• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Framework for userspace DMA-BUF allocations
4  *
5  * Copyright (C) 2011 Google, Inc.
6  * Copyright (C) 2019 Linaro Ltd.
7  */
8 
9 #include <linux/cdev.h>
10 #include <linux/debugfs.h>
11 #include <linux/device.h>
12 #include <linux/dma-buf.h>
13 #include <linux/err.h>
14 #include <linux/xarray.h>
15 #include <linux/list.h>
16 #include <linux/slab.h>
17 #include <linux/nospec.h>
18 #include <linux/uaccess.h>
19 #include <linux/syscalls.h>
20 #include <linux/dma-heap.h>
21 #include <uapi/linux/dma-heap.h>
22 
23 #include <trace/hooks/dmabuf.h>
24 
25 #define DEVNAME "dma_heap"
26 
27 #define NUM_HEAP_MINORS 128
28 
29 /**
30  * struct dma_heap - represents a dmabuf heap in the system
31  * @name:		used for debugging/device-node name
32  * @ops:		ops struct for this heap
33  * @heap_devt		heap device node
34  * @list		list head connecting to list of heaps
35  * @heap_cdev		heap char device
36  * @heap_dev		heap device struct
37  *
38  * Represents a heap of memory from which buffers can be made.
39  */
40 struct dma_heap {
41 	const char *name;
42 	const struct dma_heap_ops *ops;
43 	void *priv;
44 	dev_t heap_devt;
45 	struct list_head list;
46 	struct cdev heap_cdev;
47 	struct kref refcount;
48 	struct device *heap_dev;
49 };
50 
51 static LIST_HEAD(heap_list);
52 static DEFINE_MUTEX(heap_list_lock);
53 static dev_t dma_heap_devt;
54 static struct class *dma_heap_class;
55 static DEFINE_XARRAY_ALLOC(dma_heap_minors);
56 
dma_heap_find(const char * name)57 struct dma_heap *dma_heap_find(const char *name)
58 {
59 	struct dma_heap *h;
60 
61 	mutex_lock(&heap_list_lock);
62 	list_for_each_entry(h, &heap_list, list) {
63 		if (!strcmp(h->name, name)) {
64 			kref_get(&h->refcount);
65 			mutex_unlock(&heap_list_lock);
66 			return h;
67 		}
68 	}
69 	mutex_unlock(&heap_list_lock);
70 	return NULL;
71 }
72 EXPORT_SYMBOL_GPL(dma_heap_find);
73 
74 
dma_heap_buffer_free(struct dma_buf * dmabuf)75 void dma_heap_buffer_free(struct dma_buf *dmabuf)
76 {
77 	dma_buf_put(dmabuf);
78 }
79 EXPORT_SYMBOL_GPL(dma_heap_buffer_free);
80 
dma_heap_buffer_alloc(struct dma_heap * heap,size_t len,unsigned int fd_flags,unsigned int heap_flags)81 struct dma_buf *dma_heap_buffer_alloc(struct dma_heap *heap, size_t len,
82 				      unsigned int fd_flags,
83 				      unsigned int heap_flags)
84 {
85 	bool vh_valid = false;
86 
87 	trace_android_vh_dmabuf_heap_flags_validation(heap,
88 		len, fd_flags, heap_flags, &vh_valid);
89 
90 	if (fd_flags & ~DMA_HEAP_VALID_FD_FLAGS)
91 		return ERR_PTR(-EINVAL);
92 
93 	if (heap_flags & ~DMA_HEAP_VALID_HEAP_FLAGS && !vh_valid)
94 		return ERR_PTR(-EINVAL);
95 	/*
96 	 * Allocations from all heaps have to begin
97 	 * and end on page boundaries.
98 	 */
99 	len = PAGE_ALIGN(len);
100 	if (!len)
101 		return ERR_PTR(-EINVAL);
102 
103 	return heap->ops->allocate(heap, len, fd_flags, heap_flags);
104 }
105 EXPORT_SYMBOL_GPL(dma_heap_buffer_alloc);
106 
dma_heap_bufferfd_alloc(struct dma_heap * heap,size_t len,unsigned int fd_flags,unsigned int heap_flags)107 int dma_heap_bufferfd_alloc(struct dma_heap *heap, size_t len,
108 			    unsigned int fd_flags,
109 			    unsigned int heap_flags)
110 {
111 	struct dma_buf *dmabuf;
112 	int fd;
113 
114 	dmabuf = dma_heap_buffer_alloc(heap, len, fd_flags, heap_flags);
115 
116 	if (IS_ERR(dmabuf))
117 		return PTR_ERR(dmabuf);
118 
119 	fd = dma_buf_fd(dmabuf, fd_flags);
120 	if (fd < 0) {
121 		dma_buf_put(dmabuf);
122 		/* just return, as put will call release and that will free */
123 	}
124 	return fd;
125 
126 }
127 EXPORT_SYMBOL_GPL(dma_heap_bufferfd_alloc);
128 
dma_heap_open(struct inode * inode,struct file * file)129 static int dma_heap_open(struct inode *inode, struct file *file)
130 {
131 	struct dma_heap *heap;
132 
133 	heap = xa_load(&dma_heap_minors, iminor(inode));
134 	if (!heap) {
135 		pr_err("dma_heap: minor %d unknown.\n", iminor(inode));
136 		return -ENODEV;
137 	}
138 
139 	/* instance data as context */
140 	file->private_data = heap;
141 	nonseekable_open(inode, file);
142 
143 	return 0;
144 }
145 
dma_heap_ioctl_allocate(struct file * file,void * data)146 static long dma_heap_ioctl_allocate(struct file *file, void *data)
147 {
148 	struct dma_heap_allocation_data *heap_allocation = data;
149 	struct dma_heap *heap = file->private_data;
150 	int fd;
151 
152 	if (heap_allocation->fd)
153 		return -EINVAL;
154 
155 	fd = dma_heap_bufferfd_alloc(heap, heap_allocation->len,
156 				     heap_allocation->fd_flags,
157 				     heap_allocation->heap_flags);
158 	if (fd < 0)
159 		return fd;
160 
161 	heap_allocation->fd = fd;
162 
163 	return 0;
164 }
165 
166 static unsigned int dma_heap_ioctl_cmds[] = {
167 	DMA_HEAP_IOCTL_ALLOC,
168 };
169 
dma_heap_ioctl(struct file * file,unsigned int ucmd,unsigned long arg)170 static long dma_heap_ioctl(struct file *file, unsigned int ucmd,
171 			   unsigned long arg)
172 {
173 	char stack_kdata[128];
174 	char *kdata = stack_kdata;
175 	unsigned int kcmd;
176 	unsigned int in_size, out_size, drv_size, ksize;
177 	int nr = _IOC_NR(ucmd);
178 	int ret = 0;
179 
180 	if (nr >= ARRAY_SIZE(dma_heap_ioctl_cmds))
181 		return -EINVAL;
182 
183 	nr = array_index_nospec(nr, ARRAY_SIZE(dma_heap_ioctl_cmds));
184 	/* Get the kernel ioctl cmd that matches */
185 	kcmd = dma_heap_ioctl_cmds[nr];
186 
187 	/* Figure out the delta between user cmd size and kernel cmd size */
188 	drv_size = _IOC_SIZE(kcmd);
189 	out_size = _IOC_SIZE(ucmd);
190 	in_size = out_size;
191 	if ((ucmd & kcmd & IOC_IN) == 0)
192 		in_size = 0;
193 	if ((ucmd & kcmd & IOC_OUT) == 0)
194 		out_size = 0;
195 	ksize = max(max(in_size, out_size), drv_size);
196 
197 	/* If necessary, allocate buffer for ioctl argument */
198 	if (ksize > sizeof(stack_kdata)) {
199 		kdata = kmalloc(ksize, GFP_KERNEL);
200 		if (!kdata)
201 			return -ENOMEM;
202 	}
203 
204 	if (copy_from_user(kdata, (void __user *)arg, in_size) != 0) {
205 		ret = -EFAULT;
206 		goto err;
207 	}
208 
209 	/* zero out any difference between the kernel/user structure size */
210 	if (ksize > in_size)
211 		memset(kdata + in_size, 0, ksize - in_size);
212 
213 	switch (kcmd) {
214 	case DMA_HEAP_IOCTL_ALLOC:
215 		ret = dma_heap_ioctl_allocate(file, kdata);
216 		break;
217 	default:
218 		ret = -ENOTTY;
219 		goto err;
220 	}
221 
222 	if (copy_to_user((void __user *)arg, kdata, out_size) != 0)
223 		ret = -EFAULT;
224 err:
225 	if (kdata != stack_kdata)
226 		kfree(kdata);
227 	return ret;
228 }
229 
230 static const struct file_operations dma_heap_fops = {
231 	.owner          = THIS_MODULE,
232 	.open		= dma_heap_open,
233 	.unlocked_ioctl = dma_heap_ioctl,
234 #ifdef CONFIG_COMPAT
235 	.compat_ioctl	= dma_heap_ioctl,
236 #endif
237 };
238 
239 /**
240  * dma_heap_get_drvdata() - get per-subdriver data for the heap
241  * @heap: DMA-Heap to retrieve private data for
242  *
243  * Returns:
244  * The per-subdriver data for the heap.
245  */
dma_heap_get_drvdata(struct dma_heap * heap)246 void *dma_heap_get_drvdata(struct dma_heap *heap)
247 {
248 	return heap->priv;
249 }
250 EXPORT_SYMBOL_GPL(dma_heap_get_drvdata);
251 
dma_heap_release(struct kref * ref)252 static void dma_heap_release(struct kref *ref)
253 {
254 	struct dma_heap *heap = container_of(ref, struct dma_heap, refcount);
255 	int minor = MINOR(heap->heap_devt);
256 
257 	/* Note, we already holding the heap_list_lock here */
258 	list_del(&heap->list);
259 
260 	device_destroy(dma_heap_class, heap->heap_devt);
261 	cdev_del(&heap->heap_cdev);
262 	xa_erase(&dma_heap_minors, minor);
263 
264 	kfree(heap);
265 }
266 
dma_heap_put(struct dma_heap * h)267 void dma_heap_put(struct dma_heap *h)
268 {
269 	/*
270 	 * Take the heap_list_lock now to avoid racing with code
271 	 * scanning the list and then taking a kref.
272 	 */
273 	mutex_lock(&heap_list_lock);
274 	kref_put(&h->refcount, dma_heap_release);
275 	mutex_unlock(&heap_list_lock);
276 }
277 EXPORT_SYMBOL_GPL(dma_heap_put);
278 
279 /**
280  * dma_heap_get_dev() - get device struct for the heap
281  * @heap: DMA-Heap to retrieve device struct from
282  *
283  * Returns:
284  * The device struct for the heap.
285  */
dma_heap_get_dev(struct dma_heap * heap)286 struct device *dma_heap_get_dev(struct dma_heap *heap)
287 {
288 	return heap->heap_dev;
289 }
290 EXPORT_SYMBOL_GPL(dma_heap_get_dev);
291 
292 /**
293  * dma_heap_get_name() - get heap name
294  * @heap: DMA-Heap to retrieve private data for
295  *
296  * Returns:
297  * The char* for the heap name.
298  */
dma_heap_get_name(struct dma_heap * heap)299 const char *dma_heap_get_name(struct dma_heap *heap)
300 {
301 	return heap->name;
302 }
303 EXPORT_SYMBOL_GPL(dma_heap_get_name);
304 
dma_heap_add(const struct dma_heap_export_info * exp_info)305 struct dma_heap *dma_heap_add(const struct dma_heap_export_info *exp_info)
306 {
307 	struct dma_heap *heap, *h, *err_ret;
308 	unsigned int minor;
309 	int ret;
310 
311 	if (!exp_info->name || !strcmp(exp_info->name, "")) {
312 		pr_err("dma_heap: Cannot add heap without a name\n");
313 		return ERR_PTR(-EINVAL);
314 	}
315 
316 	if (!exp_info->ops || !exp_info->ops->allocate) {
317 		pr_err("dma_heap: Cannot add heap with invalid ops struct\n");
318 		return ERR_PTR(-EINVAL);
319 	}
320 
321 	heap = kzalloc(sizeof(*heap), GFP_KERNEL);
322 	if (!heap)
323 		return ERR_PTR(-ENOMEM);
324 
325 	kref_init(&heap->refcount);
326 	heap->name = exp_info->name;
327 	heap->ops = exp_info->ops;
328 	heap->priv = exp_info->priv;
329 
330 	/* Find unused minor number */
331 	ret = xa_alloc(&dma_heap_minors, &minor, heap,
332 		       XA_LIMIT(0, NUM_HEAP_MINORS - 1), GFP_KERNEL);
333 	if (ret < 0) {
334 		pr_err("dma_heap: Unable to get minor number for heap\n");
335 		err_ret = ERR_PTR(ret);
336 		goto err0;
337 	}
338 
339 	/* Create device */
340 	heap->heap_devt = MKDEV(MAJOR(dma_heap_devt), minor);
341 
342 	cdev_init(&heap->heap_cdev, &dma_heap_fops);
343 	ret = cdev_add(&heap->heap_cdev, heap->heap_devt, 1);
344 	if (ret < 0) {
345 		pr_err("dma_heap: Unable to add char device\n");
346 		err_ret = ERR_PTR(ret);
347 		goto err1;
348 	}
349 
350 	heap->heap_dev = device_create(dma_heap_class,
351 				       NULL,
352 				       heap->heap_devt,
353 				       NULL,
354 				       heap->name);
355 	if (IS_ERR(heap->heap_dev)) {
356 		pr_err("dma_heap: Unable to create device\n");
357 		err_ret = ERR_CAST(heap->heap_dev);
358 		goto err2;
359 	}
360 
361 	/* Make sure it doesn't disappear on us */
362 	heap->heap_dev = get_device(heap->heap_dev);
363 
364 	mutex_lock(&heap_list_lock);
365 	/* check the name is unique */
366 	list_for_each_entry(h, &heap_list, list) {
367 		if (!strcmp(h->name, exp_info->name)) {
368 			mutex_unlock(&heap_list_lock);
369 			pr_err("dma_heap: Already registered heap named %s\n",
370 			       exp_info->name);
371 			err_ret = ERR_PTR(-EINVAL);
372 			put_device(heap->heap_dev);
373 			goto err3;
374 		}
375 	}
376 
377 	/* Add heap to the list */
378 	list_add(&heap->list, &heap_list);
379 	mutex_unlock(&heap_list_lock);
380 
381 	return heap;
382 
383 err3:
384 	device_destroy(dma_heap_class, heap->heap_devt);
385 err2:
386 	cdev_del(&heap->heap_cdev);
387 err1:
388 	xa_erase(&dma_heap_minors, minor);
389 err0:
390 	kfree(heap);
391 	return err_ret;
392 }
393 EXPORT_SYMBOL_GPL(dma_heap_add);
394 
dma_heap_devnode(struct device * dev,umode_t * mode)395 static char *dma_heap_devnode(struct device *dev, umode_t *mode)
396 {
397 	return kasprintf(GFP_KERNEL, "dma_heap/%s", dev_name(dev));
398 }
399 
total_pools_kb_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)400 static ssize_t total_pools_kb_show(struct kobject *kobj,
401 				   struct kobj_attribute *attr, char *buf)
402 {
403 	struct dma_heap *heap;
404 	u64 total_pool_size = 0;
405 
406 	mutex_lock(&heap_list_lock);
407 	list_for_each_entry(heap, &heap_list, list) {
408 		if (heap->ops->get_pool_size)
409 			total_pool_size += heap->ops->get_pool_size(heap);
410 	}
411 	mutex_unlock(&heap_list_lock);
412 
413 	return sysfs_emit(buf, "%llu\n", total_pool_size / 1024);
414 }
415 
416 static struct kobj_attribute total_pools_kb_attr =
417 	__ATTR_RO(total_pools_kb);
418 
419 static struct attribute *dma_heap_sysfs_attrs[] = {
420 	&total_pools_kb_attr.attr,
421 	NULL,
422 };
423 
424 ATTRIBUTE_GROUPS(dma_heap_sysfs);
425 
426 static struct kobject *dma_heap_kobject;
427 
dma_heap_sysfs_setup(void)428 static int dma_heap_sysfs_setup(void)
429 {
430 	int ret;
431 
432 	dma_heap_kobject = kobject_create_and_add("dma_heap", kernel_kobj);
433 	if (!dma_heap_kobject)
434 		return -ENOMEM;
435 
436 	ret = sysfs_create_groups(dma_heap_kobject, dma_heap_sysfs_groups);
437 	if (ret) {
438 		kobject_put(dma_heap_kobject);
439 		return ret;
440 	}
441 
442 	return 0;
443 }
444 
dma_heap_sysfs_teardown(void)445 static void dma_heap_sysfs_teardown(void)
446 {
447 	kobject_put(dma_heap_kobject);
448 }
449 
dma_heap_init(void)450 static int dma_heap_init(void)
451 {
452 	int ret;
453 
454 	ret = dma_heap_sysfs_setup();
455 	if (ret)
456 		return ret;
457 
458 	ret = alloc_chrdev_region(&dma_heap_devt, 0, NUM_HEAP_MINORS, DEVNAME);
459 	if (ret)
460 		goto err_chrdev;
461 
462 	dma_heap_class = class_create(THIS_MODULE, DEVNAME);
463 	if (IS_ERR(dma_heap_class)) {
464 		ret = PTR_ERR(dma_heap_class);
465 		goto err_class;
466 	}
467 	dma_heap_class->devnode = dma_heap_devnode;
468 
469 	return 0;
470 
471 err_class:
472 	unregister_chrdev_region(dma_heap_devt, NUM_HEAP_MINORS);
473 err_chrdev:
474 	dma_heap_sysfs_teardown();
475 	return ret;
476 }
477 subsys_initcall(dma_heap_init);
478