• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Bluetooth Software UART Qualcomm protocol
4  *
5  *  HCI_IBS (HCI In-Band Sleep) is Qualcomm's power management
6  *  protocol extension to H4.
7  *
8  *  Copyright (C) 2007 Texas Instruments, Inc.
9  *  Copyright (c) 2010, 2012, 2018 The Linux Foundation. All rights reserved.
10  *
11  *  Acknowledgements:
12  *  This file is based on hci_ll.c, which was...
13  *  Written by Ohad Ben-Cohen <ohad@bencohen.org>
14  *  which was in turn based on hci_h4.c, which was written
15  *  by Maxim Krasnyansky and Marcel Holtmann.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/debugfs.h>
22 #include <linux/delay.h>
23 #include <linux/devcoredump.h>
24 #include <linux/device.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/module.h>
28 #include <linux/of_device.h>
29 #include <linux/acpi.h>
30 #include <linux/platform_device.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/serdev.h>
33 #include <linux/mutex.h>
34 #include <asm/unaligned.h>
35 
36 #include <net/bluetooth/bluetooth.h>
37 #include <net/bluetooth/hci_core.h>
38 
39 #include "hci_uart.h"
40 #include "btqca.h"
41 
42 /* HCI_IBS protocol messages */
43 #define HCI_IBS_SLEEP_IND	0xFE
44 #define HCI_IBS_WAKE_IND	0xFD
45 #define HCI_IBS_WAKE_ACK	0xFC
46 #define HCI_MAX_IBS_SIZE	10
47 
48 #define IBS_WAKE_RETRANS_TIMEOUT_MS	100
49 #define IBS_BTSOC_TX_IDLE_TIMEOUT_MS	200
50 #define IBS_HOST_TX_IDLE_TIMEOUT_MS	2000
51 #define CMD_TRANS_TIMEOUT_MS		100
52 #define MEMDUMP_TIMEOUT_MS		8000
53 #define IBS_DISABLE_SSR_TIMEOUT_MS \
54 	(MEMDUMP_TIMEOUT_MS + FW_DOWNLOAD_TIMEOUT_MS)
55 #define FW_DOWNLOAD_TIMEOUT_MS		3000
56 
57 /* susclk rate */
58 #define SUSCLK_RATE_32KHZ	32768
59 
60 /* Controller debug log header */
61 #define QCA_DEBUG_HANDLE	0x2EDC
62 
63 /* max retry count when init fails */
64 #define MAX_INIT_RETRIES 3
65 
66 /* Controller dump header */
67 #define QCA_SSR_DUMP_HANDLE		0x0108
68 #define QCA_DUMP_PACKET_SIZE		255
69 #define QCA_LAST_SEQUENCE_NUM		0xFFFF
70 #define QCA_CRASHBYTE_PACKET_LEN	1096
71 #define QCA_MEMDUMP_BYTE		0xFB
72 
73 enum qca_flags {
74 	QCA_IBS_DISABLED,
75 	QCA_DROP_VENDOR_EVENT,
76 	QCA_SUSPENDING,
77 	QCA_MEMDUMP_COLLECTION,
78 	QCA_HW_ERROR_EVENT,
79 	QCA_SSR_TRIGGERED,
80 	QCA_BT_OFF,
81 	QCA_ROM_FW,
82 	QCA_DEBUGFS_CREATED,
83 };
84 
85 enum qca_capabilities {
86 	QCA_CAP_WIDEBAND_SPEECH = BIT(0),
87 	QCA_CAP_VALID_LE_STATES = BIT(1),
88 };
89 
90 /* HCI_IBS transmit side sleep protocol states */
91 enum tx_ibs_states {
92 	HCI_IBS_TX_ASLEEP,
93 	HCI_IBS_TX_WAKING,
94 	HCI_IBS_TX_AWAKE,
95 };
96 
97 /* HCI_IBS receive side sleep protocol states */
98 enum rx_states {
99 	HCI_IBS_RX_ASLEEP,
100 	HCI_IBS_RX_AWAKE,
101 };
102 
103 /* HCI_IBS transmit and receive side clock state vote */
104 enum hci_ibs_clock_state_vote {
105 	HCI_IBS_VOTE_STATS_UPDATE,
106 	HCI_IBS_TX_VOTE_CLOCK_ON,
107 	HCI_IBS_TX_VOTE_CLOCK_OFF,
108 	HCI_IBS_RX_VOTE_CLOCK_ON,
109 	HCI_IBS_RX_VOTE_CLOCK_OFF,
110 };
111 
112 /* Controller memory dump states */
113 enum qca_memdump_states {
114 	QCA_MEMDUMP_IDLE,
115 	QCA_MEMDUMP_COLLECTING,
116 	QCA_MEMDUMP_COLLECTED,
117 	QCA_MEMDUMP_TIMEOUT,
118 };
119 
120 struct qca_memdump_data {
121 	char *memdump_buf_head;
122 	char *memdump_buf_tail;
123 	u32 current_seq_no;
124 	u32 received_dump;
125 	u32 ram_dump_size;
126 };
127 
128 struct qca_memdump_event_hdr {
129 	__u8    evt;
130 	__u8    plen;
131 	__u16   opcode;
132 	__u16   seq_no;
133 	__u8    reserved;
134 } __packed;
135 
136 
137 struct qca_dump_size {
138 	u32 dump_size;
139 } __packed;
140 
141 struct qca_data {
142 	struct hci_uart *hu;
143 	struct sk_buff *rx_skb;
144 	struct sk_buff_head txq;
145 	struct sk_buff_head tx_wait_q;	/* HCI_IBS wait queue	*/
146 	struct sk_buff_head rx_memdump_q;	/* Memdump wait queue	*/
147 	spinlock_t hci_ibs_lock;	/* HCI_IBS state lock	*/
148 	u8 tx_ibs_state;	/* HCI_IBS transmit side power state*/
149 	u8 rx_ibs_state;	/* HCI_IBS receive side power state */
150 	bool tx_vote;		/* Clock must be on for TX */
151 	bool rx_vote;		/* Clock must be on for RX */
152 	struct timer_list tx_idle_timer;
153 	u32 tx_idle_delay;
154 	struct timer_list wake_retrans_timer;
155 	u32 wake_retrans;
156 	struct workqueue_struct *workqueue;
157 	struct work_struct ws_awake_rx;
158 	struct work_struct ws_awake_device;
159 	struct work_struct ws_rx_vote_off;
160 	struct work_struct ws_tx_vote_off;
161 	struct work_struct ctrl_memdump_evt;
162 	struct delayed_work ctrl_memdump_timeout;
163 	struct qca_memdump_data *qca_memdump;
164 	unsigned long flags;
165 	struct completion drop_ev_comp;
166 	wait_queue_head_t suspend_wait_q;
167 	enum qca_memdump_states memdump_state;
168 	struct mutex hci_memdump_lock;
169 
170 	/* For debugging purpose */
171 	u64 ibs_sent_wacks;
172 	u64 ibs_sent_slps;
173 	u64 ibs_sent_wakes;
174 	u64 ibs_recv_wacks;
175 	u64 ibs_recv_slps;
176 	u64 ibs_recv_wakes;
177 	u64 vote_last_jif;
178 	u32 vote_on_ms;
179 	u32 vote_off_ms;
180 	u64 tx_votes_on;
181 	u64 rx_votes_on;
182 	u64 tx_votes_off;
183 	u64 rx_votes_off;
184 	u64 votes_on;
185 	u64 votes_off;
186 };
187 
188 enum qca_speed_type {
189 	QCA_INIT_SPEED = 1,
190 	QCA_OPER_SPEED
191 };
192 
193 /*
194  * Voltage regulator information required for configuring the
195  * QCA Bluetooth chipset
196  */
197 struct qca_vreg {
198 	const char *name;
199 	unsigned int load_uA;
200 };
201 
202 struct qca_device_data {
203 	enum qca_btsoc_type soc_type;
204 	struct qca_vreg *vregs;
205 	size_t num_vregs;
206 	uint32_t capabilities;
207 };
208 
209 /*
210  * Platform data for the QCA Bluetooth power driver.
211  */
212 struct qca_power {
213 	struct device *dev;
214 	struct regulator_bulk_data *vreg_bulk;
215 	int num_vregs;
216 	bool vregs_on;
217 };
218 
219 struct qca_serdev {
220 	struct hci_uart	 serdev_hu;
221 	struct gpio_desc *bt_en;
222 	struct gpio_desc *sw_ctrl;
223 	struct clk	 *susclk;
224 	enum qca_btsoc_type btsoc_type;
225 	struct qca_power *bt_power;
226 	u32 init_speed;
227 	u32 oper_speed;
228 	const char *firmware_name;
229 };
230 
231 static int qca_regulator_enable(struct qca_serdev *qcadev);
232 static void qca_regulator_disable(struct qca_serdev *qcadev);
233 static void qca_power_shutdown(struct hci_uart *hu);
234 static int qca_power_off(struct hci_dev *hdev);
235 static void qca_controller_memdump(struct work_struct *work);
236 
qca_soc_type(struct hci_uart * hu)237 static enum qca_btsoc_type qca_soc_type(struct hci_uart *hu)
238 {
239 	enum qca_btsoc_type soc_type;
240 
241 	if (hu->serdev) {
242 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
243 
244 		soc_type = qsd->btsoc_type;
245 	} else {
246 		soc_type = QCA_ROME;
247 	}
248 
249 	return soc_type;
250 }
251 
qca_get_firmware_name(struct hci_uart * hu)252 static const char *qca_get_firmware_name(struct hci_uart *hu)
253 {
254 	if (hu->serdev) {
255 		struct qca_serdev *qsd = serdev_device_get_drvdata(hu->serdev);
256 
257 		return qsd->firmware_name;
258 	} else {
259 		return NULL;
260 	}
261 }
262 
__serial_clock_on(struct tty_struct * tty)263 static void __serial_clock_on(struct tty_struct *tty)
264 {
265 	/* TODO: Some chipset requires to enable UART clock on client
266 	 * side to save power consumption or manual work is required.
267 	 * Please put your code to control UART clock here if needed
268 	 */
269 }
270 
__serial_clock_off(struct tty_struct * tty)271 static void __serial_clock_off(struct tty_struct *tty)
272 {
273 	/* TODO: Some chipset requires to disable UART clock on client
274 	 * side to save power consumption or manual work is required.
275 	 * Please put your code to control UART clock off here if needed
276 	 */
277 }
278 
279 /* serial_clock_vote needs to be called with the ibs lock held */
serial_clock_vote(unsigned long vote,struct hci_uart * hu)280 static void serial_clock_vote(unsigned long vote, struct hci_uart *hu)
281 {
282 	struct qca_data *qca = hu->priv;
283 	unsigned int diff;
284 
285 	bool old_vote = (qca->tx_vote | qca->rx_vote);
286 	bool new_vote;
287 
288 	switch (vote) {
289 	case HCI_IBS_VOTE_STATS_UPDATE:
290 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
291 
292 		if (old_vote)
293 			qca->vote_off_ms += diff;
294 		else
295 			qca->vote_on_ms += diff;
296 		return;
297 
298 	case HCI_IBS_TX_VOTE_CLOCK_ON:
299 		qca->tx_vote = true;
300 		qca->tx_votes_on++;
301 		break;
302 
303 	case HCI_IBS_RX_VOTE_CLOCK_ON:
304 		qca->rx_vote = true;
305 		qca->rx_votes_on++;
306 		break;
307 
308 	case HCI_IBS_TX_VOTE_CLOCK_OFF:
309 		qca->tx_vote = false;
310 		qca->tx_votes_off++;
311 		break;
312 
313 	case HCI_IBS_RX_VOTE_CLOCK_OFF:
314 		qca->rx_vote = false;
315 		qca->rx_votes_off++;
316 		break;
317 
318 	default:
319 		BT_ERR("Voting irregularity");
320 		return;
321 	}
322 
323 	new_vote = qca->rx_vote | qca->tx_vote;
324 
325 	if (new_vote != old_vote) {
326 		if (new_vote)
327 			__serial_clock_on(hu->tty);
328 		else
329 			__serial_clock_off(hu->tty);
330 
331 		BT_DBG("Vote serial clock %s(%s)", new_vote ? "true" : "false",
332 		       vote ? "true" : "false");
333 
334 		diff = jiffies_to_msecs(jiffies - qca->vote_last_jif);
335 
336 		if (new_vote) {
337 			qca->votes_on++;
338 			qca->vote_off_ms += diff;
339 		} else {
340 			qca->votes_off++;
341 			qca->vote_on_ms += diff;
342 		}
343 		qca->vote_last_jif = jiffies;
344 	}
345 }
346 
347 /* Builds and sends an HCI_IBS command packet.
348  * These are very simple packets with only 1 cmd byte.
349  */
send_hci_ibs_cmd(u8 cmd,struct hci_uart * hu)350 static int send_hci_ibs_cmd(u8 cmd, struct hci_uart *hu)
351 {
352 	int err = 0;
353 	struct sk_buff *skb = NULL;
354 	struct qca_data *qca = hu->priv;
355 
356 	BT_DBG("hu %p send hci ibs cmd 0x%x", hu, cmd);
357 
358 	skb = bt_skb_alloc(1, GFP_ATOMIC);
359 	if (!skb) {
360 		BT_ERR("Failed to allocate memory for HCI_IBS packet");
361 		return -ENOMEM;
362 	}
363 
364 	/* Assign HCI_IBS type */
365 	skb_put_u8(skb, cmd);
366 
367 	skb_queue_tail(&qca->txq, skb);
368 
369 	return err;
370 }
371 
qca_wq_awake_device(struct work_struct * work)372 static void qca_wq_awake_device(struct work_struct *work)
373 {
374 	struct qca_data *qca = container_of(work, struct qca_data,
375 					    ws_awake_device);
376 	struct hci_uart *hu = qca->hu;
377 	unsigned long retrans_delay;
378 	unsigned long flags;
379 
380 	BT_DBG("hu %p wq awake device", hu);
381 
382 	/* Vote for serial clock */
383 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_ON, hu);
384 
385 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
386 
387 	/* Send wake indication to device */
388 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0)
389 		BT_ERR("Failed to send WAKE to device");
390 
391 	qca->ibs_sent_wakes++;
392 
393 	/* Start retransmit timer */
394 	retrans_delay = msecs_to_jiffies(qca->wake_retrans);
395 	mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
396 
397 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
398 
399 	/* Actually send the packets */
400 	hci_uart_tx_wakeup(hu);
401 }
402 
qca_wq_awake_rx(struct work_struct * work)403 static void qca_wq_awake_rx(struct work_struct *work)
404 {
405 	struct qca_data *qca = container_of(work, struct qca_data,
406 					    ws_awake_rx);
407 	struct hci_uart *hu = qca->hu;
408 	unsigned long flags;
409 
410 	BT_DBG("hu %p wq awake rx", hu);
411 
412 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_ON, hu);
413 
414 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
415 	qca->rx_ibs_state = HCI_IBS_RX_AWAKE;
416 
417 	/* Always acknowledge device wake up,
418 	 * sending IBS message doesn't count as TX ON.
419 	 */
420 	if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0)
421 		BT_ERR("Failed to acknowledge device wake up");
422 
423 	qca->ibs_sent_wacks++;
424 
425 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
426 
427 	/* Actually send the packets */
428 	hci_uart_tx_wakeup(hu);
429 }
430 
qca_wq_serial_rx_clock_vote_off(struct work_struct * work)431 static void qca_wq_serial_rx_clock_vote_off(struct work_struct *work)
432 {
433 	struct qca_data *qca = container_of(work, struct qca_data,
434 					    ws_rx_vote_off);
435 	struct hci_uart *hu = qca->hu;
436 
437 	BT_DBG("hu %p rx clock vote off", hu);
438 
439 	serial_clock_vote(HCI_IBS_RX_VOTE_CLOCK_OFF, hu);
440 }
441 
qca_wq_serial_tx_clock_vote_off(struct work_struct * work)442 static void qca_wq_serial_tx_clock_vote_off(struct work_struct *work)
443 {
444 	struct qca_data *qca = container_of(work, struct qca_data,
445 					    ws_tx_vote_off);
446 	struct hci_uart *hu = qca->hu;
447 
448 	BT_DBG("hu %p tx clock vote off", hu);
449 
450 	/* Run HCI tx handling unlocked */
451 	hci_uart_tx_wakeup(hu);
452 
453 	/* Now that message queued to tty driver, vote for tty clocks off.
454 	 * It is up to the tty driver to pend the clocks off until tx done.
455 	 */
456 	serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
457 }
458 
hci_ibs_tx_idle_timeout(struct timer_list * t)459 static void hci_ibs_tx_idle_timeout(struct timer_list *t)
460 {
461 	struct qca_data *qca = from_timer(qca, t, tx_idle_timer);
462 	struct hci_uart *hu = qca->hu;
463 	unsigned long flags;
464 
465 	BT_DBG("hu %p idle timeout in %d state", hu, qca->tx_ibs_state);
466 
467 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
468 				 flags, SINGLE_DEPTH_NESTING);
469 
470 	switch (qca->tx_ibs_state) {
471 	case HCI_IBS_TX_AWAKE:
472 		/* TX_IDLE, go to SLEEP */
473 		if (send_hci_ibs_cmd(HCI_IBS_SLEEP_IND, hu) < 0) {
474 			BT_ERR("Failed to send SLEEP to device");
475 			break;
476 		}
477 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
478 		qca->ibs_sent_slps++;
479 		queue_work(qca->workqueue, &qca->ws_tx_vote_off);
480 		break;
481 
482 	case HCI_IBS_TX_ASLEEP:
483 	case HCI_IBS_TX_WAKING:
484 	default:
485 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
486 		break;
487 	}
488 
489 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
490 }
491 
hci_ibs_wake_retrans_timeout(struct timer_list * t)492 static void hci_ibs_wake_retrans_timeout(struct timer_list *t)
493 {
494 	struct qca_data *qca = from_timer(qca, t, wake_retrans_timer);
495 	struct hci_uart *hu = qca->hu;
496 	unsigned long flags, retrans_delay;
497 	bool retransmit = false;
498 
499 	BT_DBG("hu %p wake retransmit timeout in %d state",
500 		hu, qca->tx_ibs_state);
501 
502 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
503 				 flags, SINGLE_DEPTH_NESTING);
504 
505 	/* Don't retransmit the HCI_IBS_WAKE_IND when suspending. */
506 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
507 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
508 		return;
509 	}
510 
511 	switch (qca->tx_ibs_state) {
512 	case HCI_IBS_TX_WAKING:
513 		/* No WAKE_ACK, retransmit WAKE */
514 		retransmit = true;
515 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_IND, hu) < 0) {
516 			BT_ERR("Failed to acknowledge device wake up");
517 			break;
518 		}
519 		qca->ibs_sent_wakes++;
520 		retrans_delay = msecs_to_jiffies(qca->wake_retrans);
521 		mod_timer(&qca->wake_retrans_timer, jiffies + retrans_delay);
522 		break;
523 
524 	case HCI_IBS_TX_ASLEEP:
525 	case HCI_IBS_TX_AWAKE:
526 	default:
527 		BT_ERR("Spurious timeout tx state %d", qca->tx_ibs_state);
528 		break;
529 	}
530 
531 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
532 
533 	if (retransmit)
534 		hci_uart_tx_wakeup(hu);
535 }
536 
537 
qca_controller_memdump_timeout(struct work_struct * work)538 static void qca_controller_memdump_timeout(struct work_struct *work)
539 {
540 	struct qca_data *qca = container_of(work, struct qca_data,
541 					ctrl_memdump_timeout.work);
542 	struct hci_uart *hu = qca->hu;
543 
544 	mutex_lock(&qca->hci_memdump_lock);
545 	if (test_bit(QCA_MEMDUMP_COLLECTION, &qca->flags)) {
546 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
547 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
548 			/* Inject hw error event to reset the device
549 			 * and driver.
550 			 */
551 			hci_reset_dev(hu->hdev);
552 		}
553 	}
554 
555 	mutex_unlock(&qca->hci_memdump_lock);
556 }
557 
558 
559 /* Initialize protocol */
qca_open(struct hci_uart * hu)560 static int qca_open(struct hci_uart *hu)
561 {
562 	struct qca_serdev *qcadev;
563 	struct qca_data *qca;
564 
565 	BT_DBG("hu %p qca_open", hu);
566 
567 	if (!hci_uart_has_flow_control(hu))
568 		return -EOPNOTSUPP;
569 
570 	qca = kzalloc(sizeof(struct qca_data), GFP_KERNEL);
571 	if (!qca)
572 		return -ENOMEM;
573 
574 	skb_queue_head_init(&qca->txq);
575 	skb_queue_head_init(&qca->tx_wait_q);
576 	skb_queue_head_init(&qca->rx_memdump_q);
577 	spin_lock_init(&qca->hci_ibs_lock);
578 	mutex_init(&qca->hci_memdump_lock);
579 	qca->workqueue = alloc_ordered_workqueue("qca_wq", 0);
580 	if (!qca->workqueue) {
581 		BT_ERR("QCA Workqueue not initialized properly");
582 		kfree(qca);
583 		return -ENOMEM;
584 	}
585 
586 	INIT_WORK(&qca->ws_awake_rx, qca_wq_awake_rx);
587 	INIT_WORK(&qca->ws_awake_device, qca_wq_awake_device);
588 	INIT_WORK(&qca->ws_rx_vote_off, qca_wq_serial_rx_clock_vote_off);
589 	INIT_WORK(&qca->ws_tx_vote_off, qca_wq_serial_tx_clock_vote_off);
590 	INIT_WORK(&qca->ctrl_memdump_evt, qca_controller_memdump);
591 	INIT_DELAYED_WORK(&qca->ctrl_memdump_timeout,
592 			  qca_controller_memdump_timeout);
593 	init_waitqueue_head(&qca->suspend_wait_q);
594 
595 	qca->hu = hu;
596 	init_completion(&qca->drop_ev_comp);
597 
598 	/* Assume we start with both sides asleep -- extra wakes OK */
599 	qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
600 	qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
601 
602 	qca->vote_last_jif = jiffies;
603 
604 	hu->priv = qca;
605 
606 	if (hu->serdev) {
607 		qcadev = serdev_device_get_drvdata(hu->serdev);
608 
609 		if (qca_is_wcn399x(qcadev->btsoc_type) ||
610 		    qca_is_wcn6750(qcadev->btsoc_type))
611 			hu->init_speed = qcadev->init_speed;
612 
613 		if (qcadev->oper_speed)
614 			hu->oper_speed = qcadev->oper_speed;
615 	}
616 
617 	timer_setup(&qca->wake_retrans_timer, hci_ibs_wake_retrans_timeout, 0);
618 	qca->wake_retrans = IBS_WAKE_RETRANS_TIMEOUT_MS;
619 
620 	timer_setup(&qca->tx_idle_timer, hci_ibs_tx_idle_timeout, 0);
621 	qca->tx_idle_delay = IBS_HOST_TX_IDLE_TIMEOUT_MS;
622 
623 	BT_DBG("HCI_UART_QCA open, tx_idle_delay=%u, wake_retrans=%u",
624 	       qca->tx_idle_delay, qca->wake_retrans);
625 
626 	return 0;
627 }
628 
qca_debugfs_init(struct hci_dev * hdev)629 static void qca_debugfs_init(struct hci_dev *hdev)
630 {
631 	struct hci_uart *hu = hci_get_drvdata(hdev);
632 	struct qca_data *qca = hu->priv;
633 	struct dentry *ibs_dir;
634 	umode_t mode;
635 
636 	if (!hdev->debugfs)
637 		return;
638 
639 	if (test_and_set_bit(QCA_DEBUGFS_CREATED, &qca->flags))
640 		return;
641 
642 	ibs_dir = debugfs_create_dir("ibs", hdev->debugfs);
643 
644 	/* read only */
645 	mode = 0444;
646 	debugfs_create_u8("tx_ibs_state", mode, ibs_dir, &qca->tx_ibs_state);
647 	debugfs_create_u8("rx_ibs_state", mode, ibs_dir, &qca->rx_ibs_state);
648 	debugfs_create_u64("ibs_sent_sleeps", mode, ibs_dir,
649 			   &qca->ibs_sent_slps);
650 	debugfs_create_u64("ibs_sent_wakes", mode, ibs_dir,
651 			   &qca->ibs_sent_wakes);
652 	debugfs_create_u64("ibs_sent_wake_acks", mode, ibs_dir,
653 			   &qca->ibs_sent_wacks);
654 	debugfs_create_u64("ibs_recv_sleeps", mode, ibs_dir,
655 			   &qca->ibs_recv_slps);
656 	debugfs_create_u64("ibs_recv_wakes", mode, ibs_dir,
657 			   &qca->ibs_recv_wakes);
658 	debugfs_create_u64("ibs_recv_wake_acks", mode, ibs_dir,
659 			   &qca->ibs_recv_wacks);
660 	debugfs_create_bool("tx_vote", mode, ibs_dir, &qca->tx_vote);
661 	debugfs_create_u64("tx_votes_on", mode, ibs_dir, &qca->tx_votes_on);
662 	debugfs_create_u64("tx_votes_off", mode, ibs_dir, &qca->tx_votes_off);
663 	debugfs_create_bool("rx_vote", mode, ibs_dir, &qca->rx_vote);
664 	debugfs_create_u64("rx_votes_on", mode, ibs_dir, &qca->rx_votes_on);
665 	debugfs_create_u64("rx_votes_off", mode, ibs_dir, &qca->rx_votes_off);
666 	debugfs_create_u64("votes_on", mode, ibs_dir, &qca->votes_on);
667 	debugfs_create_u64("votes_off", mode, ibs_dir, &qca->votes_off);
668 	debugfs_create_u32("vote_on_ms", mode, ibs_dir, &qca->vote_on_ms);
669 	debugfs_create_u32("vote_off_ms", mode, ibs_dir, &qca->vote_off_ms);
670 
671 	/* read/write */
672 	mode = 0644;
673 	debugfs_create_u32("wake_retrans", mode, ibs_dir, &qca->wake_retrans);
674 	debugfs_create_u32("tx_idle_delay", mode, ibs_dir,
675 			   &qca->tx_idle_delay);
676 }
677 
678 /* Flush protocol data */
qca_flush(struct hci_uart * hu)679 static int qca_flush(struct hci_uart *hu)
680 {
681 	struct qca_data *qca = hu->priv;
682 
683 	BT_DBG("hu %p qca flush", hu);
684 
685 	skb_queue_purge(&qca->tx_wait_q);
686 	skb_queue_purge(&qca->txq);
687 
688 	return 0;
689 }
690 
691 /* Close protocol */
qca_close(struct hci_uart * hu)692 static int qca_close(struct hci_uart *hu)
693 {
694 	struct qca_data *qca = hu->priv;
695 
696 	BT_DBG("hu %p qca close", hu);
697 
698 	serial_clock_vote(HCI_IBS_VOTE_STATS_UPDATE, hu);
699 
700 	skb_queue_purge(&qca->tx_wait_q);
701 	skb_queue_purge(&qca->txq);
702 	skb_queue_purge(&qca->rx_memdump_q);
703 	destroy_workqueue(qca->workqueue);
704 	del_timer_sync(&qca->tx_idle_timer);
705 	del_timer_sync(&qca->wake_retrans_timer);
706 	qca->hu = NULL;
707 
708 	kfree_skb(qca->rx_skb);
709 
710 	hu->priv = NULL;
711 
712 	kfree(qca);
713 
714 	return 0;
715 }
716 
717 /* Called upon a wake-up-indication from the device.
718  */
device_want_to_wakeup(struct hci_uart * hu)719 static void device_want_to_wakeup(struct hci_uart *hu)
720 {
721 	unsigned long flags;
722 	struct qca_data *qca = hu->priv;
723 
724 	BT_DBG("hu %p want to wake up", hu);
725 
726 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
727 
728 	qca->ibs_recv_wakes++;
729 
730 	/* Don't wake the rx up when suspending. */
731 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
732 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
733 		return;
734 	}
735 
736 	switch (qca->rx_ibs_state) {
737 	case HCI_IBS_RX_ASLEEP:
738 		/* Make sure clock is on - we may have turned clock off since
739 		 * receiving the wake up indicator awake rx clock.
740 		 */
741 		queue_work(qca->workqueue, &qca->ws_awake_rx);
742 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
743 		return;
744 
745 	case HCI_IBS_RX_AWAKE:
746 		/* Always acknowledge device wake up,
747 		 * sending IBS message doesn't count as TX ON.
748 		 */
749 		if (send_hci_ibs_cmd(HCI_IBS_WAKE_ACK, hu) < 0) {
750 			BT_ERR("Failed to acknowledge device wake up");
751 			break;
752 		}
753 		qca->ibs_sent_wacks++;
754 		break;
755 
756 	default:
757 		/* Any other state is illegal */
758 		BT_ERR("Received HCI_IBS_WAKE_IND in rx state %d",
759 		       qca->rx_ibs_state);
760 		break;
761 	}
762 
763 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
764 
765 	/* Actually send the packets */
766 	hci_uart_tx_wakeup(hu);
767 }
768 
769 /* Called upon a sleep-indication from the device.
770  */
device_want_to_sleep(struct hci_uart * hu)771 static void device_want_to_sleep(struct hci_uart *hu)
772 {
773 	unsigned long flags;
774 	struct qca_data *qca = hu->priv;
775 
776 	BT_DBG("hu %p want to sleep in %d state", hu, qca->rx_ibs_state);
777 
778 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
779 
780 	qca->ibs_recv_slps++;
781 
782 	switch (qca->rx_ibs_state) {
783 	case HCI_IBS_RX_AWAKE:
784 		/* Update state */
785 		qca->rx_ibs_state = HCI_IBS_RX_ASLEEP;
786 		/* Vote off rx clock under workqueue */
787 		queue_work(qca->workqueue, &qca->ws_rx_vote_off);
788 		break;
789 
790 	case HCI_IBS_RX_ASLEEP:
791 		break;
792 
793 	default:
794 		/* Any other state is illegal */
795 		BT_ERR("Received HCI_IBS_SLEEP_IND in rx state %d",
796 		       qca->rx_ibs_state);
797 		break;
798 	}
799 
800 	wake_up_interruptible(&qca->suspend_wait_q);
801 
802 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
803 }
804 
805 /* Called upon wake-up-acknowledgement from the device
806  */
device_woke_up(struct hci_uart * hu)807 static void device_woke_up(struct hci_uart *hu)
808 {
809 	unsigned long flags, idle_delay;
810 	struct qca_data *qca = hu->priv;
811 	struct sk_buff *skb = NULL;
812 
813 	BT_DBG("hu %p woke up", hu);
814 
815 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
816 
817 	qca->ibs_recv_wacks++;
818 
819 	/* Don't react to the wake-up-acknowledgment when suspending. */
820 	if (test_bit(QCA_SUSPENDING, &qca->flags)) {
821 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
822 		return;
823 	}
824 
825 	switch (qca->tx_ibs_state) {
826 	case HCI_IBS_TX_AWAKE:
827 		/* Expect one if we send 2 WAKEs */
828 		BT_DBG("Received HCI_IBS_WAKE_ACK in tx state %d",
829 		       qca->tx_ibs_state);
830 		break;
831 
832 	case HCI_IBS_TX_WAKING:
833 		/* Send pending packets */
834 		while ((skb = skb_dequeue(&qca->tx_wait_q)))
835 			skb_queue_tail(&qca->txq, skb);
836 
837 		/* Switch timers and change state to HCI_IBS_TX_AWAKE */
838 		del_timer(&qca->wake_retrans_timer);
839 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
840 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
841 		qca->tx_ibs_state = HCI_IBS_TX_AWAKE;
842 		break;
843 
844 	case HCI_IBS_TX_ASLEEP:
845 	default:
846 		BT_ERR("Received HCI_IBS_WAKE_ACK in tx state %d",
847 		       qca->tx_ibs_state);
848 		break;
849 	}
850 
851 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
852 
853 	/* Actually send the packets */
854 	hci_uart_tx_wakeup(hu);
855 }
856 
857 /* Enqueue frame for transmittion (padding, crc, etc) may be called from
858  * two simultaneous tasklets.
859  */
qca_enqueue(struct hci_uart * hu,struct sk_buff * skb)860 static int qca_enqueue(struct hci_uart *hu, struct sk_buff *skb)
861 {
862 	unsigned long flags = 0, idle_delay;
863 	struct qca_data *qca = hu->priv;
864 
865 	BT_DBG("hu %p qca enq skb %p tx_ibs_state %d", hu, skb,
866 	       qca->tx_ibs_state);
867 
868 	if (test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
869 		/* As SSR is in progress, ignore the packets */
870 		bt_dev_dbg(hu->hdev, "SSR is in progress");
871 		kfree_skb(skb);
872 		return 0;
873 	}
874 
875 	/* Prepend skb with frame type */
876 	memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1);
877 
878 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
879 
880 	/* Don't go to sleep in middle of patch download or
881 	 * Out-Of-Band(GPIOs control) sleep is selected.
882 	 * Don't wake the device up when suspending.
883 	 */
884 	if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
885 	    test_bit(QCA_SUSPENDING, &qca->flags)) {
886 		skb_queue_tail(&qca->txq, skb);
887 		spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
888 		return 0;
889 	}
890 
891 	/* Act according to current state */
892 	switch (qca->tx_ibs_state) {
893 	case HCI_IBS_TX_AWAKE:
894 		BT_DBG("Device awake, sending normally");
895 		skb_queue_tail(&qca->txq, skb);
896 		idle_delay = msecs_to_jiffies(qca->tx_idle_delay);
897 		mod_timer(&qca->tx_idle_timer, jiffies + idle_delay);
898 		break;
899 
900 	case HCI_IBS_TX_ASLEEP:
901 		BT_DBG("Device asleep, waking up and queueing packet");
902 		/* Save packet for later */
903 		skb_queue_tail(&qca->tx_wait_q, skb);
904 
905 		qca->tx_ibs_state = HCI_IBS_TX_WAKING;
906 		/* Schedule a work queue to wake up device */
907 		queue_work(qca->workqueue, &qca->ws_awake_device);
908 		break;
909 
910 	case HCI_IBS_TX_WAKING:
911 		BT_DBG("Device waking up, queueing packet");
912 		/* Transient state; just keep packet for later */
913 		skb_queue_tail(&qca->tx_wait_q, skb);
914 		break;
915 
916 	default:
917 		BT_ERR("Illegal tx state: %d (losing packet)",
918 		       qca->tx_ibs_state);
919 		dev_kfree_skb_irq(skb);
920 		break;
921 	}
922 
923 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
924 
925 	return 0;
926 }
927 
qca_ibs_sleep_ind(struct hci_dev * hdev,struct sk_buff * skb)928 static int qca_ibs_sleep_ind(struct hci_dev *hdev, struct sk_buff *skb)
929 {
930 	struct hci_uart *hu = hci_get_drvdata(hdev);
931 
932 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_SLEEP_IND);
933 
934 	device_want_to_sleep(hu);
935 
936 	kfree_skb(skb);
937 	return 0;
938 }
939 
qca_ibs_wake_ind(struct hci_dev * hdev,struct sk_buff * skb)940 static int qca_ibs_wake_ind(struct hci_dev *hdev, struct sk_buff *skb)
941 {
942 	struct hci_uart *hu = hci_get_drvdata(hdev);
943 
944 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_IND);
945 
946 	device_want_to_wakeup(hu);
947 
948 	kfree_skb(skb);
949 	return 0;
950 }
951 
qca_ibs_wake_ack(struct hci_dev * hdev,struct sk_buff * skb)952 static int qca_ibs_wake_ack(struct hci_dev *hdev, struct sk_buff *skb)
953 {
954 	struct hci_uart *hu = hci_get_drvdata(hdev);
955 
956 	BT_DBG("hu %p recv hci ibs cmd 0x%x", hu, HCI_IBS_WAKE_ACK);
957 
958 	device_woke_up(hu);
959 
960 	kfree_skb(skb);
961 	return 0;
962 }
963 
qca_recv_acl_data(struct hci_dev * hdev,struct sk_buff * skb)964 static int qca_recv_acl_data(struct hci_dev *hdev, struct sk_buff *skb)
965 {
966 	/* We receive debug logs from chip as an ACL packets.
967 	 * Instead of sending the data to ACL to decode the
968 	 * received data, we are pushing them to the above layers
969 	 * as a diagnostic packet.
970 	 */
971 	if (get_unaligned_le16(skb->data) == QCA_DEBUG_HANDLE)
972 		return hci_recv_diag(hdev, skb);
973 
974 	return hci_recv_frame(hdev, skb);
975 }
976 
qca_controller_memdump(struct work_struct * work)977 static void qca_controller_memdump(struct work_struct *work)
978 {
979 	struct qca_data *qca = container_of(work, struct qca_data,
980 					    ctrl_memdump_evt);
981 	struct hci_uart *hu = qca->hu;
982 	struct sk_buff *skb;
983 	struct qca_memdump_event_hdr *cmd_hdr;
984 	struct qca_memdump_data *qca_memdump = qca->qca_memdump;
985 	struct qca_dump_size *dump;
986 	char *memdump_buf;
987 	char nullBuff[QCA_DUMP_PACKET_SIZE] = { 0 };
988 	u16 seq_no;
989 	u32 dump_size;
990 	u32 rx_size;
991 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
992 
993 	while ((skb = skb_dequeue(&qca->rx_memdump_q))) {
994 
995 		mutex_lock(&qca->hci_memdump_lock);
996 		/* Skip processing the received packets if timeout detected
997 		 * or memdump collection completed.
998 		 */
999 		if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1000 		    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1001 			mutex_unlock(&qca->hci_memdump_lock);
1002 			return;
1003 		}
1004 
1005 		if (!qca_memdump) {
1006 			qca_memdump = kzalloc(sizeof(struct qca_memdump_data),
1007 					      GFP_ATOMIC);
1008 			if (!qca_memdump) {
1009 				mutex_unlock(&qca->hci_memdump_lock);
1010 				return;
1011 			}
1012 
1013 			qca->qca_memdump = qca_memdump;
1014 		}
1015 
1016 		qca->memdump_state = QCA_MEMDUMP_COLLECTING;
1017 		cmd_hdr = (void *) skb->data;
1018 		seq_no = __le16_to_cpu(cmd_hdr->seq_no);
1019 		skb_pull(skb, sizeof(struct qca_memdump_event_hdr));
1020 
1021 		if (!seq_no) {
1022 
1023 			/* This is the first frame of memdump packet from
1024 			 * the controller, Disable IBS to recevie dump
1025 			 * with out any interruption, ideally time required for
1026 			 * the controller to send the dump is 8 seconds. let us
1027 			 * start timer to handle this asynchronous activity.
1028 			 */
1029 			set_bit(QCA_IBS_DISABLED, &qca->flags);
1030 			set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1031 			dump = (void *) skb->data;
1032 			dump_size = __le32_to_cpu(dump->dump_size);
1033 			if (!(dump_size)) {
1034 				bt_dev_err(hu->hdev, "Rx invalid memdump size");
1035 				kfree(qca_memdump);
1036 				kfree_skb(skb);
1037 				qca->qca_memdump = NULL;
1038 				mutex_unlock(&qca->hci_memdump_lock);
1039 				return;
1040 			}
1041 
1042 			bt_dev_info(hu->hdev, "QCA collecting dump of size:%u",
1043 				    dump_size);
1044 			queue_delayed_work(qca->workqueue,
1045 					   &qca->ctrl_memdump_timeout,
1046 					   msecs_to_jiffies(MEMDUMP_TIMEOUT_MS)
1047 					  );
1048 
1049 			skb_pull(skb, sizeof(dump_size));
1050 			memdump_buf = vmalloc(dump_size);
1051 			qca_memdump->ram_dump_size = dump_size;
1052 			qca_memdump->memdump_buf_head = memdump_buf;
1053 			qca_memdump->memdump_buf_tail = memdump_buf;
1054 		}
1055 
1056 		memdump_buf = qca_memdump->memdump_buf_tail;
1057 
1058 		/* If sequence no 0 is missed then there is no point in
1059 		 * accepting the other sequences.
1060 		 */
1061 		if (!memdump_buf) {
1062 			bt_dev_err(hu->hdev, "QCA: Discarding other packets");
1063 			kfree(qca_memdump);
1064 			kfree_skb(skb);
1065 			qca->qca_memdump = NULL;
1066 			mutex_unlock(&qca->hci_memdump_lock);
1067 			return;
1068 		}
1069 
1070 		/* There could be chance of missing some packets from
1071 		 * the controller. In such cases let us store the dummy
1072 		 * packets in the buffer.
1073 		 */
1074 		/* For QCA6390, controller does not lost packets but
1075 		 * sequence number field of packet sometimes has error
1076 		 * bits, so skip this checking for missing packet.
1077 		 */
1078 		while ((seq_no > qca_memdump->current_seq_no + 1) &&
1079 		       (soc_type != QCA_QCA6390) &&
1080 		       seq_no != QCA_LAST_SEQUENCE_NUM) {
1081 			bt_dev_err(hu->hdev, "QCA controller missed packet:%d",
1082 				   qca_memdump->current_seq_no);
1083 			rx_size = qca_memdump->received_dump;
1084 			rx_size += QCA_DUMP_PACKET_SIZE;
1085 			if (rx_size > qca_memdump->ram_dump_size) {
1086 				bt_dev_err(hu->hdev,
1087 					   "QCA memdump received %d, no space for missed packet",
1088 					   qca_memdump->received_dump);
1089 				break;
1090 			}
1091 			memcpy(memdump_buf, nullBuff, QCA_DUMP_PACKET_SIZE);
1092 			memdump_buf = memdump_buf + QCA_DUMP_PACKET_SIZE;
1093 			qca_memdump->received_dump += QCA_DUMP_PACKET_SIZE;
1094 			qca_memdump->current_seq_no++;
1095 		}
1096 
1097 		rx_size = qca_memdump->received_dump + skb->len;
1098 		if (rx_size <= qca_memdump->ram_dump_size) {
1099 			if ((seq_no != QCA_LAST_SEQUENCE_NUM) &&
1100 			    (seq_no != qca_memdump->current_seq_no))
1101 				bt_dev_err(hu->hdev,
1102 					   "QCA memdump unexpected packet %d",
1103 					   seq_no);
1104 			bt_dev_dbg(hu->hdev,
1105 				   "QCA memdump packet %d with length %d",
1106 				   seq_no, skb->len);
1107 			memcpy(memdump_buf, (unsigned char *)skb->data,
1108 			       skb->len);
1109 			memdump_buf = memdump_buf + skb->len;
1110 			qca_memdump->memdump_buf_tail = memdump_buf;
1111 			qca_memdump->current_seq_no = seq_no + 1;
1112 			qca_memdump->received_dump += skb->len;
1113 		} else {
1114 			bt_dev_err(hu->hdev,
1115 				   "QCA memdump received %d, no space for packet %d",
1116 				   qca_memdump->received_dump, seq_no);
1117 		}
1118 		qca->qca_memdump = qca_memdump;
1119 		kfree_skb(skb);
1120 		if (seq_no == QCA_LAST_SEQUENCE_NUM) {
1121 			bt_dev_info(hu->hdev,
1122 				    "QCA memdump Done, received %d, total %d",
1123 				    qca_memdump->received_dump,
1124 				    qca_memdump->ram_dump_size);
1125 			memdump_buf = qca_memdump->memdump_buf_head;
1126 			dev_coredumpv(&hu->serdev->dev, memdump_buf,
1127 				      qca_memdump->received_dump, GFP_KERNEL);
1128 			cancel_delayed_work(&qca->ctrl_memdump_timeout);
1129 			kfree(qca->qca_memdump);
1130 			qca->qca_memdump = NULL;
1131 			qca->memdump_state = QCA_MEMDUMP_COLLECTED;
1132 			clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1133 		}
1134 
1135 		mutex_unlock(&qca->hci_memdump_lock);
1136 	}
1137 
1138 }
1139 
qca_controller_memdump_event(struct hci_dev * hdev,struct sk_buff * skb)1140 static int qca_controller_memdump_event(struct hci_dev *hdev,
1141 					struct sk_buff *skb)
1142 {
1143 	struct hci_uart *hu = hci_get_drvdata(hdev);
1144 	struct qca_data *qca = hu->priv;
1145 
1146 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1147 	skb_queue_tail(&qca->rx_memdump_q, skb);
1148 	queue_work(qca->workqueue, &qca->ctrl_memdump_evt);
1149 
1150 	return 0;
1151 }
1152 
qca_recv_event(struct hci_dev * hdev,struct sk_buff * skb)1153 static int qca_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
1154 {
1155 	struct hci_uart *hu = hci_get_drvdata(hdev);
1156 	struct qca_data *qca = hu->priv;
1157 
1158 	if (test_bit(QCA_DROP_VENDOR_EVENT, &qca->flags)) {
1159 		struct hci_event_hdr *hdr = (void *)skb->data;
1160 
1161 		/* For the WCN3990 the vendor command for a baudrate change
1162 		 * isn't sent as synchronous HCI command, because the
1163 		 * controller sends the corresponding vendor event with the
1164 		 * new baudrate. The event is received and properly decoded
1165 		 * after changing the baudrate of the host port. It needs to
1166 		 * be dropped, otherwise it can be misinterpreted as
1167 		 * response to a later firmware download command (also a
1168 		 * vendor command).
1169 		 */
1170 
1171 		if (hdr->evt == HCI_EV_VENDOR)
1172 			complete(&qca->drop_ev_comp);
1173 
1174 		kfree_skb(skb);
1175 
1176 		return 0;
1177 	}
1178 	/* We receive chip memory dump as an event packet, With a dedicated
1179 	 * handler followed by a hardware error event. When this event is
1180 	 * received we store dump into a file before closing hci. This
1181 	 * dump will help in triaging the issues.
1182 	 */
1183 	if ((skb->data[0] == HCI_VENDOR_PKT) &&
1184 	    (get_unaligned_be16(skb->data + 2) == QCA_SSR_DUMP_HANDLE))
1185 		return qca_controller_memdump_event(hdev, skb);
1186 
1187 	return hci_recv_frame(hdev, skb);
1188 }
1189 
1190 #define QCA_IBS_SLEEP_IND_EVENT \
1191 	.type = HCI_IBS_SLEEP_IND, \
1192 	.hlen = 0, \
1193 	.loff = 0, \
1194 	.lsize = 0, \
1195 	.maxlen = HCI_MAX_IBS_SIZE
1196 
1197 #define QCA_IBS_WAKE_IND_EVENT \
1198 	.type = HCI_IBS_WAKE_IND, \
1199 	.hlen = 0, \
1200 	.loff = 0, \
1201 	.lsize = 0, \
1202 	.maxlen = HCI_MAX_IBS_SIZE
1203 
1204 #define QCA_IBS_WAKE_ACK_EVENT \
1205 	.type = HCI_IBS_WAKE_ACK, \
1206 	.hlen = 0, \
1207 	.loff = 0, \
1208 	.lsize = 0, \
1209 	.maxlen = HCI_MAX_IBS_SIZE
1210 
1211 static const struct h4_recv_pkt qca_recv_pkts[] = {
1212 	{ H4_RECV_ACL,             .recv = qca_recv_acl_data },
1213 	{ H4_RECV_SCO,             .recv = hci_recv_frame    },
1214 	{ H4_RECV_EVENT,           .recv = qca_recv_event    },
1215 	{ QCA_IBS_WAKE_IND_EVENT,  .recv = qca_ibs_wake_ind  },
1216 	{ QCA_IBS_WAKE_ACK_EVENT,  .recv = qca_ibs_wake_ack  },
1217 	{ QCA_IBS_SLEEP_IND_EVENT, .recv = qca_ibs_sleep_ind },
1218 };
1219 
qca_recv(struct hci_uart * hu,const void * data,int count)1220 static int qca_recv(struct hci_uart *hu, const void *data, int count)
1221 {
1222 	struct qca_data *qca = hu->priv;
1223 
1224 	if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
1225 		return -EUNATCH;
1226 
1227 	qca->rx_skb = h4_recv_buf(hu->hdev, qca->rx_skb, data, count,
1228 				  qca_recv_pkts, ARRAY_SIZE(qca_recv_pkts));
1229 	if (IS_ERR(qca->rx_skb)) {
1230 		int err = PTR_ERR(qca->rx_skb);
1231 		bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
1232 		qca->rx_skb = NULL;
1233 		return err;
1234 	}
1235 
1236 	return count;
1237 }
1238 
qca_dequeue(struct hci_uart * hu)1239 static struct sk_buff *qca_dequeue(struct hci_uart *hu)
1240 {
1241 	struct qca_data *qca = hu->priv;
1242 
1243 	return skb_dequeue(&qca->txq);
1244 }
1245 
qca_get_baudrate_value(int speed)1246 static uint8_t qca_get_baudrate_value(int speed)
1247 {
1248 	switch (speed) {
1249 	case 9600:
1250 		return QCA_BAUDRATE_9600;
1251 	case 19200:
1252 		return QCA_BAUDRATE_19200;
1253 	case 38400:
1254 		return QCA_BAUDRATE_38400;
1255 	case 57600:
1256 		return QCA_BAUDRATE_57600;
1257 	case 115200:
1258 		return QCA_BAUDRATE_115200;
1259 	case 230400:
1260 		return QCA_BAUDRATE_230400;
1261 	case 460800:
1262 		return QCA_BAUDRATE_460800;
1263 	case 500000:
1264 		return QCA_BAUDRATE_500000;
1265 	case 921600:
1266 		return QCA_BAUDRATE_921600;
1267 	case 1000000:
1268 		return QCA_BAUDRATE_1000000;
1269 	case 2000000:
1270 		return QCA_BAUDRATE_2000000;
1271 	case 3000000:
1272 		return QCA_BAUDRATE_3000000;
1273 	case 3200000:
1274 		return QCA_BAUDRATE_3200000;
1275 	case 3500000:
1276 		return QCA_BAUDRATE_3500000;
1277 	default:
1278 		return QCA_BAUDRATE_115200;
1279 	}
1280 }
1281 
qca_set_baudrate(struct hci_dev * hdev,uint8_t baudrate)1282 static int qca_set_baudrate(struct hci_dev *hdev, uint8_t baudrate)
1283 {
1284 	struct hci_uart *hu = hci_get_drvdata(hdev);
1285 	struct qca_data *qca = hu->priv;
1286 	struct sk_buff *skb;
1287 	u8 cmd[] = { 0x01, 0x48, 0xFC, 0x01, 0x00 };
1288 
1289 	if (baudrate > QCA_BAUDRATE_3200000)
1290 		return -EINVAL;
1291 
1292 	cmd[4] = baudrate;
1293 
1294 	skb = bt_skb_alloc(sizeof(cmd), GFP_KERNEL);
1295 	if (!skb) {
1296 		bt_dev_err(hdev, "Failed to allocate baudrate packet");
1297 		return -ENOMEM;
1298 	}
1299 
1300 	/* Assign commands to change baudrate and packet type. */
1301 	skb_put_data(skb, cmd, sizeof(cmd));
1302 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1303 
1304 	skb_queue_tail(&qca->txq, skb);
1305 	hci_uart_tx_wakeup(hu);
1306 
1307 	/* Wait for the baudrate change request to be sent */
1308 
1309 	while (!skb_queue_empty(&qca->txq))
1310 		usleep_range(100, 200);
1311 
1312 	if (hu->serdev)
1313 		serdev_device_wait_until_sent(hu->serdev,
1314 		      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
1315 
1316 	/* Give the controller time to process the request */
1317 	if (qca_is_wcn399x(qca_soc_type(hu)) ||
1318 	    qca_is_wcn6750(qca_soc_type(hu)))
1319 		usleep_range(1000, 10000);
1320 	else
1321 		msleep(300);
1322 
1323 	return 0;
1324 }
1325 
host_set_baudrate(struct hci_uart * hu,unsigned int speed)1326 static inline void host_set_baudrate(struct hci_uart *hu, unsigned int speed)
1327 {
1328 	if (hu->serdev)
1329 		serdev_device_set_baudrate(hu->serdev, speed);
1330 	else
1331 		hci_uart_set_baudrate(hu, speed);
1332 }
1333 
qca_send_power_pulse(struct hci_uart * hu,bool on)1334 static int qca_send_power_pulse(struct hci_uart *hu, bool on)
1335 {
1336 	int ret;
1337 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
1338 	u8 cmd = on ? QCA_WCN3990_POWERON_PULSE : QCA_WCN3990_POWEROFF_PULSE;
1339 
1340 	/* These power pulses are single byte command which are sent
1341 	 * at required baudrate to wcn3990. On wcn3990, we have an external
1342 	 * circuit at Tx pin which decodes the pulse sent at specific baudrate.
1343 	 * For example, wcn3990 supports RF COEX antenna for both Wi-Fi/BT
1344 	 * and also we use the same power inputs to turn on and off for
1345 	 * Wi-Fi/BT. Powering up the power sources will not enable BT, until
1346 	 * we send a power on pulse at 115200 bps. This algorithm will help to
1347 	 * save power. Disabling hardware flow control is mandatory while
1348 	 * sending power pulses to SoC.
1349 	 */
1350 	bt_dev_dbg(hu->hdev, "sending power pulse %02x to controller", cmd);
1351 
1352 	serdev_device_write_flush(hu->serdev);
1353 	hci_uart_set_flow_control(hu, true);
1354 	ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
1355 	if (ret < 0) {
1356 		bt_dev_err(hu->hdev, "failed to send power pulse %02x", cmd);
1357 		return ret;
1358 	}
1359 
1360 	serdev_device_wait_until_sent(hu->serdev, timeout);
1361 	hci_uart_set_flow_control(hu, false);
1362 
1363 	/* Give to controller time to boot/shutdown */
1364 	if (on)
1365 		msleep(100);
1366 	else
1367 		usleep_range(1000, 10000);
1368 
1369 	return 0;
1370 }
1371 
qca_get_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1372 static unsigned int qca_get_speed(struct hci_uart *hu,
1373 				  enum qca_speed_type speed_type)
1374 {
1375 	unsigned int speed = 0;
1376 
1377 	if (speed_type == QCA_INIT_SPEED) {
1378 		if (hu->init_speed)
1379 			speed = hu->init_speed;
1380 		else if (hu->proto->init_speed)
1381 			speed = hu->proto->init_speed;
1382 	} else {
1383 		if (hu->oper_speed)
1384 			speed = hu->oper_speed;
1385 		else if (hu->proto->oper_speed)
1386 			speed = hu->proto->oper_speed;
1387 	}
1388 
1389 	return speed;
1390 }
1391 
qca_check_speeds(struct hci_uart * hu)1392 static int qca_check_speeds(struct hci_uart *hu)
1393 {
1394 	if (qca_is_wcn399x(qca_soc_type(hu)) ||
1395 	    qca_is_wcn6750(qca_soc_type(hu))) {
1396 		if (!qca_get_speed(hu, QCA_INIT_SPEED) &&
1397 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1398 			return -EINVAL;
1399 	} else {
1400 		if (!qca_get_speed(hu, QCA_INIT_SPEED) ||
1401 		    !qca_get_speed(hu, QCA_OPER_SPEED))
1402 			return -EINVAL;
1403 	}
1404 
1405 	return 0;
1406 }
1407 
qca_set_speed(struct hci_uart * hu,enum qca_speed_type speed_type)1408 static int qca_set_speed(struct hci_uart *hu, enum qca_speed_type speed_type)
1409 {
1410 	unsigned int speed, qca_baudrate;
1411 	struct qca_data *qca = hu->priv;
1412 	int ret = 0;
1413 
1414 	if (speed_type == QCA_INIT_SPEED) {
1415 		speed = qca_get_speed(hu, QCA_INIT_SPEED);
1416 		if (speed)
1417 			host_set_baudrate(hu, speed);
1418 	} else {
1419 		enum qca_btsoc_type soc_type = qca_soc_type(hu);
1420 
1421 		speed = qca_get_speed(hu, QCA_OPER_SPEED);
1422 		if (!speed)
1423 			return 0;
1424 
1425 		/* Disable flow control for wcn3990 to deassert RTS while
1426 		 * changing the baudrate of chip and host.
1427 		 */
1428 		if (qca_is_wcn399x(soc_type) ||
1429 		    qca_is_wcn6750(soc_type))
1430 			hci_uart_set_flow_control(hu, true);
1431 
1432 		if (soc_type == QCA_WCN3990) {
1433 			reinit_completion(&qca->drop_ev_comp);
1434 			set_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1435 		}
1436 
1437 		qca_baudrate = qca_get_baudrate_value(speed);
1438 		bt_dev_dbg(hu->hdev, "Set UART speed to %d", speed);
1439 		ret = qca_set_baudrate(hu->hdev, qca_baudrate);
1440 		if (ret)
1441 			goto error;
1442 
1443 		host_set_baudrate(hu, speed);
1444 
1445 error:
1446 		if (qca_is_wcn399x(soc_type) ||
1447 		    qca_is_wcn6750(soc_type))
1448 			hci_uart_set_flow_control(hu, false);
1449 
1450 		if (soc_type == QCA_WCN3990) {
1451 			/* Wait for the controller to send the vendor event
1452 			 * for the baudrate change command.
1453 			 */
1454 			if (!wait_for_completion_timeout(&qca->drop_ev_comp,
1455 						 msecs_to_jiffies(100))) {
1456 				bt_dev_err(hu->hdev,
1457 					   "Failed to change controller baudrate\n");
1458 				ret = -ETIMEDOUT;
1459 			}
1460 
1461 			clear_bit(QCA_DROP_VENDOR_EVENT, &qca->flags);
1462 		}
1463 	}
1464 
1465 	return ret;
1466 }
1467 
qca_send_crashbuffer(struct hci_uart * hu)1468 static int qca_send_crashbuffer(struct hci_uart *hu)
1469 {
1470 	struct qca_data *qca = hu->priv;
1471 	struct sk_buff *skb;
1472 
1473 	skb = bt_skb_alloc(QCA_CRASHBYTE_PACKET_LEN, GFP_KERNEL);
1474 	if (!skb) {
1475 		bt_dev_err(hu->hdev, "Failed to allocate memory for skb packet");
1476 		return -ENOMEM;
1477 	}
1478 
1479 	/* We forcefully crash the controller, by sending 0xfb byte for
1480 	 * 1024 times. We also might have chance of losing data, To be
1481 	 * on safer side we send 1096 bytes to the SoC.
1482 	 */
1483 	memset(skb_put(skb, QCA_CRASHBYTE_PACKET_LEN), QCA_MEMDUMP_BYTE,
1484 	       QCA_CRASHBYTE_PACKET_LEN);
1485 	hci_skb_pkt_type(skb) = HCI_COMMAND_PKT;
1486 	bt_dev_info(hu->hdev, "crash the soc to collect controller dump");
1487 	skb_queue_tail(&qca->txq, skb);
1488 	hci_uart_tx_wakeup(hu);
1489 
1490 	return 0;
1491 }
1492 
qca_wait_for_dump_collection(struct hci_dev * hdev)1493 static void qca_wait_for_dump_collection(struct hci_dev *hdev)
1494 {
1495 	struct hci_uart *hu = hci_get_drvdata(hdev);
1496 	struct qca_data *qca = hu->priv;
1497 
1498 	wait_on_bit_timeout(&qca->flags, QCA_MEMDUMP_COLLECTION,
1499 			    TASK_UNINTERRUPTIBLE, MEMDUMP_TIMEOUT_MS);
1500 
1501 	clear_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1502 }
1503 
qca_hw_error(struct hci_dev * hdev,u8 code)1504 static void qca_hw_error(struct hci_dev *hdev, u8 code)
1505 {
1506 	struct hci_uart *hu = hci_get_drvdata(hdev);
1507 	struct qca_data *qca = hu->priv;
1508 
1509 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1510 	set_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1511 	bt_dev_info(hdev, "mem_dump_status: %d", qca->memdump_state);
1512 
1513 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1514 		/* If hardware error event received for other than QCA
1515 		 * soc memory dump event, then we need to crash the SOC
1516 		 * and wait here for 8 seconds to get the dump packets.
1517 		 * This will block main thread to be on hold until we
1518 		 * collect dump.
1519 		 */
1520 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1521 		qca_send_crashbuffer(hu);
1522 		qca_wait_for_dump_collection(hdev);
1523 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1524 		/* Let us wait here until memory dump collected or
1525 		 * memory dump timer expired.
1526 		 */
1527 		bt_dev_info(hdev, "waiting for dump to complete");
1528 		qca_wait_for_dump_collection(hdev);
1529 	}
1530 
1531 	mutex_lock(&qca->hci_memdump_lock);
1532 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1533 		bt_dev_err(hu->hdev, "clearing allocated memory due to memdump timeout");
1534 		if (qca->qca_memdump) {
1535 			vfree(qca->qca_memdump->memdump_buf_head);
1536 			kfree(qca->qca_memdump);
1537 			qca->qca_memdump = NULL;
1538 		}
1539 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1540 		cancel_delayed_work(&qca->ctrl_memdump_timeout);
1541 	}
1542 	mutex_unlock(&qca->hci_memdump_lock);
1543 
1544 	if (qca->memdump_state == QCA_MEMDUMP_TIMEOUT ||
1545 	    qca->memdump_state == QCA_MEMDUMP_COLLECTED) {
1546 		cancel_work_sync(&qca->ctrl_memdump_evt);
1547 		skb_queue_purge(&qca->rx_memdump_q);
1548 	}
1549 
1550 	clear_bit(QCA_HW_ERROR_EVENT, &qca->flags);
1551 }
1552 
qca_cmd_timeout(struct hci_dev * hdev)1553 static void qca_cmd_timeout(struct hci_dev *hdev)
1554 {
1555 	struct hci_uart *hu = hci_get_drvdata(hdev);
1556 	struct qca_data *qca = hu->priv;
1557 
1558 	set_bit(QCA_SSR_TRIGGERED, &qca->flags);
1559 	if (qca->memdump_state == QCA_MEMDUMP_IDLE) {
1560 		set_bit(QCA_MEMDUMP_COLLECTION, &qca->flags);
1561 		qca_send_crashbuffer(hu);
1562 		qca_wait_for_dump_collection(hdev);
1563 	} else if (qca->memdump_state == QCA_MEMDUMP_COLLECTING) {
1564 		/* Let us wait here until memory dump collected or
1565 		 * memory dump timer expired.
1566 		 */
1567 		bt_dev_info(hdev, "waiting for dump to complete");
1568 		qca_wait_for_dump_collection(hdev);
1569 	}
1570 
1571 	mutex_lock(&qca->hci_memdump_lock);
1572 	if (qca->memdump_state != QCA_MEMDUMP_COLLECTED) {
1573 		qca->memdump_state = QCA_MEMDUMP_TIMEOUT;
1574 		if (!test_bit(QCA_HW_ERROR_EVENT, &qca->flags)) {
1575 			/* Inject hw error event to reset the device
1576 			 * and driver.
1577 			 */
1578 			hci_reset_dev(hu->hdev);
1579 		}
1580 	}
1581 	mutex_unlock(&qca->hci_memdump_lock);
1582 }
1583 
qca_prevent_wake(struct hci_dev * hdev)1584 static bool qca_prevent_wake(struct hci_dev *hdev)
1585 {
1586 	struct hci_uart *hu = hci_get_drvdata(hdev);
1587 	bool wakeup;
1588 
1589 	/* BT SoC attached through the serial bus is handled by the serdev driver.
1590 	 * So we need to use the device handle of the serdev driver to get the
1591 	 * status of device may wakeup.
1592 	 */
1593 	wakeup = device_may_wakeup(&hu->serdev->ctrl->dev);
1594 	bt_dev_dbg(hu->hdev, "wakeup status : %d", wakeup);
1595 
1596 	return !wakeup;
1597 }
1598 
qca_regulator_init(struct hci_uart * hu)1599 static int qca_regulator_init(struct hci_uart *hu)
1600 {
1601 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1602 	struct qca_serdev *qcadev;
1603 	int ret;
1604 	bool sw_ctrl_state;
1605 
1606 	/* Check for vregs status, may be hci down has turned
1607 	 * off the voltage regulator.
1608 	 */
1609 	qcadev = serdev_device_get_drvdata(hu->serdev);
1610 	if (!qcadev->bt_power->vregs_on) {
1611 		serdev_device_close(hu->serdev);
1612 		ret = qca_regulator_enable(qcadev);
1613 		if (ret)
1614 			return ret;
1615 
1616 		ret = serdev_device_open(hu->serdev);
1617 		if (ret) {
1618 			bt_dev_err(hu->hdev, "failed to open port");
1619 			return ret;
1620 		}
1621 	}
1622 
1623 	if (qca_is_wcn399x(soc_type)) {
1624 		/* Forcefully enable wcn399x to enter in to boot mode. */
1625 		host_set_baudrate(hu, 2400);
1626 		ret = qca_send_power_pulse(hu, false);
1627 		if (ret)
1628 			return ret;
1629 	}
1630 
1631 	/* For wcn6750 need to enable gpio bt_en */
1632 	if (qcadev->bt_en) {
1633 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
1634 		msleep(50);
1635 		gpiod_set_value_cansleep(qcadev->bt_en, 1);
1636 		msleep(50);
1637 		if (qcadev->sw_ctrl) {
1638 			sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1639 			bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1640 		}
1641 	}
1642 
1643 	qca_set_speed(hu, QCA_INIT_SPEED);
1644 
1645 	if (qca_is_wcn399x(soc_type)) {
1646 		ret = qca_send_power_pulse(hu, true);
1647 		if (ret)
1648 			return ret;
1649 	}
1650 
1651 	/* Now the device is in ready state to communicate with host.
1652 	 * To sync host with device we need to reopen port.
1653 	 * Without this, we will have RTS and CTS synchronization
1654 	 * issues.
1655 	 */
1656 	serdev_device_close(hu->serdev);
1657 	ret = serdev_device_open(hu->serdev);
1658 	if (ret) {
1659 		bt_dev_err(hu->hdev, "failed to open port");
1660 		return ret;
1661 	}
1662 
1663 	hci_uart_set_flow_control(hu, false);
1664 
1665 	return 0;
1666 }
1667 
qca_power_on(struct hci_dev * hdev)1668 static int qca_power_on(struct hci_dev *hdev)
1669 {
1670 	struct hci_uart *hu = hci_get_drvdata(hdev);
1671 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1672 	struct qca_serdev *qcadev;
1673 	struct qca_data *qca = hu->priv;
1674 	int ret = 0;
1675 
1676 	/* Non-serdev device usually is powered by external power
1677 	 * and don't need additional action in driver for power on
1678 	 */
1679 	if (!hu->serdev)
1680 		return 0;
1681 
1682 	if (qca_is_wcn399x(soc_type) ||
1683 	    qca_is_wcn6750(soc_type)) {
1684 		ret = qca_regulator_init(hu);
1685 	} else {
1686 		qcadev = serdev_device_get_drvdata(hu->serdev);
1687 		if (qcadev->bt_en) {
1688 			gpiod_set_value_cansleep(qcadev->bt_en, 1);
1689 			/* Controller needs time to bootup. */
1690 			msleep(150);
1691 		}
1692 	}
1693 
1694 	clear_bit(QCA_BT_OFF, &qca->flags);
1695 	return ret;
1696 }
1697 
qca_setup(struct hci_uart * hu)1698 static int qca_setup(struct hci_uart *hu)
1699 {
1700 	struct hci_dev *hdev = hu->hdev;
1701 	struct qca_data *qca = hu->priv;
1702 	unsigned int speed, qca_baudrate = QCA_BAUDRATE_115200;
1703 	unsigned int retries = 0;
1704 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1705 	const char *firmware_name = qca_get_firmware_name(hu);
1706 	int ret;
1707 	struct qca_btsoc_version ver;
1708 
1709 	ret = qca_check_speeds(hu);
1710 	if (ret)
1711 		return ret;
1712 
1713 	clear_bit(QCA_ROM_FW, &qca->flags);
1714 	/* Patch downloading has to be done without IBS mode */
1715 	set_bit(QCA_IBS_DISABLED, &qca->flags);
1716 
1717 	/* Enable controller to do both LE scan and BR/EDR inquiry
1718 	 * simultaneously.
1719 	 */
1720 	set_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks);
1721 
1722 	bt_dev_info(hdev, "setting up %s",
1723 		qca_is_wcn399x(soc_type) ? "wcn399x" :
1724 		(soc_type == QCA_WCN6750) ? "wcn6750" : "ROME/QCA6390");
1725 
1726 	qca->memdump_state = QCA_MEMDUMP_IDLE;
1727 
1728 retry:
1729 	ret = qca_power_on(hdev);
1730 	if (ret)
1731 		goto out;
1732 
1733 	clear_bit(QCA_SSR_TRIGGERED, &qca->flags);
1734 
1735 	if (qca_is_wcn399x(soc_type) ||
1736 	    qca_is_wcn6750(soc_type)) {
1737 		set_bit(HCI_QUIRK_USE_BDADDR_PROPERTY, &hdev->quirks);
1738 
1739 		ret = qca_read_soc_version(hdev, &ver, soc_type);
1740 		if (ret)
1741 			goto out;
1742 	} else {
1743 		qca_set_speed(hu, QCA_INIT_SPEED);
1744 	}
1745 
1746 	/* Setup user speed if needed */
1747 	speed = qca_get_speed(hu, QCA_OPER_SPEED);
1748 	if (speed) {
1749 		ret = qca_set_speed(hu, QCA_OPER_SPEED);
1750 		if (ret)
1751 			goto out;
1752 
1753 		qca_baudrate = qca_get_baudrate_value(speed);
1754 	}
1755 
1756 	if (!(qca_is_wcn399x(soc_type) ||
1757 	     qca_is_wcn6750(soc_type))) {
1758 		/* Get QCA version information */
1759 		ret = qca_read_soc_version(hdev, &ver, soc_type);
1760 		if (ret)
1761 			goto out;
1762 	}
1763 
1764 	/* Setup patch / NVM configurations */
1765 	ret = qca_uart_setup(hdev, qca_baudrate, soc_type, ver,
1766 			firmware_name);
1767 	if (!ret) {
1768 		clear_bit(QCA_IBS_DISABLED, &qca->flags);
1769 		qca_debugfs_init(hdev);
1770 		hu->hdev->hw_error = qca_hw_error;
1771 		hu->hdev->cmd_timeout = qca_cmd_timeout;
1772 		hu->hdev->prevent_wake = qca_prevent_wake;
1773 	} else if (ret == -ENOENT) {
1774 		/* No patch/nvm-config found, run with original fw/config */
1775 		set_bit(QCA_ROM_FW, &qca->flags);
1776 		ret = 0;
1777 	} else if (ret == -EAGAIN) {
1778 		/*
1779 		 * Userspace firmware loader will return -EAGAIN in case no
1780 		 * patch/nvm-config is found, so run with original fw/config.
1781 		 */
1782 		set_bit(QCA_ROM_FW, &qca->flags);
1783 		ret = 0;
1784 	}
1785 
1786 out:
1787 	if (ret && retries < MAX_INIT_RETRIES) {
1788 		bt_dev_warn(hdev, "Retry BT power ON:%d", retries);
1789 		qca_power_shutdown(hu);
1790 		if (hu->serdev) {
1791 			serdev_device_close(hu->serdev);
1792 			ret = serdev_device_open(hu->serdev);
1793 			if (ret) {
1794 				bt_dev_err(hdev, "failed to open port");
1795 				return ret;
1796 			}
1797 		}
1798 		retries++;
1799 		goto retry;
1800 	}
1801 
1802 	/* Setup bdaddr */
1803 	if (soc_type == QCA_ROME)
1804 		hu->hdev->set_bdaddr = qca_set_bdaddr_rome;
1805 	else
1806 		hu->hdev->set_bdaddr = qca_set_bdaddr;
1807 
1808 	return ret;
1809 }
1810 
1811 static const struct hci_uart_proto qca_proto = {
1812 	.id		= HCI_UART_QCA,
1813 	.name		= "QCA",
1814 	.manufacturer	= 29,
1815 	.init_speed	= 115200,
1816 	.oper_speed	= 3000000,
1817 	.open		= qca_open,
1818 	.close		= qca_close,
1819 	.flush		= qca_flush,
1820 	.setup		= qca_setup,
1821 	.recv		= qca_recv,
1822 	.enqueue	= qca_enqueue,
1823 	.dequeue	= qca_dequeue,
1824 };
1825 
1826 static const struct qca_device_data qca_soc_data_wcn3990 = {
1827 	.soc_type = QCA_WCN3990,
1828 	.vregs = (struct qca_vreg []) {
1829 		{ "vddio", 15000  },
1830 		{ "vddxo", 80000  },
1831 		{ "vddrf", 300000 },
1832 		{ "vddch0", 450000 },
1833 	},
1834 	.num_vregs = 4,
1835 };
1836 
1837 static const struct qca_device_data qca_soc_data_wcn3991 = {
1838 	.soc_type = QCA_WCN3991,
1839 	.vregs = (struct qca_vreg []) {
1840 		{ "vddio", 15000  },
1841 		{ "vddxo", 80000  },
1842 		{ "vddrf", 300000 },
1843 		{ "vddch0", 450000 },
1844 	},
1845 	.num_vregs = 4,
1846 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1847 };
1848 
1849 static const struct qca_device_data qca_soc_data_wcn3998 = {
1850 	.soc_type = QCA_WCN3998,
1851 	.vregs = (struct qca_vreg []) {
1852 		{ "vddio", 10000  },
1853 		{ "vddxo", 80000  },
1854 		{ "vddrf", 300000 },
1855 		{ "vddch0", 450000 },
1856 	},
1857 	.num_vregs = 4,
1858 };
1859 
1860 static const struct qca_device_data qca_soc_data_qca6390 = {
1861 	.soc_type = QCA_QCA6390,
1862 	.num_vregs = 0,
1863 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1864 };
1865 
1866 static const struct qca_device_data qca_soc_data_wcn6750 = {
1867 	.soc_type = QCA_WCN6750,
1868 	.vregs = (struct qca_vreg []) {
1869 		{ "vddio", 5000 },
1870 		{ "vddaon", 26000 },
1871 		{ "vddbtcxmx", 126000 },
1872 		{ "vddrfacmn", 12500 },
1873 		{ "vddrfa0p8", 102000 },
1874 		{ "vddrfa1p7", 302000 },
1875 		{ "vddrfa1p2", 257000 },
1876 		{ "vddrfa2p2", 1700000 },
1877 		{ "vddasd", 200 },
1878 	},
1879 	.num_vregs = 9,
1880 	.capabilities = QCA_CAP_WIDEBAND_SPEECH | QCA_CAP_VALID_LE_STATES,
1881 };
1882 
qca_power_shutdown(struct hci_uart * hu)1883 static void qca_power_shutdown(struct hci_uart *hu)
1884 {
1885 	struct qca_serdev *qcadev;
1886 	struct qca_data *qca = hu->priv;
1887 	unsigned long flags;
1888 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1889 	bool sw_ctrl_state;
1890 
1891 	/* From this point we go into power off state. But serial port is
1892 	 * still open, stop queueing the IBS data and flush all the buffered
1893 	 * data in skb's.
1894 	 */
1895 	spin_lock_irqsave(&qca->hci_ibs_lock, flags);
1896 	set_bit(QCA_IBS_DISABLED, &qca->flags);
1897 	qca_flush(hu);
1898 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
1899 
1900 	/* Non-serdev device usually is powered by external power
1901 	 * and don't need additional action in driver for power down
1902 	 */
1903 	if (!hu->serdev)
1904 		return;
1905 
1906 	qcadev = serdev_device_get_drvdata(hu->serdev);
1907 
1908 	if (qca_is_wcn399x(soc_type)) {
1909 		host_set_baudrate(hu, 2400);
1910 		qca_send_power_pulse(hu, false);
1911 		qca_regulator_disable(qcadev);
1912 	} else if (soc_type == QCA_WCN6750) {
1913 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
1914 		msleep(100);
1915 		qca_regulator_disable(qcadev);
1916 		if (qcadev->sw_ctrl) {
1917 			sw_ctrl_state = gpiod_get_value_cansleep(qcadev->sw_ctrl);
1918 			bt_dev_dbg(hu->hdev, "SW_CTRL is %d", sw_ctrl_state);
1919 		}
1920 	} else if (qcadev->bt_en) {
1921 		gpiod_set_value_cansleep(qcadev->bt_en, 0);
1922 	}
1923 
1924 	set_bit(QCA_BT_OFF, &qca->flags);
1925 }
1926 
qca_power_off(struct hci_dev * hdev)1927 static int qca_power_off(struct hci_dev *hdev)
1928 {
1929 	struct hci_uart *hu = hci_get_drvdata(hdev);
1930 	struct qca_data *qca = hu->priv;
1931 	enum qca_btsoc_type soc_type = qca_soc_type(hu);
1932 
1933 	hu->hdev->hw_error = NULL;
1934 	hu->hdev->cmd_timeout = NULL;
1935 
1936 	del_timer_sync(&qca->wake_retrans_timer);
1937 	del_timer_sync(&qca->tx_idle_timer);
1938 
1939 	/* Stop sending shutdown command if soc crashes. */
1940 	if (soc_type != QCA_ROME
1941 		&& qca->memdump_state == QCA_MEMDUMP_IDLE) {
1942 		qca_send_pre_shutdown_cmd(hdev);
1943 		usleep_range(8000, 10000);
1944 	}
1945 
1946 	qca_power_shutdown(hu);
1947 	return 0;
1948 }
1949 
qca_regulator_enable(struct qca_serdev * qcadev)1950 static int qca_regulator_enable(struct qca_serdev *qcadev)
1951 {
1952 	struct qca_power *power = qcadev->bt_power;
1953 	int ret;
1954 
1955 	/* Already enabled */
1956 	if (power->vregs_on)
1957 		return 0;
1958 
1959 	BT_DBG("enabling %d regulators)", power->num_vregs);
1960 
1961 	ret = regulator_bulk_enable(power->num_vregs, power->vreg_bulk);
1962 	if (ret)
1963 		return ret;
1964 
1965 	power->vregs_on = true;
1966 
1967 	ret = clk_prepare_enable(qcadev->susclk);
1968 	if (ret)
1969 		qca_regulator_disable(qcadev);
1970 
1971 	return ret;
1972 }
1973 
qca_regulator_disable(struct qca_serdev * qcadev)1974 static void qca_regulator_disable(struct qca_serdev *qcadev)
1975 {
1976 	struct qca_power *power;
1977 
1978 	if (!qcadev)
1979 		return;
1980 
1981 	power = qcadev->bt_power;
1982 
1983 	/* Already disabled? */
1984 	if (!power->vregs_on)
1985 		return;
1986 
1987 	regulator_bulk_disable(power->num_vregs, power->vreg_bulk);
1988 	power->vregs_on = false;
1989 
1990 	clk_disable_unprepare(qcadev->susclk);
1991 }
1992 
qca_init_regulators(struct qca_power * qca,const struct qca_vreg * vregs,size_t num_vregs)1993 static int qca_init_regulators(struct qca_power *qca,
1994 				const struct qca_vreg *vregs, size_t num_vregs)
1995 {
1996 	struct regulator_bulk_data *bulk;
1997 	int ret;
1998 	int i;
1999 
2000 	bulk = devm_kcalloc(qca->dev, num_vregs, sizeof(*bulk), GFP_KERNEL);
2001 	if (!bulk)
2002 		return -ENOMEM;
2003 
2004 	for (i = 0; i < num_vregs; i++)
2005 		bulk[i].supply = vregs[i].name;
2006 
2007 	ret = devm_regulator_bulk_get(qca->dev, num_vregs, bulk);
2008 	if (ret < 0)
2009 		return ret;
2010 
2011 	for (i = 0; i < num_vregs; i++) {
2012 		ret = regulator_set_load(bulk[i].consumer, vregs[i].load_uA);
2013 		if (ret)
2014 			return ret;
2015 	}
2016 
2017 	qca->vreg_bulk = bulk;
2018 	qca->num_vregs = num_vregs;
2019 
2020 	return 0;
2021 }
2022 
qca_serdev_probe(struct serdev_device * serdev)2023 static int qca_serdev_probe(struct serdev_device *serdev)
2024 {
2025 	struct qca_serdev *qcadev;
2026 	struct hci_dev *hdev;
2027 	const struct qca_device_data *data;
2028 	int err;
2029 	bool power_ctrl_enabled = true;
2030 
2031 	qcadev = devm_kzalloc(&serdev->dev, sizeof(*qcadev), GFP_KERNEL);
2032 	if (!qcadev)
2033 		return -ENOMEM;
2034 
2035 	qcadev->serdev_hu.serdev = serdev;
2036 	data = device_get_match_data(&serdev->dev);
2037 	serdev_device_set_drvdata(serdev, qcadev);
2038 	device_property_read_string(&serdev->dev, "firmware-name",
2039 					 &qcadev->firmware_name);
2040 	device_property_read_u32(&serdev->dev, "max-speed",
2041 				 &qcadev->oper_speed);
2042 	if (!qcadev->oper_speed)
2043 		BT_DBG("UART will pick default operating speed");
2044 
2045 	if (data &&
2046 	    (qca_is_wcn399x(data->soc_type) ||
2047 	    qca_is_wcn6750(data->soc_type))) {
2048 		qcadev->btsoc_type = data->soc_type;
2049 		qcadev->bt_power = devm_kzalloc(&serdev->dev,
2050 						sizeof(struct qca_power),
2051 						GFP_KERNEL);
2052 		if (!qcadev->bt_power)
2053 			return -ENOMEM;
2054 
2055 		qcadev->bt_power->dev = &serdev->dev;
2056 		err = qca_init_regulators(qcadev->bt_power, data->vregs,
2057 					  data->num_vregs);
2058 		if (err) {
2059 			BT_ERR("Failed to init regulators:%d", err);
2060 			return err;
2061 		}
2062 
2063 		qcadev->bt_power->vregs_on = false;
2064 
2065 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2066 					       GPIOD_OUT_LOW);
2067 		if (IS_ERR_OR_NULL(qcadev->bt_en) && data->soc_type == QCA_WCN6750) {
2068 			dev_err(&serdev->dev, "failed to acquire BT_EN gpio\n");
2069 			power_ctrl_enabled = false;
2070 		}
2071 
2072 		qcadev->sw_ctrl = devm_gpiod_get_optional(&serdev->dev, "swctrl",
2073 					       GPIOD_IN);
2074 		if (IS_ERR_OR_NULL(qcadev->sw_ctrl) && data->soc_type == QCA_WCN6750)
2075 			dev_warn(&serdev->dev, "failed to acquire SW_CTRL gpio\n");
2076 
2077 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2078 		if (IS_ERR(qcadev->susclk)) {
2079 			dev_err(&serdev->dev, "failed to acquire clk\n");
2080 			return PTR_ERR(qcadev->susclk);
2081 		}
2082 
2083 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2084 		if (err) {
2085 			BT_ERR("wcn3990 serdev registration failed");
2086 			return err;
2087 		}
2088 	} else {
2089 		if (data)
2090 			qcadev->btsoc_type = data->soc_type;
2091 		else
2092 			qcadev->btsoc_type = QCA_ROME;
2093 
2094 		qcadev->bt_en = devm_gpiod_get_optional(&serdev->dev, "enable",
2095 					       GPIOD_OUT_LOW);
2096 		if (IS_ERR_OR_NULL(qcadev->bt_en)) {
2097 			dev_warn(&serdev->dev, "failed to acquire enable gpio\n");
2098 			power_ctrl_enabled = false;
2099 		}
2100 
2101 		qcadev->susclk = devm_clk_get_optional(&serdev->dev, NULL);
2102 		if (IS_ERR(qcadev->susclk)) {
2103 			dev_warn(&serdev->dev, "failed to acquire clk\n");
2104 			return PTR_ERR(qcadev->susclk);
2105 		}
2106 		err = clk_set_rate(qcadev->susclk, SUSCLK_RATE_32KHZ);
2107 		if (err)
2108 			return err;
2109 
2110 		err = clk_prepare_enable(qcadev->susclk);
2111 		if (err)
2112 			return err;
2113 
2114 		err = hci_uart_register_device(&qcadev->serdev_hu, &qca_proto);
2115 		if (err) {
2116 			BT_ERR("Rome serdev registration failed");
2117 			clk_disable_unprepare(qcadev->susclk);
2118 			return err;
2119 		}
2120 	}
2121 
2122 	hdev = qcadev->serdev_hu.hdev;
2123 
2124 	if (power_ctrl_enabled) {
2125 		set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks);
2126 		hdev->shutdown = qca_power_off;
2127 	}
2128 
2129 	if (data) {
2130 		/* Wideband speech support must be set per driver since it can't
2131 		 * be queried via hci. Same with the valid le states quirk.
2132 		 */
2133 		if (data->capabilities & QCA_CAP_WIDEBAND_SPEECH)
2134 			set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED,
2135 				&hdev->quirks);
2136 
2137 		if (data->capabilities & QCA_CAP_VALID_LE_STATES)
2138 			set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks);
2139 	}
2140 
2141 	return 0;
2142 }
2143 
qca_serdev_remove(struct serdev_device * serdev)2144 static void qca_serdev_remove(struct serdev_device *serdev)
2145 {
2146 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2147 	struct qca_power *power = qcadev->bt_power;
2148 
2149 	if ((qca_is_wcn399x(qcadev->btsoc_type) ||
2150 	     qca_is_wcn6750(qcadev->btsoc_type)) &&
2151 	     power->vregs_on)
2152 		qca_power_shutdown(&qcadev->serdev_hu);
2153 	else if (qcadev->susclk)
2154 		clk_disable_unprepare(qcadev->susclk);
2155 
2156 	hci_uart_unregister_device(&qcadev->serdev_hu);
2157 }
2158 
qca_serdev_shutdown(struct device * dev)2159 static void qca_serdev_shutdown(struct device *dev)
2160 {
2161 	int ret;
2162 	int timeout = msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS);
2163 	struct serdev_device *serdev = to_serdev_device(dev);
2164 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2165 	struct hci_uart *hu = &qcadev->serdev_hu;
2166 	struct hci_dev *hdev = hu->hdev;
2167 	struct qca_data *qca = hu->priv;
2168 	const u8 ibs_wake_cmd[] = { 0xFD };
2169 	const u8 edl_reset_soc_cmd[] = { 0x01, 0x00, 0xFC, 0x01, 0x05 };
2170 
2171 	if (qcadev->btsoc_type == QCA_QCA6390) {
2172 		if (test_bit(QCA_BT_OFF, &qca->flags) ||
2173 		    !test_bit(HCI_RUNNING, &hdev->flags))
2174 			return;
2175 
2176 		serdev_device_write_flush(serdev);
2177 		ret = serdev_device_write_buf(serdev, ibs_wake_cmd,
2178 					      sizeof(ibs_wake_cmd));
2179 		if (ret < 0) {
2180 			BT_ERR("QCA send IBS_WAKE_IND error: %d", ret);
2181 			return;
2182 		}
2183 		serdev_device_wait_until_sent(serdev, timeout);
2184 		usleep_range(8000, 10000);
2185 
2186 		serdev_device_write_flush(serdev);
2187 		ret = serdev_device_write_buf(serdev, edl_reset_soc_cmd,
2188 					      sizeof(edl_reset_soc_cmd));
2189 		if (ret < 0) {
2190 			BT_ERR("QCA send EDL_RESET_REQ error: %d", ret);
2191 			return;
2192 		}
2193 		serdev_device_wait_until_sent(serdev, timeout);
2194 		usleep_range(8000, 10000);
2195 	}
2196 }
2197 
qca_suspend(struct device * dev)2198 static int __maybe_unused qca_suspend(struct device *dev)
2199 {
2200 	struct serdev_device *serdev = to_serdev_device(dev);
2201 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2202 	struct hci_uart *hu = &qcadev->serdev_hu;
2203 	struct qca_data *qca = hu->priv;
2204 	unsigned long flags;
2205 	bool tx_pending = false;
2206 	int ret = 0;
2207 	u8 cmd;
2208 	u32 wait_timeout = 0;
2209 
2210 	set_bit(QCA_SUSPENDING, &qca->flags);
2211 
2212 	/* if BT SoC is running with default firmware then it does not
2213 	 * support in-band sleep
2214 	 */
2215 	if (test_bit(QCA_ROM_FW, &qca->flags))
2216 		return 0;
2217 
2218 	/* During SSR after memory dump collection, controller will be
2219 	 * powered off and then powered on.If controller is powered off
2220 	 * during SSR then we should wait until SSR is completed.
2221 	 */
2222 	if (test_bit(QCA_BT_OFF, &qca->flags) &&
2223 	    !test_bit(QCA_SSR_TRIGGERED, &qca->flags))
2224 		return 0;
2225 
2226 	if (test_bit(QCA_IBS_DISABLED, &qca->flags) ||
2227 	    test_bit(QCA_SSR_TRIGGERED, &qca->flags)) {
2228 		wait_timeout = test_bit(QCA_SSR_TRIGGERED, &qca->flags) ?
2229 					IBS_DISABLE_SSR_TIMEOUT_MS :
2230 					FW_DOWNLOAD_TIMEOUT_MS;
2231 
2232 		/* QCA_IBS_DISABLED flag is set to true, During FW download
2233 		 * and during memory dump collection. It is reset to false,
2234 		 * After FW download complete.
2235 		 */
2236 		wait_on_bit_timeout(&qca->flags, QCA_IBS_DISABLED,
2237 			    TASK_UNINTERRUPTIBLE, msecs_to_jiffies(wait_timeout));
2238 
2239 		if (test_bit(QCA_IBS_DISABLED, &qca->flags)) {
2240 			bt_dev_err(hu->hdev, "SSR or FW download time out");
2241 			ret = -ETIMEDOUT;
2242 			goto error;
2243 		}
2244 	}
2245 
2246 	cancel_work_sync(&qca->ws_awake_device);
2247 	cancel_work_sync(&qca->ws_awake_rx);
2248 
2249 	spin_lock_irqsave_nested(&qca->hci_ibs_lock,
2250 				 flags, SINGLE_DEPTH_NESTING);
2251 
2252 	switch (qca->tx_ibs_state) {
2253 	case HCI_IBS_TX_WAKING:
2254 		del_timer(&qca->wake_retrans_timer);
2255 		fallthrough;
2256 	case HCI_IBS_TX_AWAKE:
2257 		del_timer(&qca->tx_idle_timer);
2258 
2259 		serdev_device_write_flush(hu->serdev);
2260 		cmd = HCI_IBS_SLEEP_IND;
2261 		ret = serdev_device_write_buf(hu->serdev, &cmd, sizeof(cmd));
2262 
2263 		if (ret < 0) {
2264 			BT_ERR("Failed to send SLEEP to device");
2265 			break;
2266 		}
2267 
2268 		qca->tx_ibs_state = HCI_IBS_TX_ASLEEP;
2269 		qca->ibs_sent_slps++;
2270 		tx_pending = true;
2271 		break;
2272 
2273 	case HCI_IBS_TX_ASLEEP:
2274 		break;
2275 
2276 	default:
2277 		BT_ERR("Spurious tx state %d", qca->tx_ibs_state);
2278 		ret = -EINVAL;
2279 		break;
2280 	}
2281 
2282 	spin_unlock_irqrestore(&qca->hci_ibs_lock, flags);
2283 
2284 	if (ret < 0)
2285 		goto error;
2286 
2287 	if (tx_pending) {
2288 		serdev_device_wait_until_sent(hu->serdev,
2289 					      msecs_to_jiffies(CMD_TRANS_TIMEOUT_MS));
2290 		serial_clock_vote(HCI_IBS_TX_VOTE_CLOCK_OFF, hu);
2291 	}
2292 
2293 	/* Wait for HCI_IBS_SLEEP_IND sent by device to indicate its Tx is going
2294 	 * to sleep, so that the packet does not wake the system later.
2295 	 */
2296 	ret = wait_event_interruptible_timeout(qca->suspend_wait_q,
2297 			qca->rx_ibs_state == HCI_IBS_RX_ASLEEP,
2298 			msecs_to_jiffies(IBS_BTSOC_TX_IDLE_TIMEOUT_MS));
2299 	if (ret == 0) {
2300 		ret = -ETIMEDOUT;
2301 		goto error;
2302 	}
2303 
2304 	return 0;
2305 
2306 error:
2307 	clear_bit(QCA_SUSPENDING, &qca->flags);
2308 
2309 	return ret;
2310 }
2311 
qca_resume(struct device * dev)2312 static int __maybe_unused qca_resume(struct device *dev)
2313 {
2314 	struct serdev_device *serdev = to_serdev_device(dev);
2315 	struct qca_serdev *qcadev = serdev_device_get_drvdata(serdev);
2316 	struct hci_uart *hu = &qcadev->serdev_hu;
2317 	struct qca_data *qca = hu->priv;
2318 
2319 	clear_bit(QCA_SUSPENDING, &qca->flags);
2320 
2321 	return 0;
2322 }
2323 
2324 static SIMPLE_DEV_PM_OPS(qca_pm_ops, qca_suspend, qca_resume);
2325 
2326 #ifdef CONFIG_OF
2327 static const struct of_device_id qca_bluetooth_of_match[] = {
2328 	{ .compatible = "qcom,qca6174-bt" },
2329 	{ .compatible = "qcom,qca6390-bt", .data = &qca_soc_data_qca6390},
2330 	{ .compatible = "qcom,qca9377-bt" },
2331 	{ .compatible = "qcom,wcn3990-bt", .data = &qca_soc_data_wcn3990},
2332 	{ .compatible = "qcom,wcn3991-bt", .data = &qca_soc_data_wcn3991},
2333 	{ .compatible = "qcom,wcn3998-bt", .data = &qca_soc_data_wcn3998},
2334 	{ .compatible = "qcom,wcn6750-bt", .data = &qca_soc_data_wcn6750},
2335 	{ /* sentinel */ }
2336 };
2337 MODULE_DEVICE_TABLE(of, qca_bluetooth_of_match);
2338 #endif
2339 
2340 #ifdef CONFIG_ACPI
2341 static const struct acpi_device_id qca_bluetooth_acpi_match[] = {
2342 	{ "QCOM6390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2343 	{ "DLA16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2344 	{ "DLB16390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2345 	{ "DLB26390", (kernel_ulong_t)&qca_soc_data_qca6390 },
2346 	{ },
2347 };
2348 MODULE_DEVICE_TABLE(acpi, qca_bluetooth_acpi_match);
2349 #endif
2350 
2351 
2352 static struct serdev_device_driver qca_serdev_driver = {
2353 	.probe = qca_serdev_probe,
2354 	.remove = qca_serdev_remove,
2355 	.driver = {
2356 		.name = "hci_uart_qca",
2357 		.of_match_table = of_match_ptr(qca_bluetooth_of_match),
2358 		.acpi_match_table = ACPI_PTR(qca_bluetooth_acpi_match),
2359 		.shutdown = qca_serdev_shutdown,
2360 		.pm = &qca_pm_ops,
2361 	},
2362 };
2363 
qca_init(void)2364 int __init qca_init(void)
2365 {
2366 	serdev_device_driver_register(&qca_serdev_driver);
2367 
2368 	return hci_uart_register_proto(&qca_proto);
2369 }
2370 
qca_deinit(void)2371 int __exit qca_deinit(void)
2372 {
2373 	serdev_device_driver_unregister(&qca_serdev_driver);
2374 
2375 	return hci_uart_unregister_proto(&qca_proto);
2376 }
2377