• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier:  GPL-2.0
2 // (C) 2017-2018 Synopsys, Inc. (www.synopsys.com)
3 
4 /*
5  * Synopsys DesignWare AXI DMA Controller driver.
6  *
7  * Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
8  */
9 
10 #include <linux/bitops.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/io-64-nonatomic-lo-hi.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/property.h>
28 #include <linux/slab.h>
29 #include <linux/types.h>
30 
31 #include "dw-axi-dmac.h"
32 #include "../dmaengine.h"
33 #include "../virt-dma.h"
34 
35 /*
36  * The set of bus widths supported by the DMA controller. DW AXI DMAC supports
37  * master data bus width up to 512 bits (for both AXI master interfaces), but
38  * it depends on IP block configurarion.
39  */
40 #define AXI_DMA_BUSWIDTHS		  \
41 	(DMA_SLAVE_BUSWIDTH_1_BYTE	| \
42 	DMA_SLAVE_BUSWIDTH_2_BYTES	| \
43 	DMA_SLAVE_BUSWIDTH_4_BYTES	| \
44 	DMA_SLAVE_BUSWIDTH_8_BYTES	| \
45 	DMA_SLAVE_BUSWIDTH_16_BYTES	| \
46 	DMA_SLAVE_BUSWIDTH_32_BYTES	| \
47 	DMA_SLAVE_BUSWIDTH_64_BYTES)
48 
49 static inline void
axi_dma_iowrite32(struct axi_dma_chip * chip,u32 reg,u32 val)50 axi_dma_iowrite32(struct axi_dma_chip *chip, u32 reg, u32 val)
51 {
52 	iowrite32(val, chip->regs + reg);
53 }
54 
axi_dma_ioread32(struct axi_dma_chip * chip,u32 reg)55 static inline u32 axi_dma_ioread32(struct axi_dma_chip *chip, u32 reg)
56 {
57 	return ioread32(chip->regs + reg);
58 }
59 
60 static inline void
axi_chan_iowrite32(struct axi_dma_chan * chan,u32 reg,u32 val)61 axi_chan_iowrite32(struct axi_dma_chan *chan, u32 reg, u32 val)
62 {
63 	iowrite32(val, chan->chan_regs + reg);
64 }
65 
axi_chan_ioread32(struct axi_dma_chan * chan,u32 reg)66 static inline u32 axi_chan_ioread32(struct axi_dma_chan *chan, u32 reg)
67 {
68 	return ioread32(chan->chan_regs + reg);
69 }
70 
71 static inline void
axi_chan_iowrite64(struct axi_dma_chan * chan,u32 reg,u64 val)72 axi_chan_iowrite64(struct axi_dma_chan *chan, u32 reg, u64 val)
73 {
74 	/*
75 	 * We split one 64 bit write for two 32 bit write as some HW doesn't
76 	 * support 64 bit access.
77 	 */
78 	iowrite32(lower_32_bits(val), chan->chan_regs + reg);
79 	iowrite32(upper_32_bits(val), chan->chan_regs + reg + 4);
80 }
81 
axi_dma_disable(struct axi_dma_chip * chip)82 static inline void axi_dma_disable(struct axi_dma_chip *chip)
83 {
84 	u32 val;
85 
86 	val = axi_dma_ioread32(chip, DMAC_CFG);
87 	val &= ~DMAC_EN_MASK;
88 	axi_dma_iowrite32(chip, DMAC_CFG, val);
89 }
90 
axi_dma_enable(struct axi_dma_chip * chip)91 static inline void axi_dma_enable(struct axi_dma_chip *chip)
92 {
93 	u32 val;
94 
95 	val = axi_dma_ioread32(chip, DMAC_CFG);
96 	val |= DMAC_EN_MASK;
97 	axi_dma_iowrite32(chip, DMAC_CFG, val);
98 }
99 
axi_dma_irq_disable(struct axi_dma_chip * chip)100 static inline void axi_dma_irq_disable(struct axi_dma_chip *chip)
101 {
102 	u32 val;
103 
104 	val = axi_dma_ioread32(chip, DMAC_CFG);
105 	val &= ~INT_EN_MASK;
106 	axi_dma_iowrite32(chip, DMAC_CFG, val);
107 }
108 
axi_dma_irq_enable(struct axi_dma_chip * chip)109 static inline void axi_dma_irq_enable(struct axi_dma_chip *chip)
110 {
111 	u32 val;
112 
113 	val = axi_dma_ioread32(chip, DMAC_CFG);
114 	val |= INT_EN_MASK;
115 	axi_dma_iowrite32(chip, DMAC_CFG, val);
116 }
117 
axi_chan_irq_disable(struct axi_dma_chan * chan,u32 irq_mask)118 static inline void axi_chan_irq_disable(struct axi_dma_chan *chan, u32 irq_mask)
119 {
120 	u32 val;
121 
122 	if (likely(irq_mask == DWAXIDMAC_IRQ_ALL)) {
123 		axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, DWAXIDMAC_IRQ_NONE);
124 	} else {
125 		val = axi_chan_ioread32(chan, CH_INTSTATUS_ENA);
126 		val &= ~irq_mask;
127 		axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, val);
128 	}
129 }
130 
axi_chan_irq_set(struct axi_dma_chan * chan,u32 irq_mask)131 static inline void axi_chan_irq_set(struct axi_dma_chan *chan, u32 irq_mask)
132 {
133 	axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, irq_mask);
134 }
135 
axi_chan_irq_sig_set(struct axi_dma_chan * chan,u32 irq_mask)136 static inline void axi_chan_irq_sig_set(struct axi_dma_chan *chan, u32 irq_mask)
137 {
138 	axi_chan_iowrite32(chan, CH_INTSIGNAL_ENA, irq_mask);
139 }
140 
axi_chan_irq_clear(struct axi_dma_chan * chan,u32 irq_mask)141 static inline void axi_chan_irq_clear(struct axi_dma_chan *chan, u32 irq_mask)
142 {
143 	axi_chan_iowrite32(chan, CH_INTCLEAR, irq_mask);
144 }
145 
axi_chan_irq_read(struct axi_dma_chan * chan)146 static inline u32 axi_chan_irq_read(struct axi_dma_chan *chan)
147 {
148 	return axi_chan_ioread32(chan, CH_INTSTATUS);
149 }
150 
axi_chan_disable(struct axi_dma_chan * chan)151 static inline void axi_chan_disable(struct axi_dma_chan *chan)
152 {
153 	u32 val;
154 
155 	val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
156 	val &= ~(BIT(chan->id) << DMAC_CHAN_EN_SHIFT);
157 	val |=   BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
158 	axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
159 }
160 
axi_chan_enable(struct axi_dma_chan * chan)161 static inline void axi_chan_enable(struct axi_dma_chan *chan)
162 {
163 	u32 val;
164 
165 	val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
166 	val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT |
167 	       BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
168 	axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
169 }
170 
axi_chan_is_hw_enable(struct axi_dma_chan * chan)171 static inline bool axi_chan_is_hw_enable(struct axi_dma_chan *chan)
172 {
173 	u32 val;
174 
175 	val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
176 
177 	return !!(val & (BIT(chan->id) << DMAC_CHAN_EN_SHIFT));
178 }
179 
axi_dma_hw_init(struct axi_dma_chip * chip)180 static void axi_dma_hw_init(struct axi_dma_chip *chip)
181 {
182 	u32 i;
183 
184 	for (i = 0; i < chip->dw->hdata->nr_channels; i++) {
185 		axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
186 		axi_chan_disable(&chip->dw->chan[i]);
187 	}
188 }
189 
axi_chan_get_xfer_width(struct axi_dma_chan * chan,dma_addr_t src,dma_addr_t dst,size_t len)190 static u32 axi_chan_get_xfer_width(struct axi_dma_chan *chan, dma_addr_t src,
191 				   dma_addr_t dst, size_t len)
192 {
193 	u32 max_width = chan->chip->dw->hdata->m_data_width;
194 
195 	return __ffs(src | dst | len | BIT(max_width));
196 }
197 
axi_chan_name(struct axi_dma_chan * chan)198 static inline const char *axi_chan_name(struct axi_dma_chan *chan)
199 {
200 	return dma_chan_name(&chan->vc.chan);
201 }
202 
axi_desc_alloc(u32 num)203 static struct axi_dma_desc *axi_desc_alloc(u32 num)
204 {
205 	struct axi_dma_desc *desc;
206 
207 	desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
208 	if (!desc)
209 		return NULL;
210 
211 	desc->hw_desc = kcalloc(num, sizeof(*desc->hw_desc), GFP_NOWAIT);
212 	if (!desc->hw_desc) {
213 		kfree(desc);
214 		return NULL;
215 	}
216 
217 	return desc;
218 }
219 
axi_desc_get(struct axi_dma_chan * chan,dma_addr_t * addr)220 static struct axi_dma_lli *axi_desc_get(struct axi_dma_chan *chan,
221 					dma_addr_t *addr)
222 {
223 	struct axi_dma_lli *lli;
224 	dma_addr_t phys;
225 
226 	lli = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
227 	if (unlikely(!lli)) {
228 		dev_err(chan2dev(chan), "%s: not enough descriptors available\n",
229 			axi_chan_name(chan));
230 		return NULL;
231 	}
232 
233 	atomic_inc(&chan->descs_allocated);
234 	*addr = phys;
235 
236 	return lli;
237 }
238 
axi_desc_put(struct axi_dma_desc * desc)239 static void axi_desc_put(struct axi_dma_desc *desc)
240 {
241 	struct axi_dma_chan *chan = desc->chan;
242 	int count = atomic_read(&chan->descs_allocated);
243 	struct axi_dma_hw_desc *hw_desc;
244 	int descs_put;
245 
246 	for (descs_put = 0; descs_put < count; descs_put++) {
247 		hw_desc = &desc->hw_desc[descs_put];
248 		dma_pool_free(chan->desc_pool, hw_desc->lli, hw_desc->llp);
249 	}
250 
251 	kfree(desc->hw_desc);
252 	kfree(desc);
253 	atomic_sub(descs_put, &chan->descs_allocated);
254 	dev_vdbg(chan2dev(chan), "%s: %d descs put, %d still allocated\n",
255 		axi_chan_name(chan), descs_put,
256 		atomic_read(&chan->descs_allocated));
257 }
258 
vchan_desc_put(struct virt_dma_desc * vdesc)259 static void vchan_desc_put(struct virt_dma_desc *vdesc)
260 {
261 	axi_desc_put(vd_to_axi_desc(vdesc));
262 }
263 
264 static enum dma_status
dma_chan_tx_status(struct dma_chan * dchan,dma_cookie_t cookie,struct dma_tx_state * txstate)265 dma_chan_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
266 		  struct dma_tx_state *txstate)
267 {
268 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
269 	struct virt_dma_desc *vdesc;
270 	enum dma_status status;
271 	u32 completed_length;
272 	unsigned long flags;
273 	u32 completed_blocks;
274 	size_t bytes = 0;
275 	u32 length;
276 	u32 len;
277 
278 	status = dma_cookie_status(dchan, cookie, txstate);
279 	if (status == DMA_COMPLETE || !txstate)
280 		return status;
281 
282 	spin_lock_irqsave(&chan->vc.lock, flags);
283 
284 	vdesc = vchan_find_desc(&chan->vc, cookie);
285 	if (vdesc) {
286 		length = vd_to_axi_desc(vdesc)->length;
287 		completed_blocks = vd_to_axi_desc(vdesc)->completed_blocks;
288 		len = vd_to_axi_desc(vdesc)->hw_desc[0].len;
289 		completed_length = completed_blocks * len;
290 		bytes = length - completed_length;
291 	}
292 
293 	spin_unlock_irqrestore(&chan->vc.lock, flags);
294 	dma_set_residue(txstate, bytes);
295 
296 	return status;
297 }
298 
write_desc_llp(struct axi_dma_hw_desc * desc,dma_addr_t adr)299 static void write_desc_llp(struct axi_dma_hw_desc *desc, dma_addr_t adr)
300 {
301 	desc->lli->llp = cpu_to_le64(adr);
302 }
303 
write_chan_llp(struct axi_dma_chan * chan,dma_addr_t adr)304 static void write_chan_llp(struct axi_dma_chan *chan, dma_addr_t adr)
305 {
306 	axi_chan_iowrite64(chan, CH_LLP, adr);
307 }
308 
dw_axi_dma_set_byte_halfword(struct axi_dma_chan * chan,bool set)309 static void dw_axi_dma_set_byte_halfword(struct axi_dma_chan *chan, bool set)
310 {
311 	u32 offset = DMAC_APB_BYTE_WR_CH_EN;
312 	u32 reg_width, val;
313 
314 	if (!chan->chip->apb_regs) {
315 		dev_dbg(chan->chip->dev, "apb_regs not initialized\n");
316 		return;
317 	}
318 
319 	reg_width = __ffs(chan->config.dst_addr_width);
320 	if (reg_width == DWAXIDMAC_TRANS_WIDTH_16)
321 		offset = DMAC_APB_HALFWORD_WR_CH_EN;
322 
323 	val = ioread32(chan->chip->apb_regs + offset);
324 
325 	if (set)
326 		val |= BIT(chan->id);
327 	else
328 		val &= ~BIT(chan->id);
329 
330 	iowrite32(val, chan->chip->apb_regs + offset);
331 }
332 /* Called in chan locked context */
axi_chan_block_xfer_start(struct axi_dma_chan * chan,struct axi_dma_desc * first)333 static void axi_chan_block_xfer_start(struct axi_dma_chan *chan,
334 				      struct axi_dma_desc *first)
335 {
336 	u32 priority = chan->chip->dw->hdata->priority[chan->id];
337 	u32 reg, irq_mask;
338 	u8 lms = 0; /* Select AXI0 master for LLI fetching */
339 
340 	if (unlikely(axi_chan_is_hw_enable(chan))) {
341 		dev_err(chan2dev(chan), "%s is non-idle!\n",
342 			axi_chan_name(chan));
343 
344 		return;
345 	}
346 
347 	axi_dma_enable(chan->chip);
348 
349 	reg = (DWAXIDMAC_MBLK_TYPE_LL << CH_CFG_L_DST_MULTBLK_TYPE_POS |
350 	       DWAXIDMAC_MBLK_TYPE_LL << CH_CFG_L_SRC_MULTBLK_TYPE_POS);
351 	axi_chan_iowrite32(chan, CH_CFG_L, reg);
352 
353 	reg = (DWAXIDMAC_TT_FC_MEM_TO_MEM_DMAC << CH_CFG_H_TT_FC_POS |
354 	       priority << CH_CFG_H_PRIORITY_POS |
355 	       DWAXIDMAC_HS_SEL_HW << CH_CFG_H_HS_SEL_DST_POS |
356 	       DWAXIDMAC_HS_SEL_HW << CH_CFG_H_HS_SEL_SRC_POS);
357 	switch (chan->direction) {
358 	case DMA_MEM_TO_DEV:
359 		dw_axi_dma_set_byte_halfword(chan, true);
360 		reg |= (chan->config.device_fc ?
361 			DWAXIDMAC_TT_FC_MEM_TO_PER_DST :
362 			DWAXIDMAC_TT_FC_MEM_TO_PER_DMAC)
363 			<< CH_CFG_H_TT_FC_POS;
364 		if (chan->chip->apb_regs)
365 			reg |= (chan->id << CH_CFG_H_DST_PER_POS);
366 		break;
367 	case DMA_DEV_TO_MEM:
368 		reg |= (chan->config.device_fc ?
369 			DWAXIDMAC_TT_FC_PER_TO_MEM_SRC :
370 			DWAXIDMAC_TT_FC_PER_TO_MEM_DMAC)
371 			<< CH_CFG_H_TT_FC_POS;
372 		if (chan->chip->apb_regs)
373 			reg |= (chan->id << CH_CFG_H_SRC_PER_POS);
374 		break;
375 	default:
376 		break;
377 	}
378 	axi_chan_iowrite32(chan, CH_CFG_H, reg);
379 
380 	write_chan_llp(chan, first->hw_desc[0].llp | lms);
381 
382 	irq_mask = DWAXIDMAC_IRQ_DMA_TRF | DWAXIDMAC_IRQ_ALL_ERR;
383 	axi_chan_irq_sig_set(chan, irq_mask);
384 
385 	/* Generate 'suspend' status but don't generate interrupt */
386 	irq_mask |= DWAXIDMAC_IRQ_SUSPENDED;
387 	axi_chan_irq_set(chan, irq_mask);
388 
389 	axi_chan_enable(chan);
390 }
391 
axi_chan_start_first_queued(struct axi_dma_chan * chan)392 static void axi_chan_start_first_queued(struct axi_dma_chan *chan)
393 {
394 	struct axi_dma_desc *desc;
395 	struct virt_dma_desc *vd;
396 
397 	vd = vchan_next_desc(&chan->vc);
398 	if (!vd)
399 		return;
400 
401 	desc = vd_to_axi_desc(vd);
402 	dev_vdbg(chan2dev(chan), "%s: started %u\n", axi_chan_name(chan),
403 		vd->tx.cookie);
404 	axi_chan_block_xfer_start(chan, desc);
405 }
406 
dma_chan_issue_pending(struct dma_chan * dchan)407 static void dma_chan_issue_pending(struct dma_chan *dchan)
408 {
409 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
410 	unsigned long flags;
411 
412 	spin_lock_irqsave(&chan->vc.lock, flags);
413 	if (vchan_issue_pending(&chan->vc))
414 		axi_chan_start_first_queued(chan);
415 	spin_unlock_irqrestore(&chan->vc.lock, flags);
416 }
417 
dw_axi_dma_synchronize(struct dma_chan * dchan)418 static void dw_axi_dma_synchronize(struct dma_chan *dchan)
419 {
420 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
421 
422 	vchan_synchronize(&chan->vc);
423 }
424 
dma_chan_alloc_chan_resources(struct dma_chan * dchan)425 static int dma_chan_alloc_chan_resources(struct dma_chan *dchan)
426 {
427 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
428 
429 	/* ASSERT: channel is idle */
430 	if (axi_chan_is_hw_enable(chan)) {
431 		dev_err(chan2dev(chan), "%s is non-idle!\n",
432 			axi_chan_name(chan));
433 		return -EBUSY;
434 	}
435 
436 	/* LLI address must be aligned to a 64-byte boundary */
437 	chan->desc_pool = dma_pool_create(dev_name(chan2dev(chan)),
438 					  chan->chip->dev,
439 					  sizeof(struct axi_dma_lli),
440 					  64, 0);
441 	if (!chan->desc_pool) {
442 		dev_err(chan2dev(chan), "No memory for descriptors\n");
443 		return -ENOMEM;
444 	}
445 	dev_vdbg(dchan2dev(dchan), "%s: allocating\n", axi_chan_name(chan));
446 
447 	pm_runtime_get(chan->chip->dev);
448 
449 	return 0;
450 }
451 
dma_chan_free_chan_resources(struct dma_chan * dchan)452 static void dma_chan_free_chan_resources(struct dma_chan *dchan)
453 {
454 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
455 
456 	/* ASSERT: channel is idle */
457 	if (axi_chan_is_hw_enable(chan))
458 		dev_err(dchan2dev(dchan), "%s is non-idle!\n",
459 			axi_chan_name(chan));
460 
461 	axi_chan_disable(chan);
462 	axi_chan_irq_disable(chan, DWAXIDMAC_IRQ_ALL);
463 
464 	vchan_free_chan_resources(&chan->vc);
465 
466 	dma_pool_destroy(chan->desc_pool);
467 	chan->desc_pool = NULL;
468 	dev_vdbg(dchan2dev(dchan),
469 		 "%s: free resources, descriptor still allocated: %u\n",
470 		 axi_chan_name(chan), atomic_read(&chan->descs_allocated));
471 
472 	pm_runtime_put(chan->chip->dev);
473 }
474 
dw_axi_dma_set_hw_channel(struct axi_dma_chan * chan,bool set)475 static void dw_axi_dma_set_hw_channel(struct axi_dma_chan *chan, bool set)
476 {
477 	struct axi_dma_chip *chip = chan->chip;
478 	unsigned long reg_value, val;
479 
480 	if (!chip->apb_regs) {
481 		dev_err(chip->dev, "apb_regs not initialized\n");
482 		return;
483 	}
484 
485 	/*
486 	 * An unused DMA channel has a default value of 0x3F.
487 	 * Lock the DMA channel by assign a handshake number to the channel.
488 	 * Unlock the DMA channel by assign 0x3F to the channel.
489 	 */
490 	if (set)
491 		val = chan->hw_handshake_num;
492 	else
493 		val = UNUSED_CHANNEL;
494 
495 	reg_value = lo_hi_readq(chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
496 
497 	/* Channel is already allocated, set handshake as per channel ID */
498 	/* 64 bit write should handle for 8 channels */
499 
500 	reg_value &= ~(DMA_APB_HS_SEL_MASK <<
501 			(chan->id * DMA_APB_HS_SEL_BIT_SIZE));
502 	reg_value |= (val << (chan->id * DMA_APB_HS_SEL_BIT_SIZE));
503 	lo_hi_writeq(reg_value, chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
504 
505 	return;
506 }
507 
508 /*
509  * If DW_axi_dmac sees CHx_CTL.ShadowReg_Or_LLI_Last bit of the fetched LLI
510  * as 1, it understands that the current block is the final block in the
511  * transfer and completes the DMA transfer operation at the end of current
512  * block transfer.
513  */
set_desc_last(struct axi_dma_hw_desc * desc)514 static void set_desc_last(struct axi_dma_hw_desc *desc)
515 {
516 	u32 val;
517 
518 	val = le32_to_cpu(desc->lli->ctl_hi);
519 	val |= CH_CTL_H_LLI_LAST;
520 	desc->lli->ctl_hi = cpu_to_le32(val);
521 }
522 
write_desc_sar(struct axi_dma_hw_desc * desc,dma_addr_t adr)523 static void write_desc_sar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
524 {
525 	desc->lli->sar = cpu_to_le64(adr);
526 }
527 
write_desc_dar(struct axi_dma_hw_desc * desc,dma_addr_t adr)528 static void write_desc_dar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
529 {
530 	desc->lli->dar = cpu_to_le64(adr);
531 }
532 
set_desc_src_master(struct axi_dma_hw_desc * desc)533 static void set_desc_src_master(struct axi_dma_hw_desc *desc)
534 {
535 	u32 val;
536 
537 	/* Select AXI0 for source master */
538 	val = le32_to_cpu(desc->lli->ctl_lo);
539 	val &= ~CH_CTL_L_SRC_MAST;
540 	desc->lli->ctl_lo = cpu_to_le32(val);
541 }
542 
set_desc_dest_master(struct axi_dma_hw_desc * hw_desc,struct axi_dma_desc * desc)543 static void set_desc_dest_master(struct axi_dma_hw_desc *hw_desc,
544 				 struct axi_dma_desc *desc)
545 {
546 	u32 val;
547 
548 	/* Select AXI1 for source master if available */
549 	val = le32_to_cpu(hw_desc->lli->ctl_lo);
550 	if (desc->chan->chip->dw->hdata->nr_masters > 1)
551 		val |= CH_CTL_L_DST_MAST;
552 	else
553 		val &= ~CH_CTL_L_DST_MAST;
554 
555 	hw_desc->lli->ctl_lo = cpu_to_le32(val);
556 }
557 
dw_axi_dma_set_hw_desc(struct axi_dma_chan * chan,struct axi_dma_hw_desc * hw_desc,dma_addr_t mem_addr,size_t len)558 static int dw_axi_dma_set_hw_desc(struct axi_dma_chan *chan,
559 				  struct axi_dma_hw_desc *hw_desc,
560 				  dma_addr_t mem_addr, size_t len)
561 {
562 	unsigned int data_width = BIT(chan->chip->dw->hdata->m_data_width);
563 	unsigned int reg_width;
564 	unsigned int mem_width;
565 	dma_addr_t device_addr;
566 	size_t axi_block_ts;
567 	size_t block_ts;
568 	u32 ctllo, ctlhi;
569 	u32 burst_len;
570 
571 	axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
572 
573 	mem_width = __ffs(data_width | mem_addr | len);
574 	if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
575 		mem_width = DWAXIDMAC_TRANS_WIDTH_32;
576 
577 	if (!IS_ALIGNED(mem_addr, 4)) {
578 		dev_err(chan->chip->dev, "invalid buffer alignment\n");
579 		return -EINVAL;
580 	}
581 
582 	switch (chan->direction) {
583 	case DMA_MEM_TO_DEV:
584 		reg_width = __ffs(chan->config.dst_addr_width);
585 		device_addr = chan->config.dst_addr;
586 		ctllo = reg_width << CH_CTL_L_DST_WIDTH_POS |
587 			mem_width << CH_CTL_L_SRC_WIDTH_POS |
588 			DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_DST_INC_POS |
589 			DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS;
590 		block_ts = len >> mem_width;
591 		break;
592 	case DMA_DEV_TO_MEM:
593 		reg_width = __ffs(chan->config.src_addr_width);
594 		device_addr = chan->config.src_addr;
595 		ctllo = reg_width << CH_CTL_L_SRC_WIDTH_POS |
596 			mem_width << CH_CTL_L_DST_WIDTH_POS |
597 			DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
598 			DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_SRC_INC_POS;
599 		block_ts = len >> reg_width;
600 		break;
601 	default:
602 		return -EINVAL;
603 	}
604 
605 	if (block_ts > axi_block_ts)
606 		return -EINVAL;
607 
608 	hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
609 	if (unlikely(!hw_desc->lli))
610 		return -ENOMEM;
611 
612 	ctlhi = CH_CTL_H_LLI_VALID;
613 
614 	if (chan->chip->dw->hdata->restrict_axi_burst_len) {
615 		burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
616 		ctlhi |= CH_CTL_H_ARLEN_EN | CH_CTL_H_AWLEN_EN |
617 			 burst_len << CH_CTL_H_ARLEN_POS |
618 			 burst_len << CH_CTL_H_AWLEN_POS;
619 	}
620 
621 	hw_desc->lli->ctl_hi = cpu_to_le32(ctlhi);
622 
623 	if (chan->direction == DMA_MEM_TO_DEV) {
624 		write_desc_sar(hw_desc, mem_addr);
625 		write_desc_dar(hw_desc, device_addr);
626 	} else {
627 		write_desc_sar(hw_desc, device_addr);
628 		write_desc_dar(hw_desc, mem_addr);
629 	}
630 
631 	hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
632 
633 	ctllo |= DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
634 		 DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS;
635 	hw_desc->lli->ctl_lo = cpu_to_le32(ctllo);
636 
637 	set_desc_src_master(hw_desc);
638 
639 	hw_desc->len = len;
640 	return 0;
641 }
642 
calculate_block_len(struct axi_dma_chan * chan,dma_addr_t dma_addr,size_t buf_len,enum dma_transfer_direction direction)643 static size_t calculate_block_len(struct axi_dma_chan *chan,
644 				  dma_addr_t dma_addr, size_t buf_len,
645 				  enum dma_transfer_direction direction)
646 {
647 	u32 data_width, reg_width, mem_width;
648 	size_t axi_block_ts, block_len;
649 
650 	axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
651 
652 	switch (direction) {
653 	case DMA_MEM_TO_DEV:
654 		data_width = BIT(chan->chip->dw->hdata->m_data_width);
655 		mem_width = __ffs(data_width | dma_addr | buf_len);
656 		if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
657 			mem_width = DWAXIDMAC_TRANS_WIDTH_32;
658 
659 		block_len = axi_block_ts << mem_width;
660 		break;
661 	case DMA_DEV_TO_MEM:
662 		reg_width = __ffs(chan->config.src_addr_width);
663 		block_len = axi_block_ts << reg_width;
664 		break;
665 	default:
666 		block_len = 0;
667 	}
668 
669 	return block_len;
670 }
671 
672 static struct dma_async_tx_descriptor *
dw_axi_dma_chan_prep_cyclic(struct dma_chan * dchan,dma_addr_t dma_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)673 dw_axi_dma_chan_prep_cyclic(struct dma_chan *dchan, dma_addr_t dma_addr,
674 			    size_t buf_len, size_t period_len,
675 			    enum dma_transfer_direction direction,
676 			    unsigned long flags)
677 {
678 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
679 	struct axi_dma_hw_desc *hw_desc = NULL;
680 	struct axi_dma_desc *desc = NULL;
681 	dma_addr_t src_addr = dma_addr;
682 	u32 num_periods, num_segments;
683 	size_t axi_block_len;
684 	u32 total_segments;
685 	u32 segment_len;
686 	unsigned int i;
687 	int status;
688 	u64 llp = 0;
689 	u8 lms = 0; /* Select AXI0 master for LLI fetching */
690 
691 	num_periods = buf_len / period_len;
692 
693 	axi_block_len = calculate_block_len(chan, dma_addr, buf_len, direction);
694 	if (axi_block_len == 0)
695 		return NULL;
696 
697 	num_segments = DIV_ROUND_UP(period_len, axi_block_len);
698 	segment_len = DIV_ROUND_UP(period_len, num_segments);
699 
700 	total_segments = num_periods * num_segments;
701 
702 	desc = axi_desc_alloc(total_segments);
703 	if (unlikely(!desc))
704 		goto err_desc_get;
705 
706 	chan->direction = direction;
707 	desc->chan = chan;
708 	chan->cyclic = true;
709 	desc->length = 0;
710 	desc->period_len = period_len;
711 
712 	for (i = 0; i < total_segments; i++) {
713 		hw_desc = &desc->hw_desc[i];
714 
715 		status = dw_axi_dma_set_hw_desc(chan, hw_desc, src_addr,
716 						segment_len);
717 		if (status < 0)
718 			goto err_desc_get;
719 
720 		desc->length += hw_desc->len;
721 		/* Set end-of-link to the linked descriptor, so that cyclic
722 		 * callback function can be triggered during interrupt.
723 		 */
724 		set_desc_last(hw_desc);
725 
726 		src_addr += segment_len;
727 	}
728 
729 	llp = desc->hw_desc[0].llp;
730 
731 	/* Managed transfer list */
732 	do {
733 		hw_desc = &desc->hw_desc[--total_segments];
734 		write_desc_llp(hw_desc, llp | lms);
735 		llp = hw_desc->llp;
736 	} while (total_segments);
737 
738 	dw_axi_dma_set_hw_channel(chan, true);
739 
740 	return vchan_tx_prep(&chan->vc, &desc->vd, flags);
741 
742 err_desc_get:
743 	if (desc)
744 		axi_desc_put(desc);
745 
746 	return NULL;
747 }
748 
749 static struct dma_async_tx_descriptor *
dw_axi_dma_chan_prep_slave_sg(struct dma_chan * dchan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)750 dw_axi_dma_chan_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
751 			      unsigned int sg_len,
752 			      enum dma_transfer_direction direction,
753 			      unsigned long flags, void *context)
754 {
755 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
756 	struct axi_dma_hw_desc *hw_desc = NULL;
757 	struct axi_dma_desc *desc = NULL;
758 	u32 num_segments, segment_len;
759 	unsigned int loop = 0;
760 	struct scatterlist *sg;
761 	size_t axi_block_len;
762 	u32 len, num_sgs = 0;
763 	unsigned int i;
764 	dma_addr_t mem;
765 	int status;
766 	u64 llp = 0;
767 	u8 lms = 0; /* Select AXI0 master for LLI fetching */
768 
769 	if (unlikely(!is_slave_direction(direction) || !sg_len))
770 		return NULL;
771 
772 	mem = sg_dma_address(sgl);
773 	len = sg_dma_len(sgl);
774 
775 	axi_block_len = calculate_block_len(chan, mem, len, direction);
776 	if (axi_block_len == 0)
777 		return NULL;
778 
779 	for_each_sg(sgl, sg, sg_len, i)
780 		num_sgs += DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
781 
782 	desc = axi_desc_alloc(num_sgs);
783 	if (unlikely(!desc))
784 		goto err_desc_get;
785 
786 	desc->chan = chan;
787 	desc->length = 0;
788 	chan->direction = direction;
789 
790 	for_each_sg(sgl, sg, sg_len, i) {
791 		mem = sg_dma_address(sg);
792 		len = sg_dma_len(sg);
793 		num_segments = DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
794 		segment_len = DIV_ROUND_UP(sg_dma_len(sg), num_segments);
795 
796 		do {
797 			hw_desc = &desc->hw_desc[loop++];
798 			status = dw_axi_dma_set_hw_desc(chan, hw_desc, mem, segment_len);
799 			if (status < 0)
800 				goto err_desc_get;
801 
802 			desc->length += hw_desc->len;
803 			len -= segment_len;
804 			mem += segment_len;
805 		} while (len >= segment_len);
806 	}
807 
808 	/* Set end-of-link to the last link descriptor of list */
809 	set_desc_last(&desc->hw_desc[num_sgs - 1]);
810 
811 	/* Managed transfer list */
812 	do {
813 		hw_desc = &desc->hw_desc[--num_sgs];
814 		write_desc_llp(hw_desc, llp | lms);
815 		llp = hw_desc->llp;
816 	} while (num_sgs);
817 
818 	dw_axi_dma_set_hw_channel(chan, true);
819 
820 	return vchan_tx_prep(&chan->vc, &desc->vd, flags);
821 
822 err_desc_get:
823 	if (desc)
824 		axi_desc_put(desc);
825 
826 	return NULL;
827 }
828 
829 static struct dma_async_tx_descriptor *
dma_chan_prep_dma_memcpy(struct dma_chan * dchan,dma_addr_t dst_adr,dma_addr_t src_adr,size_t len,unsigned long flags)830 dma_chan_prep_dma_memcpy(struct dma_chan *dchan, dma_addr_t dst_adr,
831 			 dma_addr_t src_adr, size_t len, unsigned long flags)
832 {
833 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
834 	size_t block_ts, max_block_ts, xfer_len;
835 	struct axi_dma_hw_desc *hw_desc = NULL;
836 	struct axi_dma_desc *desc = NULL;
837 	u32 xfer_width, reg, num;
838 	u64 llp = 0;
839 	u8 lms = 0; /* Select AXI0 master for LLI fetching */
840 
841 	dev_dbg(chan2dev(chan), "%s: memcpy: src: %pad dst: %pad length: %zd flags: %#lx",
842 		axi_chan_name(chan), &src_adr, &dst_adr, len, flags);
843 
844 	max_block_ts = chan->chip->dw->hdata->block_size[chan->id];
845 	xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, len);
846 	num = DIV_ROUND_UP(len, max_block_ts << xfer_width);
847 	desc = axi_desc_alloc(num);
848 	if (unlikely(!desc))
849 		goto err_desc_get;
850 
851 	desc->chan = chan;
852 	num = 0;
853 	desc->length = 0;
854 	while (len) {
855 		xfer_len = len;
856 
857 		hw_desc = &desc->hw_desc[num];
858 		/*
859 		 * Take care for the alignment.
860 		 * Actually source and destination widths can be different, but
861 		 * make them same to be simpler.
862 		 */
863 		xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, xfer_len);
864 
865 		/*
866 		 * block_ts indicates the total number of data of width
867 		 * to be transferred in a DMA block transfer.
868 		 * BLOCK_TS register should be set to block_ts - 1
869 		 */
870 		block_ts = xfer_len >> xfer_width;
871 		if (block_ts > max_block_ts) {
872 			block_ts = max_block_ts;
873 			xfer_len = max_block_ts << xfer_width;
874 		}
875 
876 		hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
877 		if (unlikely(!hw_desc->lli))
878 			goto err_desc_get;
879 
880 		write_desc_sar(hw_desc, src_adr);
881 		write_desc_dar(hw_desc, dst_adr);
882 		hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
883 
884 		reg = CH_CTL_H_LLI_VALID;
885 		if (chan->chip->dw->hdata->restrict_axi_burst_len) {
886 			u32 burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
887 
888 			reg |= (CH_CTL_H_ARLEN_EN |
889 				burst_len << CH_CTL_H_ARLEN_POS |
890 				CH_CTL_H_AWLEN_EN |
891 				burst_len << CH_CTL_H_AWLEN_POS);
892 		}
893 		hw_desc->lli->ctl_hi = cpu_to_le32(reg);
894 
895 		reg = (DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
896 		       DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS |
897 		       xfer_width << CH_CTL_L_DST_WIDTH_POS |
898 		       xfer_width << CH_CTL_L_SRC_WIDTH_POS |
899 		       DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
900 		       DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS);
901 		hw_desc->lli->ctl_lo = cpu_to_le32(reg);
902 
903 		set_desc_src_master(hw_desc);
904 		set_desc_dest_master(hw_desc, desc);
905 
906 		hw_desc->len = xfer_len;
907 		desc->length += hw_desc->len;
908 		/* update the length and addresses for the next loop cycle */
909 		len -= xfer_len;
910 		dst_adr += xfer_len;
911 		src_adr += xfer_len;
912 		num++;
913 	}
914 
915 	/* Set end-of-link to the last link descriptor of list */
916 	set_desc_last(&desc->hw_desc[num - 1]);
917 	/* Managed transfer list */
918 	do {
919 		hw_desc = &desc->hw_desc[--num];
920 		write_desc_llp(hw_desc, llp | lms);
921 		llp = hw_desc->llp;
922 	} while (num);
923 
924 	return vchan_tx_prep(&chan->vc, &desc->vd, flags);
925 
926 err_desc_get:
927 	if (desc)
928 		axi_desc_put(desc);
929 	return NULL;
930 }
931 
dw_axi_dma_chan_slave_config(struct dma_chan * dchan,struct dma_slave_config * config)932 static int dw_axi_dma_chan_slave_config(struct dma_chan *dchan,
933 					struct dma_slave_config *config)
934 {
935 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
936 
937 	memcpy(&chan->config, config, sizeof(*config));
938 
939 	return 0;
940 }
941 
axi_chan_dump_lli(struct axi_dma_chan * chan,struct axi_dma_hw_desc * desc)942 static void axi_chan_dump_lli(struct axi_dma_chan *chan,
943 			      struct axi_dma_hw_desc *desc)
944 {
945 	if (!desc->lli) {
946 		dev_err(dchan2dev(&chan->vc.chan), "NULL LLI\n");
947 		return;
948 	}
949 
950 	dev_err(dchan2dev(&chan->vc.chan),
951 		"SAR: 0x%llx DAR: 0x%llx LLP: 0x%llx BTS 0x%x CTL: 0x%x:%08x",
952 		le64_to_cpu(desc->lli->sar),
953 		le64_to_cpu(desc->lli->dar),
954 		le64_to_cpu(desc->lli->llp),
955 		le32_to_cpu(desc->lli->block_ts_lo),
956 		le32_to_cpu(desc->lli->ctl_hi),
957 		le32_to_cpu(desc->lli->ctl_lo));
958 }
959 
axi_chan_list_dump_lli(struct axi_dma_chan * chan,struct axi_dma_desc * desc_head)960 static void axi_chan_list_dump_lli(struct axi_dma_chan *chan,
961 				   struct axi_dma_desc *desc_head)
962 {
963 	int count = atomic_read(&chan->descs_allocated);
964 	int i;
965 
966 	for (i = 0; i < count; i++)
967 		axi_chan_dump_lli(chan, &desc_head->hw_desc[i]);
968 }
969 
axi_chan_handle_err(struct axi_dma_chan * chan,u32 status)970 static noinline void axi_chan_handle_err(struct axi_dma_chan *chan, u32 status)
971 {
972 	struct virt_dma_desc *vd;
973 	unsigned long flags;
974 
975 	spin_lock_irqsave(&chan->vc.lock, flags);
976 
977 	axi_chan_disable(chan);
978 
979 	/* The bad descriptor currently is in the head of vc list */
980 	vd = vchan_next_desc(&chan->vc);
981 	if (!vd) {
982 		dev_err(chan2dev(chan), "BUG: %s, IRQ with no descriptors\n",
983 			axi_chan_name(chan));
984 		goto out;
985 	}
986 	/* Remove the completed descriptor from issued list */
987 	list_del(&vd->node);
988 
989 	/* WARN about bad descriptor */
990 	dev_err(chan2dev(chan),
991 		"Bad descriptor submitted for %s, cookie: %d, irq: 0x%08x\n",
992 		axi_chan_name(chan), vd->tx.cookie, status);
993 	axi_chan_list_dump_lli(chan, vd_to_axi_desc(vd));
994 
995 	vchan_cookie_complete(vd);
996 
997 	/* Try to restart the controller */
998 	axi_chan_start_first_queued(chan);
999 
1000 out:
1001 	spin_unlock_irqrestore(&chan->vc.lock, flags);
1002 }
1003 
axi_chan_block_xfer_complete(struct axi_dma_chan * chan)1004 static void axi_chan_block_xfer_complete(struct axi_dma_chan *chan)
1005 {
1006 	int count = atomic_read(&chan->descs_allocated);
1007 	struct axi_dma_hw_desc *hw_desc;
1008 	struct axi_dma_desc *desc;
1009 	struct virt_dma_desc *vd;
1010 	unsigned long flags;
1011 	u64 llp;
1012 	int i;
1013 
1014 	spin_lock_irqsave(&chan->vc.lock, flags);
1015 	if (unlikely(axi_chan_is_hw_enable(chan))) {
1016 		dev_err(chan2dev(chan), "BUG: %s caught DWAXIDMAC_IRQ_DMA_TRF, but channel not idle!\n",
1017 			axi_chan_name(chan));
1018 		axi_chan_disable(chan);
1019 	}
1020 
1021 	/* The completed descriptor currently is in the head of vc list */
1022 	vd = vchan_next_desc(&chan->vc);
1023 	if (!vd) {
1024 		dev_err(chan2dev(chan), "BUG: %s, IRQ with no descriptors\n",
1025 			axi_chan_name(chan));
1026 		goto out;
1027 	}
1028 
1029 	if (chan->cyclic) {
1030 		desc = vd_to_axi_desc(vd);
1031 		if (desc) {
1032 			llp = lo_hi_readq(chan->chan_regs + CH_LLP);
1033 			for (i = 0; i < count; i++) {
1034 				hw_desc = &desc->hw_desc[i];
1035 				if (hw_desc->llp == llp) {
1036 					axi_chan_irq_clear(chan, hw_desc->lli->status_lo);
1037 					hw_desc->lli->ctl_hi |= CH_CTL_H_LLI_VALID;
1038 					desc->completed_blocks = i;
1039 
1040 					if (((hw_desc->len * (i + 1)) % desc->period_len) == 0)
1041 						vchan_cyclic_callback(vd);
1042 					break;
1043 				}
1044 			}
1045 
1046 			axi_chan_enable(chan);
1047 		}
1048 	} else {
1049 		/* Remove the completed descriptor from issued list before completing */
1050 		list_del(&vd->node);
1051 		vchan_cookie_complete(vd);
1052 
1053 		/* Submit queued descriptors after processing the completed ones */
1054 		axi_chan_start_first_queued(chan);
1055 	}
1056 
1057 out:
1058 	spin_unlock_irqrestore(&chan->vc.lock, flags);
1059 }
1060 
dw_axi_dma_interrupt(int irq,void * dev_id)1061 static irqreturn_t dw_axi_dma_interrupt(int irq, void *dev_id)
1062 {
1063 	struct axi_dma_chip *chip = dev_id;
1064 	struct dw_axi_dma *dw = chip->dw;
1065 	struct axi_dma_chan *chan;
1066 
1067 	u32 status, i;
1068 
1069 	/* Disable DMAC inerrupts. We'll enable them after processing chanels */
1070 	axi_dma_irq_disable(chip);
1071 
1072 	/* Poll, clear and process every chanel interrupt status */
1073 	for (i = 0; i < dw->hdata->nr_channels; i++) {
1074 		chan = &dw->chan[i];
1075 		status = axi_chan_irq_read(chan);
1076 		axi_chan_irq_clear(chan, status);
1077 
1078 		dev_vdbg(chip->dev, "%s %u IRQ status: 0x%08x\n",
1079 			axi_chan_name(chan), i, status);
1080 
1081 		if (status & DWAXIDMAC_IRQ_ALL_ERR)
1082 			axi_chan_handle_err(chan, status);
1083 		else if (status & DWAXIDMAC_IRQ_DMA_TRF)
1084 			axi_chan_block_xfer_complete(chan);
1085 	}
1086 
1087 	/* Re-enable interrupts */
1088 	axi_dma_irq_enable(chip);
1089 
1090 	return IRQ_HANDLED;
1091 }
1092 
dma_chan_terminate_all(struct dma_chan * dchan)1093 static int dma_chan_terminate_all(struct dma_chan *dchan)
1094 {
1095 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1096 	u32 chan_active = BIT(chan->id) << DMAC_CHAN_EN_SHIFT;
1097 	unsigned long flags;
1098 	u32 val;
1099 	int ret;
1100 	LIST_HEAD(head);
1101 
1102 	axi_chan_disable(chan);
1103 
1104 	ret = readl_poll_timeout_atomic(chan->chip->regs + DMAC_CHEN, val,
1105 					!(val & chan_active), 1000, 10000);
1106 	if (ret == -ETIMEDOUT)
1107 		dev_warn(dchan2dev(dchan),
1108 			 "%s failed to stop\n", axi_chan_name(chan));
1109 
1110 	if (chan->direction != DMA_MEM_TO_MEM)
1111 		dw_axi_dma_set_hw_channel(chan, false);
1112 	if (chan->direction == DMA_MEM_TO_DEV)
1113 		dw_axi_dma_set_byte_halfword(chan, false);
1114 
1115 	spin_lock_irqsave(&chan->vc.lock, flags);
1116 
1117 	vchan_get_all_descriptors(&chan->vc, &head);
1118 
1119 	chan->cyclic = false;
1120 	spin_unlock_irqrestore(&chan->vc.lock, flags);
1121 
1122 	vchan_dma_desc_free_list(&chan->vc, &head);
1123 
1124 	dev_vdbg(dchan2dev(dchan), "terminated: %s\n", axi_chan_name(chan));
1125 
1126 	return 0;
1127 }
1128 
dma_chan_pause(struct dma_chan * dchan)1129 static int dma_chan_pause(struct dma_chan *dchan)
1130 {
1131 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1132 	unsigned long flags;
1133 	unsigned int timeout = 20; /* timeout iterations */
1134 	u32 val;
1135 
1136 	spin_lock_irqsave(&chan->vc.lock, flags);
1137 
1138 	val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1139 	val |= BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT |
1140 	       BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT;
1141 	axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1142 
1143 	do  {
1144 		if (axi_chan_irq_read(chan) & DWAXIDMAC_IRQ_SUSPENDED)
1145 			break;
1146 
1147 		udelay(2);
1148 	} while (--timeout);
1149 
1150 	axi_chan_irq_clear(chan, DWAXIDMAC_IRQ_SUSPENDED);
1151 
1152 	chan->is_paused = true;
1153 
1154 	spin_unlock_irqrestore(&chan->vc.lock, flags);
1155 
1156 	return timeout ? 0 : -EAGAIN;
1157 }
1158 
1159 /* Called in chan locked context */
axi_chan_resume(struct axi_dma_chan * chan)1160 static inline void axi_chan_resume(struct axi_dma_chan *chan)
1161 {
1162 	u32 val;
1163 
1164 	val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1165 	val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT);
1166 	val |=  (BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT);
1167 	axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1168 
1169 	chan->is_paused = false;
1170 }
1171 
dma_chan_resume(struct dma_chan * dchan)1172 static int dma_chan_resume(struct dma_chan *dchan)
1173 {
1174 	struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1175 	unsigned long flags;
1176 
1177 	spin_lock_irqsave(&chan->vc.lock, flags);
1178 
1179 	if (chan->is_paused)
1180 		axi_chan_resume(chan);
1181 
1182 	spin_unlock_irqrestore(&chan->vc.lock, flags);
1183 
1184 	return 0;
1185 }
1186 
axi_dma_suspend(struct axi_dma_chip * chip)1187 static int axi_dma_suspend(struct axi_dma_chip *chip)
1188 {
1189 	axi_dma_irq_disable(chip);
1190 	axi_dma_disable(chip);
1191 
1192 	clk_disable_unprepare(chip->core_clk);
1193 	clk_disable_unprepare(chip->cfgr_clk);
1194 
1195 	return 0;
1196 }
1197 
axi_dma_resume(struct axi_dma_chip * chip)1198 static int axi_dma_resume(struct axi_dma_chip *chip)
1199 {
1200 	int ret;
1201 
1202 	ret = clk_prepare_enable(chip->cfgr_clk);
1203 	if (ret < 0)
1204 		return ret;
1205 
1206 	ret = clk_prepare_enable(chip->core_clk);
1207 	if (ret < 0)
1208 		return ret;
1209 
1210 	axi_dma_enable(chip);
1211 	axi_dma_irq_enable(chip);
1212 
1213 	return 0;
1214 }
1215 
axi_dma_runtime_suspend(struct device * dev)1216 static int __maybe_unused axi_dma_runtime_suspend(struct device *dev)
1217 {
1218 	struct axi_dma_chip *chip = dev_get_drvdata(dev);
1219 
1220 	return axi_dma_suspend(chip);
1221 }
1222 
axi_dma_runtime_resume(struct device * dev)1223 static int __maybe_unused axi_dma_runtime_resume(struct device *dev)
1224 {
1225 	struct axi_dma_chip *chip = dev_get_drvdata(dev);
1226 
1227 	return axi_dma_resume(chip);
1228 }
1229 
dw_axi_dma_of_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)1230 static struct dma_chan *dw_axi_dma_of_xlate(struct of_phandle_args *dma_spec,
1231 					    struct of_dma *ofdma)
1232 {
1233 	struct dw_axi_dma *dw = ofdma->of_dma_data;
1234 	struct axi_dma_chan *chan;
1235 	struct dma_chan *dchan;
1236 
1237 	dchan = dma_get_any_slave_channel(&dw->dma);
1238 	if (!dchan)
1239 		return NULL;
1240 
1241 	chan = dchan_to_axi_dma_chan(dchan);
1242 	chan->hw_handshake_num = dma_spec->args[0];
1243 	return dchan;
1244 }
1245 
parse_device_properties(struct axi_dma_chip * chip)1246 static int parse_device_properties(struct axi_dma_chip *chip)
1247 {
1248 	struct device *dev = chip->dev;
1249 	u32 tmp, carr[DMAC_MAX_CHANNELS];
1250 	int ret;
1251 
1252 	ret = device_property_read_u32(dev, "dma-channels", &tmp);
1253 	if (ret)
1254 		return ret;
1255 	if (tmp == 0 || tmp > DMAC_MAX_CHANNELS)
1256 		return -EINVAL;
1257 
1258 	chip->dw->hdata->nr_channels = tmp;
1259 
1260 	ret = device_property_read_u32(dev, "snps,dma-masters", &tmp);
1261 	if (ret)
1262 		return ret;
1263 	if (tmp == 0 || tmp > DMAC_MAX_MASTERS)
1264 		return -EINVAL;
1265 
1266 	chip->dw->hdata->nr_masters = tmp;
1267 
1268 	ret = device_property_read_u32(dev, "snps,data-width", &tmp);
1269 	if (ret)
1270 		return ret;
1271 	if (tmp > DWAXIDMAC_TRANS_WIDTH_MAX)
1272 		return -EINVAL;
1273 
1274 	chip->dw->hdata->m_data_width = tmp;
1275 
1276 	ret = device_property_read_u32_array(dev, "snps,block-size", carr,
1277 					     chip->dw->hdata->nr_channels);
1278 	if (ret)
1279 		return ret;
1280 	for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1281 		if (carr[tmp] == 0 || carr[tmp] > DMAC_MAX_BLK_SIZE)
1282 			return -EINVAL;
1283 
1284 		chip->dw->hdata->block_size[tmp] = carr[tmp];
1285 	}
1286 
1287 	ret = device_property_read_u32_array(dev, "snps,priority", carr,
1288 					     chip->dw->hdata->nr_channels);
1289 	if (ret)
1290 		return ret;
1291 	/* Priority value must be programmed within [0:nr_channels-1] range */
1292 	for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1293 		if (carr[tmp] >= chip->dw->hdata->nr_channels)
1294 			return -EINVAL;
1295 
1296 		chip->dw->hdata->priority[tmp] = carr[tmp];
1297 	}
1298 
1299 	/* axi-max-burst-len is optional property */
1300 	ret = device_property_read_u32(dev, "snps,axi-max-burst-len", &tmp);
1301 	if (!ret) {
1302 		if (tmp > DWAXIDMAC_ARWLEN_MAX + 1)
1303 			return -EINVAL;
1304 		if (tmp < DWAXIDMAC_ARWLEN_MIN + 1)
1305 			return -EINVAL;
1306 
1307 		chip->dw->hdata->restrict_axi_burst_len = true;
1308 		chip->dw->hdata->axi_rw_burst_len = tmp;
1309 	}
1310 
1311 	return 0;
1312 }
1313 
dw_probe(struct platform_device * pdev)1314 static int dw_probe(struct platform_device *pdev)
1315 {
1316 	struct device_node *node = pdev->dev.of_node;
1317 	struct axi_dma_chip *chip;
1318 	struct resource *mem;
1319 	struct dw_axi_dma *dw;
1320 	struct dw_axi_dma_hcfg *hdata;
1321 	u32 i;
1322 	int ret;
1323 
1324 	chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
1325 	if (!chip)
1326 		return -ENOMEM;
1327 
1328 	dw = devm_kzalloc(&pdev->dev, sizeof(*dw), GFP_KERNEL);
1329 	if (!dw)
1330 		return -ENOMEM;
1331 
1332 	hdata = devm_kzalloc(&pdev->dev, sizeof(*hdata), GFP_KERNEL);
1333 	if (!hdata)
1334 		return -ENOMEM;
1335 
1336 	chip->dw = dw;
1337 	chip->dev = &pdev->dev;
1338 	chip->dw->hdata = hdata;
1339 
1340 	chip->irq = platform_get_irq(pdev, 0);
1341 	if (chip->irq < 0)
1342 		return chip->irq;
1343 
1344 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1345 	chip->regs = devm_ioremap_resource(chip->dev, mem);
1346 	if (IS_ERR(chip->regs))
1347 		return PTR_ERR(chip->regs);
1348 
1349 	if (of_device_is_compatible(node, "intel,kmb-axi-dma")) {
1350 		chip->apb_regs = devm_platform_ioremap_resource(pdev, 1);
1351 		if (IS_ERR(chip->apb_regs))
1352 			return PTR_ERR(chip->apb_regs);
1353 	}
1354 
1355 	chip->core_clk = devm_clk_get(chip->dev, "core-clk");
1356 	if (IS_ERR(chip->core_clk))
1357 		return PTR_ERR(chip->core_clk);
1358 
1359 	chip->cfgr_clk = devm_clk_get(chip->dev, "cfgr-clk");
1360 	if (IS_ERR(chip->cfgr_clk))
1361 		return PTR_ERR(chip->cfgr_clk);
1362 
1363 	ret = parse_device_properties(chip);
1364 	if (ret)
1365 		return ret;
1366 
1367 	dw->chan = devm_kcalloc(chip->dev, hdata->nr_channels,
1368 				sizeof(*dw->chan), GFP_KERNEL);
1369 	if (!dw->chan)
1370 		return -ENOMEM;
1371 
1372 	ret = devm_request_irq(chip->dev, chip->irq, dw_axi_dma_interrupt,
1373 			       IRQF_SHARED, KBUILD_MODNAME, chip);
1374 	if (ret)
1375 		return ret;
1376 
1377 	INIT_LIST_HEAD(&dw->dma.channels);
1378 	for (i = 0; i < hdata->nr_channels; i++) {
1379 		struct axi_dma_chan *chan = &dw->chan[i];
1380 
1381 		chan->chip = chip;
1382 		chan->id = i;
1383 		chan->chan_regs = chip->regs + COMMON_REG_LEN + i * CHAN_REG_LEN;
1384 		atomic_set(&chan->descs_allocated, 0);
1385 
1386 		chan->vc.desc_free = vchan_desc_put;
1387 		vchan_init(&chan->vc, &dw->dma);
1388 	}
1389 
1390 	/* Set capabilities */
1391 	dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
1392 	dma_cap_set(DMA_SLAVE, dw->dma.cap_mask);
1393 	dma_cap_set(DMA_CYCLIC, dw->dma.cap_mask);
1394 
1395 	/* DMA capabilities */
1396 	dw->dma.chancnt = hdata->nr_channels;
1397 	dw->dma.max_burst = hdata->axi_rw_burst_len;
1398 	dw->dma.src_addr_widths = AXI_DMA_BUSWIDTHS;
1399 	dw->dma.dst_addr_widths = AXI_DMA_BUSWIDTHS;
1400 	dw->dma.directions = BIT(DMA_MEM_TO_MEM);
1401 	dw->dma.directions |= BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1402 	dw->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1403 
1404 	dw->dma.dev = chip->dev;
1405 	dw->dma.device_tx_status = dma_chan_tx_status;
1406 	dw->dma.device_issue_pending = dma_chan_issue_pending;
1407 	dw->dma.device_terminate_all = dma_chan_terminate_all;
1408 	dw->dma.device_pause = dma_chan_pause;
1409 	dw->dma.device_resume = dma_chan_resume;
1410 
1411 	dw->dma.device_alloc_chan_resources = dma_chan_alloc_chan_resources;
1412 	dw->dma.device_free_chan_resources = dma_chan_free_chan_resources;
1413 
1414 	dw->dma.device_prep_dma_memcpy = dma_chan_prep_dma_memcpy;
1415 	dw->dma.device_synchronize = dw_axi_dma_synchronize;
1416 	dw->dma.device_config = dw_axi_dma_chan_slave_config;
1417 	dw->dma.device_prep_slave_sg = dw_axi_dma_chan_prep_slave_sg;
1418 	dw->dma.device_prep_dma_cyclic = dw_axi_dma_chan_prep_cyclic;
1419 
1420 	/*
1421 	 * Synopsis DesignWare AxiDMA datasheet mentioned Maximum
1422 	 * supported blocks is 1024. Device register width is 4 bytes.
1423 	 * Therefore, set constraint to 1024 * 4.
1424 	 */
1425 	dw->dma.dev->dma_parms = &dw->dma_parms;
1426 	dma_set_max_seg_size(&pdev->dev, MAX_BLOCK_SIZE);
1427 	platform_set_drvdata(pdev, chip);
1428 
1429 	pm_runtime_enable(chip->dev);
1430 
1431 	/*
1432 	 * We can't just call pm_runtime_get here instead of
1433 	 * pm_runtime_get_noresume + axi_dma_resume because we need
1434 	 * driver to work also without Runtime PM.
1435 	 */
1436 	pm_runtime_get_noresume(chip->dev);
1437 	ret = axi_dma_resume(chip);
1438 	if (ret < 0)
1439 		goto err_pm_disable;
1440 
1441 	axi_dma_hw_init(chip);
1442 
1443 	pm_runtime_put(chip->dev);
1444 
1445 	ret = dmaenginem_async_device_register(&dw->dma);
1446 	if (ret)
1447 		goto err_pm_disable;
1448 
1449 	/* Register with OF helpers for DMA lookups */
1450 	ret = of_dma_controller_register(pdev->dev.of_node,
1451 					 dw_axi_dma_of_xlate, dw);
1452 	if (ret < 0)
1453 		dev_warn(&pdev->dev,
1454 			 "Failed to register OF DMA controller, fallback to MEM_TO_MEM mode\n");
1455 
1456 	dev_info(chip->dev, "DesignWare AXI DMA Controller, %d channels\n",
1457 		 dw->hdata->nr_channels);
1458 
1459 	return 0;
1460 
1461 err_pm_disable:
1462 	pm_runtime_disable(chip->dev);
1463 
1464 	return ret;
1465 }
1466 
dw_remove(struct platform_device * pdev)1467 static int dw_remove(struct platform_device *pdev)
1468 {
1469 	struct axi_dma_chip *chip = platform_get_drvdata(pdev);
1470 	struct dw_axi_dma *dw = chip->dw;
1471 	struct axi_dma_chan *chan, *_chan;
1472 	u32 i;
1473 
1474 	/* Enable clk before accessing to registers */
1475 	clk_prepare_enable(chip->cfgr_clk);
1476 	clk_prepare_enable(chip->core_clk);
1477 	axi_dma_irq_disable(chip);
1478 	for (i = 0; i < dw->hdata->nr_channels; i++) {
1479 		axi_chan_disable(&chip->dw->chan[i]);
1480 		axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
1481 	}
1482 	axi_dma_disable(chip);
1483 
1484 	pm_runtime_disable(chip->dev);
1485 	axi_dma_suspend(chip);
1486 
1487 	devm_free_irq(chip->dev, chip->irq, chip);
1488 
1489 	of_dma_controller_free(chip->dev->of_node);
1490 
1491 	list_for_each_entry_safe(chan, _chan, &dw->dma.channels,
1492 			vc.chan.device_node) {
1493 		list_del(&chan->vc.chan.device_node);
1494 		tasklet_kill(&chan->vc.task);
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 static const struct dev_pm_ops dw_axi_dma_pm_ops = {
1501 	SET_RUNTIME_PM_OPS(axi_dma_runtime_suspend, axi_dma_runtime_resume, NULL)
1502 };
1503 
1504 static const struct of_device_id dw_dma_of_id_table[] = {
1505 	{ .compatible = "snps,axi-dma-1.01a" },
1506 	{ .compatible = "intel,kmb-axi-dma" },
1507 	{}
1508 };
1509 MODULE_DEVICE_TABLE(of, dw_dma_of_id_table);
1510 
1511 static struct platform_driver dw_driver = {
1512 	.probe		= dw_probe,
1513 	.remove		= dw_remove,
1514 	.driver = {
1515 		.name	= KBUILD_MODNAME,
1516 		.of_match_table = dw_dma_of_id_table,
1517 		.pm = &dw_axi_dma_pm_ops,
1518 	},
1519 };
1520 module_platform_driver(dw_driver);
1521 
1522 MODULE_LICENSE("GPL v2");
1523 MODULE_DESCRIPTION("Synopsys DesignWare AXI DMA Controller platform driver");
1524 MODULE_AUTHOR("Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>");
1525