• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for STM32 DMA controller
4  *
5  * Inspired by dma-jz4740.c and tegra20-apb-dma.c
6  *
7  * Copyright (C) M'boumba Cedric Madianga 2015
8  * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com>
9  *         Pierre-Yves Mordret <pierre-yves.mordret@st.com>
10  */
11 
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/init.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/reset.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 
31 #include "virt-dma.h"
32 
33 #define STM32_DMA_LISR			0x0000 /* DMA Low Int Status Reg */
34 #define STM32_DMA_HISR			0x0004 /* DMA High Int Status Reg */
35 #define STM32_DMA_LIFCR			0x0008 /* DMA Low Int Flag Clear Reg */
36 #define STM32_DMA_HIFCR			0x000c /* DMA High Int Flag Clear Reg */
37 #define STM32_DMA_TCI			BIT(5) /* Transfer Complete Interrupt */
38 #define STM32_DMA_HTI			BIT(4) /* Half Transfer Interrupt */
39 #define STM32_DMA_TEI			BIT(3) /* Transfer Error Interrupt */
40 #define STM32_DMA_DMEI			BIT(2) /* Direct Mode Error Interrupt */
41 #define STM32_DMA_FEI			BIT(0) /* FIFO Error Interrupt */
42 #define STM32_DMA_MASKI			(STM32_DMA_TCI \
43 					 | STM32_DMA_TEI \
44 					 | STM32_DMA_DMEI \
45 					 | STM32_DMA_FEI)
46 
47 /* DMA Stream x Configuration Register */
48 #define STM32_DMA_SCR(x)		(0x0010 + 0x18 * (x)) /* x = 0..7 */
49 #define STM32_DMA_SCR_REQ(n)		((n & 0x7) << 25)
50 #define STM32_DMA_SCR_MBURST_MASK	GENMASK(24, 23)
51 #define STM32_DMA_SCR_MBURST(n)	        ((n & 0x3) << 23)
52 #define STM32_DMA_SCR_PBURST_MASK	GENMASK(22, 21)
53 #define STM32_DMA_SCR_PBURST(n)	        ((n & 0x3) << 21)
54 #define STM32_DMA_SCR_PL_MASK		GENMASK(17, 16)
55 #define STM32_DMA_SCR_PL(n)		((n & 0x3) << 16)
56 #define STM32_DMA_SCR_MSIZE_MASK	GENMASK(14, 13)
57 #define STM32_DMA_SCR_MSIZE(n)		((n & 0x3) << 13)
58 #define STM32_DMA_SCR_PSIZE_MASK	GENMASK(12, 11)
59 #define STM32_DMA_SCR_PSIZE(n)		((n & 0x3) << 11)
60 #define STM32_DMA_SCR_PSIZE_GET(n)	((n & STM32_DMA_SCR_PSIZE_MASK) >> 11)
61 #define STM32_DMA_SCR_DIR_MASK		GENMASK(7, 6)
62 #define STM32_DMA_SCR_DIR(n)		((n & 0x3) << 6)
63 #define STM32_DMA_SCR_TRBUFF		BIT(20) /* Bufferable transfer for USART/UART */
64 #define STM32_DMA_SCR_CT		BIT(19) /* Target in double buffer */
65 #define STM32_DMA_SCR_DBM		BIT(18) /* Double Buffer Mode */
66 #define STM32_DMA_SCR_PINCOS		BIT(15) /* Peripheral inc offset size */
67 #define STM32_DMA_SCR_MINC		BIT(10) /* Memory increment mode */
68 #define STM32_DMA_SCR_PINC		BIT(9) /* Peripheral increment mode */
69 #define STM32_DMA_SCR_CIRC		BIT(8) /* Circular mode */
70 #define STM32_DMA_SCR_PFCTRL		BIT(5) /* Peripheral Flow Controller */
71 #define STM32_DMA_SCR_TCIE		BIT(4) /* Transfer Complete Int Enable
72 						*/
73 #define STM32_DMA_SCR_TEIE		BIT(2) /* Transfer Error Int Enable */
74 #define STM32_DMA_SCR_DMEIE		BIT(1) /* Direct Mode Err Int Enable */
75 #define STM32_DMA_SCR_EN		BIT(0) /* Stream Enable */
76 #define STM32_DMA_SCR_CFG_MASK		(STM32_DMA_SCR_PINC \
77 					| STM32_DMA_SCR_MINC \
78 					| STM32_DMA_SCR_PINCOS \
79 					| STM32_DMA_SCR_PL_MASK)
80 #define STM32_DMA_SCR_IRQ_MASK		(STM32_DMA_SCR_TCIE \
81 					| STM32_DMA_SCR_TEIE \
82 					| STM32_DMA_SCR_DMEIE)
83 
84 /* DMA Stream x number of data register */
85 #define STM32_DMA_SNDTR(x)		(0x0014 + 0x18 * (x))
86 
87 /* DMA stream peripheral address register */
88 #define STM32_DMA_SPAR(x)		(0x0018 + 0x18 * (x))
89 
90 /* DMA stream x memory 0 address register */
91 #define STM32_DMA_SM0AR(x)		(0x001c + 0x18 * (x))
92 
93 /* DMA stream x memory 1 address register */
94 #define STM32_DMA_SM1AR(x)		(0x0020 + 0x18 * (x))
95 
96 /* DMA stream x FIFO control register */
97 #define STM32_DMA_SFCR(x)		(0x0024 + 0x18 * (x))
98 #define STM32_DMA_SFCR_FTH_MASK		GENMASK(1, 0)
99 #define STM32_DMA_SFCR_FTH(n)		(n & STM32_DMA_SFCR_FTH_MASK)
100 #define STM32_DMA_SFCR_FEIE		BIT(7) /* FIFO error interrupt enable */
101 #define STM32_DMA_SFCR_DMDIS		BIT(2) /* Direct mode disable */
102 #define STM32_DMA_SFCR_MASK		(STM32_DMA_SFCR_FEIE \
103 					| STM32_DMA_SFCR_DMDIS)
104 
105 /* DMA direction */
106 #define STM32_DMA_DEV_TO_MEM		0x00
107 #define	STM32_DMA_MEM_TO_DEV		0x01
108 #define	STM32_DMA_MEM_TO_MEM		0x02
109 
110 /* DMA priority level */
111 #define STM32_DMA_PRIORITY_LOW		0x00
112 #define STM32_DMA_PRIORITY_MEDIUM	0x01
113 #define STM32_DMA_PRIORITY_HIGH		0x02
114 #define STM32_DMA_PRIORITY_VERY_HIGH	0x03
115 
116 /* DMA FIFO threshold selection */
117 #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL		0x00
118 #define STM32_DMA_FIFO_THRESHOLD_HALFFULL		0x01
119 #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL		0x02
120 #define STM32_DMA_FIFO_THRESHOLD_FULL			0x03
121 #define STM32_DMA_FIFO_THRESHOLD_NONE			0x04
122 
123 #define STM32_DMA_MAX_DATA_ITEMS	0xffff
124 /*
125  * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter
126  * gather at boundary. Thus it's safer to round down this value on FIFO
127  * size (16 Bytes)
128  */
129 #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS	\
130 	ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16)
131 #define STM32_DMA_MAX_CHANNELS		0x08
132 #define STM32_DMA_MAX_REQUEST_ID	0x08
133 #define STM32_DMA_MAX_DATA_PARAM	0x03
134 #define STM32_DMA_FIFO_SIZE		16	/* FIFO is 16 bytes */
135 #define STM32_DMA_MIN_BURST		4
136 #define STM32_DMA_MAX_BURST		16
137 
138 /* DMA Features */
139 #define STM32_DMA_THRESHOLD_FTR_MASK	GENMASK(1, 0)
140 #define STM32_DMA_THRESHOLD_FTR_GET(n)	((n) & STM32_DMA_THRESHOLD_FTR_MASK)
141 #define STM32_DMA_DIRECT_MODE_MASK	BIT(2)
142 #define STM32_DMA_DIRECT_MODE_GET(n)	(((n) & STM32_DMA_DIRECT_MODE_MASK) >> 2)
143 #define STM32_DMA_ALT_ACK_MODE_MASK	BIT(4)
144 #define STM32_DMA_ALT_ACK_MODE_GET(n)	(((n) & STM32_DMA_ALT_ACK_MODE_MASK) >> 4)
145 
146 enum stm32_dma_width {
147 	STM32_DMA_BYTE,
148 	STM32_DMA_HALF_WORD,
149 	STM32_DMA_WORD,
150 };
151 
152 enum stm32_dma_burst_size {
153 	STM32_DMA_BURST_SINGLE,
154 	STM32_DMA_BURST_INCR4,
155 	STM32_DMA_BURST_INCR8,
156 	STM32_DMA_BURST_INCR16,
157 };
158 
159 /**
160  * struct stm32_dma_cfg - STM32 DMA custom configuration
161  * @channel_id: channel ID
162  * @request_line: DMA request
163  * @stream_config: 32bit mask specifying the DMA channel configuration
164  * @features: 32bit mask specifying the DMA Feature list
165  */
166 struct stm32_dma_cfg {
167 	u32 channel_id;
168 	u32 request_line;
169 	u32 stream_config;
170 	u32 features;
171 };
172 
173 struct stm32_dma_chan_reg {
174 	u32 dma_lisr;
175 	u32 dma_hisr;
176 	u32 dma_lifcr;
177 	u32 dma_hifcr;
178 	u32 dma_scr;
179 	u32 dma_sndtr;
180 	u32 dma_spar;
181 	u32 dma_sm0ar;
182 	u32 dma_sm1ar;
183 	u32 dma_sfcr;
184 };
185 
186 struct stm32_dma_sg_req {
187 	u32 len;
188 	struct stm32_dma_chan_reg chan_reg;
189 };
190 
191 struct stm32_dma_desc {
192 	struct virt_dma_desc vdesc;
193 	bool cyclic;
194 	u32 num_sgs;
195 	struct stm32_dma_sg_req sg_req[];
196 };
197 
198 struct stm32_dma_chan {
199 	struct virt_dma_chan vchan;
200 	bool config_init;
201 	bool busy;
202 	u32 id;
203 	u32 irq;
204 	struct stm32_dma_desc *desc;
205 	u32 next_sg;
206 	struct dma_slave_config	dma_sconfig;
207 	struct stm32_dma_chan_reg chan_reg;
208 	u32 threshold;
209 	u32 mem_burst;
210 	u32 mem_width;
211 };
212 
213 struct stm32_dma_device {
214 	struct dma_device ddev;
215 	void __iomem *base;
216 	struct clk *clk;
217 	bool mem2mem;
218 	struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS];
219 };
220 
stm32_dma_get_dev(struct stm32_dma_chan * chan)221 static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan)
222 {
223 	return container_of(chan->vchan.chan.device, struct stm32_dma_device,
224 			    ddev);
225 }
226 
to_stm32_dma_chan(struct dma_chan * c)227 static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c)
228 {
229 	return container_of(c, struct stm32_dma_chan, vchan.chan);
230 }
231 
to_stm32_dma_desc(struct virt_dma_desc * vdesc)232 static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc)
233 {
234 	return container_of(vdesc, struct stm32_dma_desc, vdesc);
235 }
236 
chan2dev(struct stm32_dma_chan * chan)237 static struct device *chan2dev(struct stm32_dma_chan *chan)
238 {
239 	return &chan->vchan.chan.dev->device;
240 }
241 
stm32_dma_read(struct stm32_dma_device * dmadev,u32 reg)242 static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg)
243 {
244 	return readl_relaxed(dmadev->base + reg);
245 }
246 
stm32_dma_write(struct stm32_dma_device * dmadev,u32 reg,u32 val)247 static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val)
248 {
249 	writel_relaxed(val, dmadev->base + reg);
250 }
251 
stm32_dma_get_width(struct stm32_dma_chan * chan,enum dma_slave_buswidth width)252 static int stm32_dma_get_width(struct stm32_dma_chan *chan,
253 			       enum dma_slave_buswidth width)
254 {
255 	switch (width) {
256 	case DMA_SLAVE_BUSWIDTH_1_BYTE:
257 		return STM32_DMA_BYTE;
258 	case DMA_SLAVE_BUSWIDTH_2_BYTES:
259 		return STM32_DMA_HALF_WORD;
260 	case DMA_SLAVE_BUSWIDTH_4_BYTES:
261 		return STM32_DMA_WORD;
262 	default:
263 		dev_err(chan2dev(chan), "Dma bus width not supported\n");
264 		return -EINVAL;
265 	}
266 }
267 
stm32_dma_get_max_width(u32 buf_len,dma_addr_t buf_addr,u32 threshold)268 static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len,
269 						       dma_addr_t buf_addr,
270 						       u32 threshold)
271 {
272 	enum dma_slave_buswidth max_width;
273 
274 	if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL)
275 		max_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
276 	else
277 		max_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
278 
279 	while ((buf_len < max_width  || buf_len % max_width) &&
280 	       max_width > DMA_SLAVE_BUSWIDTH_1_BYTE)
281 		max_width = max_width >> 1;
282 
283 	if (buf_addr & (max_width - 1))
284 		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
285 
286 	return max_width;
287 }
288 
stm32_dma_fifo_threshold_is_allowed(u32 burst,u32 threshold,enum dma_slave_buswidth width)289 static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold,
290 						enum dma_slave_buswidth width)
291 {
292 	u32 remaining;
293 
294 	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
295 		return false;
296 
297 	if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) {
298 		if (burst != 0) {
299 			/*
300 			 * If number of beats fit in several whole bursts
301 			 * this configuration is allowed.
302 			 */
303 			remaining = ((STM32_DMA_FIFO_SIZE / width) *
304 				     (threshold + 1) / 4) % burst;
305 
306 			if (remaining == 0)
307 				return true;
308 		} else {
309 			return true;
310 		}
311 	}
312 
313 	return false;
314 }
315 
stm32_dma_is_burst_possible(u32 buf_len,u32 threshold)316 static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold)
317 {
318 	/* If FIFO direct mode, burst is not possible */
319 	if (threshold == STM32_DMA_FIFO_THRESHOLD_NONE)
320 		return false;
321 
322 	/*
323 	 * Buffer or period length has to be aligned on FIFO depth.
324 	 * Otherwise bytes may be stuck within FIFO at buffer or period
325 	 * length.
326 	 */
327 	return ((buf_len % ((threshold + 1) * 4)) == 0);
328 }
329 
stm32_dma_get_best_burst(u32 buf_len,u32 max_burst,u32 threshold,enum dma_slave_buswidth width)330 static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold,
331 				    enum dma_slave_buswidth width)
332 {
333 	u32 best_burst = max_burst;
334 
335 	if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold))
336 		return 0;
337 
338 	while ((buf_len < best_burst * width && best_burst > 1) ||
339 	       !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold,
340 						    width)) {
341 		if (best_burst > STM32_DMA_MIN_BURST)
342 			best_burst = best_burst >> 1;
343 		else
344 			best_burst = 0;
345 	}
346 
347 	return best_burst;
348 }
349 
stm32_dma_get_burst(struct stm32_dma_chan * chan,u32 maxburst)350 static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst)
351 {
352 	switch (maxburst) {
353 	case 0:
354 	case 1:
355 		return STM32_DMA_BURST_SINGLE;
356 	case 4:
357 		return STM32_DMA_BURST_INCR4;
358 	case 8:
359 		return STM32_DMA_BURST_INCR8;
360 	case 16:
361 		return STM32_DMA_BURST_INCR16;
362 	default:
363 		dev_err(chan2dev(chan), "Dma burst size not supported\n");
364 		return -EINVAL;
365 	}
366 }
367 
stm32_dma_set_fifo_config(struct stm32_dma_chan * chan,u32 src_burst,u32 dst_burst)368 static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan,
369 				      u32 src_burst, u32 dst_burst)
370 {
371 	chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK;
372 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE;
373 
374 	if (!src_burst && !dst_burst) {
375 		/* Using direct mode */
376 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE;
377 	} else {
378 		/* Using FIFO mode */
379 		chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
380 	}
381 }
382 
stm32_dma_slave_config(struct dma_chan * c,struct dma_slave_config * config)383 static int stm32_dma_slave_config(struct dma_chan *c,
384 				  struct dma_slave_config *config)
385 {
386 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
387 
388 	memcpy(&chan->dma_sconfig, config, sizeof(*config));
389 
390 	chan->config_init = true;
391 
392 	return 0;
393 }
394 
stm32_dma_irq_status(struct stm32_dma_chan * chan)395 static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan)
396 {
397 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
398 	u32 flags, dma_isr;
399 
400 	/*
401 	 * Read "flags" from DMA_xISR register corresponding to the selected
402 	 * DMA channel at the correct bit offset inside that register.
403 	 *
404 	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
405 	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
406 	 */
407 
408 	if (chan->id & 4)
409 		dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR);
410 	else
411 		dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR);
412 
413 	flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
414 
415 	return flags & STM32_DMA_MASKI;
416 }
417 
stm32_dma_irq_clear(struct stm32_dma_chan * chan,u32 flags)418 static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags)
419 {
420 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
421 	u32 dma_ifcr;
422 
423 	/*
424 	 * Write "flags" to the DMA_xIFCR register corresponding to the selected
425 	 * DMA channel at the correct bit offset inside that register.
426 	 *
427 	 * If (ch % 4) is 2 or 3, left shift the mask by 16 bits.
428 	 * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits.
429 	 */
430 	flags &= STM32_DMA_MASKI;
431 	dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6));
432 
433 	if (chan->id & 4)
434 		stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr);
435 	else
436 		stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr);
437 }
438 
stm32_dma_disable_chan(struct stm32_dma_chan * chan)439 static int stm32_dma_disable_chan(struct stm32_dma_chan *chan)
440 {
441 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
442 	u32 dma_scr, id, reg;
443 
444 	id = chan->id;
445 	reg = STM32_DMA_SCR(id);
446 	dma_scr = stm32_dma_read(dmadev, reg);
447 
448 	if (dma_scr & STM32_DMA_SCR_EN) {
449 		dma_scr &= ~STM32_DMA_SCR_EN;
450 		stm32_dma_write(dmadev, reg, dma_scr);
451 
452 		return readl_relaxed_poll_timeout_atomic(dmadev->base + reg,
453 					dma_scr, !(dma_scr & STM32_DMA_SCR_EN),
454 					10, 1000000);
455 	}
456 
457 	return 0;
458 }
459 
stm32_dma_stop(struct stm32_dma_chan * chan)460 static void stm32_dma_stop(struct stm32_dma_chan *chan)
461 {
462 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
463 	u32 dma_scr, dma_sfcr, status;
464 	int ret;
465 
466 	/* Disable interrupts */
467 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
468 	dma_scr &= ~STM32_DMA_SCR_IRQ_MASK;
469 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr);
470 	dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
471 	dma_sfcr &= ~STM32_DMA_SFCR_FEIE;
472 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr);
473 
474 	/* Disable DMA */
475 	ret = stm32_dma_disable_chan(chan);
476 	if (ret < 0)
477 		return;
478 
479 	/* Clear interrupt status if it is there */
480 	status = stm32_dma_irq_status(chan);
481 	if (status) {
482 		dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n",
483 			__func__, status);
484 		stm32_dma_irq_clear(chan, status);
485 	}
486 
487 	chan->busy = false;
488 }
489 
stm32_dma_terminate_all(struct dma_chan * c)490 static int stm32_dma_terminate_all(struct dma_chan *c)
491 {
492 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
493 	unsigned long flags;
494 	LIST_HEAD(head);
495 
496 	spin_lock_irqsave(&chan->vchan.lock, flags);
497 
498 	if (chan->desc) {
499 		vchan_terminate_vdesc(&chan->desc->vdesc);
500 		if (chan->busy)
501 			stm32_dma_stop(chan);
502 		chan->desc = NULL;
503 	}
504 
505 	vchan_get_all_descriptors(&chan->vchan, &head);
506 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
507 	vchan_dma_desc_free_list(&chan->vchan, &head);
508 
509 	return 0;
510 }
511 
stm32_dma_synchronize(struct dma_chan * c)512 static void stm32_dma_synchronize(struct dma_chan *c)
513 {
514 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
515 
516 	vchan_synchronize(&chan->vchan);
517 }
518 
stm32_dma_dump_reg(struct stm32_dma_chan * chan)519 static void stm32_dma_dump_reg(struct stm32_dma_chan *chan)
520 {
521 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
522 	u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
523 	u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
524 	u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id));
525 	u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id));
526 	u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id));
527 	u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
528 
529 	dev_dbg(chan2dev(chan), "SCR:   0x%08x\n", scr);
530 	dev_dbg(chan2dev(chan), "NDTR:  0x%08x\n", ndtr);
531 	dev_dbg(chan2dev(chan), "SPAR:  0x%08x\n", spar);
532 	dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar);
533 	dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar);
534 	dev_dbg(chan2dev(chan), "SFCR:  0x%08x\n", sfcr);
535 }
536 
537 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan);
538 
stm32_dma_start_transfer(struct stm32_dma_chan * chan)539 static void stm32_dma_start_transfer(struct stm32_dma_chan *chan)
540 {
541 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
542 	struct virt_dma_desc *vdesc;
543 	struct stm32_dma_sg_req *sg_req;
544 	struct stm32_dma_chan_reg *reg;
545 	u32 status;
546 	int ret;
547 
548 	ret = stm32_dma_disable_chan(chan);
549 	if (ret < 0)
550 		return;
551 
552 	if (!chan->desc) {
553 		vdesc = vchan_next_desc(&chan->vchan);
554 		if (!vdesc)
555 			return;
556 
557 		list_del(&vdesc->node);
558 
559 		chan->desc = to_stm32_dma_desc(vdesc);
560 		chan->next_sg = 0;
561 	}
562 
563 	if (chan->next_sg == chan->desc->num_sgs)
564 		chan->next_sg = 0;
565 
566 	sg_req = &chan->desc->sg_req[chan->next_sg];
567 	reg = &sg_req->chan_reg;
568 
569 	reg->dma_scr &= ~STM32_DMA_SCR_EN;
570 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
571 	stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar);
572 	stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar);
573 	stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr);
574 	stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar);
575 	stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr);
576 
577 	chan->next_sg++;
578 
579 	/* Clear interrupt status if it is there */
580 	status = stm32_dma_irq_status(chan);
581 	if (status)
582 		stm32_dma_irq_clear(chan, status);
583 
584 	if (chan->desc->cyclic)
585 		stm32_dma_configure_next_sg(chan);
586 
587 	stm32_dma_dump_reg(chan);
588 
589 	/* Start DMA */
590 	reg->dma_scr |= STM32_DMA_SCR_EN;
591 	stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr);
592 
593 	chan->busy = true;
594 
595 	dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan);
596 }
597 
stm32_dma_configure_next_sg(struct stm32_dma_chan * chan)598 static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan)
599 {
600 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
601 	struct stm32_dma_sg_req *sg_req;
602 	u32 dma_scr, dma_sm0ar, dma_sm1ar, id;
603 
604 	id = chan->id;
605 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
606 
607 	if (dma_scr & STM32_DMA_SCR_DBM) {
608 		if (chan->next_sg == chan->desc->num_sgs)
609 			chan->next_sg = 0;
610 
611 		sg_req = &chan->desc->sg_req[chan->next_sg];
612 
613 		if (dma_scr & STM32_DMA_SCR_CT) {
614 			dma_sm0ar = sg_req->chan_reg.dma_sm0ar;
615 			stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar);
616 			dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n",
617 				stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)));
618 		} else {
619 			dma_sm1ar = sg_req->chan_reg.dma_sm1ar;
620 			stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar);
621 			dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n",
622 				stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)));
623 		}
624 	}
625 }
626 
stm32_dma_handle_chan_done(struct stm32_dma_chan * chan)627 static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan)
628 {
629 	if (chan->desc) {
630 		if (chan->desc->cyclic) {
631 			vchan_cyclic_callback(&chan->desc->vdesc);
632 			chan->next_sg++;
633 			stm32_dma_configure_next_sg(chan);
634 		} else {
635 			chan->busy = false;
636 			if (chan->next_sg == chan->desc->num_sgs) {
637 				vchan_cookie_complete(&chan->desc->vdesc);
638 				chan->desc = NULL;
639 			}
640 			stm32_dma_start_transfer(chan);
641 		}
642 	}
643 }
644 
stm32_dma_chan_irq(int irq,void * devid)645 static irqreturn_t stm32_dma_chan_irq(int irq, void *devid)
646 {
647 	struct stm32_dma_chan *chan = devid;
648 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
649 	u32 status, scr, sfcr;
650 
651 	spin_lock(&chan->vchan.lock);
652 
653 	status = stm32_dma_irq_status(chan);
654 	scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
655 	sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id));
656 
657 	if (status & STM32_DMA_FEI) {
658 		stm32_dma_irq_clear(chan, STM32_DMA_FEI);
659 		status &= ~STM32_DMA_FEI;
660 		if (sfcr & STM32_DMA_SFCR_FEIE) {
661 			if (!(scr & STM32_DMA_SCR_EN) &&
662 			    !(status & STM32_DMA_TCI))
663 				dev_err(chan2dev(chan), "FIFO Error\n");
664 			else
665 				dev_dbg(chan2dev(chan), "FIFO over/underrun\n");
666 		}
667 	}
668 	if (status & STM32_DMA_DMEI) {
669 		stm32_dma_irq_clear(chan, STM32_DMA_DMEI);
670 		status &= ~STM32_DMA_DMEI;
671 		if (sfcr & STM32_DMA_SCR_DMEIE)
672 			dev_dbg(chan2dev(chan), "Direct mode overrun\n");
673 	}
674 
675 	if (status & STM32_DMA_TCI) {
676 		stm32_dma_irq_clear(chan, STM32_DMA_TCI);
677 		if (scr & STM32_DMA_SCR_TCIE)
678 			stm32_dma_handle_chan_done(chan);
679 		status &= ~STM32_DMA_TCI;
680 	}
681 
682 	if (status & STM32_DMA_HTI) {
683 		stm32_dma_irq_clear(chan, STM32_DMA_HTI);
684 		status &= ~STM32_DMA_HTI;
685 	}
686 
687 	if (status) {
688 		stm32_dma_irq_clear(chan, status);
689 		dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status);
690 		if (!(scr & STM32_DMA_SCR_EN))
691 			dev_err(chan2dev(chan), "chan disabled by HW\n");
692 	}
693 
694 	spin_unlock(&chan->vchan.lock);
695 
696 	return IRQ_HANDLED;
697 }
698 
stm32_dma_issue_pending(struct dma_chan * c)699 static void stm32_dma_issue_pending(struct dma_chan *c)
700 {
701 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
702 	unsigned long flags;
703 
704 	spin_lock_irqsave(&chan->vchan.lock, flags);
705 	if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) {
706 		dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan);
707 		stm32_dma_start_transfer(chan);
708 
709 	}
710 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
711 }
712 
stm32_dma_set_xfer_param(struct stm32_dma_chan * chan,enum dma_transfer_direction direction,enum dma_slave_buswidth * buswidth,u32 buf_len,dma_addr_t buf_addr)713 static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan,
714 				    enum dma_transfer_direction direction,
715 				    enum dma_slave_buswidth *buswidth,
716 				    u32 buf_len, dma_addr_t buf_addr)
717 {
718 	enum dma_slave_buswidth src_addr_width, dst_addr_width;
719 	int src_bus_width, dst_bus_width;
720 	int src_burst_size, dst_burst_size;
721 	u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst;
722 	u32 dma_scr, fifoth;
723 
724 	src_addr_width = chan->dma_sconfig.src_addr_width;
725 	dst_addr_width = chan->dma_sconfig.dst_addr_width;
726 	src_maxburst = chan->dma_sconfig.src_maxburst;
727 	dst_maxburst = chan->dma_sconfig.dst_maxburst;
728 	fifoth = chan->threshold;
729 
730 	switch (direction) {
731 	case DMA_MEM_TO_DEV:
732 		/* Set device data size */
733 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
734 		if (dst_bus_width < 0)
735 			return dst_bus_width;
736 
737 		/* Set device burst size */
738 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
739 							  dst_maxburst,
740 							  fifoth,
741 							  dst_addr_width);
742 
743 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
744 		if (dst_burst_size < 0)
745 			return dst_burst_size;
746 
747 		/* Set memory data size */
748 		src_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
749 							 fifoth);
750 		chan->mem_width = src_addr_width;
751 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
752 		if (src_bus_width < 0)
753 			return src_bus_width;
754 
755 		/*
756 		 * Set memory burst size - burst not possible if address is not aligned on
757 		 * the address boundary equal to the size of the transfer
758 		 */
759 		if (buf_addr & (buf_len - 1))
760 			src_maxburst = 1;
761 		else
762 			src_maxburst = STM32_DMA_MAX_BURST;
763 		src_best_burst = stm32_dma_get_best_burst(buf_len,
764 							  src_maxburst,
765 							  fifoth,
766 							  src_addr_width);
767 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
768 		if (src_burst_size < 0)
769 			return src_burst_size;
770 
771 		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) |
772 			STM32_DMA_SCR_PSIZE(dst_bus_width) |
773 			STM32_DMA_SCR_MSIZE(src_bus_width) |
774 			STM32_DMA_SCR_PBURST(dst_burst_size) |
775 			STM32_DMA_SCR_MBURST(src_burst_size);
776 
777 		/* Set FIFO threshold */
778 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
779 		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
780 			chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
781 
782 		/* Set peripheral address */
783 		chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr;
784 		*buswidth = dst_addr_width;
785 		break;
786 
787 	case DMA_DEV_TO_MEM:
788 		/* Set device data size */
789 		src_bus_width = stm32_dma_get_width(chan, src_addr_width);
790 		if (src_bus_width < 0)
791 			return src_bus_width;
792 
793 		/* Set device burst size */
794 		src_best_burst = stm32_dma_get_best_burst(buf_len,
795 							  src_maxburst,
796 							  fifoth,
797 							  src_addr_width);
798 		chan->mem_burst = src_best_burst;
799 		src_burst_size = stm32_dma_get_burst(chan, src_best_burst);
800 		if (src_burst_size < 0)
801 			return src_burst_size;
802 
803 		/* Set memory data size */
804 		dst_addr_width = stm32_dma_get_max_width(buf_len, buf_addr,
805 							 fifoth);
806 		chan->mem_width = dst_addr_width;
807 		dst_bus_width = stm32_dma_get_width(chan, dst_addr_width);
808 		if (dst_bus_width < 0)
809 			return dst_bus_width;
810 
811 		/*
812 		 * Set memory burst size - burst not possible if address is not aligned on
813 		 * the address boundary equal to the size of the transfer
814 		 */
815 		if (buf_addr & (buf_len - 1))
816 			dst_maxburst = 1;
817 		else
818 			dst_maxburst = STM32_DMA_MAX_BURST;
819 		dst_best_burst = stm32_dma_get_best_burst(buf_len,
820 							  dst_maxburst,
821 							  fifoth,
822 							  dst_addr_width);
823 		chan->mem_burst = dst_best_burst;
824 		dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst);
825 		if (dst_burst_size < 0)
826 			return dst_burst_size;
827 
828 		dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) |
829 			STM32_DMA_SCR_PSIZE(src_bus_width) |
830 			STM32_DMA_SCR_MSIZE(dst_bus_width) |
831 			STM32_DMA_SCR_PBURST(src_burst_size) |
832 			STM32_DMA_SCR_MBURST(dst_burst_size);
833 
834 		/* Set FIFO threshold */
835 		chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK;
836 		if (fifoth != STM32_DMA_FIFO_THRESHOLD_NONE)
837 			chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(fifoth);
838 
839 		/* Set peripheral address */
840 		chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr;
841 		*buswidth = chan->dma_sconfig.src_addr_width;
842 		break;
843 
844 	default:
845 		dev_err(chan2dev(chan), "Dma direction is not supported\n");
846 		return -EINVAL;
847 	}
848 
849 	stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst);
850 
851 	/* Set DMA control register */
852 	chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK |
853 			STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK |
854 			STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK);
855 	chan->chan_reg.dma_scr |= dma_scr;
856 
857 	return 0;
858 }
859 
stm32_dma_clear_reg(struct stm32_dma_chan_reg * regs)860 static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs)
861 {
862 	memset(regs, 0, sizeof(struct stm32_dma_chan_reg));
863 }
864 
stm32_dma_prep_slave_sg(struct dma_chan * c,struct scatterlist * sgl,u32 sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)865 static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg(
866 	struct dma_chan *c, struct scatterlist *sgl,
867 	u32 sg_len, enum dma_transfer_direction direction,
868 	unsigned long flags, void *context)
869 {
870 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
871 	struct stm32_dma_desc *desc;
872 	struct scatterlist *sg;
873 	enum dma_slave_buswidth buswidth;
874 	u32 nb_data_items;
875 	int i, ret;
876 
877 	if (!chan->config_init) {
878 		dev_err(chan2dev(chan), "dma channel is not configured\n");
879 		return NULL;
880 	}
881 
882 	if (sg_len < 1) {
883 		dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len);
884 		return NULL;
885 	}
886 
887 	desc = kzalloc(struct_size(desc, sg_req, sg_len), GFP_NOWAIT);
888 	if (!desc)
889 		return NULL;
890 
891 	/* Set peripheral flow controller */
892 	if (chan->dma_sconfig.device_fc)
893 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL;
894 	else
895 		chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
896 
897 	for_each_sg(sgl, sg, sg_len, i) {
898 		ret = stm32_dma_set_xfer_param(chan, direction, &buswidth,
899 					       sg_dma_len(sg),
900 					       sg_dma_address(sg));
901 		if (ret < 0)
902 			goto err;
903 
904 		desc->sg_req[i].len = sg_dma_len(sg);
905 
906 		nb_data_items = desc->sg_req[i].len / buswidth;
907 		if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
908 			dev_err(chan2dev(chan), "nb items not supported\n");
909 			goto err;
910 		}
911 
912 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
913 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
914 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
915 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
916 		desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg);
917 		desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg);
918 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
919 	}
920 
921 	desc->num_sgs = sg_len;
922 	desc->cyclic = false;
923 
924 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
925 
926 err:
927 	kfree(desc);
928 	return NULL;
929 }
930 
stm32_dma_prep_dma_cyclic(struct dma_chan * c,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction direction,unsigned long flags)931 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic(
932 	struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
933 	size_t period_len, enum dma_transfer_direction direction,
934 	unsigned long flags)
935 {
936 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
937 	struct stm32_dma_desc *desc;
938 	enum dma_slave_buswidth buswidth;
939 	u32 num_periods, nb_data_items;
940 	int i, ret;
941 
942 	if (!buf_len || !period_len) {
943 		dev_err(chan2dev(chan), "Invalid buffer/period len\n");
944 		return NULL;
945 	}
946 
947 	if (!chan->config_init) {
948 		dev_err(chan2dev(chan), "dma channel is not configured\n");
949 		return NULL;
950 	}
951 
952 	if (buf_len % period_len) {
953 		dev_err(chan2dev(chan), "buf_len not multiple of period_len\n");
954 		return NULL;
955 	}
956 
957 	/*
958 	 * We allow to take more number of requests till DMA is
959 	 * not started. The driver will loop over all requests.
960 	 * Once DMA is started then new requests can be queued only after
961 	 * terminating the DMA.
962 	 */
963 	if (chan->busy) {
964 		dev_err(chan2dev(chan), "Request not allowed when dma busy\n");
965 		return NULL;
966 	}
967 
968 	ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len,
969 				       buf_addr);
970 	if (ret < 0)
971 		return NULL;
972 
973 	nb_data_items = period_len / buswidth;
974 	if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) {
975 		dev_err(chan2dev(chan), "number of items not supported\n");
976 		return NULL;
977 	}
978 
979 	/*  Enable Circular mode or double buffer mode */
980 	if (buf_len == period_len)
981 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC;
982 	else
983 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM;
984 
985 	/* Clear periph ctrl if client set it */
986 	chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL;
987 
988 	num_periods = buf_len / period_len;
989 
990 	desc = kzalloc(struct_size(desc, sg_req, num_periods), GFP_NOWAIT);
991 	if (!desc)
992 		return NULL;
993 
994 	for (i = 0; i < num_periods; i++) {
995 		desc->sg_req[i].len = period_len;
996 
997 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
998 		desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr;
999 		desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr;
1000 		desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar;
1001 		desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr;
1002 		desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr;
1003 		desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items;
1004 		buf_addr += period_len;
1005 	}
1006 
1007 	desc->num_sgs = num_periods;
1008 	desc->cyclic = true;
1009 
1010 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1011 }
1012 
stm32_dma_prep_dma_memcpy(struct dma_chan * c,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1013 static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy(
1014 	struct dma_chan *c, dma_addr_t dest,
1015 	dma_addr_t src, size_t len, unsigned long flags)
1016 {
1017 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1018 	enum dma_slave_buswidth max_width;
1019 	struct stm32_dma_desc *desc;
1020 	size_t xfer_count, offset;
1021 	u32 num_sgs, best_burst, dma_burst, threshold;
1022 	int i;
1023 
1024 	num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1025 	desc = kzalloc(struct_size(desc, sg_req, num_sgs), GFP_NOWAIT);
1026 	if (!desc)
1027 		return NULL;
1028 
1029 	threshold = chan->threshold;
1030 
1031 	for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) {
1032 		xfer_count = min_t(size_t, len - offset,
1033 				   STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1034 
1035 		/* Compute best burst size */
1036 		max_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1037 		best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST,
1038 						      threshold, max_width);
1039 		dma_burst = stm32_dma_get_burst(chan, best_burst);
1040 
1041 		stm32_dma_clear_reg(&desc->sg_req[i].chan_reg);
1042 		desc->sg_req[i].chan_reg.dma_scr =
1043 			STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) |
1044 			STM32_DMA_SCR_PBURST(dma_burst) |
1045 			STM32_DMA_SCR_MBURST(dma_burst) |
1046 			STM32_DMA_SCR_MINC |
1047 			STM32_DMA_SCR_PINC |
1048 			STM32_DMA_SCR_TCIE |
1049 			STM32_DMA_SCR_TEIE;
1050 		desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK;
1051 		desc->sg_req[i].chan_reg.dma_sfcr |=
1052 			STM32_DMA_SFCR_FTH(threshold);
1053 		desc->sg_req[i].chan_reg.dma_spar = src + offset;
1054 		desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset;
1055 		desc->sg_req[i].chan_reg.dma_sndtr = xfer_count;
1056 		desc->sg_req[i].len = xfer_count;
1057 	}
1058 
1059 	desc->num_sgs = num_sgs;
1060 	desc->cyclic = false;
1061 
1062 	return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
1063 }
1064 
stm32_dma_get_remaining_bytes(struct stm32_dma_chan * chan)1065 static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan)
1066 {
1067 	u32 dma_scr, width, ndtr;
1068 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1069 
1070 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id));
1071 	width = STM32_DMA_SCR_PSIZE_GET(dma_scr);
1072 	ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id));
1073 
1074 	return ndtr << width;
1075 }
1076 
1077 /**
1078  * stm32_dma_is_current_sg - check that expected sg_req is currently transferred
1079  * @chan: dma channel
1080  *
1081  * This function called when IRQ are disable, checks that the hardware has not
1082  * switched on the next transfer in double buffer mode. The test is done by
1083  * comparing the next_sg memory address with the hardware related register
1084  * (based on CT bit value).
1085  *
1086  * Returns true if expected current transfer is still running or double
1087  * buffer mode is not activated.
1088  */
stm32_dma_is_current_sg(struct stm32_dma_chan * chan)1089 static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan)
1090 {
1091 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1092 	struct stm32_dma_sg_req *sg_req;
1093 	u32 dma_scr, dma_smar, id;
1094 
1095 	id = chan->id;
1096 	dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1097 
1098 	if (!(dma_scr & STM32_DMA_SCR_DBM))
1099 		return true;
1100 
1101 	sg_req = &chan->desc->sg_req[chan->next_sg];
1102 
1103 	if (dma_scr & STM32_DMA_SCR_CT) {
1104 		dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id));
1105 		return (dma_smar == sg_req->chan_reg.dma_sm0ar);
1106 	}
1107 
1108 	dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id));
1109 
1110 	return (dma_smar == sg_req->chan_reg.dma_sm1ar);
1111 }
1112 
stm32_dma_desc_residue(struct stm32_dma_chan * chan,struct stm32_dma_desc * desc,u32 next_sg)1113 static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan,
1114 				     struct stm32_dma_desc *desc,
1115 				     u32 next_sg)
1116 {
1117 	u32 modulo, burst_size;
1118 	u32 residue;
1119 	u32 n_sg = next_sg;
1120 	struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg];
1121 	int i;
1122 
1123 	/*
1124 	 * Calculate the residue means compute the descriptors
1125 	 * information:
1126 	 * - the sg_req currently transferred
1127 	 * - the Hardware remaining position in this sg (NDTR bits field).
1128 	 *
1129 	 * A race condition may occur if DMA is running in cyclic or double
1130 	 * buffer mode, since the DMA register are automatically reloaded at end
1131 	 * of period transfer. The hardware may have switched to the next
1132 	 * transfer (CT bit updated) just before the position (SxNDTR reg) is
1133 	 * read.
1134 	 * In this case the SxNDTR reg could (or not) correspond to the new
1135 	 * transfer position, and not the expected one.
1136 	 * The strategy implemented in the stm32 driver is to:
1137 	 *  - read the SxNDTR register
1138 	 *  - crosscheck that hardware is still in current transfer.
1139 	 * In case of switch, we can assume that the DMA is at the beginning of
1140 	 * the next transfer. So we approximate the residue in consequence, by
1141 	 * pointing on the beginning of next transfer.
1142 	 *
1143 	 * This race condition doesn't apply for none cyclic mode, as double
1144 	 * buffer is not used. In such situation registers are updated by the
1145 	 * software.
1146 	 */
1147 
1148 	residue = stm32_dma_get_remaining_bytes(chan);
1149 
1150 	if (!stm32_dma_is_current_sg(chan)) {
1151 		n_sg++;
1152 		if (n_sg == chan->desc->num_sgs)
1153 			n_sg = 0;
1154 		residue = sg_req->len;
1155 	}
1156 
1157 	/*
1158 	 * In cyclic mode, for the last period, residue = remaining bytes
1159 	 * from NDTR,
1160 	 * else for all other periods in cyclic mode, and in sg mode,
1161 	 * residue = remaining bytes from NDTR + remaining
1162 	 * periods/sg to be transferred
1163 	 */
1164 	if (!chan->desc->cyclic || n_sg != 0)
1165 		for (i = n_sg; i < desc->num_sgs; i++)
1166 			residue += desc->sg_req[i].len;
1167 
1168 	if (!chan->mem_burst)
1169 		return residue;
1170 
1171 	burst_size = chan->mem_burst * chan->mem_width;
1172 	modulo = residue % burst_size;
1173 	if (modulo)
1174 		residue = residue - modulo + burst_size;
1175 
1176 	return residue;
1177 }
1178 
stm32_dma_tx_status(struct dma_chan * c,dma_cookie_t cookie,struct dma_tx_state * state)1179 static enum dma_status stm32_dma_tx_status(struct dma_chan *c,
1180 					   dma_cookie_t cookie,
1181 					   struct dma_tx_state *state)
1182 {
1183 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1184 	struct virt_dma_desc *vdesc;
1185 	enum dma_status status;
1186 	unsigned long flags;
1187 	u32 residue = 0;
1188 
1189 	status = dma_cookie_status(c, cookie, state);
1190 	if (status == DMA_COMPLETE || !state)
1191 		return status;
1192 
1193 	spin_lock_irqsave(&chan->vchan.lock, flags);
1194 	vdesc = vchan_find_desc(&chan->vchan, cookie);
1195 	if (chan->desc && cookie == chan->desc->vdesc.tx.cookie)
1196 		residue = stm32_dma_desc_residue(chan, chan->desc,
1197 						 chan->next_sg);
1198 	else if (vdesc)
1199 		residue = stm32_dma_desc_residue(chan,
1200 						 to_stm32_dma_desc(vdesc), 0);
1201 	dma_set_residue(state, residue);
1202 
1203 	spin_unlock_irqrestore(&chan->vchan.lock, flags);
1204 
1205 	return status;
1206 }
1207 
stm32_dma_alloc_chan_resources(struct dma_chan * c)1208 static int stm32_dma_alloc_chan_resources(struct dma_chan *c)
1209 {
1210 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1211 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1212 	int ret;
1213 
1214 	chan->config_init = false;
1215 
1216 	ret = pm_runtime_resume_and_get(dmadev->ddev.dev);
1217 	if (ret < 0)
1218 		return ret;
1219 
1220 	ret = stm32_dma_disable_chan(chan);
1221 	if (ret < 0)
1222 		pm_runtime_put(dmadev->ddev.dev);
1223 
1224 	return ret;
1225 }
1226 
stm32_dma_free_chan_resources(struct dma_chan * c)1227 static void stm32_dma_free_chan_resources(struct dma_chan *c)
1228 {
1229 	struct stm32_dma_chan *chan = to_stm32_dma_chan(c);
1230 	struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan);
1231 	unsigned long flags;
1232 
1233 	dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id);
1234 
1235 	if (chan->busy) {
1236 		spin_lock_irqsave(&chan->vchan.lock, flags);
1237 		stm32_dma_stop(chan);
1238 		chan->desc = NULL;
1239 		spin_unlock_irqrestore(&chan->vchan.lock, flags);
1240 	}
1241 
1242 	pm_runtime_put(dmadev->ddev.dev);
1243 
1244 	vchan_free_chan_resources(to_virt_chan(c));
1245 	stm32_dma_clear_reg(&chan->chan_reg);
1246 	chan->threshold = 0;
1247 }
1248 
stm32_dma_desc_free(struct virt_dma_desc * vdesc)1249 static void stm32_dma_desc_free(struct virt_dma_desc *vdesc)
1250 {
1251 	kfree(container_of(vdesc, struct stm32_dma_desc, vdesc));
1252 }
1253 
stm32_dma_set_config(struct stm32_dma_chan * chan,struct stm32_dma_cfg * cfg)1254 static void stm32_dma_set_config(struct stm32_dma_chan *chan,
1255 				 struct stm32_dma_cfg *cfg)
1256 {
1257 	stm32_dma_clear_reg(&chan->chan_reg);
1258 
1259 	chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK;
1260 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line);
1261 
1262 	/* Enable Interrupts  */
1263 	chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE;
1264 
1265 	chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features);
1266 	if (STM32_DMA_DIRECT_MODE_GET(cfg->features))
1267 		chan->threshold = STM32_DMA_FIFO_THRESHOLD_NONE;
1268 	if (STM32_DMA_ALT_ACK_MODE_GET(cfg->features))
1269 		chan->chan_reg.dma_scr |= STM32_DMA_SCR_TRBUFF;
1270 }
1271 
stm32_dma_of_xlate(struct of_phandle_args * dma_spec,struct of_dma * ofdma)1272 static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec,
1273 					   struct of_dma *ofdma)
1274 {
1275 	struct stm32_dma_device *dmadev = ofdma->of_dma_data;
1276 	struct device *dev = dmadev->ddev.dev;
1277 	struct stm32_dma_cfg cfg;
1278 	struct stm32_dma_chan *chan;
1279 	struct dma_chan *c;
1280 
1281 	if (dma_spec->args_count < 4) {
1282 		dev_err(dev, "Bad number of cells\n");
1283 		return NULL;
1284 	}
1285 
1286 	cfg.channel_id = dma_spec->args[0];
1287 	cfg.request_line = dma_spec->args[1];
1288 	cfg.stream_config = dma_spec->args[2];
1289 	cfg.features = dma_spec->args[3];
1290 
1291 	if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS ||
1292 	    cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) {
1293 		dev_err(dev, "Bad channel and/or request id\n");
1294 		return NULL;
1295 	}
1296 
1297 	chan = &dmadev->chan[cfg.channel_id];
1298 
1299 	c = dma_get_slave_channel(&chan->vchan.chan);
1300 	if (!c) {
1301 		dev_err(dev, "No more channels available\n");
1302 		return NULL;
1303 	}
1304 
1305 	stm32_dma_set_config(chan, &cfg);
1306 
1307 	return c;
1308 }
1309 
1310 static const struct of_device_id stm32_dma_of_match[] = {
1311 	{ .compatible = "st,stm32-dma", },
1312 	{ /* sentinel */ },
1313 };
1314 MODULE_DEVICE_TABLE(of, stm32_dma_of_match);
1315 
stm32_dma_probe(struct platform_device * pdev)1316 static int stm32_dma_probe(struct platform_device *pdev)
1317 {
1318 	struct stm32_dma_chan *chan;
1319 	struct stm32_dma_device *dmadev;
1320 	struct dma_device *dd;
1321 	const struct of_device_id *match;
1322 	struct resource *res;
1323 	struct reset_control *rst;
1324 	int i, ret;
1325 
1326 	match = of_match_device(stm32_dma_of_match, &pdev->dev);
1327 	if (!match) {
1328 		dev_err(&pdev->dev, "Error: No device match found\n");
1329 		return -ENODEV;
1330 	}
1331 
1332 	dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL);
1333 	if (!dmadev)
1334 		return -ENOMEM;
1335 
1336 	dd = &dmadev->ddev;
1337 
1338 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1339 	dmadev->base = devm_ioremap_resource(&pdev->dev, res);
1340 	if (IS_ERR(dmadev->base))
1341 		return PTR_ERR(dmadev->base);
1342 
1343 	dmadev->clk = devm_clk_get(&pdev->dev, NULL);
1344 	if (IS_ERR(dmadev->clk))
1345 		return dev_err_probe(&pdev->dev, PTR_ERR(dmadev->clk), "Can't get clock\n");
1346 
1347 	ret = clk_prepare_enable(dmadev->clk);
1348 	if (ret < 0) {
1349 		dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret);
1350 		return ret;
1351 	}
1352 
1353 	dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node,
1354 						"st,mem2mem");
1355 
1356 	rst = devm_reset_control_get(&pdev->dev, NULL);
1357 	if (IS_ERR(rst)) {
1358 		ret = PTR_ERR(rst);
1359 		if (ret == -EPROBE_DEFER)
1360 			goto clk_free;
1361 	} else {
1362 		reset_control_assert(rst);
1363 		udelay(2);
1364 		reset_control_deassert(rst);
1365 	}
1366 
1367 	dma_set_max_seg_size(&pdev->dev, STM32_DMA_ALIGNED_MAX_DATA_ITEMS);
1368 
1369 	dma_cap_set(DMA_SLAVE, dd->cap_mask);
1370 	dma_cap_set(DMA_PRIVATE, dd->cap_mask);
1371 	dma_cap_set(DMA_CYCLIC, dd->cap_mask);
1372 	dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources;
1373 	dd->device_free_chan_resources = stm32_dma_free_chan_resources;
1374 	dd->device_tx_status = stm32_dma_tx_status;
1375 	dd->device_issue_pending = stm32_dma_issue_pending;
1376 	dd->device_prep_slave_sg = stm32_dma_prep_slave_sg;
1377 	dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic;
1378 	dd->device_config = stm32_dma_slave_config;
1379 	dd->device_terminate_all = stm32_dma_terminate_all;
1380 	dd->device_synchronize = stm32_dma_synchronize;
1381 	dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1382 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1383 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1384 	dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1385 		BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1386 		BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1387 	dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1388 	dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1389 	dd->copy_align = DMAENGINE_ALIGN_32_BYTES;
1390 	dd->max_burst = STM32_DMA_MAX_BURST;
1391 	dd->descriptor_reuse = true;
1392 	dd->dev = &pdev->dev;
1393 	INIT_LIST_HEAD(&dd->channels);
1394 
1395 	if (dmadev->mem2mem) {
1396 		dma_cap_set(DMA_MEMCPY, dd->cap_mask);
1397 		dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy;
1398 		dd->directions |= BIT(DMA_MEM_TO_MEM);
1399 	}
1400 
1401 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1402 		chan = &dmadev->chan[i];
1403 		chan->id = i;
1404 		chan->vchan.desc_free = stm32_dma_desc_free;
1405 		vchan_init(&chan->vchan, dd);
1406 	}
1407 
1408 	ret = dma_async_device_register(dd);
1409 	if (ret)
1410 		goto clk_free;
1411 
1412 	for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) {
1413 		chan = &dmadev->chan[i];
1414 		ret = platform_get_irq(pdev, i);
1415 		if (ret < 0)
1416 			goto err_unregister;
1417 		chan->irq = ret;
1418 
1419 		ret = devm_request_irq(&pdev->dev, chan->irq,
1420 				       stm32_dma_chan_irq, 0,
1421 				       dev_name(chan2dev(chan)), chan);
1422 		if (ret) {
1423 			dev_err(&pdev->dev,
1424 				"request_irq failed with err %d channel %d\n",
1425 				ret, i);
1426 			goto err_unregister;
1427 		}
1428 	}
1429 
1430 	ret = of_dma_controller_register(pdev->dev.of_node,
1431 					 stm32_dma_of_xlate, dmadev);
1432 	if (ret < 0) {
1433 		dev_err(&pdev->dev,
1434 			"STM32 DMA DMA OF registration failed %d\n", ret);
1435 		goto err_unregister;
1436 	}
1437 
1438 	platform_set_drvdata(pdev, dmadev);
1439 
1440 	pm_runtime_set_active(&pdev->dev);
1441 	pm_runtime_enable(&pdev->dev);
1442 	pm_runtime_get_noresume(&pdev->dev);
1443 	pm_runtime_put(&pdev->dev);
1444 
1445 	dev_info(&pdev->dev, "STM32 DMA driver registered\n");
1446 
1447 	return 0;
1448 
1449 err_unregister:
1450 	dma_async_device_unregister(dd);
1451 clk_free:
1452 	clk_disable_unprepare(dmadev->clk);
1453 
1454 	return ret;
1455 }
1456 
1457 #ifdef CONFIG_PM
stm32_dma_runtime_suspend(struct device * dev)1458 static int stm32_dma_runtime_suspend(struct device *dev)
1459 {
1460 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1461 
1462 	clk_disable_unprepare(dmadev->clk);
1463 
1464 	return 0;
1465 }
1466 
stm32_dma_runtime_resume(struct device * dev)1467 static int stm32_dma_runtime_resume(struct device *dev)
1468 {
1469 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1470 	int ret;
1471 
1472 	ret = clk_prepare_enable(dmadev->clk);
1473 	if (ret) {
1474 		dev_err(dev, "failed to prepare_enable clock\n");
1475 		return ret;
1476 	}
1477 
1478 	return 0;
1479 }
1480 #endif
1481 
1482 #ifdef CONFIG_PM_SLEEP
stm32_dma_suspend(struct device * dev)1483 static int stm32_dma_suspend(struct device *dev)
1484 {
1485 	struct stm32_dma_device *dmadev = dev_get_drvdata(dev);
1486 	int id, ret, scr;
1487 
1488 	ret = pm_runtime_resume_and_get(dev);
1489 	if (ret < 0)
1490 		return ret;
1491 
1492 	for (id = 0; id < STM32_DMA_MAX_CHANNELS; id++) {
1493 		scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id));
1494 		if (scr & STM32_DMA_SCR_EN) {
1495 			dev_warn(dev, "Suspend is prevented by Chan %i\n", id);
1496 			return -EBUSY;
1497 		}
1498 	}
1499 
1500 	pm_runtime_put_sync(dev);
1501 
1502 	pm_runtime_force_suspend(dev);
1503 
1504 	return 0;
1505 }
1506 
stm32_dma_resume(struct device * dev)1507 static int stm32_dma_resume(struct device *dev)
1508 {
1509 	return pm_runtime_force_resume(dev);
1510 }
1511 #endif
1512 
1513 static const struct dev_pm_ops stm32_dma_pm_ops = {
1514 	SET_SYSTEM_SLEEP_PM_OPS(stm32_dma_suspend, stm32_dma_resume)
1515 	SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend,
1516 			   stm32_dma_runtime_resume, NULL)
1517 };
1518 
1519 static struct platform_driver stm32_dma_driver = {
1520 	.driver = {
1521 		.name = "stm32-dma",
1522 		.of_match_table = stm32_dma_of_match,
1523 		.pm = &stm32_dma_pm_ops,
1524 	},
1525 	.probe = stm32_dma_probe,
1526 };
1527 
stm32_dma_init(void)1528 static int __init stm32_dma_init(void)
1529 {
1530 	return platform_driver_register(&stm32_dma_driver);
1531 }
1532 subsys_initcall(stm32_dma_init);
1533