1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD Cryptographic Coprocessor (CCP) driver
4 *
5 * Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
6 *
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 * Author: Gary R Hook <gary.hook@amd.com>
9 */
10
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/kthread.h>
14 #include <linux/interrupt.h>
15 #include <linux/ccp.h>
16
17 #include "ccp-dev.h"
18
ccp_alloc_ksb(struct ccp_cmd_queue * cmd_q,unsigned int count)19 static u32 ccp_alloc_ksb(struct ccp_cmd_queue *cmd_q, unsigned int count)
20 {
21 int start;
22 struct ccp_device *ccp = cmd_q->ccp;
23
24 for (;;) {
25 mutex_lock(&ccp->sb_mutex);
26
27 start = (u32)bitmap_find_next_zero_area(ccp->sb,
28 ccp->sb_count,
29 ccp->sb_start,
30 count, 0);
31 if (start <= ccp->sb_count) {
32 bitmap_set(ccp->sb, start, count);
33
34 mutex_unlock(&ccp->sb_mutex);
35 break;
36 }
37
38 ccp->sb_avail = 0;
39
40 mutex_unlock(&ccp->sb_mutex);
41
42 /* Wait for KSB entries to become available */
43 if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
44 return 0;
45 }
46
47 return KSB_START + start;
48 }
49
ccp_free_ksb(struct ccp_cmd_queue * cmd_q,unsigned int start,unsigned int count)50 static void ccp_free_ksb(struct ccp_cmd_queue *cmd_q, unsigned int start,
51 unsigned int count)
52 {
53 struct ccp_device *ccp = cmd_q->ccp;
54
55 if (!start)
56 return;
57
58 mutex_lock(&ccp->sb_mutex);
59
60 bitmap_clear(ccp->sb, start - KSB_START, count);
61
62 ccp->sb_avail = 1;
63
64 mutex_unlock(&ccp->sb_mutex);
65
66 wake_up_interruptible_all(&ccp->sb_queue);
67 }
68
ccp_get_free_slots(struct ccp_cmd_queue * cmd_q)69 static unsigned int ccp_get_free_slots(struct ccp_cmd_queue *cmd_q)
70 {
71 return CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
72 }
73
ccp_do_cmd(struct ccp_op * op,u32 * cr,unsigned int cr_count)74 static int ccp_do_cmd(struct ccp_op *op, u32 *cr, unsigned int cr_count)
75 {
76 struct ccp_cmd_queue *cmd_q = op->cmd_q;
77 struct ccp_device *ccp = cmd_q->ccp;
78 void __iomem *cr_addr;
79 u32 cr0, cmd;
80 unsigned int i;
81 int ret = 0;
82
83 /* We could read a status register to see how many free slots
84 * are actually available, but reading that register resets it
85 * and you could lose some error information.
86 */
87 cmd_q->free_slots--;
88
89 cr0 = (cmd_q->id << REQ0_CMD_Q_SHIFT)
90 | (op->jobid << REQ0_JOBID_SHIFT)
91 | REQ0_WAIT_FOR_WRITE;
92
93 if (op->soc)
94 cr0 |= REQ0_STOP_ON_COMPLETE
95 | REQ0_INT_ON_COMPLETE;
96
97 if (op->ioc || !cmd_q->free_slots)
98 cr0 |= REQ0_INT_ON_COMPLETE;
99
100 /* Start at CMD_REQ1 */
101 cr_addr = ccp->io_regs + CMD_REQ0 + CMD_REQ_INCR;
102
103 mutex_lock(&ccp->req_mutex);
104
105 /* Write CMD_REQ1 through CMD_REQx first */
106 for (i = 0; i < cr_count; i++, cr_addr += CMD_REQ_INCR)
107 iowrite32(*(cr + i), cr_addr);
108
109 /* Tell the CCP to start */
110 wmb();
111 iowrite32(cr0, ccp->io_regs + CMD_REQ0);
112
113 mutex_unlock(&ccp->req_mutex);
114
115 if (cr0 & REQ0_INT_ON_COMPLETE) {
116 /* Wait for the job to complete */
117 ret = wait_event_interruptible(cmd_q->int_queue,
118 cmd_q->int_rcvd);
119 if (ret || cmd_q->cmd_error) {
120 /* On error delete all related jobs from the queue */
121 cmd = (cmd_q->id << DEL_Q_ID_SHIFT)
122 | op->jobid;
123 if (cmd_q->cmd_error)
124 ccp_log_error(cmd_q->ccp,
125 cmd_q->cmd_error);
126
127 iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
128
129 if (!ret)
130 ret = -EIO;
131 } else if (op->soc) {
132 /* Delete just head job from the queue on SoC */
133 cmd = DEL_Q_ACTIVE
134 | (cmd_q->id << DEL_Q_ID_SHIFT)
135 | op->jobid;
136
137 iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
138 }
139
140 cmd_q->free_slots = CMD_Q_DEPTH(cmd_q->q_status);
141
142 cmd_q->int_rcvd = 0;
143 }
144
145 return ret;
146 }
147
ccp_perform_aes(struct ccp_op * op)148 static int ccp_perform_aes(struct ccp_op *op)
149 {
150 u32 cr[6];
151
152 /* Fill out the register contents for REQ1 through REQ6 */
153 cr[0] = (CCP_ENGINE_AES << REQ1_ENGINE_SHIFT)
154 | (op->u.aes.type << REQ1_AES_TYPE_SHIFT)
155 | (op->u.aes.mode << REQ1_AES_MODE_SHIFT)
156 | (op->u.aes.action << REQ1_AES_ACTION_SHIFT)
157 | (op->sb_key << REQ1_KEY_KSB_SHIFT);
158 cr[1] = op->src.u.dma.length - 1;
159 cr[2] = ccp_addr_lo(&op->src.u.dma);
160 cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
161 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
162 | ccp_addr_hi(&op->src.u.dma);
163 cr[4] = ccp_addr_lo(&op->dst.u.dma);
164 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
165 | ccp_addr_hi(&op->dst.u.dma);
166
167 if (op->u.aes.mode == CCP_AES_MODE_CFB)
168 cr[0] |= ((0x7f) << REQ1_AES_CFB_SIZE_SHIFT);
169
170 if (op->eom)
171 cr[0] |= REQ1_EOM;
172
173 if (op->init)
174 cr[0] |= REQ1_INIT;
175
176 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
177 }
178
ccp_perform_xts_aes(struct ccp_op * op)179 static int ccp_perform_xts_aes(struct ccp_op *op)
180 {
181 u32 cr[6];
182
183 /* Fill out the register contents for REQ1 through REQ6 */
184 cr[0] = (CCP_ENGINE_XTS_AES_128 << REQ1_ENGINE_SHIFT)
185 | (op->u.xts.action << REQ1_AES_ACTION_SHIFT)
186 | (op->u.xts.unit_size << REQ1_XTS_AES_SIZE_SHIFT)
187 | (op->sb_key << REQ1_KEY_KSB_SHIFT);
188 cr[1] = op->src.u.dma.length - 1;
189 cr[2] = ccp_addr_lo(&op->src.u.dma);
190 cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
191 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
192 | ccp_addr_hi(&op->src.u.dma);
193 cr[4] = ccp_addr_lo(&op->dst.u.dma);
194 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
195 | ccp_addr_hi(&op->dst.u.dma);
196
197 if (op->eom)
198 cr[0] |= REQ1_EOM;
199
200 if (op->init)
201 cr[0] |= REQ1_INIT;
202
203 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
204 }
205
ccp_perform_sha(struct ccp_op * op)206 static int ccp_perform_sha(struct ccp_op *op)
207 {
208 u32 cr[6];
209
210 /* Fill out the register contents for REQ1 through REQ6 */
211 cr[0] = (CCP_ENGINE_SHA << REQ1_ENGINE_SHIFT)
212 | (op->u.sha.type << REQ1_SHA_TYPE_SHIFT)
213 | REQ1_INIT;
214 cr[1] = op->src.u.dma.length - 1;
215 cr[2] = ccp_addr_lo(&op->src.u.dma);
216 cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
217 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
218 | ccp_addr_hi(&op->src.u.dma);
219
220 if (op->eom) {
221 cr[0] |= REQ1_EOM;
222 cr[4] = lower_32_bits(op->u.sha.msg_bits);
223 cr[5] = upper_32_bits(op->u.sha.msg_bits);
224 } else {
225 cr[4] = 0;
226 cr[5] = 0;
227 }
228
229 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
230 }
231
ccp_perform_rsa(struct ccp_op * op)232 static int ccp_perform_rsa(struct ccp_op *op)
233 {
234 u32 cr[6];
235
236 /* Fill out the register contents for REQ1 through REQ6 */
237 cr[0] = (CCP_ENGINE_RSA << REQ1_ENGINE_SHIFT)
238 | (op->u.rsa.mod_size << REQ1_RSA_MOD_SIZE_SHIFT)
239 | (op->sb_key << REQ1_KEY_KSB_SHIFT)
240 | REQ1_EOM;
241 cr[1] = op->u.rsa.input_len - 1;
242 cr[2] = ccp_addr_lo(&op->src.u.dma);
243 cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
244 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
245 | ccp_addr_hi(&op->src.u.dma);
246 cr[4] = ccp_addr_lo(&op->dst.u.dma);
247 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
248 | ccp_addr_hi(&op->dst.u.dma);
249
250 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
251 }
252
ccp_perform_passthru(struct ccp_op * op)253 static int ccp_perform_passthru(struct ccp_op *op)
254 {
255 u32 cr[6];
256
257 /* Fill out the register contents for REQ1 through REQ6 */
258 cr[0] = (CCP_ENGINE_PASSTHRU << REQ1_ENGINE_SHIFT)
259 | (op->u.passthru.bit_mod << REQ1_PT_BW_SHIFT)
260 | (op->u.passthru.byte_swap << REQ1_PT_BS_SHIFT);
261
262 if (op->src.type == CCP_MEMTYPE_SYSTEM)
263 cr[1] = op->src.u.dma.length - 1;
264 else
265 cr[1] = op->dst.u.dma.length - 1;
266
267 if (op->src.type == CCP_MEMTYPE_SYSTEM) {
268 cr[2] = ccp_addr_lo(&op->src.u.dma);
269 cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
270 | ccp_addr_hi(&op->src.u.dma);
271
272 if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
273 cr[3] |= (op->sb_key << REQ4_KSB_SHIFT);
274 } else {
275 cr[2] = op->src.u.sb * CCP_SB_BYTES;
276 cr[3] = (CCP_MEMTYPE_SB << REQ4_MEMTYPE_SHIFT);
277 }
278
279 if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
280 cr[4] = ccp_addr_lo(&op->dst.u.dma);
281 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
282 | ccp_addr_hi(&op->dst.u.dma);
283 } else {
284 cr[4] = op->dst.u.sb * CCP_SB_BYTES;
285 cr[5] = (CCP_MEMTYPE_SB << REQ6_MEMTYPE_SHIFT);
286 }
287
288 if (op->eom)
289 cr[0] |= REQ1_EOM;
290
291 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
292 }
293
ccp_perform_ecc(struct ccp_op * op)294 static int ccp_perform_ecc(struct ccp_op *op)
295 {
296 u32 cr[6];
297
298 /* Fill out the register contents for REQ1 through REQ6 */
299 cr[0] = REQ1_ECC_AFFINE_CONVERT
300 | (CCP_ENGINE_ECC << REQ1_ENGINE_SHIFT)
301 | (op->u.ecc.function << REQ1_ECC_FUNCTION_SHIFT)
302 | REQ1_EOM;
303 cr[1] = op->src.u.dma.length - 1;
304 cr[2] = ccp_addr_lo(&op->src.u.dma);
305 cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
306 | ccp_addr_hi(&op->src.u.dma);
307 cr[4] = ccp_addr_lo(&op->dst.u.dma);
308 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
309 | ccp_addr_hi(&op->dst.u.dma);
310
311 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
312 }
313
ccp_disable_queue_interrupts(struct ccp_device * ccp)314 static void ccp_disable_queue_interrupts(struct ccp_device *ccp)
315 {
316 iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
317 }
318
ccp_enable_queue_interrupts(struct ccp_device * ccp)319 static void ccp_enable_queue_interrupts(struct ccp_device *ccp)
320 {
321 iowrite32(ccp->qim, ccp->io_regs + IRQ_MASK_REG);
322 }
323
ccp_irq_bh(unsigned long data)324 static void ccp_irq_bh(unsigned long data)
325 {
326 struct ccp_device *ccp = (struct ccp_device *)data;
327 struct ccp_cmd_queue *cmd_q;
328 u32 q_int, status;
329 unsigned int i;
330
331 status = ioread32(ccp->io_regs + IRQ_STATUS_REG);
332
333 for (i = 0; i < ccp->cmd_q_count; i++) {
334 cmd_q = &ccp->cmd_q[i];
335
336 q_int = status & (cmd_q->int_ok | cmd_q->int_err);
337 if (q_int) {
338 cmd_q->int_status = status;
339 cmd_q->q_status = ioread32(cmd_q->reg_status);
340 cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
341
342 /* On error, only save the first error value */
343 if ((q_int & cmd_q->int_err) && !cmd_q->cmd_error)
344 cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
345
346 cmd_q->int_rcvd = 1;
347
348 /* Acknowledge the interrupt and wake the kthread */
349 iowrite32(q_int, ccp->io_regs + IRQ_STATUS_REG);
350 wake_up_interruptible(&cmd_q->int_queue);
351 }
352 }
353 ccp_enable_queue_interrupts(ccp);
354 }
355
ccp_irq_handler(int irq,void * data)356 static irqreturn_t ccp_irq_handler(int irq, void *data)
357 {
358 struct ccp_device *ccp = (struct ccp_device *)data;
359
360 ccp_disable_queue_interrupts(ccp);
361 if (ccp->use_tasklet)
362 tasklet_schedule(&ccp->irq_tasklet);
363 else
364 ccp_irq_bh((unsigned long)ccp);
365
366 return IRQ_HANDLED;
367 }
368
ccp_init(struct ccp_device * ccp)369 static int ccp_init(struct ccp_device *ccp)
370 {
371 struct device *dev = ccp->dev;
372 struct ccp_cmd_queue *cmd_q;
373 struct dma_pool *dma_pool;
374 char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
375 unsigned int qmr, i;
376 int ret;
377
378 /* Find available queues */
379 ccp->qim = 0;
380 qmr = ioread32(ccp->io_regs + Q_MASK_REG);
381 for (i = 0; (i < MAX_HW_QUEUES) && (ccp->cmd_q_count < ccp->max_q_count); i++) {
382 if (!(qmr & (1 << i)))
383 continue;
384
385 /* Allocate a dma pool for this queue */
386 snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
387 ccp->name, i);
388 dma_pool = dma_pool_create(dma_pool_name, dev,
389 CCP_DMAPOOL_MAX_SIZE,
390 CCP_DMAPOOL_ALIGN, 0);
391 if (!dma_pool) {
392 dev_err(dev, "unable to allocate dma pool\n");
393 ret = -ENOMEM;
394 goto e_pool;
395 }
396
397 cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
398 ccp->cmd_q_count++;
399
400 cmd_q->ccp = ccp;
401 cmd_q->id = i;
402 cmd_q->dma_pool = dma_pool;
403
404 /* Reserve 2 KSB regions for the queue */
405 cmd_q->sb_key = KSB_START + ccp->sb_start++;
406 cmd_q->sb_ctx = KSB_START + ccp->sb_start++;
407 ccp->sb_count -= 2;
408
409 /* Preset some register values and masks that are queue
410 * number dependent
411 */
412 cmd_q->reg_status = ccp->io_regs + CMD_Q_STATUS_BASE +
413 (CMD_Q_STATUS_INCR * i);
414 cmd_q->reg_int_status = ccp->io_regs + CMD_Q_INT_STATUS_BASE +
415 (CMD_Q_STATUS_INCR * i);
416 cmd_q->int_ok = 1 << (i * 2);
417 cmd_q->int_err = 1 << ((i * 2) + 1);
418
419 cmd_q->free_slots = ccp_get_free_slots(cmd_q);
420
421 init_waitqueue_head(&cmd_q->int_queue);
422
423 /* Build queue interrupt mask (two interrupts per queue) */
424 ccp->qim |= cmd_q->int_ok | cmd_q->int_err;
425
426 #ifdef CONFIG_ARM64
427 /* For arm64 set the recommended queue cache settings */
428 iowrite32(ccp->axcache, ccp->io_regs + CMD_Q_CACHE_BASE +
429 (CMD_Q_CACHE_INC * i));
430 #endif
431
432 dev_dbg(dev, "queue #%u available\n", i);
433 }
434 if (ccp->cmd_q_count == 0) {
435 dev_notice(dev, "no command queues available\n");
436 ret = -EIO;
437 goto e_pool;
438 }
439 dev_notice(dev, "%u command queues available\n", ccp->cmd_q_count);
440
441 /* Disable and clear interrupts until ready */
442 ccp_disable_queue_interrupts(ccp);
443 for (i = 0; i < ccp->cmd_q_count; i++) {
444 cmd_q = &ccp->cmd_q[i];
445
446 ioread32(cmd_q->reg_int_status);
447 ioread32(cmd_q->reg_status);
448 }
449 iowrite32(ccp->qim, ccp->io_regs + IRQ_STATUS_REG);
450
451 /* Request an irq */
452 ret = sp_request_ccp_irq(ccp->sp, ccp_irq_handler, ccp->name, ccp);
453 if (ret) {
454 dev_err(dev, "unable to allocate an IRQ\n");
455 goto e_pool;
456 }
457
458 /* Initialize the ISR tasklet? */
459 if (ccp->use_tasklet)
460 tasklet_init(&ccp->irq_tasklet, ccp_irq_bh,
461 (unsigned long)ccp);
462
463 dev_dbg(dev, "Starting threads...\n");
464 /* Create a kthread for each queue */
465 for (i = 0; i < ccp->cmd_q_count; i++) {
466 struct task_struct *kthread;
467
468 cmd_q = &ccp->cmd_q[i];
469
470 kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
471 "%s-q%u", ccp->name, cmd_q->id);
472 if (IS_ERR(kthread)) {
473 dev_err(dev, "error creating queue thread (%ld)\n",
474 PTR_ERR(kthread));
475 ret = PTR_ERR(kthread);
476 goto e_kthread;
477 }
478
479 cmd_q->kthread = kthread;
480 wake_up_process(kthread);
481 }
482
483 dev_dbg(dev, "Enabling interrupts...\n");
484 /* Enable interrupts */
485 ccp_enable_queue_interrupts(ccp);
486
487 dev_dbg(dev, "Registering device...\n");
488 ccp_add_device(ccp);
489
490 ret = ccp_register_rng(ccp);
491 if (ret)
492 goto e_kthread;
493
494 /* Register the DMA engine support */
495 ret = ccp_dmaengine_register(ccp);
496 if (ret)
497 goto e_hwrng;
498
499 return 0;
500
501 e_hwrng:
502 ccp_unregister_rng(ccp);
503
504 e_kthread:
505 for (i = 0; i < ccp->cmd_q_count; i++)
506 if (ccp->cmd_q[i].kthread)
507 kthread_stop(ccp->cmd_q[i].kthread);
508
509 sp_free_ccp_irq(ccp->sp, ccp);
510
511 e_pool:
512 for (i = 0; i < ccp->cmd_q_count; i++)
513 dma_pool_destroy(ccp->cmd_q[i].dma_pool);
514
515 return ret;
516 }
517
ccp_destroy(struct ccp_device * ccp)518 static void ccp_destroy(struct ccp_device *ccp)
519 {
520 struct ccp_cmd_queue *cmd_q;
521 struct ccp_cmd *cmd;
522 unsigned int i;
523
524 /* Unregister the DMA engine */
525 ccp_dmaengine_unregister(ccp);
526
527 /* Unregister the RNG */
528 ccp_unregister_rng(ccp);
529
530 /* Remove this device from the list of available units */
531 ccp_del_device(ccp);
532
533 /* Disable and clear interrupts */
534 ccp_disable_queue_interrupts(ccp);
535 for (i = 0; i < ccp->cmd_q_count; i++) {
536 cmd_q = &ccp->cmd_q[i];
537
538 ioread32(cmd_q->reg_int_status);
539 ioread32(cmd_q->reg_status);
540 }
541 iowrite32(ccp->qim, ccp->io_regs + IRQ_STATUS_REG);
542
543 /* Stop the queue kthreads */
544 for (i = 0; i < ccp->cmd_q_count; i++)
545 if (ccp->cmd_q[i].kthread)
546 kthread_stop(ccp->cmd_q[i].kthread);
547
548 sp_free_ccp_irq(ccp->sp, ccp);
549
550 for (i = 0; i < ccp->cmd_q_count; i++)
551 dma_pool_destroy(ccp->cmd_q[i].dma_pool);
552
553 /* Flush the cmd and backlog queue */
554 while (!list_empty(&ccp->cmd)) {
555 /* Invoke the callback directly with an error code */
556 cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
557 list_del(&cmd->entry);
558 cmd->callback(cmd->data, -ENODEV);
559 }
560 while (!list_empty(&ccp->backlog)) {
561 /* Invoke the callback directly with an error code */
562 cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
563 list_del(&cmd->entry);
564 cmd->callback(cmd->data, -ENODEV);
565 }
566 }
567
568 static const struct ccp_actions ccp3_actions = {
569 .aes = ccp_perform_aes,
570 .xts_aes = ccp_perform_xts_aes,
571 .des3 = NULL,
572 .sha = ccp_perform_sha,
573 .rsa = ccp_perform_rsa,
574 .passthru = ccp_perform_passthru,
575 .ecc = ccp_perform_ecc,
576 .sballoc = ccp_alloc_ksb,
577 .sbfree = ccp_free_ksb,
578 .init = ccp_init,
579 .destroy = ccp_destroy,
580 .get_free_slots = ccp_get_free_slots,
581 .irqhandler = ccp_irq_handler,
582 };
583
584 const struct ccp_vdata ccpv3_platform = {
585 .version = CCP_VERSION(3, 0),
586 .setup = NULL,
587 .perform = &ccp3_actions,
588 .offset = 0,
589 .rsamax = CCP_RSA_MAX_WIDTH,
590 };
591
592 const struct ccp_vdata ccpv3 = {
593 .version = CCP_VERSION(3, 0),
594 .setup = NULL,
595 .perform = &ccp3_actions,
596 .offset = 0x20000,
597 .rsamax = CCP_RSA_MAX_WIDTH,
598 };
599