
2281 
2282 	return 0;
2283 }
2284 
2285 /**
2286  * acpi_walk_dep_device_list - Apply a callback to every entry in acpi_dep_list
2287  * @handle:	The ACPI handle of the supplier device
2288  * @callback:	Pointer to the callback function to apply
2289  * @data:	Pointer to some data to pass to the callback
2290  *
2291  * The return value of the callback determines this function's behaviour. If 0
2292  * is returned we continue to iterate over acpi_dep_list. If a positive value
2293  * is returned then the loop is broken but this function returns 0. If a
2294  * negative value is returned by the callback then the loop is broken and that
2295  * value is returned as the final error.
2296  */
acpi_walk_dep_device_list(acpi_handle handle,int (* callback)(struct acpi_dep_data *,void *),void * data)2297 static int acpi_walk_dep_device_list(acpi_handle handle,
2298 				int (*callback)(struct acpi_dep_data *, void *),
2299 				void *data)
2300 {
2301 	struct acpi_dep_data *dep, *tmp;
2302 	int ret = 0;
2303 
2304 	mutex_lock(&acpi_dep_list_lock);
2305 	list_for_each_entry_safe(dep, tmp, &acpi_dep_list, node) {
2306 		if (dep->supplier == handle) {
2307 			ret = callback(dep, data);
2308 			if (ret)
2309 				break;
2310 		}
2311 	}
2312 	mutex_unlock(&acpi_dep_list_lock);
2313 
2314 	return ret > 0 ? 0 : ret;
2315 }
2316 
2317 /**
2318  * acpi_dev_clear_dependencies - Inform consumers that the device is now active
2319  * @supplier: Pointer to the supplier &struct acpi_device
2320  *
2321  * Clear dependencies on the given device.
2322  */
acpi_dev_clear_dependencies(struct acpi_device * supplier)2323 void acpi_dev_clear_dependencies(struct acpi_device *supplier)
2324 {
2325 	acpi_walk_dep_device_list(supplier->handle, acpi_scan_clear_dep, NULL);
2326 }
2327 EXPORT_SYMBOL_GPL(acpi_dev_clear_dependencies);
2328 
2329 /**
2330  * acpi_dev_get_first_consumer_dev - Return ACPI device dependent on @supplier
2331  * @supplier: Pointer to the dependee device
2332  *
2333  * Returns the first &struct acpi_device which declares itself dependent on
2334  * @supplier via the _DEP buffer, parsed from the acpi_dep_list.
2335  *
2336  * The caller is responsible for putting the reference to adev when it is no
2337  * longer needed.
2338  */
acpi_dev_get_first_consumer_dev(struct acpi_device * supplier)2339 struct acpi_device *acpi_dev_get_first_consumer_dev(struct acpi_device *supplier)
2340 {
2341 	struct acpi_device *adev = NULL;
2342 
2343 	acpi_walk_dep_device_list(supplier->handle,
2344 				  acpi_dev_get_first_consumer_dev_cb, &adev);
2345 
2346 	return adev;
2347 }
2348 EXPORT_SYMBOL_GPL(acpi_dev_get_first_consumer_dev);
2349 
2350 /**
2351  * acpi_bus_scan - Add ACPI device node objects in a given namespace scope.
2352  * @handle: Root of the namespace scope to scan.
2353  *
2354  * Scan a given ACPI tree (probably recently hot-plugged) and create and add
2355  * found devices.
2356  *
2357  * If no devices were found, -ENODEV is returned, but it does not mean that
2358  * there has been a real error.  There just have been no suitable ACPI objects
2359  * in the table trunk from which the kernel could create a device and add an
2360  * appropriate driver.
2361  *
2362  * Must be called under acpi_scan_lock.
2363  */
acpi_bus_scan(acpi_handle handle)2364 int acpi_bus_scan(acpi_handle handle)
2365 {
2366 	struct acpi_device *device = NULL;
2367 
2368 	acpi_bus_scan_second_pass = false;
2369 
2370 	/* Pass 1: Avoid enumerating devices with missing dependencies. */
2371 
2372 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, true, &device)))
2373 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2374 				    acpi_bus_check_add_1, NULL, NULL,
2375 				    (void **)&device);
2376 
2377 	if (!device)
2378 		return -ENODEV;
2379 
2380 	acpi_bus_attach(device, true);
2381 
2382 	if (!acpi_bus_scan_second_pass)
2383 		return 0;
2384 
2385 	/* Pass 2: Enumerate all of the remaining devices. */
2386 
2387 	device = NULL;
2388 
2389 	if (ACPI_SUCCESS(acpi_bus_check_add(handle, false, &device)))
2390 		acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
2391 				    acpi_bus_check_add_2, NULL, NULL,
2392 				    (void **)&device);
2393 
2394 	acpi_bus_attach(device, false);
2395 
2396 	return 0;
2397 }
2398 EXPORT_SYMBOL(acpi_bus_scan);
2399 
2400 /**
2401  * acpi_bus_trim - Detach scan handlers and drivers from ACPI device objects.
2402  * @adev: Root of the ACPI namespace scope to walk.
2403  *
2404  * Must be called under acpi_scan_lock.
2405  */
acpi_bus_trim(struct acpi_device * adev)2406 void acpi_bus_trim(struct acpi_device *adev)
2407 {
2408 	struct acpi_scan_handler *handler = adev->handler;
2409 	struct acpi_device *child;
2410 
2411 	list_for_each_entry_reverse(child, &adev->children, node)
2412 		acpi_bus_trim(child);
2413 
2414 	adev->flags.match_driver = false;
2415 	if (handler) {
2416 		if (handler->detach)
2417 			handler->detach(adev);
2418 
2419 		adev->handler = NULL;
2420 	} else {
2421 		device_release_driver(&adev->dev);
2422 	}
2423 	/*
2424 	 * Most likely, the device is going away, so put it into D3cold before
2425 	 * that.
2426 	 */
2427 	acpi_device_set_power(adev, ACPI_STATE_D3_COLD);
2428 	adev->flags.initialized = false;
2429 	acpi_device_clear_enumerated(adev);
2430 }
2431 EXPORT_SYMBOL_GPL(acpi_bus_trim);
2432 
acpi_bus_register_early_device(int type)2433 int acpi_bus_register_early_device(int type)
2434 {
2435 	struct acpi_device *device = NULL;
2436 	int result;
2437 
2438 	result = acpi_add_single_object(&device, NULL, type, false);
2439 	if (result)
2440 		return result;
2441 
2442 	device->flags.match_driver = true;
2443 	return device_attach(&device->dev);
2444 }
2445 EXPORT_SYMBOL_GPL(acpi_bus_register_early_device);
2446 
acpi_bus_scan_fixed(void)2447 static int acpi_bus_scan_fixed(void)
2448 {
2449 	int result = 0;
2450 
2451 	/*
2452 	 * Enumerate all fixed-feature devices.
2453 	 */
2454 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_POWER_BUTTON)) {
2455 		struct acpi_device *device = NULL;
2456 
2457 		result = acpi_add_single_object(&device, NULL,
2458 						ACPI_BUS_TYPE_POWER_BUTTON, false);
2459 		if (result)
2460 			return result;
2461 
2462 		device->flags.match_driver = true;
2463 		result = device_attach(&device->dev);
2464 		if (result < 0)
2465 			return result;
2466 
2467 		device_init_wakeup(&device->dev, true);
2468 	}
2469 
2470 	if (!(acpi_gbl_FADT.flags & ACPI_FADT_SLEEP_BUTTON)) {
2471 		struct acpi_device *device = NULL;
2472 
2473 		result = acpi_add_single_object(&device, NULL,
2474 						ACPI_BUS_TYPE_SLEEP_BUTTON, false);
2475 		if (result)
2476 			return result;
2477 
2478 		device->flags.match_driver = true;
2479 		result = device_attach(&device->dev);
2480 	}
2481 
2482 	return result < 0 ? result : 0;
2483 }
2484 
acpi_get_spcr_uart_addr(void)2485 static void __init acpi_get_spcr_uart_addr(void)
2486 {
2487 	acpi_status status;
2488 	struct acpi_table_spcr *spcr_ptr;
2489 
2490 	status = acpi_get_table(ACPI_SIG_SPCR, 0,
2491 				(struct acpi_table_header **)&spcr_ptr);
2492 	if (ACPI_FAILURE(status)) {
2493 		pr_warn("STAO table present, but SPCR is missing\n");
2494 		return;
2495 	}
2496 
2497 	spcr_uart_addr = spcr_ptr->serial_port.address;
2498 	acpi_put_table((struct acpi_table_header *)spcr_ptr);
2499 }
2500 
2501 static bool acpi_scan_initialized;
2502 
acpi_scan_init(void)2503 int __init acpi_scan_init(void)
2504 {
2505 	int result;
2506 	acpi_status status;
2507 	struct acpi_table_stao *stao_ptr;
2508 
2509 	acpi_pci_root_init();
2510 	acpi_pci_link_init();
2511 	acpi_processor_init();
2512 	acpi_platform_init();
2513 	acpi_lpss_init();
2514 	acpi_apd_init();
2515 	acpi_cmos_rtc_init();
2516 	acpi_container_init();
2517 	acpi_memory_hotplug_init();
2518 	acpi_watchdog_init();
2519 	acpi_pnp_init();
2520 	acpi_int340x_thermal_init();
2521 	acpi_amba_init();
2522 	acpi_init_lpit();
2523 
2524 	acpi_scan_add_handler(&generic_device_handler);
2525 
2526 	/*
2527 	 * If there is STAO table, check whether it needs to ignore the UART
2528 	 * device in SPCR table.
2529 	 */
2530 	status = acpi_get_table(ACPI_SIG_STAO, 0,
2531 				(struct acpi_table_header **)&stao_ptr);
2532 	if (ACPI_SUCCESS(status)) {
2533 		if (stao_ptr->header.length > sizeof(struct acpi_table_stao))
2534 			pr_info("STAO Name List not yet supported.\n");
2535 
2536 		if (stao_ptr->ignore_uart)
2537 			acpi_get_spcr_uart_addr();
2538 
2539 		acpi_put_table((struct acpi_table_header *)stao_ptr);
2540 	}
2541 
2542 	acpi_gpe_apply_masked_gpes();
2543 	acpi_update_all_gpes();
2544 
2545 	/*
2546 	 * Although we call __add_memory() that is documented to require the
2547 	 * device_hotplug_lock, it is not necessary here because this is an
2548 	 * early code when userspace or any other code path cannot trigger
2549 	 * hotplug/hotunplug operations.
2550 	 */
2551 	mutex_lock(&acpi_scan_lock);
2552 	/*
2553 	 * Enumerate devices in the ACPI namespace.
2554 	 */
2555 	result = acpi_bus_scan(ACPI_ROOT_OBJECT);
2556 	if (result)
2557 		goto out;
2558 
2559 	result = acpi_bus_get_device(ACPI_ROOT_OBJECT, &acpi_root);
2560 	if (result)
2561 		goto out;
2562 
2563 	/* Fixed feature devices do not exist on HW-reduced platform */
2564 	if (!acpi_gbl_reduced_hardware) {
2565 		result = acpi_bus_scan_fixed();
2566 		if (result) {
2567 			acpi_detach_data(acpi_root->handle,
2568 					 acpi_scan_drop_device);
2569 			acpi_device_del(acpi_root);
2570 			acpi_bus_put_acpi_device(acpi_root);
2571 			goto out;
2572 		}
2573 	}
2574 
2575 	acpi_turn_off_unused_power_resources();
2576 
2577 	acpi_scan_initialized = true;
2578 
2579  out:
2580 	mutex_unlock(&acpi_scan_lock);
2581 	return result;
2582 }
2583 
2584 static struct acpi_probe_entry *ape;
2585 static int acpi_probe_count;
2586 static DEFINE_MUTEX(acpi_probe_mutex);
2587 
acpi_match_madt(union acpi_subtable_headers * header,const unsigned long end)2588 static int __init acpi_match_madt(union acpi_subtable_headers *header,
2589 				  const unsigned long end)
2590 {
2591 	if (!ape->subtable_valid || ape->subtable_valid(&header->common, ape))
2592 		if (!ape->probe_subtbl(header, end))
2593 			acpi_probe_count++;
2594 
2595 	return 0;
2596 }
2597 
__acpi_probe_device_table(struct acpi_probe_entry * ap_head,int nr)2598 int __init __acpi_probe_device_table(struct acpi_probe_entry *ap_head, int nr)
2599 {
2600 	int count = 0;
2601 
2602 	if (acpi_disabled)
2603 		return 0;
2604 
2605 	mutex_lock(&acpi_probe_mutex);
2606 	for (ape = ap_head; nr; ape++, nr--) {
2607 		if (ACPI_COMPARE_NAMESEG(ACPI_SIG_MADT, ape->id)) {
2608 			acpi_probe_count = 0;
2609 			acpi_table_parse_madt(ape->type, acpi_match_madt, 0);
2610 			count += acpi_probe_count;
2611 		} else {
2612 			int res;
2613 			res = acpi_table_parse(ape->id, ape->probe_table);
2614 			if (!res)
2615 				count++;
2616 		}
2617 	}
2618 	mutex_unlock(&acpi_probe_mutex);
2619 
2620 	return count;
2621 }
2622 
acpi_table_events_fn(struct work_struct * work)2623 static void acpi_table_events_fn(struct work_struct *work)
2624 {
2625 	acpi_scan_lock_acquire();
2626 	acpi_bus_scan(ACPI_ROOT_OBJECT);
2627 	acpi_scan_lock_release();
2628 
2629 	kfree(work);
2630 }
2631 
acpi_scan_table_notify(void)2632 void acpi_scan_table_notify(void)
2633 {
2634 	struct work_struct *work;
2635 
2636 	if (!acpi_scan_initialized)
2637 		return;
2638 
2639 	work = kmalloc(sizeof(*work), GFP_KERNEL);
2640 	if (!work)
2641 		return;
2642 
2643 	INIT_WORK(work, acpi_table_events_fn);
2644 	schedule_work(work);
2645 }
2646 
acpi_reconfig_notifier_register(struct notifier_block * nb)2647 int acpi_reconfig_notifier_register(struct notifier_block *nb)
2648 {
2649 	return blocking_notifier_chain_register(&acpi_reconfig_chain, nb);
2650 }
2651 EXPORT_SYMBOL(acpi_reconfig_notifier_register);
2652 
acpi_reconfig_notifier_unregister(struct notifier_block * nb)2653 int acpi_reconfig_notifier_unregister(struct notifier_block *nb)
2654 {
2655 	return blocking_notifier_chain_unregister(&acpi_reconfig_chain, nb);
2656 }
2657 EXPORT_SYMBOL(acpi_reconfig_notifier_unregister);
2658